1 /* 2 * PowerPC implementation of KVM hooks 3 * 4 * Copyright IBM Corp. 2007 5 * Copyright (C) 2011 Freescale Semiconductor, Inc. 6 * 7 * Authors: 8 * Jerone Young <jyoung5@us.ibm.com> 9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 10 * Hollis Blanchard <hollisb@us.ibm.com> 11 * 12 * This work is licensed under the terms of the GNU GPL, version 2 or later. 13 * See the COPYING file in the top-level directory. 14 * 15 */ 16 17 #include "qemu/osdep.h" 18 #include <dirent.h> 19 #include <sys/ioctl.h> 20 #include <sys/vfs.h> 21 22 #include <linux/kvm.h> 23 24 #include "qapi/error.h" 25 #include "qemu/error-report.h" 26 #include "cpu.h" 27 #include "cpu-models.h" 28 #include "qemu/timer.h" 29 #include "sysemu/hw_accel.h" 30 #include "kvm_ppc.h" 31 #include "sysemu/cpus.h" 32 #include "sysemu/device_tree.h" 33 #include "mmu-hash64.h" 34 35 #include "hw/ppc/spapr.h" 36 #include "hw/ppc/spapr_cpu_core.h" 37 #include "hw/hw.h" 38 #include "hw/ppc/ppc.h" 39 #include "migration/qemu-file-types.h" 40 #include "sysemu/watchdog.h" 41 #include "trace.h" 42 #include "exec/gdbstub.h" 43 #include "exec/memattrs.h" 44 #include "exec/ram_addr.h" 45 #include "sysemu/hostmem.h" 46 #include "qemu/cutils.h" 47 #include "qemu/main-loop.h" 48 #include "qemu/mmap-alloc.h" 49 #include "elf.h" 50 #include "sysemu/kvm_int.h" 51 52 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/" 53 54 #define DEBUG_RETURN_GUEST 0 55 #define DEBUG_RETURN_GDB 1 56 57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 58 KVM_CAP_LAST_INFO 59 }; 60 61 static int cap_interrupt_unset; 62 static int cap_segstate; 63 static int cap_booke_sregs; 64 static int cap_ppc_smt; 65 static int cap_ppc_smt_possible; 66 static int cap_spapr_tce; 67 static int cap_spapr_tce_64; 68 static int cap_spapr_multitce; 69 static int cap_spapr_vfio; 70 static int cap_hior; 71 static int cap_one_reg; 72 static int cap_epr; 73 static int cap_ppc_watchdog; 74 static int cap_papr; 75 static int cap_htab_fd; 76 static int cap_fixup_hcalls; 77 static int cap_htm; /* Hardware transactional memory support */ 78 static int cap_mmu_radix; 79 static int cap_mmu_hash_v3; 80 static int cap_xive; 81 static int cap_resize_hpt; 82 static int cap_ppc_pvr_compat; 83 static int cap_ppc_safe_cache; 84 static int cap_ppc_safe_bounds_check; 85 static int cap_ppc_safe_indirect_branch; 86 static int cap_ppc_count_cache_flush_assist; 87 static int cap_ppc_nested_kvm_hv; 88 static int cap_large_decr; 89 static int cap_fwnmi; 90 static int cap_rpt_invalidate; 91 static int cap_ail_mode_3; 92 93 static uint32_t debug_inst_opcode; 94 95 /* 96 * Check whether we are running with KVM-PR (instead of KVM-HV). This 97 * should only be used for fallback tests - generally we should use 98 * explicit capabilities for the features we want, rather than 99 * assuming what is/isn't available depending on the KVM variant. 100 */ 101 static bool kvmppc_is_pr(KVMState *ks) 102 { 103 /* Assume KVM-PR if the GET_PVINFO capability is available */ 104 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0; 105 } 106 107 static int kvm_ppc_register_host_cpu_type(void); 108 static void kvmppc_get_cpu_characteristics(KVMState *s); 109 static int kvmppc_get_dec_bits(void); 110 111 int kvm_arch_get_default_type(MachineState *ms) 112 { 113 return 0; 114 } 115 116 int kvm_arch_init(MachineState *ms, KVMState *s) 117 { 118 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); 119 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); 120 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); 121 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE); 122 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); 123 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64); 124 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE); 125 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO); 126 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); 127 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); 128 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); 129 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); 130 /* 131 * Note: we don't set cap_papr here, because this capability is 132 * only activated after this by kvmppc_set_papr() 133 */ 134 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD); 135 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL); 136 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT); 137 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM); 138 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX); 139 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3); 140 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE); 141 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT); 142 kvmppc_get_cpu_characteristics(s); 143 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV); 144 cap_large_decr = kvmppc_get_dec_bits(); 145 cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI); 146 /* 147 * Note: setting it to false because there is not such capability 148 * in KVM at this moment. 149 * 150 * TODO: call kvm_vm_check_extension() with the right capability 151 * after the kernel starts implementing it. 152 */ 153 cap_ppc_pvr_compat = false; 154 155 if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) { 156 error_report("KVM: Host kernel doesn't have level irq capability"); 157 exit(1); 158 } 159 160 cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE); 161 cap_ail_mode_3 = kvm_vm_check_extension(s, KVM_CAP_PPC_AIL_MODE_3); 162 kvm_ppc_register_host_cpu_type(); 163 164 return 0; 165 } 166 167 int kvm_arch_irqchip_create(KVMState *s) 168 { 169 return 0; 170 } 171 172 static int kvm_arch_sync_sregs(PowerPCCPU *cpu) 173 { 174 CPUPPCState *cenv = &cpu->env; 175 CPUState *cs = CPU(cpu); 176 struct kvm_sregs sregs; 177 int ret; 178 179 if (cenv->excp_model == POWERPC_EXCP_BOOKE) { 180 /* 181 * What we're really trying to say is "if we're on BookE, we 182 * use the native PVR for now". This is the only sane way to 183 * check it though, so we potentially confuse users that they 184 * can run BookE guests on BookS. Let's hope nobody dares 185 * enough :) 186 */ 187 return 0; 188 } else { 189 if (!cap_segstate) { 190 fprintf(stderr, "kvm error: missing PVR setting capability\n"); 191 return -ENOSYS; 192 } 193 } 194 195 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 196 if (ret) { 197 return ret; 198 } 199 200 sregs.pvr = cenv->spr[SPR_PVR]; 201 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 202 } 203 204 /* Set up a shared TLB array with KVM */ 205 static int kvm_booke206_tlb_init(PowerPCCPU *cpu) 206 { 207 CPUPPCState *env = &cpu->env; 208 CPUState *cs = CPU(cpu); 209 struct kvm_book3e_206_tlb_params params = {}; 210 struct kvm_config_tlb cfg = {}; 211 unsigned int entries = 0; 212 int ret, i; 213 214 if (!kvm_enabled() || 215 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { 216 return 0; 217 } 218 219 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); 220 221 for (i = 0; i < BOOKE206_MAX_TLBN; i++) { 222 params.tlb_sizes[i] = booke206_tlb_size(env, i); 223 params.tlb_ways[i] = booke206_tlb_ways(env, i); 224 entries += params.tlb_sizes[i]; 225 } 226 227 assert(entries == env->nb_tlb); 228 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); 229 230 env->tlb_dirty = true; 231 232 cfg.array = (uintptr_t)env->tlb.tlbm; 233 cfg.array_len = sizeof(ppcmas_tlb_t) * entries; 234 cfg.params = (uintptr_t)¶ms; 235 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; 236 237 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg); 238 if (ret < 0) { 239 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", 240 __func__, strerror(-ret)); 241 return ret; 242 } 243 244 env->kvm_sw_tlb = true; 245 return 0; 246 } 247 248 249 #if defined(TARGET_PPC64) 250 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp) 251 { 252 int ret; 253 254 assert(kvm_state != NULL); 255 256 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { 257 error_setg(errp, "KVM doesn't expose the MMU features it supports"); 258 error_append_hint(errp, "Consider switching to a newer KVM\n"); 259 return; 260 } 261 262 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info); 263 if (ret == 0) { 264 return; 265 } 266 267 error_setg_errno(errp, -ret, 268 "KVM failed to provide the MMU features it supports"); 269 } 270 271 static struct ppc_radix_page_info *kvmppc_get_radix_page_info(void) 272 { 273 KVMState *s = KVM_STATE(current_accel()); 274 struct ppc_radix_page_info *radix_page_info; 275 struct kvm_ppc_rmmu_info rmmu_info = { }; 276 int i; 277 278 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) { 279 return NULL; 280 } 281 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) { 282 return NULL; 283 } 284 radix_page_info = g_malloc0(sizeof(*radix_page_info)); 285 radix_page_info->count = 0; 286 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { 287 if (rmmu_info.ap_encodings[i]) { 288 radix_page_info->entries[i] = rmmu_info.ap_encodings[i]; 289 radix_page_info->count++; 290 } 291 } 292 return radix_page_info; 293 } 294 295 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu, 296 bool radix, bool gtse, 297 uint64_t proc_tbl) 298 { 299 CPUState *cs = CPU(cpu); 300 int ret; 301 uint64_t flags = 0; 302 struct kvm_ppc_mmuv3_cfg cfg = { 303 .process_table = proc_tbl, 304 }; 305 306 if (radix) { 307 flags |= KVM_PPC_MMUV3_RADIX; 308 } 309 if (gtse) { 310 flags |= KVM_PPC_MMUV3_GTSE; 311 } 312 cfg.flags = flags; 313 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg); 314 switch (ret) { 315 case 0: 316 return H_SUCCESS; 317 case -EINVAL: 318 return H_PARAMETER; 319 case -ENODEV: 320 return H_NOT_AVAILABLE; 321 default: 322 return H_HARDWARE; 323 } 324 } 325 326 bool kvmppc_hpt_needs_host_contiguous_pages(void) 327 { 328 static struct kvm_ppc_smmu_info smmu_info; 329 330 if (!kvm_enabled()) { 331 return false; 332 } 333 334 kvm_get_smmu_info(&smmu_info, &error_fatal); 335 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL); 336 } 337 338 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp) 339 { 340 