xref: /openbmc/qemu/target/ppc/machine.c (revision 200280af0e19bfaeb9431eb0ee1ee2d8bf8d3a0a)
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 #include "kvm_ppc.h"
13 
14 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
15 {
16     PowerPCCPU *cpu = opaque;
17     CPUPPCState *env = &cpu->env;
18     unsigned int i, j;
19     target_ulong sdr1;
20     uint32_t fpscr;
21 #if defined(TARGET_PPC64)
22     int32_t slb_nr;
23 #endif
24     target_ulong xer;
25 
26     for (i = 0; i < 32; i++)
27         qemu_get_betls(f, &env->gpr[i]);
28 #if !defined(TARGET_PPC64)
29     for (i = 0; i < 32; i++)
30         qemu_get_betls(f, &env->gprh[i]);
31 #endif
32     qemu_get_betls(f, &env->lr);
33     qemu_get_betls(f, &env->ctr);
34     for (i = 0; i < 8; i++)
35         qemu_get_be32s(f, &env->crf[i]);
36     qemu_get_betls(f, &xer);
37     cpu_write_xer(env, xer);
38     qemu_get_betls(f, &env->reserve_addr);
39     qemu_get_betls(f, &env->msr);
40     for (i = 0; i < 4; i++)
41         qemu_get_betls(f, &env->tgpr[i]);
42     for (i = 0; i < 32; i++) {
43         union {
44             float64 d;
45             uint64_t l;
46         } u;
47         u.l = qemu_get_be64(f);
48         *cpu_fpr_ptr(env, i) = u.d;
49     }
50     qemu_get_be32s(f, &fpscr);
51     env->fpscr = fpscr;
52     qemu_get_sbe32s(f, &env->access_type);
53 #if defined(TARGET_PPC64)
54     qemu_get_betls(f, &env->spr[SPR_ASR]);
55     qemu_get_sbe32s(f, &slb_nr);
56 #endif
57     qemu_get_betls(f, &sdr1);
58     for (i = 0; i < 32; i++)
59         qemu_get_betls(f, &env->sr[i]);
60     for (i = 0; i < 2; i++)
61         for (j = 0; j < 8; j++)
62             qemu_get_betls(f, &env->DBAT[i][j]);
63     for (i = 0; i < 2; i++)
64         for (j = 0; j < 8; j++)
65             qemu_get_betls(f, &env->IBAT[i][j]);
66     qemu_get_sbe32s(f, &env->nb_tlb);
67     qemu_get_sbe32s(f, &env->tlb_per_way);
68     qemu_get_sbe32s(f, &env->nb_ways);
69     qemu_get_sbe32s(f, &env->last_way);
70     qemu_get_sbe32s(f, &env->id_tlbs);
71     qemu_get_sbe32s(f, &env->nb_pids);
72     if (env->tlb.tlb6) {
73         // XXX assumes 6xx
74         for (i = 0; i < env->nb_tlb; i++) {
75             qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
76             qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
77             qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
78         }
79     }
80     for (i = 0; i < 4; i++)
81         qemu_get_betls(f, &env->pb[i]);
82     for (i = 0; i < 1024; i++)
83         qemu_get_betls(f, &env->spr[i]);
84     if (!cpu->vhyp) {
85         ppc_store_sdr1(env, sdr1);
86     }
87     qemu_get_be32s(f, &env->vscr);
88     qemu_get_be64s(f, &env->spe_acc);
89     qemu_get_be32s(f, &env->spe_fscr);
90     qemu_get_betls(f, &env->msr_mask);
91     qemu_get_be32s(f, &env->flags);
92     qemu_get_sbe32s(f, &env->error_code);
93     qemu_get_be32s(f, &env->pending_interrupts);
94     qemu_get_be32s(f, &env->irq_input_state);
95     for (i = 0; i < POWERPC_EXCP_NB; i++)
96         qemu_get_betls(f, &env->excp_vectors[i]);
97     qemu_get_betls(f, &env->excp_prefix);
98     qemu_get_betls(f, &env->ivor_mask);
99     qemu_get_betls(f, &env->ivpr_mask);
100     qemu_get_betls(f, &env->hreset_vector);
101     qemu_get_betls(f, &env->nip);
102     qemu_get_betls(f, &env->hflags);
103     qemu_get_betls(f, &env->hflags_nmsr);
104     qemu_get_sbe32(f); /* Discard unused mmu_idx */
105     qemu_get_sbe32(f); /* Discard unused power_mode */
106 
107     /* Recompute mmu indices */
108     hreg_compute_mem_idx(env);
109 
110     return 0;
111 }
112 
113 static int get_avr(QEMUFile *f, void *pv, size_t size,
114                    const VMStateField *field)
115 {
116     ppc_avr_t *v = pv;
117 
118     v->u64[0] = qemu_get_be64(f);
119     v->u64[1] = qemu_get_be64(f);
120 
121     return 0;
122 }
123 
124 static int put_avr(QEMUFile *f, void *pv, size_t size,
125                    const VMStateField *field, QJSON *vmdesc)
126 {
127     ppc_avr_t *v = pv;
128 
129     qemu_put_be64(f, v->u64[0]);
130     qemu_put_be64(f, v->u64[1]);
131     return 0;
132 }
133 
134 static const VMStateInfo vmstate_info_avr = {
135     .name = "avr",
136     .get  = get_avr,
137     .put  = put_avr,
138 };
139 
140 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
141     VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
142 
143 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
144     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
145 
146 static int get_fpr(QEMUFile *f, void *pv, size_t size,
147                    const VMStateField *field)
148 {
149     ppc_vsr_t *v = pv;
150 
