xref: /openbmc/qemu/target/ppc/machine.c (revision 940e43aa30e0f793bd18b79221296cdf17724018)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "helper_regs.h"
6 #include "mmu-hash64.h"
7 #include "migration/cpu.h"
8 #include "qapi/error.h"
9 #include "qemu/main-loop.h"
10 #include "kvm_ppc.h"
11 #include "exec/helper-proto.h"
12 
13 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
14 {
15     PowerPCCPU *cpu = opaque;
16     CPUPPCState *env = &cpu->env;
17     unsigned int i, j;
18     target_ulong sdr1;
19     uint32_t fpscr, vscr;
20 #if defined(TARGET_PPC64)
21     int32_t slb_nr;
22 #endif
23     target_ulong xer;
24 
25     for (i = 0; i < 32; i++) {
26         qemu_get_betls(f, &env->gpr[i]);
27     }
28 #if !defined(TARGET_PPC64)
29     for (i = 0; i < 32; i++) {
30         qemu_get_betls(f, &env->gprh[i]);
31     }
32 #endif
33     qemu_get_betls(f, &env->lr);
34     qemu_get_betls(f, &env->ctr);
35     for (i = 0; i < 8; i++) {
36         qemu_get_be32s(f, &env->crf[i]);
37     }
38     qemu_get_betls(f, &xer);
39     cpu_write_xer(env, xer);
40     qemu_get_betls(f, &env->reserve_addr);
41     qemu_get_betls(f, &env->msr);
42     for (i = 0; i < 4; i++) {
43         qemu_get_betls(f, &env->tgpr[i]);
44     }
45     for (i = 0; i < 32; i++) {
46         union {
47             float64 d;
48             uint64_t l;
49         } u;
50         u.l = qemu_get_be64(f);
51         *cpu_fpr_ptr(env, i) = u.d;
52     }
53     qemu_get_be32s(f, &fpscr);
54     env->fpscr = fpscr;
55     qemu_get_sbe32s(f, &env->access_type);
56 #if defined(TARGET_PPC64)
57     qemu_get_betls(f, &env->spr[SPR_ASR]);
58     qemu_get_sbe32s(f, &slb_nr);
59 #endif
60     qemu_get_betls(f, &sdr1);
61     for (i = 0; i < 32; i++) {
62         qemu_get_betls(f, &env->sr[i]);
63     }
64     for (i = 0; i < 2; i++) {
65         for (j = 0; j < 8; j++) {
66             qemu_get_betls(f, &env->DBAT[i][j]);
67         }
68     }
69     for (i = 0; i < 2; i++) {
70         for (j = 0; j < 8; j++) {
71             qemu_get_betls(f, &env->IBAT[i][j]);
72         }
73     }
74     qemu_get_sbe32s(f, &env->nb_tlb);
75     qemu_get_sbe32s(f, &env->tlb_per_way);
76     qemu_get_sbe32s(f, &env->nb_ways);
77     qemu_get_sbe32s(f, &env->last_way);
78     qemu_get_sbe32s(f, &env->id_tlbs);
79     qemu_get_sbe32s(f, &env->nb_pids);
80     if (env->tlb.tlb6) {
81         /* XXX assumes 6xx */
82         for (i = 0; i < env->nb_tlb; i++) {
83             qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
84             qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
85             qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
86         }
87     }
88     for (i = 0; i < 4; i++) {
89         qemu_get_betls(f, &env->pb[i]);
90     }
91     for (i = 0; i < 1024; i++) {
92         qemu_get_betls(f, &env->spr[i]);
93     }
94     if (!cpu->vhyp) {
95         ppc_store_sdr1(env, sdr1);
96     }
97     qemu_get_be32s(f, &vscr);
98     helper_mtvscr(env, vscr);
99     qemu_get_be64s(f, &env->spe_acc);
100     qemu_get_be32s(f, &env->spe_fscr);
101     qemu_get_betls(f, &env->msr_mask);
102     qemu_get_be32s(f, &env->flags);
103     qemu_get_sbe32s(f, &env->error_code);
104     qemu_get_be32s(f, &env->pending_interrupts);
105     qemu_get_be32s(f, &env->irq_input_state);
106     for (i = 0; i < POWERPC_EXCP_NB; i++) {
107         qemu_get_betls(f, &env->excp_vectors[i]);
108     }
109     qemu_get_betls(f, &env->excp_prefix);
110     qemu_get_betls(f, &env->ivor_mask);
111     qemu_get_betls(f, &env->ivpr_mask);
112     qemu_get_betls(f, &env->hreset_vector);
113     qemu_get_betls(f, &env->nip);
114     qemu_get_betls(f, &env->hflags);
115     qemu_get_betls(f, &env->hflags_nmsr);
116     qemu_get_sbe32(f); /* Discard unused mmu_idx */
117     qemu_get_sbe32(f); /* Discard unused power_mode */
118 
119     /* Recompute mmu indices */
120     hreg_compute_mem_idx(env);
121 
122     return 0;
123 }
124 
125 static int get_avr(QEMUFile *f, void *pv, size_t size,
126                    const VMStateField *field)
127 {
128     ppc_avr_t *v = pv;
129 
130     v->u64[0] = qemu_get_be64(f);
131     v->u64[1] = qemu_get_be64(f);
132 
133     return 0;
134 }
135 
136 static int put_avr(QEMUFile *f, void *pv, size_t size,
137                    const VMStateField *field, JSONWriter *vmdesc)
138 {
139     ppc_avr_t *v = pv;
140 
141     qemu_put_be64(f, v->u64[0]);
142     qemu_put_be64(f, v->u64[1]);
143     return 0;
144 }
145 
146 static const VMStateInfo vmstate_info_avr = {
147     .name = "avr",
148     .get  = get_avr,
149     .put  = put_avr,