struct kvm_ppc_smmu_info smmu_info; 341 int iq, ik, jq, jk; 342 Error *local_err = NULL; 343 344 /* For now, we only have anything to check on hash64 MMUs */ 345 if (!cpu->hash64_opts || !kvm_enabled()) { 346 return; 347 } 348 349 kvm_get_smmu_info(&smmu_info, &local_err); 350 if (local_err) { 351 error_propagate(errp, local_err); 352 return; 353 } 354 355 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG) 356 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) { 357 error_setg(errp, 358 "KVM does not support 1TiB segments which guest expects"); 359 return; 360 } 361 362 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) { 363 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u", 364 smmu_info.slb_size, cpu->hash64_opts->slb_size); 365 return; 366 } 367 368 /* 369 * Verify that every pagesize supported by the cpu model is 370 * supported by KVM with the same encodings 371 */ 372 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) { 373 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq]; 374 struct kvm_ppc_one_seg_page_size *ksps; 375 376 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) { 377 if (qsps->page_shift == smmu_info.sps[ik].page_shift) { 378 break; 379 } 380 } 381 if (ik >= ARRAY_SIZE(smmu_info.sps)) { 382 error_setg(errp, "KVM doesn't support for base page shift %u", 383 qsps->page_shift); 384 return; 385 } 386 387 ksps = &smmu_info.sps[ik]; 388 if (ksps->slb_enc != qsps->slb_enc) { 389 error_setg(errp, 390 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x", 391 ksps->slb_enc, ksps->page_shift, qsps->slb_enc); 392 return; 393 } 394 395 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) { 396 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) { 397 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) { 398 break; 399 } 400 } 401 402 if (jk >= ARRAY_SIZE(ksps->enc)) { 403 error_setg(errp, "KVM doesn't support page shift %u/%u", 404 qsps->enc[jq].page_shift, qsps->page_shift); 405 return; 406 } 407 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) { 408 error_setg(errp, 409 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x", 410 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift, 411 qsps->page_shift, qsps->enc[jq].pte_enc); 412 return; 413 } 414 } 415 } 416 417 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 418 /* 419 * Mostly what guest pagesizes we can use are related to the 420 * host pages used to map guest RAM, which is handled in the 421 * platform code. Cache-Inhibited largepages (64k) however are 422 * used for I/O, so if they're mapped to the host at all it 423 * will be a normal mapping, not a special hugepage one used 424 * for RAM. 425 */ 426 if (qemu_real_host_page_size() < 0x10000) { 427 error_setg(errp, 428 "KVM can't supply 64kiB CI pages, which guest expects"); 429 } 430 } 431 } 432 #endif /* !defined (TARGET_PPC64) */ 433 434 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 435 { 436 return POWERPC_CPU(cpu)->vcpu_id; 437 } 438 439 /* 440 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports 441 * only 1 watchpoint, so array size of 4 is sufficient for now. 442 */ 443 #define MAX_HW_BKPTS 4 444 445 static struct HWBreakpoint { 446 target_ulong addr; 447 int type; 448 } hw_debug_points[MAX_HW_BKPTS]; 449 450 static CPUWatchpoint hw_watchpoint; 451 452 /* Default there is no breakpoint and watchpoint supported */ 453 static int max_hw_breakpoint; 454 static int max_hw_watchpoint; 455 static int nb_hw_breakpoint; 456 static int nb_hw_watchpoint; 457 458 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv) 459 { 460 if (cenv->excp_model == POWERPC_EXCP_BOOKE) { 461 max_hw_breakpoint = 2; 462 max_hw_watchpoint = 2; 463 } 464 465 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) { 466 fprintf(stderr, "Error initializing h/w breakpoints\n"); 467 return; 468 } 469 } 470 471 int kvm_arch_init_vcpu(CPUState *cs) 472 { 473 PowerPCCPU *cpu = POWERPC_CPU(cs); 474 CPUPPCState *cenv = &cpu->env; 475 int ret; 476 477 /* Synchronize sregs with kvm */ 478 ret = kvm_arch_sync_sregs(cpu); 479 if (ret) { 480 if (ret == -EINVAL) { 481 error_report("Register sync failed... If you're using kvm-hv.ko," 482 " only \"-cpu host\" is possible"); 483 } 484 return ret; 485 } 486 487 switch (cenv->mmu_model) { 488 case POWERPC_MMU_BOOKE206: 489 /* This target supports access to KVM's guest TLB */ 490 ret = kvm_booke206_tlb_init(cpu); 491 break; 492 case POWERPC_MMU_2_07: 493 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) { 494 /* 495 * KVM-HV has transactional memory on POWER8 also without 496 * the KVM_CAP_PPC_HTM extension, so enable it here 497 * instead as long as it's available to userspace on the 498 * host. 499 */ 500 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) { 501 cap_htm = true; 502 } 503 } 504 break; 505 default: 506 break; 507 } 508 509 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode); 510 kvmppc_hw_debug_points_init(cenv); 511 512 return ret; 513 } 514 515 int kvm_arch_destroy_vcpu(CPUState *cs) 516 { 517 return 0; 518 } 519 520 static void kvm_sw_tlb_put(PowerPCCPU *cpu) 521 { 522 CPUPPCState *env = &cpu->env; 523 CPUState *cs = CPU(cpu); 524 struct kvm_dirty_tlb dirty_tlb; 525 unsigned char *bitmap; 526 int ret; 527 528 if (!env->kvm_sw_tlb) { 529 return; 530 } 531 532 bitmap = g_malloc((env->nb_tlb + 7) / 8); 533 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); 534 535 dirty_tlb.bitmap = (uintptr_t)bitmap; 536 dirty_tlb.num_dirty = env->nb_tlb; 537 538 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); 539 if (ret) { 540 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", 541 __func__, strerror(-ret)); 542 } 543 544 g_free(bitmap); 545 } 546 547 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) 548 { 549 CPUPPCState *env = cpu_env(cs); 550 /* Init 'val' to avoid "uninitialised value" Valgrind warnings */ 551 union { 552 uint32_t u32; 553 uint64_t u64; 554 } val = { }; 555 struct kvm_one_reg reg = { 556 .id = id, 557 .addr = (uintptr_t) &val, 558 }; 559 int ret; 560 561 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 562 if (ret != 0) { 563 trace_kvm_failed_spr_get(spr, strerror(errno)); 564 } else { 565 switch (id & KVM_REG_SIZE_MASK) { 566 case KVM_REG_SIZE_U32: 567 env->spr[spr] = val.u32; 568 break; 569 570 case KVM_REG_SIZE_U64: 571 env->spr[spr] = val.u64; 572 break; 573 574 default: 575 /* Don't handle this size yet */ 576 abort(); 577 } 578 } 579 } 580 581 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) 582 { 583 CPUPPCState *env = cpu_env(cs); 584 union { 585 uint32_t u32; 586 uint64_t u64; 587 } val; 588 struct kvm_one_reg reg = { 589 .id = id, 590 .addr = (uintptr_t) &val, 591 }; 592 int ret; 593 594 switch (id & KVM_REG_SIZE_MASK) { 595 case KVM_REG_SIZE_U32: 596 val.u32 = env->spr[spr]; 597 break; 598 599 case KVM_REG_SIZE_U64: 600 val.u64 = env->spr[spr]; 601 break; 602 603 default: 604 /* Don't handle this size yet */ 605 abort(); 606 } 607 608 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 609 if (ret != 0) { 610 trace_kvm_failed_spr_set(spr, strerror(errno)); 611 } 612 } 613 614 static int kvm_put_fp(CPUState *cs) 615 { 616 CPUPPCState *env = cpu_env(cs); 617 struct kvm_one_reg reg; 618 int i; 619 int ret; 620 621 if (env->insns_flags & PPC_FLOAT) { 622 uint64_t fpscr = env->fpscr; 623 bool vsx = !!(env->insns_flags2 & PPC2_VSX); 624 625 reg.id = KVM_REG_PPC_FPSCR; 626 reg.addr = (uintptr_t)&fpscr; 627 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 628 if (ret < 0) { 629 trace_kvm_failed_fpscr_set(strerror(errno)); 630 return ret; 631 } 632 633 for (i = 0; i < 32; i++) { 634 uint64_t vsr[2]; 635 uint64_t *fpr = cpu_fpr_ptr(env, i); 636 uint64_t *vsrl = cpu_vsrl_ptr(env, i); 637 638 #if HOST_BIG_ENDIAN 639 vsr[0] = float64_val(*fpr); 640 vsr[1] = *vsrl; 641 #else 642 vsr[0] = *vsrl; 643 vsr[1] = float64_val(*fpr); 644 #endif 645 reg.addr = (uintptr_t) &vsr; 646 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); 647 648 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 649 if (ret < 0) { 650 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i, 651 strerror(errno)); 652 return ret; 653 } 654 } 655 } 656 657 if (env->insns_flags & PPC_ALTIVEC) { 658 reg.id = KVM_REG_PPC_VSCR; 659 reg.addr = (uintptr_t)&env->vscr; 660 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 661 if (ret < 0) { 662 trace_kvm_failed_vscr_set(strerror(errno)); 663 return ret; 664 } 665 666 for (i = 0; i < 32; i++) { 667 reg.id = KVM_REG_PPC_VR(i); 668 reg.addr = (uintptr_t)cpu_avr_ptr(env, i); 669 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 670 if (ret < 0) { 671 trace_kvm_failed_vr_set(i, strerror(errno)); 672 return ret; 673 } 674 } 675 } 676 677 return 0; 678 } 679 680 static int kvm_get_fp(CPUState *cs) 681 { 682 CPUPPCState *env = cpu_env(cs); 683 struct kvm_one_reg reg; 684 int i; 685 int ret; 686 687 if (env->insns_flags & PPC_FLOAT) { 688 uint64_t fpscr; 689 bool vsx = !!