151     v->u64[0] = qemu_get_be64(f);
152 
153     return 0;
154 }
155 
156 static int put_fpr(QEMUFile *f, void *pv, size_t size,
157                    const VMStateField *field, QJSON *vmdesc)
158 {
159     ppc_vsr_t *v = pv;
160 
161     qemu_put_be64(f, v->u64[0]);
162     return 0;
163 }
164 
165 static const VMStateInfo vmstate_info_fpr = {
166     .name = "fpr",
167     .get  = get_fpr,
168     .put  = put_fpr,
169 };
170 
171 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
172     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
173 
174 #define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
175     VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
176 
177 static int get_vsr(QEMUFile *f, void *pv, size_t size,
178                    const VMStateField *field)
179 {
180     ppc_vsr_t *v = pv;
181 
182     v->u64[1] = qemu_get_be64(f);
183 
184     return 0;
185 }
186 
187 static int put_vsr(QEMUFile *f, void *pv, size_t size,
188                    const VMStateField *field, QJSON *vmdesc)
189 {
190     ppc_vsr_t *v = pv;
191 
192     qemu_put_be64(f, v->u64[1]);
193     return 0;
194 }
195 
196 static const VMStateInfo vmstate_info_vsr = {
197     .name = "vsr",
198     .get  = get_vsr,
199     .put  = put_vsr,
200 };
201 
202 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
203     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
204 
205 #define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
206     VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
207 
208 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
209 {
210     PowerPCCPU *cpu = opaque;
211 
212     return cpu->pre_2_8_migration;
213 }
214 
215 #if defined(TARGET_PPC64)
216 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
217 {
218     PowerPCCPU *cpu = opaque;
219 
220     return cpu->pre_3_0_migration;
221 }
222 #endif
223 
224 static int cpu_pre_save(void *opaque)
225 {
226     PowerPCCPU *cpu = opaque;
227     CPUPPCState *env = &cpu->env;
228     int i;
229     uint64_t insns_compat_mask =
230         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
231         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
232         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
233         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
234         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
235         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
236         | PPC_64B | PPC_64BX | PPC_ALTIVEC
237         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
238     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
239         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
240         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
241         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
242         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
243         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
244 
245     env->spr[SPR_LR] = env->lr;
246     env->spr[SPR_CTR] = env->ctr;
247     env->spr[SPR_XER] = cpu_read_xer(env);
248 #if defined(TARGET_PPC64)
249     env->spr[SPR_CFAR] = env->cfar;
250 #endif
251     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
252 
253     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
254         env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
255         env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
256         env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
257         env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
258     }
259     for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
260         env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
261         env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
262         env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
263         env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
264     }
265 
266     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
267     if (cpu->pre_2_8_migration) {
268         /* Mask out bits that got added to msr_mask since the versions
269          * which stupidly included it in the migration stream. */
270         target_ulong metamask = 0
271 #if defined(TARGET_PPC64)
272             | (1ULL << MSR_TS0)
273             | (1ULL << MSR_TS1)
274 #endif
275             ;
276         cpu->mig_msr_mask = env->msr_mask & ~metamask;
277         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
278         /* CPU models supported by old machines all have PPC_MEM_TLBIE,
279          * so we set it unconditionally to allow backward migration from
280          * a POWER9 host to a POWER8 host.
