xref: /openbmc/qemu/target/ppc/mem_helper.c (revision 750541c492018e01bad5f34b087397ee6a0b835b)
1 /*
2  *  PowerPC memory access emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/exec-all.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "helper_regs.h"
25 #include "exec/cpu_ldst.h"
26 #include "tcg.h"
27 #include "internal.h"
28 #include "qemu/atomic128.h"
29 
30 /* #define DEBUG_OP */
31 
32 static inline bool needs_byteswap(const CPUPPCState *env)
33 {
34 #if defined(TARGET_WORDS_BIGENDIAN)
35   return msr_le;
36 #else
37   return !msr_le;
38 #endif
39 }
40 
41 /*****************************************************************************/
42 /* Memory load and stores */
43 
44 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
45                                     target_long arg)
46 {
47 #if defined(TARGET_PPC64)
48     if (!msr_is_64bit(env, env->msr)) {
49         return (uint32_t)(addr + arg);
50     } else
51 #endif
52     {
53         return addr + arg;
54     }
55 }
56 
57 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
58 {
59     for (; reg < 32; reg++) {
60         if (needs_byteswap(env)) {
61             env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
62         } else {
63             env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
64         }
65         addr = addr_add(env, addr, 4);
66     }
67 }
68 
69 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
70 {
71     for (; reg < 32; reg++) {
72         if (needs_byteswap(env)) {
73             cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
74                                                    GETPC());
75         } else {
76             cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
77         }
78         addr = addr_add(env, addr, 4);
79     }
80 }
81 
82 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
83                    uint32_t reg, uintptr_t raddr)
84 {
85     int sh;
86 
87     for (; nb > 3; nb -= 4) {
88         env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
89         reg = (reg + 1) % 32;
90         addr = addr_add(env, addr, 4);
91     }
92     if (unlikely(nb > 0)) {
93         env->gpr[reg] = 0;
94         for (sh = 24; nb > 0; nb--, sh -= 8) {
95             env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
96             addr = addr_add(env, addr, 1);
97         }
98     }
99 }
100 
101 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
102 {
103     do_lsw(env, addr, nb, reg, GETPC());
104 }
105 
106 /*
107  * PPC32 specification says we must generate an exception if rA is in
108  * the range of registers to be loaded.  In an other hand, IBM says
109  * this is valid, but rA won't be loaded.  For now, I'll follow the
110  * spec...
111  */
112 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
113                  uint32_t ra, uint32_t rb)
114 {
115     if (likely(xer_bc != 0)) {
116         int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
117         if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
118                      lsw_reg_in_range(reg, num_used_regs, rb))) {
119             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
120                                    POWERPC_EXCP_INVAL |
121                                    POWERPC_EXCP_INVAL_LSWX, GETPC());
122         } else {
123             do_lsw(env, addr, xer_bc, reg, GETPC());
124         }
125     }
126 }
127 
128 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
129                  uint32_t reg)
130 {
131     int sh;
132 
133     for (; nb > 3; nb -= 4) {
134         cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
135         reg = (reg + 1) % 32;
136         addr = addr_add(env, addr, 4);
137     }
138     if (unlikely(nb > 0)) {
139         for (sh = 24; nb > 0; nb--, sh -= 8) {
140             cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
141             addr = addr_add(env, addr, 1);
142         }
143     }
144 }
145 
146 static void dcbz_common(CPUPPCState *env, target_ulong addr,
147                         uint32_t opcode, bool epid, uintptr_t retaddr)
148 {
149     target_ulong mask, dcbz_size = env->dcache_line_size;
150     uint32_t i;
151     void *haddr;
152     int mmu_idx = epid ? PPC_TLB_EPID_STORE : env->dmmu_idx;
153 
154 #if defined(TARGET_PPC64)
155     /* Check for dcbz vs dcbzl on 970 */
156     if (env->excp_model == POWERPC_EXCP_970 &&
157         !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
158         dcbz_size = 32;
159     }
160 #endif
161 
162     /* Align address */
163     mask = ~(dcbz_size - 1);
164     addr &= mask;
165 
166     /* Check reservation */
167     if ((env->reserve_addr & mask) == (addr & mask))  {
168         env->reserve_addr = (target_ulong)-1ULL;
169     }
170 
