xref: /openbmc/qemu/target/mips/tcg/mxu_translate.c (revision 710320137099b8d86cedb4f58de2455acd58cbde)
1 /*
2  *  Ingenic XBurst Media eXtension Unit (MXU) translation routines.
3  *
4  *  Copyright (c) 2004-2005 Jocelyn Mayer
5  *  Copyright (c) 2006 Marius Groeger (FPU operations)
6  *  Copyright (c) 2006 Thiemo Seufer (MIPS32R2 support)
7  *  Copyright (c) 2009 CodeSourcery (MIPS16 and microMIPS support)
8  *  Copyright (c) 2012 Jia Liu & Dongxue Zhang (MIPS ASE DSP support)
9  *
10  * SPDX-License-Identifier: LGPL-2.1-or-later
11  *
12  * Datasheet:
13  *
14  *   "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
15  *   Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
16  */
17 
18 #include "qemu/osdep.h"
19 #include "tcg/tcg-op.h"
20 #include "exec/helper-gen.h"
21 #include "translate.h"
22 
23 /*
24  *
25  *       AN OVERVIEW OF MXU EXTENSION INSTRUCTION SET
26  *       ============================================
27  *
28  *
29  * MXU (full name: MIPS eXtension/enhanced Unit) is a SIMD extension of MIPS32
30  * instructions set. It is designed to fit the needs of signal, graphical and
31  * video processing applications. MXU instruction set is used in Xburst family
32  * of microprocessors by Ingenic.
33  *
34  * MXU unit contains 17 registers called X0-X16. X0 is always zero, and X16 is
35  * the control register.
36  *
37  *
38  *     The notation used in MXU assembler mnemonics
39  *     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
40  *
41  *  Register operands:
42  *
43  *   XRa, XRb, XRc, XRd - MXU registers
44  *   Rb, Rc, Rd, Rs, Rt - general purpose MIPS registers
45  *
46  *  Non-register operands:
47  *
48  *   aptn1 - 1-bit accumulate add/subtract pattern
49  *   aptn2 - 2-bit accumulate add/subtract pattern
50  *   eptn2 - 2-bit execute add/subtract pattern
51  *   optn2 - 2-bit operand pattern
52  *   optn3 - 3-bit operand pattern
53  *   sft4  - 4-bit shift amount
54  *   strd2 - 2-bit stride amount
55  *
56  *  Prefixes:
57  *
58  *   Level of parallelism:                Operand size:
59  *    S - single operation at a time       32 - word
60  *    D - two operations in parallel       16 - half word
61  *    Q - four operations in parallel       8 - byte
62  *
63  *  Operations:
64  *
65  *   ADD   - Add or subtract
66  *   ADDC  - Add with carry-in
67  *   ACC   - Accumulate
68  *   ASUM  - Sum together then accumulate (add or subtract)
69  *   ASUMC - Sum together then accumulate (add or subtract) with carry-in
70  *   AVG   - Average between 2 operands
71  *   ABD   - Absolute difference
72  *   ALN   - Align data
73  *   AND   - Logical bitwise 'and' operation
74  *   CPS   - Copy sign
75  *   EXTR  - Extract bits
76  *   I2M   - Move from GPR register to MXU register
77  *   LDD   - Load data from memory to XRF
78  *   LDI   - Load data from memory to XRF (and increase the address base)
79  *   LUI   - Load unsigned immediate
80  *   MUL   - Multiply