(env->insns_flags2 & PPC2_VSX); 690 691 reg.id = KVM_REG_PPC_FPSCR; 692 reg.addr = (uintptr_t)&fpscr; 693 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 694 if (ret < 0) { 695 trace_kvm_failed_fpscr_get(strerror(errno)); 696 return ret; 697 } else { 698 env->fpscr = fpscr; 699 } 700 701 for (i = 0; i < 32; i++) { 702 uint64_t vsr[2]; 703 uint64_t *fpr = cpu_fpr_ptr(env, i); 704 uint64_t *vsrl = cpu_vsrl_ptr(env, i); 705 706 reg.addr = (uintptr_t) &vsr; 707 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); 708 709 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 710 if (ret < 0) { 711 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i, 712 strerror(errno)); 713 return ret; 714 } else { 715 #if HOST_BIG_ENDIAN 716 *fpr = vsr[0]; 717 if (vsx) { 718 *vsrl = vsr[1]; 719 } 720 #else 721 *fpr = vsr[1]; 722 if (vsx) { 723 *vsrl = vsr[0]; 724 } 725 #endif 726 } 727 } 728 } 729 730 if (env->insns_flags & PPC_ALTIVEC) { 731 reg.id = KVM_REG_PPC_VSCR; 732 reg.addr = (uintptr_t)&env->vscr; 733 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 734 if (ret < 0) { 735 trace_kvm_failed_vscr_get(strerror(errno)); 736 return ret; 737 } 738 739 for (i = 0; i < 32; i++) { 740 reg.id = KVM_REG_PPC_VR(i); 741 reg.addr = (uintptr_t)cpu_avr_ptr(env, i); 742 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 743 if (ret < 0) { 744 trace_kvm_failed_vr_get(i, strerror(errno)); 745 return ret; 746 } 747 } 748 } 749 750 return 0; 751 } 752 753 #if defined(TARGET_PPC64) 754 static int kvm_get_vpa(CPUState *cs) 755 { 756 PowerPCCPU *cpu = POWERPC_CPU(cs); 757 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 758 struct kvm_one_reg reg; 759 int ret; 760 761 reg.id = KVM_REG_PPC_VPA_ADDR; 762 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 763 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 764 if (ret < 0) { 765 trace_kvm_failed_vpa_addr_get(strerror(errno)); 766 return ret; 767 } 768 769 assert((uintptr_t)&spapr_cpu->slb_shadow_size 770 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); 771 reg.id = KVM_REG_PPC_VPA_SLB; 772 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; 773 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 774 if (ret < 0) { 775 trace_kvm_failed_slb_get(strerror(errno)); 776 return ret; 777 } 778 779 assert((uintptr_t)&spapr_cpu->dtl_size 780 == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); 781 reg.id = KVM_REG_PPC_VPA_DTL; 782 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; 783 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 784 if (ret < 0) { 785 trace_kvm_failed_dtl_get(strerror(errno)); 786 return ret; 787 } 788 789 return 0; 790 } 791 792 static int kvm_put_vpa(CPUState *cs) 793 { 794 PowerPCCPU *cpu = POWERPC_CPU(cs); 795 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 796 struct kvm_one_reg reg; 797 int ret; 798 799 /* 800 * SLB shadow or DTL can't be registered unless a master VPA is 801 * registered. That means when restoring state, if a VPA *is* 802 * registered, we need to set that up first. If not, we need to 803 * deregister the others before deregistering the master VPA 804 */ 805 assert(spapr_cpu->vpa_addr 806 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr)); 807 808 if (spapr_cpu->vpa_addr) { 809 reg.id = KVM_REG_PPC_VPA_ADDR; 810 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 811 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 812 if (ret < 0) { 813 trace_kvm_failed_vpa_addr_set(strerror(errno)); 814 return ret; 815 } 816 } 817 818 assert((uintptr_t)&spapr_cpu->slb_shadow_size 819 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); 820 reg.id = KVM_REG_PPC_VPA_SLB; 821 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; 822 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 823 if (ret < 0) { 824 trace_kvm_failed_slb_set(strerror(errno)); 825 return ret; 826 } 827 828 assert((uintptr_t)&spapr_cpu->dtl_size 829 == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); 830 reg.id = KVM_REG_PPC_VPA_DTL; 831 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; 832 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 833 if (ret < 0) { 834 trace_kvm_failed_dtl_set(strerror(errno)); 835 return ret; 836 } 837 838 if (!spapr_cpu->vpa_addr) { 839 reg.id = KVM_REG_PPC_VPA_ADDR; 840 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 841 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 842 if (ret < 0) { 843 trace_kvm_failed_null_vpa_addr_set(strerror(errno)); 844 return ret; 845 } 846 } 847 848 return 0; 849 } 850 #endif /* TARGET_PPC64 */ 851 852 int kvmppc_put_books_sregs(PowerPCCPU *cpu) 853 { 854 CPUPPCState *env = &cpu->env; 855 struct kvm_sregs sregs = { }; 856 int i; 857 858 sregs.pvr = env->spr[SPR_PVR]; 859 860 if (cpu->vhyp) { 861 PPCVirtualHypervisorClass *vhc = 862 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp); 863 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp); 864 } else { 865 sregs.u.s.sdr1 = env->spr[SPR_SDR1]; 866 } 867 868 /* Sync SLB */ 869 #ifdef TARGET_PPC64 870 for (i = 0; i < ARRAY_SIZE(env->slb); i++) { 871 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; 872 if (env->slb[i].esid & SLB_ESID_V) { 873 sregs.u.s.ppc64.slb[i].slbe |= i; 874 } 875 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; 876 } 877 #endif 878 879 /* Sync SRs */ 880 for (i = 0; i < 16; i++) { 881 sregs.u.s.ppc32.sr[i] = env->sr[i]; 882 } 883 884 /* Sync BATs */ 885 for (i = 0; i < 8; i++) { 886 /* Beware. We have to swap upper and lower bits here */ 887 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) 888 | env->DBAT[1][i]; 889 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) 890 | env->IBAT[1][i]; 891 } 892 893 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 894 } 895 896 int kvm_arch_put_registers(CPUState *cs, int level) 897 { 898 PowerPCCPU *cpu = POWERPC_CPU(cs); 899 CPUPPCState *env = &cpu->env; 900 struct kvm_regs regs; 901 int ret; 902 int i; 903 904 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 905 if (ret < 0) { 906 return ret; 907 } 908 909 regs.ctr = env->ctr; 910 regs.lr = env->lr; 911 regs.xer = cpu_read_xer(env); 912 regs.msr = env->msr; 913 regs.pc = env->nip; 914 915 regs.srr0 = env->spr[SPR_SRR0]; 916 regs.srr1 = env->spr[SPR_SRR1]; 917 918 regs.sprg0 = env->spr[SPR_SPRG0]; 919 regs.sprg1 = env->spr[SPR_SPRG1]; 920 regs.sprg2 = env->spr[SPR_SPRG2]; 921 regs.sprg3 = env->spr[SPR_SPRG3]; 922 regs.sprg4 = env->spr[SPR_SPRG4]; 923 regs.sprg5 = env->spr[SPR_SPRG5]; 924 regs.sprg6 = env->spr[SPR_SPRG6]; 925 regs.sprg7 = env->spr[SPR_SPRG7]; 926 927 regs.pid = env->spr[SPR_BOOKE_PID]; 928 929 for (i = 0; i < 32; i++) { 930 regs.gpr[i] = env->gpr[i]; 931 } 932 933 regs.cr = ppc_get_cr(env); 934 935 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 936 if (ret < 0) { 937 return ret; 938 } 939 940 kvm_put_fp(cs); 941 942 if (env->tlb_dirty) { 943 kvm_sw_tlb_put(cpu); 944 env->tlb_dirty = false; 945 } 946 947 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { 948 ret = kvmppc_put_books_sregs(cpu); 949 if (ret < 0) { 950 return ret; 951 } 952 } 953 954 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { 955 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); 956 } 957 958 if (cap_one_reg) { 959 /* 960 * We deliberately ignore errors here, for kernels which have 961 * the ONE_REG calls, but don't support the specific 962 * registers, there's a reasonable chance things will still 963 * work, at least until we try to migrate. 964 */ 965 for (i = 0; i < 1024; i++) { 966 uint64_t id = env->spr_cb[i].one_reg_id; 967 968 if (id != 0) { 969 kvm_put_one_spr(cs, id, i); 970 } 971 } 972 973 #ifdef TARGET_PPC64 974 if (FIELD_EX64(env->msr, MSR, TS)) { 975 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { 976 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); 977 } 978 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { 979 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); 980 } 981 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); 982 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); 983 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); 984 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); 985 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); 986 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); 987 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); 988 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); 989 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); 990 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); 991 } 992 993 if (cap_papr) { 994 if (kvm_put_vpa(cs) < 0) { 995 trace_kvm_failed_put_vpa(); 996 } 997 } 998 999 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); 1000 1001 if (level > KVM_PUT_RUNTIME_STATE) { 1002 kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES); 1003 } 1004 #endif /* TARGET_PPC64 */ 1005 } 1006 1007 return ret; 1008 } 1009 1010 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor) 1011 { 1012 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR]; 1013 } 1014 1015 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu) 1016 { 1017 CPUPPCState *env = &cpu->env; 1018 struct kvm_sregs sregs; 1019 int ret; 1020 1021 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 1022 if (ret < 0) { 1023 return ret; 1024 } 1025 1026 if (sregs.u.e.features & KVM_SREGS_E_BASE) { 1027 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; 1028 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; 1029 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; 1030 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; 1031 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; 1032 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; 1033 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; 1034 env->spr[SPR_DECR] = sregs.u.e.dec; 1035 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; 1036 env->spr[SPR_TBU] = sregs.u.e.tb >> 32; 1037 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; 1038 } 1039 1040 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { 1041 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; 1042 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; 1043 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; 1044 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; 1045 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; 1046 } 1047 1048 if (sregs.u.e.features & KVM_SREGS_E_64) { 1049 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; 1050 } 1051 1052 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { 1053 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; 1054 } 1055 1056 if (sregs.u.e.features & KVM_SREGS_E_IVOR) { 1057 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; 1058 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0); 1059 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; 1060 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1); 1061 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; 1062 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2); 1063 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; 1064 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3); 1065 