xref: /openbmc/qemu/target/ppc/machine.c (revision ba6558461cb0280ad861b376cbfff4680be82570)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "sysemu/tcg.h"
6 #include "helper_regs.h"
7 #include "mmu-hash64.h"
8 #include "migration/cpu.h"
9 #include "qapi/error.h"
10 #include "kvm_ppc.h"
11 #include "power8-pmu.h"
12 #include "sysemu/replay.h"
13 
14 static void post_load_update_msr(CPUPPCState *env)
15 {
16     target_ulong msr = env->msr;
17 
18     /*
19      * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
20      * before restoring.  Note that this recomputes hflags.
21      */
22     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
23     ppc_store_msr(env, msr);
24 }
25 
26 static int get_avr(QEMUFile *f, void *pv, size_t size,
27                    const VMStateField *field)
28 {
29     ppc_avr_t *v = pv;
30 
31     v->u64[0] = qemu_get_be64(f);
32     v->u64[1] = qemu_get_be64(f);
33 
34     return 0;
35 }
36 
37 static int put_avr(QEMUFile *f, void *pv, size_t size,
38                    const VMStateField *field, JSONWriter *vmdesc)
39 {
40     ppc_avr_t *v = pv;
41 
42     qemu_put_be64(f, v->u64[0]);
43     qemu_put_be64(f, v->u64[1]);
44     return 0;
45 }
46 
47 static const VMStateInfo vmstate_info_avr = {
48     .name = "avr",
49     .get  = get_avr,
50     .put  = put_avr,
51 };
52 
53 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
54     VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
55 
56 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
57     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
58 
59 static int get_fpr(QEMUFile *f, void *pv, size_t size,
60                    const VMStateField *field)
61 {
62     ppc_vsr_t *v = pv;
63 
64     v->VsrD(0) = qemu_get_be64(f);
65 
66     return 0;
67 }
68 
69 static int put_fpr(QEMUFile *f, void *pv, size_t size,
70                    const VMStateField *field, JSONWriter *vmdesc)
71 {
72     ppc_vsr_t *v = pv;
73 
74     qemu_put_be64(f, v->VsrD(0));
75     return 0;
76 }
77 
78 static const VMStateInfo vmstate_info_fpr = {
79     .name = "fpr",
80     .get  = get_fpr,
81     .put  = put_fpr,
82 };
83 
84 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
85     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
86 
87 #define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
88     VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
89 
90 static int get_vsr(QEMUFile *f, void *pv, size_t size,
91                    const VMStateField *field)
92 {
93     ppc_vsr_t *v = pv;
94 
95     v->VsrD(1) = qemu_get_be64(f);
96 
97     return 0;
98 }
99 
100 static int put_vsr(QEMUFile *f, void *pv, size_t size,
101                    const VMStateField *field, JSONWriter *vmdesc)
102 {
103     ppc_vsr_t *v = pv;
104 
105     qemu_put_be64(f, v->VsrD(1));
106     return 0;
107 }
108 
109 static const VMStateInfo vmstate_info_vsr = {
110     .name = "vsr",
111     .get  = get_vsr,
112     .put  = put_vsr,
113 };
114 
115 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
116     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
117 
118 #define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
119     VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
120 
121 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
122 {
123     PowerPCCPU *cpu = opaque;
124 
125     return cpu->pre_2_8_migration;
126 }
127 
128 #if defined(TARGET_PPC64)
129 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
130 {
131     PowerPCCPU *cpu = opaque;
132 
133     return cpu->pre_3_0_migration;
134 }
135 #endif
136 
137 static int cpu_pre_save(void *opaque)
138 {
139     PowerPCCPU *cpu = opaque;
140     CPUPPCState *env = &cpu->env;
141     int i;
142     uint64_t insns_compat_mask =
143         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
144         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
145         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
146         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
147         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
148         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
149         | PPC_64B | PPC_64BX | PPC_ALTIVEC
150         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
151     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
152         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
153         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
154         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
155         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
156         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM
157         | PPC2_MEM_LWSYNC;
158 
159     env->spr[SPR_LR] = env->lr;
160     env->spr[SPR_CTR] = env->ctr;
161     env->spr[SPR_XER] = cpu_read_xer(env);
162 #if defined(TARGET_PPC64)
163     env->spr[SPR_CFAR] = env->cfar;
164 #endif
165     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
166 
167     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
168         env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
169         env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
170         env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
171         env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
172     }
173     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
174         env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
175         env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
176         env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
177         env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
178     }
179 
180     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
181     if (cpu->pre_2_8_migration) {
182         /*
183          * Mask out bits that got added to msr_mask since the versions
184          * which stupidly included it in the migration stream.