81  *   MULU  - Unsigned multiply
82  *   MADD  - 64-bit operand add 32x32 product
83  *   MSUB  - 64-bit operand subtract 32x32 product
84  *   MAC   - Multiply and accumulate (add or subtract)
85  *   MAD   - Multiply and add or subtract
86  *   MAX   - Maximum between 2 operands
87  *   MIN   - Minimum between 2 operands
88  *   M2I   - Move from MXU register to GPR register
89  *   MOVZ  - Move if zero
90  *   MOVN  - Move if non-zero
91  *   NOR   - Logical bitwise 'nor' operation
92  *   OR    - Logical bitwise 'or' operation
93  *   STD   - Store data from XRF to memory
94  *   SDI   - Store data from XRF to memory (and increase the address base)
95  *   SLT   - Set of less than comparison
96  *   SAD   - Sum of absolute differences
97  *   SLL   - Logical shift left
98  *   SLR   - Logical shift right
99  *   SAR   - Arithmetic shift right
100  *   SAT   - Saturation
101  *   SFL   - Shuffle
102  *   SCOP  - Calculate x’s scope (-1, means x<0; 0, means x==0; 1, means x>0)
103  *   XOR   - Logical bitwise 'exclusive or' operation
104  *
105  *  Suffixes:
106  *
107  *   E - Expand results
108  *   F - Fixed point multiplication
109  *   L - Low part result
110  *   R - Doing rounding
111  *   V - Variable instead of immediate
112  *   W - Combine above L and V
113  *
114  *
115  *     The list of MXU instructions grouped by functionality
116  *     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
117  *
118  * Load/Store instructions           Multiplication instructions
119  * -----------------------           ---------------------------
120  *
121  *  S32LDD XRa, Rb, s12               S32MADD XRa, XRd, Rs, Rt
122  *  S32STD XRa, Rb, s12               S32MADDU XRa, XRd, Rs, Rt
123  *  S32LDDV XRa, Rb, rc, strd2        S32MSUB XRa, XRd, Rs, Rt
124  *  S32STDV XRa, Rb, rc, strd2        S32MSUBU XRa, XRd, Rs, Rt
125  *  S32LDI XRa, Rb, s12               S32MUL XRa, XRd, Rs, Rt
126  *  S32SDI XRa, Rb, s12               S32MULU XRa, XRd, Rs, Rt
127  *  S32LDIV XRa, Rb, rc, strd2        D16MUL XRa, XRb, XRc, XRd, optn2
128  *  S32SDIV XRa, Rb, rc, strd2        D16MULE XRa, XRb, XRc, optn2
129  *  S32LDDR XRa, Rb, s12              D16MULF XRa, XRb, XRc, optn2
130  *  S32STDR XRa, Rb, s12              D16MAC XRa, XRb, XRc, XRd, aptn2, optn2
131  *  S32LDDVR XRa, Rb, rc, strd2       D16MACE XRa, XRb, XRc, XRd, aptn2, optn2
132  *  S32STDVR XRa, Rb, rc, strd2       D16MACF XRa, XRb, XRc, XRd, aptn2, optn2
133  *  S32LDIR XRa, Rb, s12              D16MADL XRa, XRb, XRc, XRd, aptn2, optn2
134  *  S32SDIR XRa, Rb, s12              S16MAD XRa, XRb, XRc, XRd, aptn1, optn2
135  *  S32LDIVR XRa, Rb, rc, strd2       Q8MUL XRa, XRb, XRc, XRd
136  *  S32SDIVR XRa, Rb, rc, strd2       Q8MULSU XRa, XRb, XRc, XRd
137  *  S16LDD XRa, Rb, s10, eptn2        Q8MAC XRa, XRb, XRc, XRd, aptn2
138  *  S16STD XRa, Rb, s10, eptn2        Q8MACSU XRa, XRb, XRc, XRd, aptn2