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; 1066 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4); 1067 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; 1068 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5); 1069 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; 1070 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6); 1071 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; 1072 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7); 1073 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; 1074 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8); 1075 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; 1076 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9); 1077 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; 1078 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10); 1079 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; 1080 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11); 1081 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; 1082 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12); 1083 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; 1084 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13); 1085 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; 1086 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14); 1087 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; 1088 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15); 1089 1090 if (sregs.u.e.features & KVM_SREGS_E_SPE) { 1091 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; 1092 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32); 1093 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; 1094 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33); 1095 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; 1096 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34); 1097 } 1098 1099 if (sregs.u.e.features & KVM_SREGS_E_PM) { 1100 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; 1101 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35); 1102 } 1103 1104 if (sregs.u.e.features & KVM_SREGS_E_PC) { 1105 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; 1106 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36); 1107 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; 1108 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37); 1109 } 1110 } 1111 1112 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { 1113 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; 1114 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; 1115 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; 1116 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; 1117 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; 1118 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; 1119 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; 1120 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; 1121 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; 1122 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; 1123 } 1124 1125 if (sregs.u.e.features & KVM_SREGS_EXP) { 1126 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; 1127 } 1128 1129 if (sregs.u.e.features & KVM_SREGS_E_PD) { 1130 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; 1131 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; 1132 } 1133 1134 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { 1135 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; 1136 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; 1137 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; 1138 1139 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { 1140 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; 1141 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; 1142 } 1143 } 1144 1145 return 0; 1146 } 1147 1148 static int kvmppc_get_books_sregs(PowerPCCPU *cpu) 1149 { 1150 CPUPPCState *env = &cpu->env; 1151 struct kvm_sregs sregs; 1152 int ret; 1153 int i; 1154 1155 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 1156 if (ret < 0) { 1157 return ret; 1158 } 1159 1160 if (!cpu->vhyp) { 1161 ppc_store_sdr1(env, sregs.u.s.sdr1); 1162 } 1163 1164 /* Sync SLB */ 1165 #ifdef TARGET_PPC64 1166 /* 1167 * The packed SLB array we get from KVM_GET_SREGS only contains 1168 * information about valid entries. So we flush our internal copy 1169 * to get rid of stale ones, then put all valid SLB entries back 1170 * in. 1171 */ 1172 memset(env->slb, 0, sizeof(env->slb)); 1173 for (i = 0; i < ARRAY_SIZE(env->slb); i++) { 1174 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; 1175 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; 1176 /* 1177 * Only restore valid entries 1178 */ 1179 if (rb & SLB_ESID_V) { 1180 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs); 1181 } 1182 } 1183 #endif 1184 1185 /* Sync SRs */ 1186 for (i = 0; i < 16; i++) { 1187 env->sr[i] = sregs.u.s.ppc32.sr[i]; 1188 } 1189 1190 /* Sync BATs */ 1191 for (i = 0; i < 8; i++) { 1192 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; 1193 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; 1194 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; 1195 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; 1196 } 1197 1198 return 0; 1199 } 1200 1201 int kvm_arch_get_registers(CPUState *cs) 1202 { 1203 PowerPCCPU *cpu = POWERPC_CPU(cs); 1204 CPUPPCState *env = &cpu->env; 1205 struct kvm_regs regs; 1206 int i, ret; 1207 1208 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 1209 if (ret < 0) { 1210 return ret; 1211 } 1212 1213 ppc_set_cr(env, regs.cr); 1214 env->ctr = regs.ctr; 1215 env->lr = regs.lr; 1216 cpu_write_xer(env, regs.xer); 1217 env->msr = regs.msr; 1218 env->nip = regs.pc; 1219 1220 env->spr[SPR_SRR0] = regs.srr0; 1221 env->spr[SPR_SRR1] = regs.srr1; 1222 1223 env->spr[SPR_SPRG0] = regs.sprg0; 1224 env->spr[SPR_SPRG1] = regs.sprg1; 1225 env->spr[SPR_SPRG2] = regs.sprg2; 1226 env->spr[SPR_SPRG3] = regs.sprg3; 1227 env->spr[SPR_SPRG4] = regs.sprg4; 1228 env->spr[SPR_SPRG5] = regs.sprg5; 1229 env->spr[SPR_SPRG6] = regs.sprg6; 1230 env->spr[SPR_SPRG7] = regs.sprg7; 1231 1232 env->spr[SPR_BOOKE_PID] = regs.pid; 1233 1234 for (i = 0; i < 32; i++) { 1235 env->gpr[i] = regs.gpr[i]; 1236 } 1237 1238 kvm_get_fp(cs); 1239 1240 if (cap_booke_sregs) { 1241 ret = kvmppc_get_booke_sregs(cpu); 1242 if (ret < 0) { 1243 return ret; 1244 } 1245 } 1246 1247 if (cap_segstate) { 1248 ret = kvmppc_get_books_sregs(cpu); 1249 if (ret < 0) { 1250 return ret; 1251 } 1252 } 1253 1254 if (cap_hior) { 1255 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); 1256 } 1257 1258 if (cap_one_reg) { 1259 /* 1260 * We deliberately ignore errors here, for kernels which have 1261 * the ONE_REG calls, but don't support the specific 1262 * registers, there's a reasonable chance things will still 1263 * work, at least until we try to migrate. 1264 */ 1265 for (i = 0; i < 1024; i++) { 1266 uint64_t id = env->spr_cb[i].one_reg_id; 1267 1268 if (id != 0) { 1269 kvm_get_one_spr(cs, id, i); 1270 } 1271 } 1272 1273 #ifdef TARGET_PPC64 1274 if (FIELD_EX64(env->msr, MSR, TS)) { 1275 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { 1276 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); 1277 } 1278 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { 1279 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); 1280 } 1281 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); 1282 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); 1283 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); 1284 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); 1285 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); 1286 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); 1287 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); 1288 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); 1289 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); 1290 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); 1291 } 1292 1293 if (cap_papr) { 1294 if (kvm_get_vpa(cs) < 0) { 1295 trace_kvm_failed_get_vpa(); 1296 } 1297 } 1298 1299 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); 1300 kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES); 1301 #endif 1302 } 1303 1304 return 0; 1305 } 1306 1307 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) 1308 { 1309 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; 1310 1311 if (irq != PPC_INTERRUPT_EXT) { 1312 return 0; 1313 } 1314 1315 if (!cap_interrupt_unset) { 1316 return 0; 1317 } 1318 1319 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); 1320 1321 return 0; 1322 } 1323 1324 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 1325 { 1326 return; 1327 } 1328 1329 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1330 { 1331 return MEMTXATTRS_UNSPECIFIED; 1332 } 1333 1334 int kvm_arch_process_async_events(CPUState *cs) 1335 { 1336 return cs->halted; 1337 } 1338 1339 static int kvmppc_handle_halt(PowerPCCPU *cpu) 1340 { 1341 CPUState *cs = CPU(cpu); 1342 CPUPPCState *env = &cpu->env; 1343 1344 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && 1345 FIELD_EX64(env->msr, MSR, EE)) { 1346 cs->halted = 1; 1347 cs->exception_index = EXCP_HLT; 1348 } 1349 1350 return 0; 1351 } 1352 1353 /* map dcr access to existing qemu dcr emulation */ 1354 static int kvmppc_handle_dcr_read(CPUPPCState *env, 1355 uint32_t dcrn, uint32_t *data) 1356 { 1357 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) { 1358 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); 1359 } 1360 1361 return 0; 1362 } 1363 1364 static int kvmppc_handle_dcr_write(CPUPPCState *env, 1365 uint32_t dcrn, uint32_t data) 1366 { 1367 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) { 1368 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); 1369 } 1370 1371 return 0; 1372 } 1373 1374 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 1375 { 1376 /* Mixed endian case is not handled */ 1377 uint32_t sc = debug_inst_opcode; 1378 1379 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1380 sizeof(sc), 0) || 1381 