281          */
282         cpu->mig_insns_flags |= PPC_MEM_TLBIE;
283         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
284         cpu->mig_nb_BATs = env->nb_BATs;
285     }
286     if (cpu->pre_3_0_migration) {
287         if (cpu->hash64_opts) {
288             cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
289         }
290     }
291 
292     return 0;
293 }
294 
295 /*
296  * Determine if a given PVR is a "close enough" match to the CPU
297  * object.  For TCG and KVM PR it would probably be sufficient to
298  * require an exact PVR match.  However for KVM HV the user is
299  * restricted to a PVR exactly matching the host CPU.  The correct way
300  * to handle this is to put the guest into an architected
301  * compatibility mode.  However, to allow a more forgiving transition
302  * and migration from before this was widely done, we allow migration
303  * between sufficiently similar PVRs, as determined by the CPU class's
304  * pvr_match() hook.
305  */
306 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
307 {
308     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
309 
310     if (pvr == pcc->pvr) {
311         return true;
312     }
313     return pcc->pvr_match(pcc, pvr);
314 }
315 
316 static int cpu_post_load(void *opaque, int version_id)
317 {
318     PowerPCCPU *cpu = opaque;
319     CPUPPCState *env = &cpu->env;
320     int i;
321     target_ulong msr;
322 
323     /*
324      * If we're operating in compat mode, we should be ok as long as
325      * the destination supports the same compatiblity mode.
326      *
327      * Otherwise, however, we require that the destination has exactly
328      * the same CPU model as the source.
329      */
330 
331 #if defined(TARGET_PPC64)
332     if (cpu->compat_pvr) {
333         uint32_t compat_pvr = cpu->compat_pvr;
334         Error *local_err = NULL;
335 
336         cpu->compat_pvr = 0;
337         ppc_set_compat(cpu, compat_pvr, &local_err);
338         if (local_err) {
339             error_report_err(local_err);
340             return -1;
341         }
342     } else
343 #endif
344     {
345         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
346             return -1;
347         }
348     }
349 
350     /*
351      * If we're running with KVM HV, there is a chance that the guest
352      * is running with KVM HV and its kernel does not have the
353      * capability of dealing with a different PVR other than this
354      * exact host PVR in KVM_SET_SREGS. If that happens, the
355      * guest freezes after migration.
356      *
357      * The function kvmppc_pvr_workaround_required does this verification
358      * by first checking if the kernel has the cap, returning true immediately
359      * if that is the case. Otherwise, it checks if we're running in KVM PR.
360      * If the guest kernel does not have the cap and we're not running KVM-PR
361      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
362      * receive the PVR it expects as a workaround.