139  *  S16LDI XRa, Rb, s10, eptn2        Q8MADL XRa, XRb, XRc, XRd, aptn2
140  *  S16SDI XRa, Rb, s10, eptn2
141  *  S8LDD XRa, Rb, s8, eptn3
142  *  S8STD XRa, Rb, s8, eptn3         Addition and subtraction instructions
143  *  S8LDI XRa, Rb, s8, eptn3         -------------------------------------
144  *  S8SDI XRa, Rb, s8, eptn3
145  *  LXW Rd, Rs, Rt, strd2             D32ADD XRa, XRb, XRc, XRd, eptn2
146  *  LXH Rd, Rs, Rt, strd2             D32ADDC XRa, XRb, XRc, XRd
147  *  LXHU Rd, Rs, Rt, strd2            D32ACC XRa, XRb, XRc, XRd, eptn2
148  *  LXB Rd, Rs, Rt, strd2             D32ACCM XRa, XRb, XRc, XRd, eptn2
149  *  LXBU Rd, Rs, Rt, strd2            D32ASUM XRa, XRb, XRc, XRd, eptn2
150  *                                    S32CPS XRa, XRb, XRc
151  *                                    Q16ADD XRa, XRb, XRc, XRd, eptn2, optn2
152  * Comparison instructions            Q16ACC XRa, XRb, XRc, XRd, eptn2
153  * -----------------------            Q16ACCM XRa, XRb, XRc, XRd, eptn2
154  *                                    D16ASUM XRa, XRb, XRc, XRd, eptn2
155  *  S32MAX XRa, XRb, XRc              D16CPS XRa, XRb,
156  *  S32MIN XRa, XRb, XRc              D16AVG XRa, XRb, XRc
157  *  S32SLT XRa, XRb, XRc              D16AVGR XRa, XRb, XRc
158  *  S32MOVZ XRa, XRb, XRc             Q8ADD XRa, XRb, XRc, eptn2
159  *  S32MOVN XRa, XRb, XRc             Q8ADDE XRa, XRb, XRc, XRd, eptn2
160  *  D16MAX XRa, XRb, XRc              Q8ACCE XRa, XRb, XRc, XRd, eptn2
161  *  D16MIN XRa, XRb, XRc              Q8ABD XRa, XRb, XRc
162  *  D16SLT XRa, XRb, XRc              Q8SAD XRa, XRb, XRc, XRd
163  *  D16MOVZ XRa, XRb, XRc             Q8AVG XRa, XRb, XRc
164  *  D16MOVN XRa, XRb, XRc             Q8AVGR XRa, XRb, XRc
165  *  Q8MAX XRa, XRb, XRc               D8SUM XRa, XRb, XRc, XRd
166  *  Q8MIN XRa, XRb, XRc               D8SUMC XRa, XRb, XRc, XRd
167  *  Q8SLT XRa, XRb, XRc
168  *  Q8SLTU XRa, XRb, XRc
169  *  Q8MOVZ XRa, XRb, XRc             Shift instructions
170  *  Q8MOVN XRa, XRb, XRc             ------------------
171  *
172  *                                    D32SLL XRa, XRb, XRc, XRd, sft4
173  * Bitwise instructions               D32SLR XRa, XRb, XRc, XRd, sft4
174  * --------------------               D32SAR XRa, XRb, XRc, XRd, sft4
175  *                                    D32SARL XRa, XRb, XRc, sft4
176  *  S32NOR XRa, XRb, XRc              D32SLLV XRa, XRb, Rb
177  *  S32AND XRa, XRb, XRc              D32SLRV XRa, XRb, Rb
178  *  S32XOR XRa, XRb, XRc              D32SARV XRa, XRb, Rb
179  *  S32OR XRa, XRb, XRc               D32SARW XRa, XRb, XRc, Rb
180  *                                    Q16SLL XRa, XRb, XRc, XRd, sft4
181  *                                    Q16SLR XRa, XRb, XRc, XRd, sft4
182  * Miscellaneous instructions         Q16SAR XRa, XRb, XRc, XRd, sft4
183  * -------------------------          Q16SLLV XRa, XRb, Rb
184  *                                    Q16SLRV XRa, XRb, Rb