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) { 1382 return -EINVAL; 1383 } 1384 1385 return 0; 1386 } 1387 1388 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 1389 { 1390 uint32_t sc; 1391 1392 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) || 1393 sc != debug_inst_opcode || 1394 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1395 sizeof(sc), 1)) { 1396 return -EINVAL; 1397 } 1398 1399 return 0; 1400 } 1401 1402 static int find_hw_breakpoint(target_ulong addr, int type) 1403 { 1404 int n; 1405 1406 assert((nb_hw_breakpoint + nb_hw_watchpoint) 1407 <= ARRAY_SIZE(hw_debug_points)); 1408 1409 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { 1410 if (hw_debug_points[n].addr == addr && 1411 hw_debug_points[n].type == type) { 1412 return n; 1413 } 1414 } 1415 1416 return -1; 1417 } 1418 1419 static int find_hw_watchpoint(target_ulong addr, int *flag) 1420 { 1421 int n; 1422 1423 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS); 1424 if (n >= 0) { 1425 *flag = BP_MEM_ACCESS; 1426 return n; 1427 } 1428 1429 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE); 1430 if (n >= 0) { 1431 *flag = BP_MEM_WRITE; 1432 return n; 1433 } 1434 1435 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ); 1436 if (n >= 0) { 1437 *flag = BP_MEM_READ; 1438 return n; 1439 } 1440 1441 return -1; 1442 } 1443 1444 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 1445 { 1446 const unsigned breakpoint_index = nb_hw_breakpoint + nb_hw_watchpoint; 1447 if (breakpoint_index >= ARRAY_SIZE(hw_debug_points)) { 1448 return -ENOBUFS; 1449 } 1450 1451 hw_debug_points[breakpoint_index].addr = addr; 1452 hw_debug_points[breakpoint_index].type = type; 1453 1454 switch (type) { 1455 case GDB_BREAKPOINT_HW: 1456 if (nb_hw_breakpoint >= max_hw_breakpoint) { 1457 return -ENOBUFS; 1458 } 1459 1460 if (find_hw_breakpoint(addr, type) >= 0) { 1461 return -EEXIST; 1462 } 1463 1464 nb_hw_breakpoint++; 1465 break; 1466 1467 case GDB_WATCHPOINT_WRITE: 1468 case GDB_WATCHPOINT_READ: 1469 case GDB_WATCHPOINT_ACCESS: 1470 if (nb_hw_watchpoint >= max_hw_watchpoint) { 1471 return -ENOBUFS; 1472 } 1473 1474 if (find_hw_breakpoint(addr, type) >= 0) { 1475 return -EEXIST; 1476 } 1477 1478 nb_hw_watchpoint++; 1479 break; 1480 1481 default: 1482 return -ENOSYS; 1483 } 1484 1485 return 0; 1486 } 1487 1488 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 1489 { 1490 int n; 1491 1492 n = find_hw_breakpoint(addr, type); 1493 if (n < 0) { 1494 return -ENOENT; 1495 } 1496 1497 switch (type) { 1498 case GDB_BREAKPOINT_HW: 1499 nb_hw_breakpoint--; 1500 break; 1501 1502 case GDB_WATCHPOINT_WRITE: 1503 case GDB_WATCHPOINT_READ: 1504 case GDB_WATCHPOINT_ACCESS: 1505 nb_hw_watchpoint--; 1506 break; 1507 1508 default: 1509 return -ENOSYS; 1510 } 1511 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint]; 1512 1513 return 0; 1514 } 1515 1516 void kvm_arch_remove_all_hw_breakpoints(void) 1517 { 1518 nb_hw_breakpoint = nb_hw_watchpoint = 0; 1519 } 1520 1521 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 1522 { 1523 int n; 1524 1525 /* Software Breakpoint updates */ 1526 if (kvm_sw_breakpoints_active(cs)) { 1527 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 1528 } 1529 1530 assert((nb_hw_breakpoint + nb_hw_watchpoint) 1531 <= ARRAY_SIZE(hw_debug_points)); 1532 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp)); 1533 1534 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { 1535 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1536 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp)); 1537 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { 1538 switch (hw_debug_points[n].type) { 1539 case GDB_BREAKPOINT_HW: 1540 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT; 1541 break; 1542 case GDB_WATCHPOINT_WRITE: 1543 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE; 1544 break; 1545 case GDB_WATCHPOINT_READ: 1546 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ; 1547 break; 1548 case GDB_WATCHPOINT_ACCESS: 1549 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE | 1550 KVMPPC_DEBUG_WATCH_READ; 1551 break; 1552 default: 1553 cpu_abort(cs, "Unsupported breakpoint type\n"); 1554 } 1555 dbg->arch.bp[n].addr = hw_debug_points[n].addr; 1556 } 1557 } 1558 } 1559 1560 static int kvm_handle_hw_breakpoint(CPUState *cs, 1561 struct kvm_debug_exit_arch *arch_info) 1562 { 1563 int handle = DEBUG_RETURN_GUEST; 1564 int n; 1565 int flag = 0; 1566 1567 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { 1568 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) { 1569 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW); 1570 if (n >= 0) { 1571 handle = DEBUG_RETURN_GDB; 1572 } 1573 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ | 1574 KVMPPC_DEBUG_WATCH_WRITE)) { 1575 n = find_hw_watchpoint(arch_info->address, &flag); 1576 if (n >= 0) { 1577 handle = DEBUG_RETURN_GDB; 1578 cs->watchpoint_hit = &hw_watchpoint; 1579 hw_watchpoint.vaddr = hw_debug_points[n].addr; 1580 hw_watchpoint.flags = flag; 1581 } 1582 } 1583 } 1584 return handle; 1585 } 1586 1587 static int kvm_handle_singlestep(void) 1588 { 1589 return DEBUG_RETURN_GDB; 1590 } 1591 1592 static int kvm_handle_sw_breakpoint(void) 1593 { 1594 return DEBUG_RETURN_GDB; 1595 } 1596 1597 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run) 1598 { 1599 CPUState *cs = CPU(cpu); 1600 CPUPPCState *env = &cpu->env; 1601 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1602 1603 if (cs->singlestep_enabled) { 1604 return kvm_handle_singlestep(); 1605 } 1606 1607 if (arch_info->status) { 1608 return kvm_handle_hw_breakpoint(cs, arch_info); 1609 } 1610 1611 if (kvm_find_sw_breakpoint(cs, arch_info->address)) { 1612 return kvm_handle_sw_breakpoint(); 1613 } 1614 1615 /* 1616 * QEMU is not able to handle debug exception, so inject 1617 * program exception to guest; 1618 * Yes program exception NOT debug exception !! 1619 * When QEMU is using debug resources then debug exception must 1620 * be always set. To achieve this we set MSR_DE and also set 1621 * MSRP_DEP so guest cannot change MSR_DE. 1622 * When emulating debug resource for guest we want guest 1623 * to control MSR_DE (enable/disable debug interrupt on need). 1624 * Supporting both configurations are NOT possible. 1625 * So the result is that we cannot share debug resources 1626 * between QEMU and Guest on BOOKE architecture. 1627 * In the current design QEMU gets the priority over guest, 1628 * this means that if QEMU is using debug resources then guest 1629 * cannot use them; 1630 * For software breakpoint QEMU uses a privileged instruction; 1631 * So there cannot be any reason that we are here for guest 1632 * set debug exception, only possibility is guest executed a 1633 * privileged / illegal instruction and that's why we are 1634 * injecting a program interrupt. 1635 */ 1636 cpu_synchronize_state(cs); 1637 /* 1638 * env->nip is PC, so increment this by 4 to use 1639 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4. 1640 */ 1641 env->nip += 4; 1642 cs->exception_index = POWERPC_EXCP_PROGRAM; 1643 env->error_code = POWERPC_EXCP_INVAL; 1644 ppc_cpu_do_interrupt(cs); 1645 1646 return DEBUG_RETURN_GUEST; 1647 } 1648 1649 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1650 { 1651 PowerPCCPU *cpu = POWERPC_CPU(cs); 1652 CPUPPCState *env = &cpu->env; 1653 int ret; 1654 1655 bql_lock(); 1656 1657 switch (run->exit_reason) { 1658 case KVM_EXIT_DCR: 1659 if (run->dcr.is_write) { 1660 trace_kvm_handle_dcr_write(); 1661 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); 1662 } else { 1663 trace_kvm_handle_dcr_read(); 1664 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); 1665 } 1666 break; 1667 case KVM_EXIT_HLT: 1668 trace_kvm_handle_halt(); 1669 ret = kvmppc_handle_halt(cpu); 1670 break; 1671 #if defined(TARGET_PPC64) 1672 case KVM_EXIT_PAPR_HCALL: 1673 trace_kvm_handle_papr_hcall(run->papr_hcall.nr); 1674 run->papr_hcall.ret = spapr_hypercall(cpu, 1675 run->papr_hcall.nr, 1676 run->papr_hcall.args); 1677 ret = 0; 1678 break; 1679 #endif 1680 case KVM_EXIT_EPR: 1681 trace_kvm_handle_epr(); 1682 run->epr.epr = ldl_phys(cs->as, env->mpic_iack); 1683 ret = 0; 1684 break; 1685 case KVM_EXIT_WATCHDOG: 1686 trace_kvm_handle_watchdog_expiry(); 1687 watchdog_perform_action(); 1688 ret = 0; 1689 break; 1690 1691 case KVM_EXIT_DEBUG: 1692 trace_kvm_handle_debug_exception(); 1693 if (kvm_handle_debug(cpu, run)) { 1694 ret = EXCP_DEBUG; 1695 break; 1696 } 1697 /* re-enter, this exception was guest-internal */ 1698 ret = 0; 1699 break; 1700 1701 #if defined(TARGET_PPC64) 1702 case KVM_EXIT_NMI: 1703 trace_kvm_handle_nmi_exception(); 1704 ret = kvm_handle_nmi(cpu, run); 1705 break; 1706 #endif 1707 1708 default: 1709 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 1710 ret = -1; 1711 break; 1712 } 1713 1714 bql_unlock(); 1715 return ret; 1716 } 1717 1718 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) 1719 { 1720 CPUState *cs = CPU(cpu); 1721 uint32_t bits = tsr_bits; 1722 struct kvm_one_reg reg = { 1723 .id = KVM_REG_PPC_OR_TSR, 1724 .addr = (uintptr_t) &bits, 1725 }; 1726 1727 if (!kvm_enabled()) { 1728 return 0; 1729 } 1730 1731 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1732 } 1733 1734 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) 1735 { 1736 1737 CPUState *cs = CPU(cpu); 1738 uint32_t bits = tsr_bits; 1739 struct kvm_one_reg reg = { 1740 .id = KVM_REG_PPC_CLEAR_TSR, 1741 .addr = (uintptr_t) &bits, 1742 }; 1743 1744 if (!kvm_enabled()) { 1745 return 0; 1746 } 1747 1748 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1749 } 1750 1751 int kvmppc_set_tcr(PowerPCCPU *cpu) 1752 { 1753 CPUState *cs = CPU(cpu); 1754 CPUPPCState *env = &cpu->env; 1755 uint32_t tcr = env->spr[SPR_BOOKE_TCR]; 1756 1757 struct kvm_one_reg reg = { 1758 .id = KVM_REG_PPC_TCR, 1759 .addr = (uintptr_t) &tcr, 1760 }; 1761 1762 if (!kvm_enabled()) { 1763 return 0; 1764 } 1765 1766 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1767 } 1768 1769 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) 1770 { 1771 