363      *
364      */
365 #if defined(CONFIG_KVM)
366     if (kvmppc_pvr_workaround_required(cpu)) {
367         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
368     }
369 #endif
370 
371     env->lr = env->spr[SPR_LR];
372     env->ctr = env->spr[SPR_CTR];
373     cpu_write_xer(env, env->spr[SPR_XER]);
374 #if defined(TARGET_PPC64)
375     env->cfar = env->spr[SPR_CFAR];
376 #endif
377     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
378 
379     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
380         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
381         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
382         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
383         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
384     }
385     for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
386         env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
387         env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
388         env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
389         env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
390     }
391 
392     if (!cpu->vhyp) {
393         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
394     }
395 
396     /* Invalidate all supported msr bits except MSR_TGPR/MSR_HVB before restoring */
397     msr = env->msr;
398     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
399     ppc_store_msr(env, msr);
400 
401     hreg_compute_mem_idx(env);
402 
403     return 0;
404 }
405 
406 static bool fpu_needed(void *opaque)
407 {
408     PowerPCCPU *cpu = opaque;
409 
410     return (cpu->env.insns_flags & PPC_FLOAT);
411 }
412 
413 static const VMStateDescription vmstate_fpu = {
414     .name = "cpu/fpu",
415     .version_id = 1,
416     .minimum_version_id = 1,
417     .needed = fpu_needed,
418     .fields = (VMStateField[]) {
419         VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
420         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
421         VMSTATE_END_OF_LIST()
422     },
423 };
424 
425 static bool altivec_needed(void *opaque)
426 {
427     PowerPCCPU *cpu = opaque;
428 
429     return (cpu->env.insns_flags & PPC_ALTIVEC);
430 }
431 
432 static const VMStateDescription vmstate_altivec = {
433     .name = "cpu/altivec",
434     .version_id = 1,
435     .minimum_version_id = 1,
436     .needed = altivec_needed,
437     .fields = (VMStateField[]) {
438         VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
439         VMSTATE_UINT32(env.vscr, PowerPCCPU),
440         VMSTATE_END_OF_LIST()
441     },
442 };
443 
444 static bool vsx_needed(void *opaque)
445 {
446     PowerPCCPU *cpu = opaque;
447 
448     return (cpu->env.insns_flags2 & PPC2_VSX);
449 }
450 
451 static const VMStateDescription vmstate_vsx = {
452     .name = "cpu/vsx",
453     .version_id = 1,
454     .minimum_version_id = 1,
455     .needed = vsx_needed,
456     .fields = (VMStateField[]) {
457         VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
458         VMSTATE_END_OF_LIST()
459     },
460 };
461 
462 #ifdef TARGET_PPC64
463 /* Transactional memory state */
464 static bool tm_needed(void *opaque)
465 {
466     PowerPCCPU *cpu = opaque;
467     CPUPPCState *env = &cpu->env;
468     return msr_ts;
469 }
470 
471 static const VMStateDescription vmstate_tm = {
472     .name = "cpu/tm",
473     .version_id = 1,
474     .minimum_version_id = 1,
475     .minimum_version_id_old = 1,
476     .needed = tm_needed,
477     .fields      = (VMStateField []) {
478         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
479         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
480         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
481         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
482         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
483         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
484         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
485         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
486         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
487         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
488         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
489         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
490         VMSTATE_END_OF_LIST()
491     },
492 };
493 #endif
494 
495 static bool sr_needed(void *opaque)
496 {
497 #ifdef TARGET_PPC64
498     PowerPCCPU *cpu = opaque;
499 
500     return !(cpu->env.mmu_model & POWERPC_MMU_64);
501 #else
502     return true;
503 #endif
504 }
505 
506 static const VMStateDescription vmstate_sr = {
507     .name = "cpu/sr",
508     .version_id = 1,
509     .minimum_version_id = 1,
510     .needed = sr_needed,