150 };
151 
152 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
153     VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
154 
155 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
156     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
157 
158 static int get_fpr(QEMUFile *f, void *pv, size_t size,
159                    const VMStateField *field)
160 {
161     ppc_vsr_t *v = pv;
162 
163     v->VsrD(0) = qemu_get_be64(f);
164 
165     return 0;
166 }
167 
168 static int put_fpr(QEMUFile *f, void *pv, size_t size,
169                    const VMStateField *field, JSONWriter *vmdesc)
170 {
171     ppc_vsr_t *v = pv;
172 
173     qemu_put_be64(f, v->VsrD(0));
174     return 0;
175 }
176 
177 static const VMStateInfo vmstate_info_fpr = {
178     .name = "fpr",
179     .get  = get_fpr,
180     .put  = put_fpr,
181 };
182 
183 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
184     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
185 
186 #define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
187     VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
188 
189 static int get_vsr(QEMUFile *f, void *pv, size_t size,
190                    const VMStateField *field)
191 {
192     ppc_vsr_t *v = pv;
193 
194     v->VsrD(1) = qemu_get_be64(f);
195 
196     return 0;
197 }
198 
199 static int put_vsr(QEMUFile *f, void *pv, size_t size,
200                    const VMStateField *field, JSONWriter *vmdesc)
201 {
202     ppc_vsr_t *v = pv;
203 
204     qemu_put_be64(f, v->VsrD(1));
205     return 0;
206 }
207 
208 static const VMStateInfo vmstate_info_vsr = {
209     .name = "vsr",
210     .get  = get_vsr,
211     .put  = put_vsr,
212 };
213 
214 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
215     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
216 
217 #define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
218     VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
219 
220 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
221 {
222     PowerPCCPU *cpu = opaque;
223 
224     return cpu->pre_2_8_migration;
225 }
226 
227 #if defined(TARGET_PPC64)
228 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
229 {
230     PowerPCCPU *cpu = opaque;
231 
232     return cpu->pre_3_0_migration;
233 }
234 #endif
235 
236 static int cpu_pre_save(void *opaque)
237 {
238     PowerPCCPU *cpu = opaque;
239     CPUPPCState *env = &cpu->env;
240     int i;
241     uint64_t insns_compat_mask =
242         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
243         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
244         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
245         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
246         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
247         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
248         | PPC_64B | PPC_64BX | PPC_ALTIVEC
249         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
250     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
251         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
252         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
253         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
254         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
255         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
256 
257     env->spr[SPR_LR] = env->lr;
258     env->spr[SPR_CTR] = env->ctr;
259     env->spr[SPR_XER] = cpu_read_xer(env);
260 #if defined(TARGET_PPC64)
261     env->spr[SPR_CFAR] = env->cfar;
262 #endif
263     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
264 
265     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
266         env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
267         env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
268         env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
269         env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
270     }
271     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
272         env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
273         env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
274         env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
275         env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
276     }
277 
278     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
279     if (cpu->pre_2_8_migration) {
280         /*
281          * Mask out bits that got added to msr_mask since the versions
282          * which stupidly included it in the migration stream.