185          */
186         target_ulong metamask = 0
187 #if defined(TARGET_PPC64)
188             | (1ULL << MSR_TS0)
189             | (1ULL << MSR_TS1)
190 #endif
191             ;
192         cpu->mig_msr_mask = env->msr_mask & ~metamask;
193         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
194         /*
195          * CPU models supported by old machines all have
196          * PPC_MEM_TLBIE, so we set it unconditionally to allow
197          * backward migration from a POWER9 host to a POWER8 host.
198          */
199         cpu->mig_insns_flags |= PPC_MEM_TLBIE;
200         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
201         cpu->mig_nb_BATs = env->nb_BATs;
202     }
203     if (cpu->pre_3_0_migration) {
204         if (cpu->hash64_opts) {
205             cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
206         }
207     }
208 
209     /* Used to retain migration compatibility for pre 6.0 for 601 machines. */
210     env->hflags_compat_nmsr = 0;
211 
212     if (tcg_enabled()) {
213         /*
214          * TCG does not maintain the DECR spr (unlike KVM) so have to save
215          * it here.
216          */
217         env->spr[SPR_DECR] = cpu_ppc_load_decr(env);
218     }
219 
220     return 0;
221 }
222 
223 /*
224  * Determine if a given PVR is a "close enough" match to the CPU
225  * object.  For TCG and KVM PR it would probably be sufficient to
226  * require an exact PVR match.  However for KVM HV the user is
227  * restricted to a PVR exactly matching the host CPU.  The correct way
228  * to handle this is to put the guest into an architected
229  * compatibility mode.  However, to allow a more forgiving transition
230  * and migration from before this was widely done, we allow migration
231  * between sufficiently similar PVRs, as determined by the CPU class's
232  * pvr_match() hook.
233  */
234 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
235 {
236     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
237 
238     if (pvr == pcc->pvr) {
239         return true;
240     }
241     return pcc->pvr_match(pcc, pvr, true);
242 }
243 
244 static int cpu_post_load(void *opaque, int version_id)
245 {
246     PowerPCCPU *cpu = opaque;
247     CPUPPCState *env = &cpu->env;
248     int i;
249 
250     /*
251      * If we're operating in compat mode, we should be ok as long as
252      * the destination supports the same compatibility mode.
253      *
254      * Otherwise, however, we require that the destination has exactly
255      * the same CPU model as the source.
256      */
257 
258 #if defined(TARGET_PPC64)
259     if (cpu->compat_pvr) {
260         uint32_t compat_pvr = cpu->compat_pvr;
261         Error *local_err = NULL;
262         int ret;
263 
264         cpu->compat_pvr = 0;
265         ret = ppc_set_compat(cpu, compat_pvr, &local_err);
266         if (ret < 0) {
267             error_report_err(local_err);
268             return ret;
269         }
270     } else
271 #endif
272     {
273         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
274             return -EINVAL;
275         }
276     }
277 
278     /*
279      * If we're running with KVM HV, there is a chance that the guest
280      * is running with KVM HV and its kernel does not have the
281      * capability of dealing with a different PVR other than this
282      * exact host PVR in KVM_SET_SREGS. If that happens, the
283      * guest freezes after migration.
284      *
285      * The function kvmppc_pvr_workaround_required does this verification
286      * by first checking if the kernel has the cap, returning true immediately
287      * if that is the case. Otherwise, it checks if we're running in KVM PR.
288      * If the guest kernel does not have the cap and we're not running KVM-PR
289      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
290      * receive the PVR it expects as a workaround.
291      *
292      */
293     if (kvmppc_pvr_workaround_required(cpu)) {
294         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
295     }
296 
297     env->lr = env->spr[SPR_LR];
298     env->ctr = env->spr[SPR_CTR];
299     cpu_write_xer(env, env->spr[SPR_XER]);
300 #if defined(TARGET_PPC64)
301     env->cfar = env->spr[SPR_CFAR];
302 #endif
303     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
304 
305     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
306         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
307         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
308         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
309         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
310     }
311     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
312         env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
313         env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
314         env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
315         env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
316     }
317 
318     if (!cpu->vhyp) {
319         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
320     }
321 
322     post_load_update_msr(env);
323 
324     if (tcg_enabled()) {
325         /* Re-set breaks based on regs */
326 #if defined(TARGET_PPC64)
327         ppc_update_ciabr(env);
328         ppc_update_daw0(env);
329 #endif
330         /*
331          * TCG needs to re-start the decrementer timer and/or raise the
332          * interrupt. This works for level-triggered decrementer. Edge
333          * triggered types (including HDEC) would need to carry more state.