185  *  S32SFL XRa, XRb, XRc, XRd, optn2  Q16SARV XRa, XRb, Rb
186  *  S32ALN XRa, XRb, XRc, Rb
187  *  S32ALNI XRa, XRb, XRc, s3
188  *  S32LUI XRa, s8, optn3            Move instructions
189  *  S32EXTR XRa, XRb, Rb, bits5      -----------------
190  *  S32EXTRV XRa, XRb, Rs, Rt
191  *  Q16SCOP XRa, XRb, XRc, XRd        S32M2I XRa, Rb
192  *  Q16SAT XRa, XRb, XRc              S32I2M XRa, Rb
193  *
194  *
195  *     The opcode organization of MXU instructions
196  *     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
197  *
198  * The bits 31..26 of all MXU instructions are equal to 0x1C (also referred
199  * as opcode SPECIAL2 in the base MIPS ISA). The organization and meaning of
200  * other bits up to the instruction level is as follows:
201  *
202  *              bits
203  *             05..00
204  *
205  *          ┌─ 000000 ─ OPC_MXU_S32MADD
206  *          ├─ 000001 ─ OPC_MXU_S32MADDU
207  *          ├─ 000010 ─ <not assigned>   (non-MXU OPC_MUL)
208  *          │
209  *          │                               20..18
210  *          ├─ 000011 ─ OPC_MXU__POOL00 ─┬─ 000 ─ OPC_MXU_S32MAX
211  *          │                            ├─ 001 ─ OPC_MXU_S32MIN
212  *          │                            ├─ 010 ─ OPC_MXU_D16MAX
213  *          │                            ├─ 011 ─ OPC_MXU_D16MIN
214  *          │                            ├─ 100 ─ OPC_MXU_Q8MAX
215  *          │                            ├─ 101 ─ OPC_MXU_Q8MIN
216  *          │                            ├─ 110 ─ OPC_MXU_Q8SLT
217  *          │                            └─ 111 ─ OPC_MXU_Q8SLTU
218  *          ├─ 000100 ─ OPC_MXU_S32MSUB
219  *          ├─ 000101 ─ OPC_MXU_S32MSUBU    20..18
220  *          ├─ 000110 ─ OPC_MXU__POOL01 ─┬─ 000 ─ OPC_MXU_S32SLT
221  *          │                            ├─ 001 ─ OPC_MXU_D16SLT
222  *          │                            ├─ 010 ─ OPC_MXU_D16AVG
223  *          │                            ├─ 011 ─ OPC_MXU_D16AVGR
224  *          │                            ├─ 100 ─ OPC_MXU_Q8AVG
225  *          │                            ├─ 101 ─ OPC_MXU_Q8AVGR
226  *          │                            └─ 111 ─ OPC_MXU_Q8ADD
227  *          │
228  *          │                               20..18
229  *          ├─ 000111 ─ OPC_MXU__POOL02 ─┬─ 000 ─ OPC_MXU_S32CPS
230  *          │                            ├─ 010 ─ OPC_MXU_D16CPS
231  *          │                            ├─ 100 ─ OPC_MXU_Q8ABD
232  *          │                            └─ 110 ─ OPC_MXU_Q16SAT
233  *          ├─ 001000 ─ OPC_MXU_D16MUL
234  *          │                               25..24
235  *          ├─ 001001 ─ OPC_MXU__POOL03 ─┬─ 00 ─ OPC_MXU_D16MULF
236  *          │                            └─ 01 ─ OPC_MXU_D16MULE
237  *          ├─ 001010 ─ OPC_MXU_D16MAC
238  *          ├─ 001011 ─ OPC_MXU_D16MACF
239  *          ├─ 001100 ─ OPC_MXU_D16MADL
240  *          ├─ 001101 ─ OPC_MXU_S16MAD