283          */
284         target_ulong metamask = 0
285 #if defined(TARGET_PPC64)
286             | (1ULL << MSR_TS0)
287             | (1ULL << MSR_TS1)
288 #endif
289             ;
290         cpu->mig_msr_mask = env->msr_mask & ~metamask;
291         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
292         /*
293          * CPU models supported by old machines all have
294          * PPC_MEM_TLBIE, so we set it unconditionally to allow
295          * backward migration from a POWER9 host to a POWER8 host.
296          */
297         cpu->mig_insns_flags |= PPC_MEM_TLBIE;
298         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
299         cpu->mig_nb_BATs = env->nb_BATs;
300     }
301     if (cpu->pre_3_0_migration) {
302         if (cpu->hash64_opts) {
303             cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
304         }
305     }
306 
307     return 0;
308 }
309 
310 /*
311  * Determine if a given PVR is a "close enough" match to the CPU
312  * object.  For TCG and KVM PR it would probably be sufficient to
313  * require an exact PVR match.  However for KVM HV the user is
314  * restricted to a PVR exactly matching the host CPU.  The correct way
315  * to handle this is to put the guest into an architected
316  * compatibility mode.  However, to allow a more forgiving transition
317  * and migration from before this was widely done, we allow migration
318  * between sufficiently similar PVRs, as determined by the CPU class's
319  * pvr_match() hook.
320  */
321 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
322 {
323     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
324 
325     if (pvr == pcc->pvr) {
326         return true;
327     }
328     return pcc->pvr_match(pcc, pvr);
329 }
330 
331 static int cpu_post_load(void *opaque, int version_id)
332 {
333     PowerPCCPU *cpu = opaque;
334     CPUPPCState *env = &cpu->env;
335     int i;
336     target_ulong msr;
337 
338     /*
339      * If we're operating in compat mode, we should be ok as long as
340      * the destination supports the same compatibility mode.
341      *
342      * Otherwise, however, we require that the destination has exactly
343      * the same CPU model as the source.
344      */
345 
346 #if defined(TARGET_PPC64)
347     if (cpu->compat_pvr) {
348         uint32_t compat_pvr = cpu->compat_pvr;
349         Error *local_err = NULL;
350         int ret;
351 
352         cpu->compat_pvr = 0;
353         ret = ppc_set_compat(cpu, compat_pvr, &local_err);
354         if (ret < 0) {
355             error_report_err(local_err);
356             return ret;
357         }
358     } else
359 #endif
360     {
361         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
362             return -EINVAL;
363         }
364     }
365 
366     /*
367      * If we're running with KVM HV, there is a chance that the guest
368      * is running with KVM HV and its kernel does not have the
369      * capability of dealing with a different PVR other than this
370      * exact host PVR in KVM_SET_SREGS. If that happens, the
371      * guest freezes after migration.
372      *
373      * The function kvmppc_pvr_workaround_required does this verification
374      * by first checking if the kernel has the cap, returning true immediately
375      * if that is the case. Otherwise, it checks if we're running in KVM PR.
376      * If the guest kernel does not have the cap and we're not running KVM-PR
377      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
378      * receive the PVR it expects as a workaround.