334          */
335         cpu_ppc_store_decr(env, env->spr[SPR_DECR]);
336         pmu_mmcr01a_updated(env);
337     }
338 
339     return 0;
340 }
341 
342 static bool fpu_needed(void *opaque)
343 {
344     PowerPCCPU *cpu = opaque;
345 
346     return cpu->env.insns_flags & PPC_FLOAT;
347 }
348 
349 static const VMStateDescription vmstate_fpu = {
350     .name = "cpu/fpu",
351     .version_id = 1,
352     .minimum_version_id = 1,
353     .needed = fpu_needed,
354     .fields = (const VMStateField[]) {
355         VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
356         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
357         VMSTATE_END_OF_LIST()
358     },
359 };
360 
361 static bool altivec_needed(void *opaque)
362 {
363     PowerPCCPU *cpu = opaque;
364 
365     return cpu->env.insns_flags & PPC_ALTIVEC;
366 }
367 
368 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
369                     const VMStateField *field)
370 {
371     PowerPCCPU *cpu = opaque;
372     ppc_store_vscr(&cpu->env, qemu_get_be32(f));
373     return 0;
374 }
375 
376 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
377                     const VMStateField *field, JSONWriter *vmdesc)
378 {
379     PowerPCCPU *cpu = opaque;
380     qemu_put_be32(f, ppc_get_vscr(&cpu->env));
381     return 0;
382 }
383 
384 static const VMStateInfo vmstate_vscr = {
385     .name = "cpu/altivec/vscr",
386     .get = get_vscr,
387     .put = put_vscr,
388 };
389 
390 static const VMStateDescription vmstate_altivec = {
391     .name = "cpu/altivec",
392     .version_id = 1,
393     .minimum_version_id = 1,
394     .needed = altivec_needed,
395     .fields = (const VMStateField[]) {
396         VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
397         /*
398          * Save the architecture value of the vscr, not the internally
399          * expanded version.  Since this architecture value does not
400          * exist in memory to be stored, this requires a but of hoop
401          * jumping.  We want OFFSET=0 so that we effectively pass CPU
402          * to the helper functions.
403          */
404         {
405             .name = "vscr",
406             .version_id = 0,
407             .size = sizeof(uint32_t),
408             .info = &vmstate_vscr,
409             .flags = VMS_SINGLE,
410             .offset = 0
411         },
412         VMSTATE_END_OF_LIST()
413     },
414 };
415 
416 static bool vsx_needed(void *opaque)
417 {
418     PowerPCCPU *cpu = opaque;
419 
420     return cpu->env.insns_flags2 & PPC2_VSX;
421 }
422 
423 static const VMStateDescription vmstate_vsx = {
424     .name = "cpu/vsx",
425     .version_id = 1,
426     .minimum_version_id = 1,
427     .needed = vsx_needed,
428     .fields = (const VMStateField[]) {
429         VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
430         VMSTATE_END_OF_LIST()
431     },
432 };
433 
434 #ifdef TARGET_PPC64
435 /* Transactional memory state */
436 static bool tm_needed(void *opaque)
437 {
438     PowerPCCPU *cpu = opaque;
439     CPUPPCState *env = &cpu->env;
440     return FIELD_EX64(env->msr, MSR, TS);
441 }
442 
443 static const VMStateDescription vmstate_tm = {
444     .name = "cpu/tm",
445     .version_id = 1,
446     .minimum_version_id = 1,
447     .needed = tm_needed,
448     .fields = (const VMStateField []) {
449         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
450         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
451         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
452         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
453         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
454         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
455         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
456         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
457         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
458         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
459         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
460         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
461         VMSTATE_END_OF_LIST()
462     },
463 };
464 #endif
465 
466 static bool sr_needed(void *opaque)
467 {
468 #ifdef TARGET_PPC64
469     PowerPCCPU *cpu = opaque;
470 
471     return !mmu_is_64bit(cpu->env.mmu_model);
472 #else
473     return true;
474 #endif
475 }
476 
477 static const VMStateDescription vmstate_sr = {
478     .name = "cpu/sr",
479     .version_id = 1,
480     .minimum_version_id = 1,
481     .needed = sr_needed,
482     .fields = (const VMStateField[]) {
483         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
484         VMSTATE_END_OF_LIST()
485     },
486 };
487 
488 #ifdef TARGET_PPC64
489 static int get_slbe(QEMUFile *f, void *pv, size_t size,
490                     const VMStateField *field)
491 {
492     ppc_slb_t *v = pv;
493 
494     v->esid = qemu_get_be64(f);