241  *          ├─ 001110 ─ OPC_MXU_Q16ADD
242  *          ├─ 001111 ─ OPC_MXU_D16MACE     23
243  *          │                            ┌─ 0 ─ OPC_MXU_S32LDD
244  *          ├─ 010000 ─ OPC_MXU__POOL04 ─┴─ 1 ─ OPC_MXU_S32LDDR
245  *          │
246  *          │                               23
247  *          ├─ 010001 ─ OPC_MXU__POOL05 ─┬─ 0 ─ OPC_MXU_S32STD
248  *          │                            └─ 1 ─ OPC_MXU_S32STDR
249  *          │
250  *          │                               13..10
251  *          ├─ 010010 ─ OPC_MXU__POOL06 ─┬─ 0000 ─ OPC_MXU_S32LDDV
252  *          │                            └─ 0001 ─ OPC_MXU_S32LDDVR
253  *          │
254  *          │                               13..10
255  *          ├─ 010011 ─ OPC_MXU__POOL07 ─┬─ 0000 ─ OPC_MXU_S32STDV
256  *          │                            └─ 0001 ─ OPC_MXU_S32STDVR
257  *          │
258  *          │                               23
259  *          ├─ 010100 ─ OPC_MXU__POOL08 ─┬─ 0 ─ OPC_MXU_S32LDI
260  *          │                            └─ 1 ─ OPC_MXU_S32LDIR
261  *          │
262  *          │                               23
263  *          ├─ 010101 ─ OPC_MXU__POOL09 ─┬─ 0 ─ OPC_MXU_S32SDI
264  *          │                            └─ 1 ─ OPC_MXU_S32SDIR
265  *          │
266  *          │                               13..10
267  *          ├─ 010110 ─ OPC_MXU__POOL10 ─┬─ 0000 ─ OPC_MXU_S32LDIV
268  *          │                            └─ 0001 ─ OPC_MXU_S32LDIVR
269  *          │
270  *          │                               13..10
271  *          ├─ 010111 ─ OPC_MXU__POOL11 ─┬─ 0000 ─ OPC_MXU_S32SDIV
272  *          │                            └─ 0001 ─ OPC_MXU_S32SDIVR
273  *          ├─ 011000 ─ OPC_MXU_D32ADD
274  *          │                               23..22
275  *   MXU    ├─ 011001 ─ OPC_MXU__POOL12 ─┬─ 00 ─ OPC_MXU_D32ACC
276  * opcodes ─┤                            ├─ 01 ─ OPC_MXU_D32ACCM
277  *          │                            └─ 10 ─ OPC_MXU_D32ASUM
278  *          ├─ 011010 ─ <not assigned>
279  *          │                               23..22
280  *          ├─ 011011 ─ OPC_MXU__POOL13 ─┬─ 00 ─ OPC_MXU_Q16ACC
281  *          │                            ├─ 01 ─ OPC_MXU_Q16ACCM
282  *          │                            └─ 10 ─ OPC_MXU_Q16ASUM
283  *          │
284  *          │                               23..22
285  *          ├─ 011100 ─ OPC_MXU__POOL14 ─┬─ 00 ─ OPC_MXU_Q8ADDE
286  *          │                            ├─ 01 ─ OPC_MXU_D8SUM
287  *          ├─ 011101 ─ OPC_MXU_Q8ACCE   └─ 10 ─ OPC_MXU_D8SUMC
288  *          ├─ 011110 ─ <not assigned>
289  *          ├─ 011111 ─ <not assigned>
290  *          ├─ 100000 ─ <not assigned>   (overlaps with CLZ)
291  *          ├─ 100001 ─ <not assigned>   (overlaps with CLO)
292  *          ├─ 100010 ─ OPC_MXU_S8LDD
293  *          ├─ 100011 ─ OPC_MXU_S8STD       15..14
294  *          ├─ 100100 ─ OPC_MXU_S8LDI    ┌─ 00 ─ OPC_MXU_S32MUL