379      *
380      */
381     if (kvmppc_pvr_workaround_required(cpu)) {
382         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
383     }
384 
385     env->lr = env->spr[SPR_LR];
386     env->ctr = env->spr[SPR_CTR];
387     cpu_write_xer(env, env->spr[SPR_XER]);
388 #if defined(TARGET_PPC64)
389     env->cfar = env->spr[SPR_CFAR];
390 #endif
391     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
392 
393     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
394         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
395         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
396         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
397         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
398     }
399     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
400         env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
401         env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
402         env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
403         env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
404     }
405 
406     if (!cpu->vhyp) {
407         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
408     }
409 
410     /*
411      * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
412      * before restoring
413      */
414     msr = env->msr;
415     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
416     ppc_store_msr(env, msr);
417 
418     hreg_compute_mem_idx(env);
419 
420     return 0;
421 }
422 
423 static bool fpu_needed(void *opaque)
424 {
425     PowerPCCPU *cpu = opaque;
426 
427     return cpu->env.insns_flags & PPC_FLOAT;
428 }
429 
430 static const VMStateDescription vmstate_fpu = {
431     .name = "cpu/fpu",
432     .version_id = 1,
433     .minimum_version_id = 1,
434     .needed = fpu_needed,
435     .fields = (VMStateField[]) {
436         VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
437         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
438         VMSTATE_END_OF_LIST()
439     },
440 };
441 
442 static bool altivec_needed(void *opaque)
443 {
444     PowerPCCPU *cpu = opaque;
445 
446     return cpu->env.insns_flags & PPC_ALTIVEC;
447 }
448 
449 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
450                     const VMStateField *field)
451 {
452     PowerPCCPU *cpu = opaque;
453     helper_mtvscr(&cpu->env, qemu_get_be32(f));
454     return 0;
455 }
456 
457 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
458                     const VMStateField *field, JSONWriter *vmdesc)
459 {
460     PowerPCCPU *cpu = opaque;
461     qemu_put_be32(f, helper_mfvscr(&cpu->env));
462     return 0;
463 }
464 
465 static const VMStateInfo vmstate_vscr = {
466     .name = "cpu/altivec/vscr",
467     .get = get_vscr,
468     .put = put_vscr,
469 };
470 
471 static const VMStateDescription vmstate_altivec = {
472     .name = "cpu/altivec",
473     .version_id = 1,
474     .minimum_version_id = 1,
475     .needed = altivec_needed,
476     .fields = (VMStateField[]) {
477         VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
478         /*
479          * Save the architecture value of the vscr, not the internally
480          * expanded version.  Since this architecture value does not
481          * exist in memory to be stored, this requires a but of hoop
482          * jumping.  We want OFFSET=0 so that we effectively pass CPU
483          * to the helper functions.
484          */
485         {
486             .name = "vscr",
487             .version_id = 0,
488             .size = sizeof(uint32_t),
489             .info = &vmstate_vscr,
490             .flags = VMS_SINGLE,
491             .offset = 0
492         },
493         VMSTATE_END_OF_LIST()
494     },
495 };
496 
497 static bool vsx_needed(void *opaque)
498 {
499     PowerPCCPU *cpu = opaque;
500 
501     return cpu->env.insns_flags2 & PPC2_VSX;
502 }
503 
504 static const VMStateDescription vmstate_vsx = {
505     .name = "cpu/vsx",
506     .version_id = 1,
507     .minimum_version_id = 1,
508     .needed = vsx_needed,
509     .fields = (VMStateField[]) {
510         VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
511         VMSTATE_END_OF_LIST()
512     },
513 };
514 
515 #ifdef TARGET_PPC64
516 /* Transactional memory state */
517 static bool tm_needed(void *opaque)
518 {
519     PowerPCCPU *cpu = opaque;
520     CPUPPCState *env = &cpu->env;
521     return msr_ts;
522 }
523 
524 static const VMStateDescription vmstate_tm = {
525     .name = "cpu/tm",
526     .version_id = 1,
527     .minimum_version_id = 1,
528     .minimum_version_id_old = 1,
529     .needed = tm_needed,
530     .fields      = (VMStateField []) {
531         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
532         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
533         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
534         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
535         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
536         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
537         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