171     /* Try fast path translate */
172     haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, mmu_idx);
173     if (haddr) {
174         memset(haddr, 0, dcbz_size);
175     } else {
176         /* Slow path */
177         for (i = 0; i < dcbz_size; i += 8) {
178             if (epid) {
179 #if !defined(CONFIG_USER_ONLY)
180                 /* Does not make sense on USER_ONLY config */
181                 cpu_stq_eps_ra(env, addr + i, 0, retaddr);
182 #endif
183             } else {
184                 cpu_stq_data_ra(env, addr + i, 0, retaddr);
185             }
186         }
187     }
188 }
189 
190 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
191 {
192     dcbz_common(env, addr, opcode, false, GETPC());
193 }
194 
195 void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
196 {
197     dcbz_common(env, addr, opcode, true, GETPC());
198 }
199 
200 void helper_icbi(CPUPPCState *env, target_ulong addr)
201 {
202     addr &= ~(env->dcache_line_size - 1);
203     /*
204      * Invalidate one cache line :
205      * PowerPC specification says this is to be treated like a load
206      * (not a fetch) by the MMU. To be sure it will be so,
207      * do the load "by hand".
208      */
209     cpu_ldl_data_ra(env, addr, GETPC());
210 }
211 
212 void helper_icbiep(CPUPPCState *env, target_ulong addr)
213 {
214 #if !defined(CONFIG_USER_ONLY)
215     /* See comments above */
216     addr &= ~(env->dcache_line_size - 1);
217     cpu_ldl_epl_ra(env, addr, GETPC());
218 #endif
219 }
220 
221 /* XXX: to be tested */
222 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
223                           uint32_t ra, uint32_t rb)
224 {
225     int i, c, d;
226 
227     d = 24;
228     for (i = 0; i < xer_bc; i++) {
229         c = cpu_ldub_data_ra(env, addr, GETPC());
230         addr = addr_add(env, addr, 1);
231         /* ra (if not 0) and rb are never modified */
232         if (likely(reg != rb && (ra == 0 || reg != ra))) {
233             env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
234         }
235         if (unlikely(c == xer_cmp)) {
236             break;
237         }
238         if (likely(d != 0)) {
239             d -= 8;
240         } else {
241             d = 24;
242             reg++;
243             reg = reg & 0x1F;
244         }
245     }
246     return i;
247 }
248 
249 #ifdef TARGET_PPC64
250 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
251                                uint32_t opidx)
252 {
253     Int128 ret;
254 
255     /* We will have raised EXCP_ATOMIC from the translator.  */
256     assert(HAVE_ATOMIC128);
257     ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
258     env->retxh = int128_gethi(ret);
259     return int128_getlo(ret);
260 }
261 
262 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
263                                uint32_t opidx)
264 {
265     Int128 ret;
266 
267     /* We will have raised EXCP_ATOMIC from the translator.  */
268     assert(HAVE_ATOMIC128);
269     ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
270     env->retxh = int128_gethi(ret);
271     return int128_getlo(ret);
272 }
273 
274 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
275                             uint64_t lo, uint64_t hi, uint32_t opidx)
276 {
277     Int128 val;
278 
279     /* We will have raised EXCP_ATOMIC from the translator.  */
280     assert(HAVE_ATOMIC128);
281     val = int128_make128(lo, hi);
282     helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
283 }
284 
285 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
286                             uint64_t lo, uint64_t hi, uint32_t opidx)
287 {
288     Int128 val;
289 
290     /* We will have raised EXCP_ATOMIC from the translator.  */
291     assert(HAVE_ATOMIC128);
292     val = int128_make128(lo, hi);
293     helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
294 }
295 
296 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
297                                   uint64_t new_lo, uint64_t new_hi,
298                                   uint32_t opidx)
299 {
300     bool success = false;
301 
302     /* We will have raised EXCP_ATOMIC from the translator.  */
303     assert(HAVE_CMPXCHG128);
304 
305     if (likely(addr == env->reserve_addr)) {
306         Int128 oldv, cmpv, newv;
307 
308         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
309         newv = int128_make128(new_lo, new_hi);
310         oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
311                                              opidx, GETPC());
312         success = int128_eq(oldv, cmpv);
313     }
314     env->reserve_addr = -1;
315     return env->so + success * CRF_EQ_BIT;
316 }
317 
318 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