511     .fields = (VMStateField[]) {
512         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
513         VMSTATE_END_OF_LIST()
514     },
515 };
516 
517 #ifdef TARGET_PPC64
518 static int get_slbe(QEMUFile *f, void *pv, size_t size,
519                     const VMStateField *field)
520 {
521     ppc_slb_t *v = pv;
522 
523     v->esid = qemu_get_be64(f);
524     v->vsid = qemu_get_be64(f);
525 
526     return 0;
527 }
528 
529 static int put_slbe(QEMUFile *f, void *pv, size_t size,
530                     const VMStateField *field, QJSON *vmdesc)
531 {
532     ppc_slb_t *v = pv;
533 
534     qemu_put_be64(f, v->esid);
535     qemu_put_be64(f, v->vsid);
536     return 0;
537 }
538 
539 static const VMStateInfo vmstate_info_slbe = {
540     .name = "slbe",
541     .get  = get_slbe,
542     .put  = put_slbe,
543 };
544 
545 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
546     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
547 
548 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
549     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
550 
551 static bool slb_needed(void *opaque)
552 {
553     PowerPCCPU *cpu = opaque;
554 
555     /* We don't support any of the old segment table based 64-bit CPUs */
556     return (cpu->env.mmu_model & POWERPC_MMU_64);
557 }
558 
559 static int slb_post_load(void *opaque, int version_id)
560 {
561     PowerPCCPU *cpu = opaque;
562     CPUPPCState *env = &cpu->env;
563     int i;
564 
565     /* We've pulled in the raw esid and vsid values from the migration
566      * stream, but we need to recompute the page size pointers */
567     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
568         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
569             /* Migration source had bad values in its SLB */
570             return -1;
571         }
572     }
573 
574     return 0;
575 }
576 
577 static const VMStateDescription vmstate_slb = {
578     .name = "cpu/slb",
579     .version_id = 1,
580     .minimum_version_id = 1,
581     .needed = slb_needed,
582     .post_load = slb_post_load,
583     .fields = (VMStateField[]) {
584         VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
585         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
586         VMSTATE_END_OF_LIST()
587     }
588 };
589 #endif /* TARGET_PPC64 */
590 
591 static const VMStateDescription vmstate_tlb6xx_entry = {
592     .name = "cpu/tlb6xx_entry",
593     .version_id = 1,
594     .minimum_version_id = 1,
595     .fields = (VMStateField[]) {
596         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
597         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
598         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
599         VMSTATE_END_OF_LIST()
600     },
601 };
602 
603 static bool tlb6xx_needed(void *opaque)
604 {
605     PowerPCCPU *cpu = opaque;
606     CPUPPCState *env = &cpu->env;
607 
608     return env->nb_tlb && (env->tlb_type == TLB_6XX);
609 }
610 
611 static const VMStateDescription vmstate_tlb6xx = {
612     .name = "cpu/tlb6xx",
613     .version_id = 1,
614     .minimum_version_id = 1,
615     .needed = tlb6xx_needed,
616     .fields = (VMStateField[]) {
617         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
618         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
619                                             env.nb_tlb,
620                                             vmstate_tlb6xx_entry,
621                                             ppc6xx_tlb_t),
622         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
623         VMSTATE_END_OF_LIST()
624     }
625 };
626 
627 static const VMStateDescription vmstate_tlbemb_entry = {
628     .name = "cpu/tlbemb_entry",
629     .version_id = 1,
630     .minimum_version_id = 1,
631     .fields = (VMStateField[]) {
632         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
633         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
634         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
635         VMSTATE_UINTTL(size, ppcemb_tlb_t),
636         VMSTATE_UINT32(prot, ppcemb_tlb_t),
637         VMSTATE_UINT32(attr, ppcemb_tlb_t),
638         VMSTATE_END_OF_LIST()
639     },
640 };
641 
642 static bool tlbemb_needed(void *opaque)
643 {
644     PowerPCCPU *cpu = opaque;
645     CPUPPCState *env = &cpu->env;
646 
647     return env->nb_tlb && (env->tlb_type == TLB_EMB);
648 }
649 
650 static bool pbr403_needed(void *opaque)
651 {
652     PowerPCCPU *cpu = opaque;
653     uint32_t pvr = cpu->env.spr[SPR_PVR];
654 
655     return (pvr & 0xffff0000) == 0x00200000;
656 }
657 
658 static const VMStateDescription vmstate_pbr403 = {
659     .name = "cpu/pbr403",
660     .version_id = 1,
661     .minimum_version_id = 1,
662     .needed = pbr403_needed,