538         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
539         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
540         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
541         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
542         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
543         VMSTATE_END_OF_LIST()
544     },
545 };
546 #endif
547 
548 static bool sr_needed(void *opaque)
549 {
550 #ifdef TARGET_PPC64
551     PowerPCCPU *cpu = opaque;
552 
553     return !mmu_is_64bit(cpu->env.mmu_model);
554 #else
555     return true;
556 #endif
557 }
558 
559 static const VMStateDescription vmstate_sr = {
560     .name = "cpu/sr",
561     .version_id = 1,
562     .minimum_version_id = 1,
563     .needed = sr_needed,
564     .fields = (VMStateField[]) {
565         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
566         VMSTATE_END_OF_LIST()
567     },
568 };
569 
570 #ifdef TARGET_PPC64
571 static int get_slbe(QEMUFile *f, void *pv, size_t size,
572                     const VMStateField *field)
573 {
574     ppc_slb_t *v = pv;
575 
576     v->esid = qemu_get_be64(f);
577     v->vsid = qemu_get_be64(f);
578 
579     return 0;
580 }
581 
582 static int put_slbe(QEMUFile *f, void *pv, size_t size,
583                     const VMStateField *field, JSONWriter *vmdesc)
584 {
585     ppc_slb_t *v = pv;
586 
587     qemu_put_be64(f, v->esid);
588     qemu_put_be64(f, v->vsid);
589     return 0;
590 }
591 
592 static const VMStateInfo vmstate_info_slbe = {
593     .name = "slbe",
594     .get  = get_slbe,
595     .put  = put_slbe,
596 };
597 
598 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
599     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
600 
601 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
602     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
603 
604 static bool slb_needed(void *opaque)
605 {
606     PowerPCCPU *cpu = opaque;
607 
608     /* We don't support any of the old segment table based 64-bit CPUs */
609     return mmu_is_64bit(cpu->env.mmu_model);
610 }
611 
612 static int slb_post_load(void *opaque, int version_id)
613 {
614     PowerPCCPU *cpu = opaque;
615     CPUPPCState *env = &cpu->env;
616     int i;
617 
618     /*
619      * We've pulled in the raw esid and vsid values from the migration
620      * stream, but we need to recompute the page size pointers
621      */
622     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
623         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
624             /* Migration source had bad values in its SLB */
625             return -1;
626         }
627     }
628 
629     return 0;
630 }
631 
632 static const VMStateDescription vmstate_slb = {
633     .name = "cpu/slb",
634     .version_id = 1,
635     .minimum_version_id = 1,
636     .needed = slb_needed,
637     .post_load = slb_post_load,
638     .fields = (VMStateField[]) {
639         VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
640         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
641         VMSTATE_END_OF_LIST()
642     }
643 };
644 #endif /* TARGET_PPC64 */
645 
646 static const VMStateDescription vmstate_tlb6xx_entry = {
647     .name = "cpu/tlb6xx_entry",
648     .version_id = 1,
649     .minimum_version_id = 1,
650     .fields = (VMStateField[]) {
651         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
652         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
653         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
654         VMSTATE_END_OF_LIST()
655     },
656 };
657 
658 static bool tlb6xx_needed(void *opaque)
659 {
660     PowerPCCPU *cpu = opaque;
661     CPUPPCState *env = &cpu->env;
662 
663     return env->nb_tlb && (env->tlb_type == TLB_6XX);
664 }
665 
666 static const VMStateDescription vmstate_tlb6xx = {
667     .name = "cpu/tlb6xx",
668     .version_id = 1,
669     .minimum_version_id = 1,
670     .needed = tlb6xx_needed,
671     .fields = (VMStateField[]) {
672         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
673         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
674                                             env.nb_tlb,
675                                             vmstate_tlb6xx_entry,
676                                             ppc6xx_tlb_t),
677         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
678         VMSTATE_END_OF_LIST()
679     }
680 };
681 
682 static const VMStateDescription vmstate_tlbemb_entry = {
683     .name = "cpu/tlbemb_entry",
684     .version_id = 1,
685     .minimum_version_id = 1,
686     .fields = (VMStateField[]) {
687         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
688         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
689         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
690         VMSTATE_UINTTL(size, ppcemb_tlb_t),
691         VMSTATE_UINT32(prot, ppcemb_tlb_t),
692         VMSTATE_UINT32(attr, ppcemb_tlb_t),
693         VMSTATE_END_OF_LIST()
694     },
695 };
696 
697 static bool tlbemb_needed(void *opaque)
698 {
699     PowerPCCPU *cpu = opaque;
700     CPUPPCState *env = &cpu->env;
701 
702     return env->nb_tlb && (env->tlb_type == TLB_EMB);