319                                   uint64_t new_lo, uint64_t new_hi,
320                                   uint32_t opidx)
321 {
322     bool success = false;
323 
324     /* We will have raised EXCP_ATOMIC from the translator.  */
325     assert(HAVE_CMPXCHG128);
326 
327     if (likely(addr == env->reserve_addr)) {
328         Int128 oldv, cmpv, newv;
329 
330         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
331         newv = int128_make128(new_lo, new_hi);
332         oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
333                                              opidx, GETPC());
334         success = int128_eq(oldv, cmpv);
335     }
336     env->reserve_addr = -1;
337     return env->so + success * CRF_EQ_BIT;
338 }
339 #endif
340 
341 /*****************************************************************************/
342 /* Altivec extension helpers */
343 #if defined(HOST_WORDS_BIGENDIAN)
344 #define HI_IDX 0
345 #define LO_IDX 1
346 #else
347 #define HI_IDX 1
348 #define LO_IDX 0
349 #endif
350 
351 /*
352  * We use msr_le to determine index ordering in a vector.  However,
353  * byteswapping is not simply controlled by msr_le.  We also need to
354  * take into account endianness of the target.  This is done for the
355  * little-endian PPC64 user-mode target.
356  */
357 
358 #define LVE(name, access, swap, element)                        \
359     void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
360                        target_ulong addr)                       \
361     {                                                           \
362         size_t n_elems = ARRAY_SIZE(r->element);                \
363         int adjust = HI_IDX * (n_elems - 1);                    \
364         int sh = sizeof(r->element[0]) >> 1;                    \
365         int index = (addr & 0xf) >> sh;                         \
366         if (msr_le) {                                           \
367             index = n_elems - index - 1;                        \
368         }                                                       \
369                                                                 \
370         if (needs_byteswap(env)) {                              \
371             r->element[LO_IDX ? index : (adjust - index)] =     \
372                 swap(access(env, addr, GETPC()));               \
373         } else {                                                \
374             r->element[LO_IDX ? index : (adjust - index)] =     \
375                 access(env, addr, GETPC());                     \
376         }                                                       \
377     }
378 #define I(x) (x)
379 LVE(lvebx, cpu_ldub_data_ra, I, u8)
380 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
381 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
382 #undef I
383 #undef LVE
384 
385 #define STVE(name, access, swap, element)                               \
386     void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
387                        target_ulong addr)                               \
388     {                                                                   \
389         size_t n_elems = ARRAY_SIZE(r->element);                        \
390         int adjust = HI_IDX * (n_elems - 1);                            \
391         int sh = sizeof(r->element[0]) >> 1;                            \
392         int index = (addr & 0xf) >> sh;                                 \
393         if (msr_le) {                                                   \
394             index = n_elems - index - 1;                                \
395         }                                                               \
396                                                                         \
397         if (needs_byteswap(env)) {                                      \
398             access(env, addr, swap(r->element[LO_IDX ? index :          \
399                                               (adjust - index)]),       \
400                         GETPC());                                       \
401         } else {                                                        \
402             access(env, addr, r->element[LO_IDX ? index :               \
403                                          (adjust - index)], GETPC());   \
404         }                                                               \
405     }
406 #define I(x) (x)
407 STVE(stvebx, cpu_stb_data_ra, I, u8)
408 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
409 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
410 #undef I
411 #undef LVE
412 
413 #ifdef TARGET_PPC64
414 #define GET_NB(rb) ((rb >> 56) & 0xFF)
415 
416 #define VSX_LXVL(name, lj)                                              \