295  *          ├─ 100101 ─ OPC_MXU_S8SDI    ├─ 00 ─ OPC_MXU_S32MULU
296  *          │                            ├─ 00 ─ OPC_MXU_S32EXTR
297  *          ├─ 100110 ─ OPC_MXU__POOL15 ─┴─ 00 ─ OPC_MXU_S32EXTRV
298  *          │
299  *          │                               20..18
300  *          ├─ 100111 ─ OPC_MXU__POOL16 ─┬─ 000 ─ OPC_MXU_D32SARW
301  *          │                            ├─ 001 ─ OPC_MXU_S32ALN
302  *          │                            ├─ 010 ─ OPC_MXU_S32ALNI
303  *          │                            ├─ 011 ─ OPC_MXU_S32LUI
304  *          │                            ├─ 100 ─ OPC_MXU_S32NOR
305  *          │                            ├─ 101 ─ OPC_MXU_S32AND
306  *          │                            ├─ 110 ─ OPC_MXU_S32OR
307  *          │                            └─ 111 ─ OPC_MXU_S32XOR
308  *          │
309  *          │                               7..5
310  *          ├─ 101000 ─ OPC_MXU__POOL17 ─┬─ 000 ─ OPC_MXU_LXB
311  *          │                            ├─ 001 ─ OPC_MXU_LXH
312  *          ├─ 101001 ─ <not assigned>   ├─ 011 ─ OPC_MXU_LXW
313  *          ├─ 101010 ─ OPC_MXU_S16LDD   ├─ 100 ─ OPC_MXU_LXBU
314  *          ├─ 101011 ─ OPC_MXU_S16STD   └─ 101 ─ OPC_MXU_LXHU
315  *          ├─ 101100 ─ OPC_MXU_S16LDI
316  *          ├─ 101101 ─ OPC_MXU_S16SDI
317  *          ├─ 101110 ─ OPC_MXU_S32M2I
318  *          ├─ 101111 ─ OPC_MXU_S32I2M
319  *          ├─ 110000 ─ OPC_MXU_D32SLL
320  *          ├─ 110001 ─ OPC_MXU_D32SLR      20..18
321  *          ├─ 110010 ─ OPC_MXU_D32SARL  ┌─ 000 ─ OPC_MXU_D32SLLV
322  *          ├─ 110011 ─ OPC_MXU_D32SAR   ├─ 001 ─ OPC_MXU_D32SLRV
323  *          ├─ 110100 ─ OPC_MXU_Q16SLL   ├─ 010 ─ OPC_MXU_D32SARV
324  *          ├─ 110101 ─ OPC_MXU_Q16SLR   ├─ 011 ─ OPC_MXU_Q16SLLV
325  *          │                            ├─ 100 ─ OPC_MXU_Q16SLRV
326  *          ├─ 110110 ─ OPC_MXU__POOL18 ─┴─ 101 ─ OPC_MXU_Q16SARV
327  *          │
328  *          ├─ 110111 ─ OPC_MXU_Q16SAR
329  *          │                               23..22
330  *          ├─ 111000 ─ OPC_MXU__POOL19 ─┬─ 00 ─ OPC_MXU_Q8MUL
331  *          │                            └─ 01 ─ OPC_MXU_Q8MULSU
332  *          │
333  *          │                               20..18
334  *          ├─ 111001 ─ OPC_MXU__POOL20 ─┬─ 000 ─ OPC_MXU_Q8MOVZ
335  *          │                            ├─ 001 ─ OPC_MXU_Q8MOVN
336  *          │                            ├─ 010 ─ OPC_MXU_D16MOVZ
337  *          │                            ├─ 011 ─ OPC_MXU_D16MOVN
338  *          │                            ├─ 100 ─ OPC_MXU_S32MOVZ
339  *          │                            └─ 101 ─ OPC_MXU_S32MOVN
340  *          │
341  *          │                               23..22
342  *          ├─ 111010 ─ OPC_MXU__POOL21 ─┬─ 00 ─ OPC_MXU_Q8MAC
343  *          │                            └─ 10 ─ OPC_MXU_Q8MACSU
344  *          ├─ 111011 ─ OPC_MXU_Q16SCOP