703 }
704 
705 static bool pbr403_needed(void *opaque)
706 {
707     PowerPCCPU *cpu = opaque;
708     uint32_t pvr = cpu->env.spr[SPR_PVR];
709 
710     return (pvr & 0xffff0000) == 0x00200000;
711 }
712 
713 static const VMStateDescription vmstate_pbr403 = {
714     .name = "cpu/pbr403",
715     .version_id = 1,
716     .minimum_version_id = 1,
717     .needed = pbr403_needed,
718     .fields = (VMStateField[]) {
719         VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
720         VMSTATE_END_OF_LIST()
721     },
722 };
723 
724 static const VMStateDescription vmstate_tlbemb = {
725     .name = "cpu/tlb6xx",
726     .version_id = 1,
727     .minimum_version_id = 1,
728     .needed = tlbemb_needed,
729     .fields = (VMStateField[]) {
730         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
731         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
732                                             env.nb_tlb,
733                                             vmstate_tlbemb_entry,
734                                             ppcemb_tlb_t),
735         /* 403 protection registers */
736         VMSTATE_END_OF_LIST()
737     },
738     .subsections = (const VMStateDescription*[]) {
739         &vmstate_pbr403,
740         NULL
741     }
742 };
743 
744 static const VMStateDescription vmstate_tlbmas_entry = {
745     .name = "cpu/tlbmas_entry",
746     .version_id = 1,
747     .minimum_version_id = 1,
748     .fields = (VMStateField[]) {
749         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
750         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
751         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
752         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
753         VMSTATE_END_OF_LIST()
754     },
755 };
756 
757 static bool tlbmas_needed(void *opaque)
758 {
759     PowerPCCPU *cpu = opaque;
760     CPUPPCState *env = &cpu->env;
761 
762     return env->nb_tlb && (env->tlb_type == TLB_MAS);
763 }
764 
765 static const VMStateDescription vmstate_tlbmas = {
766     .name = "cpu/tlbmas",
767     .version_id = 1,
768     .minimum_version_id = 1,
769     .needed = tlbmas_needed,
770     .fields = (VMStateField[]) {
771         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
772         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
773                                             env.nb_tlb,
774                                             vmstate_tlbmas_entry,
775                                             ppcmas_tlb_t),
776         VMSTATE_END_OF_LIST()
777     }
778 };
779 
780 static bool compat_needed(void *opaque)
781 {
782     PowerPCCPU *cpu = opaque;
783 
784     assert(!(cpu->compat_pvr && !cpu->vhyp));
785     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
786 }
787 
788 static const VMStateDescription vmstate_compat = {
789     .name = "cpu/compat",
790     .version_id = 1,
791     .minimum_version_id = 1,
792     .needed = compat_needed,
793     .fields = (VMStateField[]) {
794         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
795         VMSTATE_END_OF_LIST()
796     }
797 };
798 
799 const VMStateDescription vmstate_ppc_cpu = {
800     .name = "cpu",
801     .version_id = 5,
802     .minimum_version_id = 5,
803     .minimum_version_id_old = 4,
804     .load_state_old = cpu_load_old,
805     .pre_save = cpu_pre_save,
806     .post_load = cpu_post_load,
807     .fields = (VMStateField[]) {
808         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
809 
810         /* User mode architected state */
811         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
812 #if !defined(TARGET_PPC64)
813         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
814 #endif
815         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
816         VMSTATE_UINTTL(env.nip, PowerPCCPU),
817 
818         /* SPRs */
819         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
820         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
821 
822         /* Reservation */
823         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
824 
825         /* Supervisor mode architected state */
826         VMSTATE_UINTTL(env.msr, PowerPCCPU),
827 
828         /* Internal state */
829         VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
830         /* FIXME: access_type? */
831 
832         /* Sanity checking */
833         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
834         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
835         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
836                             cpu_pre_2_8_migration),
837         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
838         VMSTATE_END_OF_LIST()
839     },
840     .subsections = (const VMStateDescription*[]) {
841         &vmstate_fpu,
842         &vmstate_altivec,
843         &vmstate_vsx,
844         &vmstate_sr,
845 #ifdef TARGET_PPC64
846         &vmstate_tm,
847         &vmstate_slb,
848 #endif /* TARGET_PPC64 */
849         &vmstate_tlb6xx,
850         &vmstate_tlbemb,
851         &vmstate_tlbmas,
852         &vmstate_compat,
853         NULL
854     }
855 };
856