CPUState *cs = CPU(cpu); 1772 int ret; 1773 1774 if (!kvm_enabled()) { 1775 return -1; 1776 } 1777 1778 if (!cap_ppc_watchdog) { 1779 printf("warning: KVM does not support watchdog"); 1780 return -1; 1781 } 1782 1783 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0); 1784 if (ret < 0) { 1785 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", 1786 __func__, strerror(-ret)); 1787 return ret; 1788 } 1789 1790 return ret; 1791 } 1792 1793 static int read_cpuinfo(const char *field, char *value, int len) 1794 { 1795 FILE *f; 1796 int ret = -1; 1797 int field_len = strlen(field); 1798 char line[512]; 1799 1800 f = fopen("/proc/cpuinfo", "r"); 1801 if (!f) { 1802 return -1; 1803 } 1804 1805 do { 1806 if (!fgets(line, sizeof(line), f)) { 1807 break; 1808 } 1809 if (!strncmp(line, field, field_len)) { 1810 pstrcpy(value, len, line); 1811 ret = 0; 1812 break; 1813 } 1814 } while (*line); 1815 1816 fclose(f); 1817 1818 return ret; 1819 } 1820 1821 static uint32_t kvmppc_get_tbfreq_procfs(void) 1822 { 1823 char line[512]; 1824 char *ns; 1825 uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND; 1826 uint32_t tbfreq_procfs; 1827 1828 if (read_cpuinfo("timebase", line, sizeof(line))) { 1829 return tbfreq_fallback; 1830 } 1831 1832 ns = strchr(line, ':'); 1833 if (!ns) { 1834 return tbfreq_fallback; 1835 } 1836 1837 tbfreq_procfs = atoi(++ns); 1838 1839 /* 0 is certainly not acceptable by the guest, return fallback value */ 1840 return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback; 1841 } 1842 1843 uint32_t kvmppc_get_tbfreq(void) 1844 { 1845 static uint32_t cached_tbfreq; 1846 1847 if (!cached_tbfreq) { 1848 cached_tbfreq = kvmppc_get_tbfreq_procfs(); 1849 } 1850 1851 return cached_tbfreq; 1852 } 1853 1854 bool kvmppc_get_host_serial(char **value) 1855 { 1856 return g_file_get_contents("/proc/device-tree/system-id", value, NULL, 1857 NULL); 1858 } 1859 1860 bool kvmppc_get_host_model(char **value) 1861 { 1862 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL); 1863 } 1864 1865 /* Try to find a device tree node for a CPU with clock-frequency property */ 1866 static int kvmppc_find_cpu_dt(char *buf, int buf_len) 1867 { 1868 struct dirent *dirp; 1869 DIR *dp; 1870 1871 dp = opendir(PROC_DEVTREE_CPU); 1872 if (!dp) { 1873 printf("Can't open directory " PROC_DEVTREE_CPU "\n"); 1874 return -1; 1875 } 1876 1877 buf[0] = '\0'; 1878 while ((dirp = readdir(dp)) != NULL) { 1879 FILE *f; 1880 1881 /* Don't accidentally read from the current and parent directories */ 1882 if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) { 1883 continue; 1884 } 1885 1886 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, 1887 dirp->d_name); 1888 f = fopen(buf, "r"); 1889 if (f) { 1890 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); 1891 fclose(f); 1892 break; 1893 } 1894 buf[0] = '\0'; 1895 } 1896 closedir(dp); 1897 if (buf[0] == '\0') { 1898 printf("Unknown host!\n"); 1899 return -1; 1900 } 1901 1902 return 0; 1903 } 1904 1905 static uint64_t kvmppc_read_int_dt(const char *filename) 1906 { 1907 union { 1908 uint32_t v32; 1909 uint64_t v64; 1910 } u; 1911 FILE *f; 1912 int len; 1913 1914 f = fopen(filename, "rb"); 1915 if (!f) { 1916 return -1; 1917 } 1918 1919 len = fread(&u, 1, sizeof(u), f); 1920 fclose(f); 1921 switch (len) { 1922 case 4: 1923 /* property is a 32-bit quantity */ 1924 return be32_to_cpu(u.v32); 1925 case 8: 1926 return be64_to_cpu(u.v64); 1927 } 1928 1929 return 0; 1930 } 1931 1932 /* 1933 * Read a CPU node property from the host device tree that's a single 1934 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong 1935 * (can't find or open the property, or doesn't understand the format) 1936 */ 1937 static uint64_t kvmppc_read_int_cpu_dt(const char *propname) 1938 { 1939 char buf[PATH_MAX], *tmp; 1940 uint64_t val; 1941 1942 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { 1943 return -1; 1944 } 1945 1946 tmp = g_strdup_printf("%s/%s", buf, propname); 1947 val = kvmppc_read_int_dt(tmp); 1948 g_free(tmp); 1949 1950 return val; 1951 } 1952 1953 uint64_t kvmppc_get_clockfreq(void) 1954 { 1955 return kvmppc_read_int_cpu_dt("clock-frequency"); 1956 } 1957 1958 static int kvmppc_get_dec_bits(void) 1959 { 1960 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits"); 1961 1962 if (nr_bits > 0) { 1963 return nr_bits; 1964 } 1965 return 0; 1966 } 1967 1968 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) 1969 { 1970 CPUState *cs = env_cpu(env); 1971 1972 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && 1973 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { 1974 return 0; 1975 } 1976 1977 return 1; 1978 } 1979 1980 int kvmppc_get_hasidle(CPUPPCState *env) 1981 { 1982 struct kvm_ppc_pvinfo pvinfo; 1983 1984 if (!kvmppc_get_pvinfo(env, &pvinfo) && 1985 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { 1986 return 1; 1987 } 1988 1989 return 0; 1990 } 1991 1992 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) 1993 { 1994 uint32_t *hc = (uint32_t *)buf; 1995 struct kvm_ppc_pvinfo pvinfo; 1996 1997 if (!kvmppc_get_pvinfo(env, &pvinfo)) { 1998 memcpy(buf, pvinfo.hcall, buf_len); 1999 return 0; 2000 } 2001 2002 /* 2003 * Fallback to always fail hypercalls regardless of endianness: 2004 * 2005 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian) 2006 * li r3, -1 2007 * b .+8 (becomes nop in wrong endian) 2008 * bswap32(li r3, -1) 2009 */ 2010 2011 hc[0] = cpu_to_be32(0x08000048); 2012 hc[1] = cpu_to_be32(0x3860ffff); 2013 hc[2] = cpu_to_be32(0x48000008); 2014 hc[3] = cpu_to_be32(bswap32(0x3860ffff)); 2015 2016 return 1; 2017 } 2018 2019 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall) 2020 { 2021 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1); 2022 } 2023 2024 void kvmppc_enable_logical_ci_hcalls(void) 2025 { 2026 /* 2027 * FIXME: it would be nice if we could detect the cases where 2028 * we're using a device which requires the in kernel 2029 * implementation of these hcalls, but the kernel lacks them and 2030 * produce a warning. 2031 */ 2032 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD); 2033 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE); 2034 } 2035 2036 void kvmppc_enable_set_mode_hcall(void) 2037 { 2038 kvmppc_enable_hcall(kvm_state, H_SET_MODE); 2039 } 2040 2041 void kvmppc_enable_clear_ref_mod_hcalls(void) 2042 { 2043 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF); 2044 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD); 2045 } 2046 2047 void kvmppc_enable_h_page_init(void) 2048 { 2049 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT); 2050 } 2051 2052 void kvmppc_enable_h_rpt_invalidate(void) 2053 { 2054 kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE); 2055 } 2056 2057 void kvmppc_set_papr(PowerPCCPU *cpu) 2058 { 2059 CPUState *cs = CPU(cpu); 2060 int ret; 2061 2062 if (!kvm_enabled()) { 2063 return; 2064 } 2065 2066 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0); 2067 if (ret) { 2068 error_report("This vCPU type or KVM version does not support PAPR"); 2069 exit(1); 2070 } 2071 2072 /* 2073 * Update the capability flag so we sync the right information 2074 * with kvm 2075 */ 2076 cap_papr = 1; 2077 } 2078 2079 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr) 2080 { 2081 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr); 2082 } 2083 2084 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) 2085 { 2086 CPUState *cs = CPU(cpu); 2087 int ret; 2088 2089 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy); 2090 if (ret && mpic_proxy) { 2091 error_report("This KVM version does not support EPR"); 2092 exit(1); 2093 } 2094 } 2095 2096 bool kvmppc_get_fwnmi(void) 2097 { 2098 return cap_fwnmi; 2099 } 2100 2101 int kvmppc_set_fwnmi(PowerPCCPU *cpu) 2102 { 2103 CPUState *cs = CPU(cpu); 2104 2105 return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0); 2106 } 2107 2108 int kvmppc_smt_threads(void) 2109 { 2110 return cap_ppc_smt ? cap_ppc_smt : 1; 2111 } 2112 2113 int kvmppc_set_smt_threads(int smt) 2114 { 2115 int ret; 2116 2117 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0); 2118 if (!ret) { 2119 cap_ppc_smt = smt; 2120 } 2121 return ret; 2122 } 2123 2124 void kvmppc_error_append_smt_possible_hint(Error *const *errp) 2125 { 2126 int i; 2127 GString *g; 2128 char *s; 2129 2130 assert(kvm_enabled()); 2131 if (cap_ppc_smt_possible) { 2132 g = g_string_new("Available VSMT modes:"); 2133 for (i = 63; i >= 0; i--) { 2134 if ((1UL << i) & cap_ppc_smt_possible) { 2135 g_string_append_printf(g, " %lu", (1UL << i)); 2136 } 2137 } 2138 s = g_string_free(g, false); 2139 error_append_hint(errp, "%s.\n", s); 2140 g_free(s); 2141 } else { 2142 error_append_hint(errp, 2143 "This KVM seems to be too old to support VSMT.