417 void helper_##name(CPUPPCState *env, target_ulong addr,                 \
418                    target_ulong xt_num, target_ulong rb)                \
419 {                                                                       \
420     int i;                                                              \
421     ppc_vsr_t xt;                                                       \
422     uint64_t nb = GET_NB(rb);                                           \
423                                                                         \
424     xt.s128 = int128_zero();                                            \
425     if (nb) {                                                           \
426         nb = (nb >= 16) ? 16 : nb;                                      \
427         if (msr_le && !lj) {                                            \
428             for (i = 16; i > 16 - nb; i--) {                            \
429                 xt.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());  \
430                 addr = addr_add(env, addr, 1);                          \
431             }                                                           \
432         } else {                                                        \
433             for (i = 0; i < nb; i++) {                                  \
434                 xt.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());      \
435                 addr = addr_add(env, addr, 1);                          \
436             }                                                           \
437         }                                                               \
438     }                                                                   \
439     putVSR(xt_num, &xt, env);                                           \
440 }
441 
442 VSX_LXVL(lxvl, 0)
443 VSX_LXVL(lxvll, 1)
444 #undef VSX_LXVL
445 
446 #define VSX_STXVL(name, lj)                                       \
447 void helper_##name(CPUPPCState *env, target_ulong addr,           \
448                    target_ulong xt_num, target_ulong rb)          \
449 {                                                                 \
450     int i;                                                        \
451     ppc_vsr_t xt;                                                 \
452     target_ulong nb = GET_NB(rb);                                 \
453                                                                   \
454     if (!nb) {                                                    \
455         return;                                                   \
456     }                                                             \
457     getVSR(xt_num, &xt, env);                                     \
458     nb = (nb >= 16) ? 16 : nb;                                    \
459     if (msr_le && !lj) {                                          \
460         for (i = 16; i > 16 - nb; i--) {                          \
461             cpu_stb_data_ra(env, addr, xt.VsrB(i - 1), GETPC());  \
462             addr = addr_add(env, addr, 1);                        \
463         }                                                         \
464     } else {                                                      \
465         for (i = 0; i < nb; i++) {                                \
466             cpu_stb_data_ra(env, addr, xt.VsrB(i), GETPC());      \
467             addr = addr_add(env, addr, 1);                        \
468         }                                                         \
469     }                                                             \
470 }
471 
472 VSX_STXVL(stxvl, 0)
473 VSX_STXVL(stxvll, 1)
474 #undef VSX_STXVL
475 #undef GET_NB
476 #endif /* TARGET_PPC64 */
477 
478 #undef HI_IDX
479 #undef LO_IDX
480 
481 void helper_tbegin(CPUPPCState *env)
482 {
483     /*
484      * As a degenerate implementation, always fail tbegin.  The reason
485      * given is "Nesting overflow".  The "persistent" bit is set,
486      * providing a hint to the error handler to not retry.  The TFIAR
487      * captures the address of the failure, which is this tbegin
488      * instruction.  Instruction execution will continue with the next
489      * instruction in memory, which is precisely what we want.
490      */
491 
492     env->spr[SPR_TEXASR] =
493         (1ULL << TEXASR_FAILURE_PERSISTENT) |
494         (1ULL << TEXASR_NESTING_OVERFLOW) |
495         (msr_hv << TEXASR_PRIVILEGE_HV) |
496         (msr_pr << TEXASR_PRIVILEGE_PR) |
497         (1ULL << TEXASR_FAILURE_SUMMARY) |
498         (1ULL << TEXASR_TFIAR_EXACT);
499     env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
500     env->spr[SPR_TFHAR] = env->nip + 4;
501     env->crf[0] = 0xB; /* 0b1010 = transaction failure */
502 }
503