663     .fields = (VMStateField[]) {
664         VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
665         VMSTATE_END_OF_LIST()
666     },
667 };
668 
669 static const VMStateDescription vmstate_tlbemb = {
670     .name = "cpu/tlb6xx",
671     .version_id = 1,
672     .minimum_version_id = 1,
673     .needed = tlbemb_needed,
674     .fields = (VMStateField[]) {
675         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
676         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
677                                             env.nb_tlb,
678                                             vmstate_tlbemb_entry,
679                                             ppcemb_tlb_t),
680         /* 403 protection registers */
681         VMSTATE_END_OF_LIST()
682     },
683     .subsections = (const VMStateDescription*[]) {
684         &vmstate_pbr403,
685         NULL
686     }
687 };
688 
689 static const VMStateDescription vmstate_tlbmas_entry = {
690     .name = "cpu/tlbmas_entry",
691     .version_id = 1,
692     .minimum_version_id = 1,
693     .fields = (VMStateField[]) {
694         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
695         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
696         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
697         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
698         VMSTATE_END_OF_LIST()
699     },
700 };
701 
702 static bool tlbmas_needed(void *opaque)
703 {
704     PowerPCCPU *cpu = opaque;
705     CPUPPCState *env = &cpu->env;
706 
707     return env->nb_tlb && (env->tlb_type == TLB_MAS);
708 }
709 
710 static const VMStateDescription vmstate_tlbmas = {
711     .name = "cpu/tlbmas",
712     .version_id = 1,
713     .minimum_version_id = 1,
714     .needed = tlbmas_needed,
715     .fields = (VMStateField[]) {
716         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
717         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
718                                             env.nb_tlb,
719                                             vmstate_tlbmas_entry,
720                                             ppcmas_tlb_t),
721         VMSTATE_END_OF_LIST()
722     }
723 };
724 
725 static bool compat_needed(void *opaque)
726 {
727     PowerPCCPU *cpu = opaque;
728 
729     assert(!(cpu->compat_pvr && !cpu->vhyp));
730     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
731 }
732 
733 static const VMStateDescription vmstate_compat = {
734     .name = "cpu/compat",
735     .version_id = 1,
736     .minimum_version_id = 1,
737     .needed = compat_needed,
738     .fields = (VMStateField[]) {
739         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
740         VMSTATE_END_OF_LIST()
741     }
742 };
743 
744 const VMStateDescription vmstate_ppc_cpu = {
745     .name = "cpu",
746     .version_id = 5,
747     .minimum_version_id = 5,
748     .minimum_version_id_old = 4,
749     .load_state_old = cpu_load_old,
750     .pre_save = cpu_pre_save,
751     .post_load = cpu_post_load,
752     .fields = (VMStateField[]) {
753         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
754 
755         /* User mode architected state */
756         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
757 #if !defined(TARGET_PPC64)
758         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
759 #endif
760         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
761         VMSTATE_UINTTL(env.nip, PowerPCCPU),
762 
763         /* SPRs */
764         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
765         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
766 
767         /* Reservation */
768         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
769 
770         /* Supervisor mode architected state */
771         VMSTATE_UINTTL(env.msr, PowerPCCPU),
772 
773         /* Internal state */
774         VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
775         /* FIXME: access_type? */
776 
777         /* Sanity checking */
778         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
779         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
780         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
781                             cpu_pre_2_8_migration),
782         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
783         VMSTATE_END_OF_LIST()
784     },
785     .subsections = (const VMStateDescription*[]) {
786         &vmstate_fpu,
787         &vmstate_altivec,
788         &vmstate_vsx,
789         &vmstate_sr,
790 #ifdef TARGET_PPC64
791         &vmstate_tm,
792         &vmstate_slb,
793 #endif /* TARGET_PPC64 */
794         &vmstate_tlb6xx,
795         &vmstate_tlbemb,
796         &vmstate_tlbmas,
797         &vmstate_compat,
798         NULL
799     }
800 };
801