\n"); 2144 } 2145 } 2146 2147 2148 #ifdef TARGET_PPC64 2149 uint64_t kvmppc_vrma_limit(unsigned int hash_shift) 2150 { 2151 struct kvm_ppc_smmu_info info; 2152 long rampagesize, best_page_shift; 2153 int i; 2154 2155 /* 2156 * Find the largest hardware supported page size that's less than 2157 * or equal to the (logical) backing page size of guest RAM 2158 */ 2159 kvm_get_smmu_info(&info, &error_fatal); 2160 rampagesize = qemu_minrampagesize(); 2161 best_page_shift = 0; 2162 2163 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { 2164 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; 2165 2166 if (!sps->page_shift) { 2167 continue; 2168 } 2169 2170 if ((sps->page_shift > best_page_shift) 2171 && ((1UL << sps->page_shift) <= rampagesize)) { 2172 best_page_shift = sps->page_shift; 2173 } 2174 } 2175 2176 return 1ULL << (best_page_shift + hash_shift - 7); 2177 } 2178 #endif 2179 2180 bool kvmppc_spapr_use_multitce(void) 2181 { 2182 return cap_spapr_multitce; 2183 } 2184 2185 int kvmppc_spapr_enable_inkernel_multitce(void) 2186 { 2187 int ret; 2188 2189 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, 2190 H_PUT_TCE_INDIRECT, 1); 2191 if (!ret) { 2192 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, 2193 H_STUFF_TCE, 1); 2194 } 2195 2196 return ret; 2197 } 2198 2199 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift, 2200 uint64_t bus_offset, uint32_t nb_table, 2201 int *pfd, bool need_vfio) 2202 { 2203 long len; 2204 int fd; 2205 void *table; 2206 2207 /* 2208 * Must set fd to -1 so we don't try to munmap when called for 2209 * destroying the table, which the upper layers -will- do 2210 */ 2211 *pfd = -1; 2212 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) { 2213 return NULL; 2214 } 2215 2216 if (cap_spapr_tce_64) { 2217 struct kvm_create_spapr_tce_64 args = { 2218 .liobn = liobn, 2219 .page_shift = page_shift, 2220 .offset = bus_offset >> page_shift, 2221 .size = nb_table, 2222 .flags = 0 2223 }; 2224 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args); 2225 if (fd < 0) { 2226 fprintf(stderr, 2227 "KVM: Failed to create TCE64 table for liobn 0x%x\n", 2228 liobn); 2229 return NULL; 2230 } 2231 } else if (cap_spapr_tce) { 2232 uint64_t window_size = (uint64_t) nb_table << page_shift; 2233 struct kvm_create_spapr_tce args = { 2234 .liobn = liobn, 2235 .window_size = window_size, 2236 }; 2237 if ((window_size != args.window_size) || bus_offset) { 2238 return NULL; 2239 } 2240 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); 2241 if (fd < 0) { 2242 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", 2243 liobn); 2244 return NULL; 2245 } 2246 } else { 2247 return NULL; 2248 } 2249 2250 len = nb_table * sizeof(uint64_t); 2251 /* FIXME: round this up to page size */ 2252 2253 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 2254 if (table == MAP_FAILED) { 2255 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", 2256 liobn); 2257 close(fd); 2258 return NULL; 2259 } 2260 2261 *pfd = fd; 2262 return table; 2263 } 2264 2265 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table) 2266 { 2267 long len; 2268 2269 if (fd < 0) { 2270 return -1; 2271 } 2272 2273 len = nb_table * sizeof(uint64_t); 2274 if ((munmap(table, len) < 0) || 2275 (close(fd) < 0)) { 2276 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", 2277 strerror(errno)); 2278 /* Leak the table */ 2279 } 2280 2281 return 0; 2282 } 2283 2284 int kvmppc_reset_htab(int shift_hint) 2285 { 2286 uint32_t shift = shift_hint; 2287 2288 if (!kvm_enabled()) { 2289 /* Full emulation, tell caller to allocate htab itself */ 2290 return 0; 2291 } 2292 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { 2293 int ret; 2294 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); 2295 if (ret == -ENOTTY) { 2296 /* 2297 * At least some versions of PR KVM advertise the 2298 * capability, but don't implement the ioctl(). Oops. 2299 * Return 0 so that we allocate the htab in qemu, as is 2300 * correct for PR. 2301 */ 2302 return 0; 2303 } else if (ret < 0) { 2304 return ret; 2305 } 2306 return shift; 2307 } 2308 2309 /* 2310 * We have a kernel that predates the htab reset calls. For PR 2311 * KVM, we need to allocate the htab ourselves, for an HV KVM of 2312 * this era, it has allocated a 16MB fixed size hash table 2313 * already. 2314 */ 2315 if (kvmppc_is_pr(kvm_state)) { 2316 /* PR - tell caller to allocate htab */ 2317 return 0; 2318 } else { 2319 /* HV - assume 16MB kernel allocated htab */ 2320 return 24; 2321 } 2322 } 2323 2324 static inline uint32_t mfpvr(void) 2325 { 2326 uint32_t pvr; 2327 2328 asm ("mfpvr %0" 2329 : "=r"(pvr)); 2330 return pvr; 2331 } 2332 2333 static void alter_insns(uint64_t *word, uint64_t flags, bool on) 2334 { 2335 if (on) { 2336 *word |= flags; 2337 } else { 2338 *word &= ~flags; 2339 } 2340 } 2341 2342 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) 2343 { 2344 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); 2345 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); 2346 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); 2347 2348 /* Now fix up the class with information we can query from the host */ 2349 pcc->pvr = mfpvr(); 2350 2351 alter_insns(&pcc->insns_flags, PPC_ALTIVEC, 2352 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC); 2353 alter_insns(&pcc->insns_flags2, PPC2_VSX, 2354 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX); 2355 alter_insns(&pcc->insns_flags2, PPC2_DFP, 2356 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP); 2357 2358 if (dcache_size != -1) { 2359 pcc->l1_dcache_size = dcache_size; 2360 } 2361 2362 if (icache_size != -1) { 2363 pcc->l1_icache_size = icache_size; 2364 } 2365 2366 #if defined(TARGET_PPC64) 2367 pcc->radix_page_info = kvmppc_get_radix_page_info(); 2368 2369 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) { 2370 /* 2371 * POWER9 DD1 has some bugs which make it not really ISA 3.00 2372 * compliant. More importantly, advertising ISA 3.00 2373 * architected mode may prevent guests from activating 2374 * necessary DD1 workarounds. 2375 */ 2376 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07 2377 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05); 2378 } 2379 #endif /* defined(TARGET_PPC64) */ 2380 } 2381 2382 bool kvmppc_has_cap_epr(void) 2383 { 2384 return cap_epr; 2385 } 2386 2387 bool kvmppc_has_cap_fixup_hcalls(void) 2388 { 2389 return cap_fixup_hcalls; 2390 } 2391 2392 bool kvmppc_has_cap_htm(void) 2393 { 2394 return cap_htm; 2395 } 2396 2397 bool kvmppc_has_cap_mmu_radix(void) 2398 { 2399 return cap_mmu_radix; 2400 } 2401 2402 bool kvmppc_has_cap_mmu_hash_v3(void) 2403 { 2404 return cap_mmu_hash_v3; 2405 } 2406 2407 static bool kvmppc_power8_host(void) 2408 { 2409 bool ret = false; 2410 #ifdef TARGET_PPC64 2411 { 2412 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr(); 2413 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) || 2414 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) || 2415 (base_pvr == CPU_POWERPC_POWER8_BASE); 2416 } 2417 #endif /* TARGET_PPC64 */ 2418 return ret; 2419 } 2420 2421 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c) 2422 { 2423 bool l1d_thread_priv_req = !kvmppc_power8_host(); 2424 2425 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) { 2426 return 2; 2427 } else if ((!l1d_thread_priv_req || 2428 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) && 2429 (c.character & c.character_mask 2430 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) { 2431 return 1; 2432 } 2433 2434 return 0; 2435 } 2436 2437 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c) 2438 { 2439 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) { 2440 return 2; 2441 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) { 2442 return 1; 2443 } 2444 2445 return 0; 2446 } 2447 2448 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c) 2449 { 2450 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) && 2451 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) && 2452 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) { 2453 return SPAPR_CAP_FIXED_NA; 2454 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) { 2455 return SPAPR_CAP_WORKAROUND; 2456 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) { 2457 return SPAPR_CAP_FIXED_CCD; 2458 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) { 2459 return SPAPR_CAP_FIXED_IBS; 2460 } 2461 2462 return 0; 2463 } 2464 2465 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c) 2466 { 2467 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) { 2468 return 1; 2469 } 2470 return 0; 2471 } 2472 2473 bool kvmppc_has_cap_xive(void) 2474 { 2475 return cap_xive; 2476 } 2477 2478 static void kvmppc_get_cpu_characteristics(KVMState *s) 2479 { 2480 struct kvm_ppc_cpu_char c; 2481 int ret; 2482 2483 /* Assume broken */ 2484 cap_ppc_safe_cache = 0; 2485 cap_ppc_safe_bounds_check = 0; 2486 cap_ppc_safe_indirect_branch = 0; 2487 2488 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR); 2489 if (!ret) { 2490 return; 2491 } 2492 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c); 2493 if (ret < 0) { 2494 return; 2495 } 2496 2497 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c); 2498 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c); 2499 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c); 2500 cap_ppc_count_cache_flush_assist = 2501 parse_cap_ppc_count_cache_flush_assist(c); 2502 } 2503 2504 int kvmppc_get_cap_safe_cache(void) 2505 { 2506 return cap_ppc_safe_cache; 2507 } 2508 2509 int kvmppc_get_cap_safe_bounds_check(void) 2510 { 2511 return cap_ppc_safe_bounds_check; 2512 } 2513 2514 int kvmppc_get_cap_safe_indirect_branch(void) 2515 { 2516 return cap_ppc_safe_indirect_branch; 2517 } 2518 2519 int kvmppc_get_cap_count_cache_flush_assist(void) 2520 { 2521 return cap_ppc_count_cache_flush_assist; 2522 } 2523 2524 bool kvmppc_has_cap_nested_kvm_hv(void) 2525 { 2526 return !!cap_ppc_nested_kvm_hv; 2527 } 2528 2529 int kvmppc_set_cap_nested_kvm_hv(int enable) 2530 { 2531 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable); 2532 } 2533 2534 bool kvmppc_has_cap_spapr_vfio(void) 2535 { 2536 return cap_spapr_vfio; 2537 } 2538 2539 int kvmppc_get_cap_large_decr(void) 2540 { 2541 return cap_large_decr; 2542 } 2543 2544 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable) 2545 { 2546 CPUState *cs = CPU(cpu); 2547 uint64_t lpcr = 0; 2548 2549 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2550 /* Do we need to modify the LPCR? */ 2551 if (!!(lpcr & LPCR_LD) != !!enable) { 2552 if (enable) { 2553 lpcr |= LPCR_LD; 2554 } else { 2555 lpcr &= ~LPCR_LD; 2556 } 2557 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2558 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2559 2560 if (!!