495     v->vsid = qemu_get_be64(f);
496 
497     return 0;
498 }
499 
500 static int put_slbe(QEMUFile *f, void *pv, size_t size,
501                     const VMStateField *field, JSONWriter *vmdesc)
502 {
503     ppc_slb_t *v = pv;
504 
505     qemu_put_be64(f, v->esid);
506     qemu_put_be64(f, v->vsid);
507     return 0;
508 }
509 
510 static const VMStateInfo vmstate_info_slbe = {
511     .name = "slbe",
512     .get  = get_slbe,
513     .put  = put_slbe,
514 };
515 
516 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
517     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
518 
519 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
520     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
521 
522 static bool slb_needed(void *opaque)
523 {
524     PowerPCCPU *cpu = opaque;
525 
526     /* We don't support any of the old segment table based 64-bit CPUs */
527     return mmu_is_64bit(cpu->env.mmu_model);
528 }
529 
530 static int slb_post_load(void *opaque, int version_id)
531 {
532     PowerPCCPU *cpu = opaque;
533     CPUPPCState *env = &cpu->env;
534     int i;
535 
536     /*
537      * We've pulled in the raw esid and vsid values from the migration
538      * stream, but we need to recompute the page size pointers
539      */
540     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
541         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
542             /* Migration source had bad values in its SLB */
543             return -1;
544         }
545     }
546 
547     return 0;
548 }
549 
550 static const VMStateDescription vmstate_slb = {
551     .name = "cpu/slb",
552     .version_id = 1,
553     .minimum_version_id = 1,
554     .needed = slb_needed,
555     .post_load = slb_post_load,
556     .fields = (const VMStateField[]) {
557         VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
558         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
559         VMSTATE_END_OF_LIST()
560     }
561 };
562 #endif /* TARGET_PPC64 */
563 
564 static const VMStateDescription vmstate_tlb6xx_entry = {
565     .name = "cpu/tlb6xx_entry",
566     .version_id = 1,
567     .minimum_version_id = 1,
568     .fields = (const VMStateField[]) {
569         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
570         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
571         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
572         VMSTATE_END_OF_LIST()
573     },
574 };
575 
576 static bool tlb6xx_needed(void *opaque)
577 {
578     PowerPCCPU *cpu = opaque;
579     CPUPPCState *env = &cpu->env;
580 
581     return env->nb_tlb && (env->tlb_type == TLB_6XX);
582 }
583 
584 static const VMStateDescription vmstate_tlb6xx = {
585     .name = "cpu/tlb6xx",
586     .version_id = 1,
587     .minimum_version_id = 1,
588     .needed = tlb6xx_needed,
589     .fields = (const VMStateField[]) {
590         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
591         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
592                                             env.nb_tlb,
593                                             vmstate_tlb6xx_entry,
594                                             ppc6xx_tlb_t),
595         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
596         VMSTATE_END_OF_LIST()
597     }
598 };
599 
600 static const VMStateDescription vmstate_tlbemb_entry = {
601     .name = "cpu/tlbemb_entry",
602     .version_id = 1,
603     .minimum_version_id = 1,
604     .fields = (const VMStateField[]) {
605         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
606         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
607         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
608         VMSTATE_UINTTL(size, ppcemb_tlb_t),
609         VMSTATE_UINT32(prot, ppcemb_tlb_t),
610         VMSTATE_UINT32(attr, ppcemb_tlb_t),
611         VMSTATE_END_OF_LIST()
612     },
613 };
614 
615 static bool tlbemb_needed(void *opaque)
616 {
617     PowerPCCPU *cpu = opaque;
618     CPUPPCState *env = &cpu->env;
619 
620     return env->nb_tlb && (env->tlb_type == TLB_EMB);
621 }
622 
623 static const VMStateDescription vmstate_tlbemb = {
624     .name = "cpu/tlbemb",
625     .version_id = 1,
626     .minimum_version_id = 1,
627     .needed = tlbemb_needed,
628     .fields = (const VMStateField[]) {
629         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
630         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
631                                             env.nb_tlb,
632                                             vmstate_tlbemb_entry,
633                                             ppcemb_tlb_t),
634         VMSTATE_END_OF_LIST()
635     },
636 };
637 
638 static const VMStateDescription vmstate_tlbmas_entry = {
639     .name = "cpu/tlbmas_entry",
640     .version_id = 1,
641     .minimum_version_id = 1,
642     .fields = (const VMStateField[]) {