(lpcr & LPCR_LD) != !!enable) { 2561 return -1; 2562 } 2563 } 2564 2565 return 0; 2566 } 2567 2568 int kvmppc_has_cap_rpt_invalidate(void) 2569 { 2570 return cap_rpt_invalidate; 2571 } 2572 2573 bool kvmppc_supports_ail_3(void) 2574 { 2575 return cap_ail_mode_3; 2576 } 2577 2578 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void) 2579 { 2580 uint32_t host_pvr = mfpvr(); 2581 PowerPCCPUClass *pvr_pcc; 2582 2583 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); 2584 if (pvr_pcc == NULL) { 2585 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); 2586 } 2587 2588 return pvr_pcc; 2589 } 2590 2591 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque) 2592 { 2593 MachineClass *mc = MACHINE_CLASS(oc); 2594 2595 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU; 2596 } 2597 2598 static int kvm_ppc_register_host_cpu_type(void) 2599 { 2600 TypeInfo type_info = { 2601 .name = TYPE_HOST_POWERPC_CPU, 2602 .class_init = kvmppc_host_cpu_class_init, 2603 }; 2604 PowerPCCPUClass *pvr_pcc; 2605 ObjectClass *oc; 2606 DeviceClass *dc; 2607 int i; 2608 2609 pvr_pcc = kvm_ppc_get_host_cpu_class(); 2610 if (pvr_pcc == NULL) { 2611 return -1; 2612 } 2613 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); 2614 type_register(&type_info); 2615 /* override TCG default cpu type with 'host' cpu model */ 2616 object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE, 2617 false, NULL); 2618 2619 oc = object_class_by_name(type_info.name); 2620 g_assert(oc); 2621 2622 /* 2623 * Update generic CPU family class alias (e.g. on a POWER8NVL host, 2624 * we want "POWER8" to be a "family" alias that points to the current 2625 * host CPU type, too) 2626 */ 2627 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc)); 2628 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) { 2629 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) { 2630 char *suffix; 2631 2632 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc)); 2633 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX); 2634 if (suffix) { 2635 *suffix = 0; 2636 } 2637 break; 2638 } 2639 } 2640 2641 return 0; 2642 } 2643 2644 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) 2645 { 2646 struct kvm_rtas_token_args args = { 2647 .token = token, 2648 }; 2649 2650 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { 2651 return -ENOENT; 2652 } 2653 2654 strncpy(args.name, function, sizeof(args.name) - 1); 2655 2656 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); 2657 } 2658 2659 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp) 2660 { 2661 struct kvm_get_htab_fd s = { 2662 .flags = write ? KVM_GET_HTAB_WRITE : 0, 2663 .start_index = index, 2664 }; 2665 int ret; 2666 2667 if (!cap_htab_fd) { 2668 error_setg(errp, "KVM version doesn't support %s the HPT", 2669 write ? "writing" : "reading"); 2670 return -ENOTSUP; 2671 } 2672 2673 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); 2674 if (ret < 0) { 2675 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s", 2676 write ? "writing" : "reading", write ? "to" : "from", 2677 strerror(errno)); 2678 return -errno; 2679 } 2680 2681 return ret; 2682 } 2683 2684 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) 2685 { 2686 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2687 g_autofree uint8_t *buf = g_malloc(bufsize); 2688 ssize_t rc; 2689 2690 do { 2691 rc = read(fd, buf, bufsize); 2692 if (rc < 0) { 2693 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", 2694 strerror(errno)); 2695 return rc; 2696 } else if (rc) { 2697 uint8_t *buffer = buf; 2698 ssize_t n = rc; 2699 while (n) { 2700 struct kvm_get_htab_header *head = 2701 (struct kvm_get_htab_header *) buffer; 2702 size_t chunksize = sizeof(*head) + 2703 HASH_PTE_SIZE_64 * head->n_valid; 2704 2705 qemu_put_be32(f, head->index); 2706 qemu_put_be16(f, head->n_valid); 2707 qemu_put_be16(f, head->n_invalid); 2708 qemu_put_buffer(f, (void *)(head + 1), 2709 HASH_PTE_SIZE_64 * head->n_valid); 2710 2711 buffer += chunksize; 2712 n -= chunksize; 2713 } 2714 } 2715 } while ((rc != 0) 2716 && ((max_ns < 0) || 2717 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); 2718 2719 return (rc == 0) ? 1 : 0; 2720 } 2721 2722 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, 2723 uint16_t n_valid, uint16_t n_invalid, Error **errp) 2724 { 2725 struct kvm_get_htab_header *buf; 2726 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64; 2727 ssize_t rc; 2728 2729 buf = alloca(chunksize); 2730 buf->index = index; 2731 buf->n_valid = n_valid; 2732 buf->n_invalid = n_invalid; 2733 2734 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid); 2735 2736 rc = write(fd, buf, chunksize); 2737 if (rc < 0) { 2738 error_setg_errno(errp, errno, "Error writing the KVM hash table"); 2739 return -errno; 2740 } 2741 if (rc != chunksize) { 2742 /* We should never get a short write on a single chunk */ 2743 error_setg(errp, "Short write while restoring the KVM hash table"); 2744 return -ENOSPC; 2745 } 2746 return 0; 2747 } 2748 2749 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 2750 { 2751 return true; 2752 } 2753 2754 void kvm_arch_init_irq_routing(KVMState *s) 2755 { 2756 } 2757 2758 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n) 2759 { 2760 int fd, rc; 2761 int i; 2762 2763 fd = kvmppc_get_htab_fd(false, ptex, &error_abort); 2764 2765 i = 0; 2766 while (i < n) { 2767 struct kvm_get_htab_header *hdr; 2768 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP; 2769 char buf[sizeof(*hdr) + HPTES_PER_GROUP * HASH_PTE_SIZE_64]; 2770 2771 rc = read(fd, buf, sizeof(*hdr) + m * HASH_PTE_SIZE_64); 2772 if (rc < 0) { 2773 hw_error("kvmppc_read_hptes: Unable to read HPTEs"); 2774 } 2775 2776 hdr = (struct kvm_get_htab_header *)buf; 2777 while ((i < n) && ((char *)hdr < (buf + rc))) { 2778 int invalid = hdr->n_invalid, valid = hdr->n_valid; 2779 2780 if (hdr->index != (ptex + i)) { 2781 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32 2782 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i); 2783 } 2784 2785 if (n - i < valid) { 2786 valid = n - i; 2787 } 2788 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid); 2789 i += valid; 2790 2791 if ((n - i) < invalid) { 2792 invalid = n - i; 2793 } 2794 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64); 2795 i += invalid; 2796 2797 hdr = (struct kvm_get_htab_header *) 2798 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid); 2799 } 2800 } 2801 2802 close(fd); 2803 } 2804 2805 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1) 2806 { 2807 int fd, rc; 2808 struct { 2809 struct kvm_get_htab_header hdr; 2810 uint64_t pte0; 2811 uint64_t pte1; 2812 } buf; 2813 2814 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort); 2815 2816 buf.hdr.n_valid = 1; 2817 buf.hdr.n_invalid = 0; 2818 buf.hdr.index = ptex; 2819 buf.pte0 = cpu_to_be64(pte0); 2820 buf.pte1 = cpu_to_be64(pte1); 2821 2822 rc = write(fd, &buf, sizeof(buf)); 2823 if (rc != sizeof(buf)) { 2824 hw_error("kvmppc_write_hpte: Unable to update KVM HPT"); 2825 } 2826 close(fd); 2827 } 2828 2829 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2830 uint64_t address, uint32_t data, PCIDevice *dev) 2831 { 2832 return 0; 2833 } 2834 2835 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2836 int vector, PCIDevice *dev) 2837 { 2838 return 0; 2839 } 2840 2841 int kvm_arch_release_virq_post(int virq) 2842 { 2843 return 0; 2844 } 2845 2846 int kvm_arch_msi_data_to_gsi(uint32_t data) 2847 { 2848 return data & 0xffff; 2849 } 2850 2851 #if defined(TARGET_PPC64) 2852 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run) 2853 { 2854 uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK; 2855 2856 cpu_synchronize_state(CPU(cpu)); 2857 2858 spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV); 2859 2860 return 0; 2861 } 2862 #endif 2863 2864 int kvmppc_enable_hwrng(void) 2865 { 2866 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) { 2867 return -1; 2868 } 2869 2870 return kvmppc_enable_hcall(kvm_state, H_RANDOM); 2871 } 2872 2873 void kvmppc_check_papr_resize_hpt(Error **errp) 2874 { 2875 if (!kvm_enabled()) { 2876 return; /* No KVM, we're good */ 2877 } 2878 2879 if (cap_resize_hpt) { 2880 return; /* Kernel has explicit support, we're good */ 2881 } 2882 2883 /* Otherwise fallback on looking for PR KVM */ 2884 if (kvmppc_is_pr(kvm_state)) { 2885 return; 2886 } 2887 2888 error_setg(errp, 2889 "Hash page table resizing not available with this KVM version"); 2890 } 2891 2892 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift) 2893 { 2894 CPUState *cs = CPU(cpu); 2895 struct kvm_ppc_resize_hpt rhpt = { 2896 .flags = flags, 2897 .shift = shift, 2898 }; 2899 2900 if (!cap_resize_hpt) { 2901 return -ENOSYS; 2902 } 2903 2904 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt); 2905 } 2906 2907 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift) 2908 { 2909 CPUState *cs = CPU(cpu); 2910 struct kvm_ppc_resize_hpt rhpt = { 2911 .flags = flags, 2912 .shift = shift, 2913 }; 2914 2915 if (!cap_resize_hpt) { 2916 return -ENOSYS; 2917 } 2918 2919 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt); 2920 } 2921 2922 /* 2923 * This is a helper function to detect a post migration scenario 2924 * in which a guest, running as KVM-HV, freezes in cpu_post_load because 2925 * the guest kernel can't handle a PVR value other than the actual host 2926 * PVR in KVM_SET_SREGS, even if pvr_match() returns true. 2927 * 2928 * If we don't have cap_ppc_pvr_compat and we're not running in PR 2929 * (so, we're HV), return true. The workaround itself is done in 2930 * cpu_post_load. 2931 * 2932 * The order here is important: we'll only check for KVM PR as a 2933 * fallback if the guest kernel can't handle the situation itself. 2934 * We need to avoid as much as possible querying the running KVM type 2935 * in QEMU level. 2936 */ 2937 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu) 2938 { 2939 CPUState *cs = CPU(cpu); 2940 2941 if (!kvm_enabled()) { 2942 return false; 2943 } 2944 2945 if (cap_ppc_pvr_compat) { 2946 return false; 2947 } 2948 2949 return !kvmppc_is_pr(cs->kvm_state); 2950 } 2951 2952 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online) 2953 { 2954 CPUState *cs = CPU(cpu); 2955 2956 if (kvm_enabled()) { 2957 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online); 2958 } 2959 } 2960 2961 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset) 2962 { 2963 CPUState *cs = CPU(cpu); 2964 2965 if (kvm_enabled()) { 2966 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset); 2967 } 2968 } 2969 2970 bool kvm_arch_cpu_check_are_resettable(void) 2971 { 2972 return true; 2973 } 2974 2975 void kvm_arch_accel_class_init(ObjectClass *oc) 2976 { 2977 } 2978