643         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
644         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
645         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
646         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
647         VMSTATE_END_OF_LIST()
648     },
649 };
650 
651 static bool tlbmas_needed(void *opaque)
652 {
653     PowerPCCPU *cpu = opaque;
654     CPUPPCState *env = &cpu->env;
655 
656     return env->nb_tlb && (env->tlb_type == TLB_MAS);
657 }
658 
659 static const VMStateDescription vmstate_tlbmas = {
660     .name = "cpu/tlbmas",
661     .version_id = 1,
662     .minimum_version_id = 1,
663     .needed = tlbmas_needed,
664     .fields = (const VMStateField[]) {
665         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
666         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
667                                             env.nb_tlb,
668                                             vmstate_tlbmas_entry,
669                                             ppcmas_tlb_t),
670         VMSTATE_END_OF_LIST()
671     }
672 };
673 
674 static bool compat_needed(void *opaque)
675 {
676     PowerPCCPU *cpu = opaque;
677 
678     assert(!(cpu->compat_pvr && !cpu->vhyp));
679     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
680 }
681 
682 static const VMStateDescription vmstate_compat = {
683     .name = "cpu/compat",
684     .version_id = 1,
685     .minimum_version_id = 1,
686     .needed = compat_needed,
687     .fields = (const VMStateField[]) {
688         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
689         VMSTATE_END_OF_LIST()
690     }
691 };
692 
693 static bool reservation_needed(void *opaque)
694 {
695     return (replay_mode != REPLAY_MODE_NONE);
696 }
697 
698 static const VMStateDescription vmstate_reservation = {
699     .name = "cpu/reservation",
700     .version_id = 1,
701     .minimum_version_id = 1,
702     .needed = reservation_needed,
703     .fields = (const VMStateField[]) {
704         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
705         VMSTATE_UINTTL(env.reserve_length, PowerPCCPU),
706         VMSTATE_UINTTL(env.reserve_val, PowerPCCPU),
707 #if defined(TARGET_PPC64)
708         VMSTATE_UINTTL(env.reserve_val2, PowerPCCPU),
709 #endif
710         VMSTATE_END_OF_LIST()
711     }
712 };
713 
714 #ifdef TARGET_PPC64
715 static bool bhrb_needed(void *opaque)
716 {
717     PowerPCCPU *cpu = opaque;
718     return (cpu->env.flags & POWERPC_FLAG_BHRB) != 0;
719 }
720 
721 static const VMStateDescription vmstate_bhrb = {
722     .name = "cpu/bhrb",
723     .version_id = 1,
724     .minimum_version_id = 1,
725     .needed = bhrb_needed,
726     .fields = (VMStateField[]) {
727         VMSTATE_UINTTL(env.bhrb_offset, PowerPCCPU),
728         VMSTATE_UINT64_ARRAY(env.bhrb, PowerPCCPU, BHRB_MAX_NUM_ENTRIES),
729         VMSTATE_END_OF_LIST()
730     }
731 };
732 #endif
733 
734 const VMStateDescription vmstate_ppc_cpu = {
735     .name = "cpu",
736     .version_id = 5,
737     .minimum_version_id = 5,
738     .pre_save = cpu_pre_save,
739     .post_load = cpu_post_load,
740     .fields = (const VMStateField[]) {
741         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
742 
743         /* User mode architected state */
744         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
745 #if !defined(TARGET_PPC64)
746         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
747 #endif
748         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
749         VMSTATE_UINTTL(env.nip, PowerPCCPU),
750 
751         /* SPRs */
752         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
753         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
754 
755         VMSTATE_UNUSED(sizeof(target_ulong)), /* was env.reserve_addr */
756 
757         /* Supervisor mode architected state */
758         VMSTATE_UINTTL(env.msr, PowerPCCPU),
759 
760         /* Backward compatible internal state */
761         VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
762 
763         /* Sanity checking */
764         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
765         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
766         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
767                             cpu_pre_2_8_migration),
768         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
769         VMSTATE_END_OF_LIST()
770     },
771     .subsections = (const VMStateDescription * const []) {
772         &vmstate_fpu,
773         &vmstate_altivec,
774         &vmstate_vsx,
775         &vmstate_sr,
776 #ifdef TARGET_PPC64
777         &vmstate_tm,
778         &vmstate_slb,
779         &vmstate_bhrb,
780 #endif /* TARGET_PPC64 */
781         &vmstate_tlb6xx,
782         &vmstate_tlbemb,
783         &vmstate_tlbmas,
784         &vmstate_compat,
785         &vmstate_reservation,
786         NULL
787     }
788 };
789