345  *          ├─ 111100 ─ OPC_MXU_Q8MADL
346  *          ├─ 111101 ─ OPC_MXU_S32SFL
347  *          ├─ 111110 ─ OPC_MXU_Q8SAD
348  *          └─ 111111 ─ <not assigned>   (overlaps with SDBBP)
349  *
350  *
351  * Compiled after:
352  *
353  *   "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
354  *   Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
355  */
356 
357 enum {
358     OPC_MXU__POOL00  = 0x03,
359     OPC_MXU_D16MUL   = 0x08,
360     OPC_MXU_D16MAC   = 0x0A,
361     OPC_MXU__POOL04  = 0x10,
362     OPC_MXU_S8LDD    = 0x22,
363     OPC_MXU__POOL16  = 0x27,
364     OPC_MXU_S32M2I   = 0x2E,
365     OPC_MXU_S32I2M   = 0x2F,
366     OPC_MXU__POOL19  = 0x38,
367 };
368 
369 
370 /*
371  * MXU pool 00
372  */
373 enum {
374     OPC_MXU_S32MAX   = 0x00,
375     OPC_MXU_S32MIN   = 0x01,
376     OPC_MXU_D16MAX   = 0x02,
377     OPC_MXU_D16MIN   = 0x03,
378     OPC_MXU_Q8MAX    = 0x04,
379     OPC_MXU_Q8MIN    = 0x05,
380 };
381 
382 /*
383  * MXU pool 04
384  */
385 enum {
386     OPC_MXU_S32LDD   = 0x00,
387     OPC_MXU_S32LDDR  = 0x01,
388 };
389 
390 /*
391  * MXU pool 16
392  */
393 enum {
394     OPC_MXU_S32ALNI  = 0x02,
395     OPC_MXU_S32NOR   = 0x04,
396     OPC_MXU_S32AND   = 0x05,
397     OPC_MXU_S32OR    = 0x06,
398     OPC_MXU_S32XOR   = 0x07,
399 };
400 
401 /*
402  * MXU pool 19
403  */
404 enum {
405     OPC_MXU_Q8MUL    = 0x00,
406     OPC_MXU_Q8MULSU  = 0x01,
407 };
408 
409 /* MXU accumulate add/subtract 1-bit pattern 'aptn1' */
410 #define MXU_APTN1_A    0
411 #define MXU_APTN1_S    1
412 
413 /* MXU accumulate add/subtract 2-bit pattern 'aptn2' */
414 #define MXU_APTN2_AA    0
415 #define MXU_APTN2_AS    1
416 #define MXU_APTN2_SA    2
417 #define MXU_APTN2_SS    3
418 
419 /* MXU execute add/subtract 2-bit pattern 'eptn2' */
420 #define MXU_EPTN2_AA    0
421 #define MXU_EPTN2_AS    1
422 #define MXU_EPTN2_SA    2
423 #define MXU_EPTN2_SS    3
424 
425 /* MXU operand getting pattern 'optn2' */
426 #define MXU_OPTN2_PTN0  0
427 #define MXU_OPTN2_PTN1  1
428 #define MXU_OPTN2_PTN2  2
429 #define MXU_OPTN2_PTN3  3
430 /* alternative naming scheme for 'optn2' */
431 #define MXU_OPTN2_WW    0
432 #define MXU_OPTN2_LW    1
433 #define MXU_OPTN2_HW    2
434 #define MXU_OPTN2_XW    3
435 
436 /* MXU operand getting pattern 'optn3' */
437 #define MXU_OPTN3_PTN0  0
438 #define MXU_OPTN3_PTN1  1
439 #define MXU_OPTN3_PTN2  2
440 #define MXU_OPTN3_PTN3  3
441 #define MXU_OPTN3_PTN4  4
442 #define MXU_OPTN3_PTN5  5
443 #define MXU_OPTN3_PTN6  6
444 #define MXU_OPTN3_PTN7  7
445 
446 /* MXU registers */
447 static TCGv mxu_gpr[NUMBER_OF_MXU_REGISTERS - 1];
448 static TCGv mxu_CR;
449 
450 static const char mxuregnames[][4] = {
451     "XR1",  "XR2",  "XR3",  "XR4",  "XR5",  "XR6",  "XR7",  "XR8",
452     "XR9",  "XR10", "XR11", "XR12", "XR13", "XR14", "XR15", "XCR",
453 };
454 
455 void mxu_translate_init(void)
456 {
457     for (unsigned i = 0; i < NUMBER_OF_MXU_REGISTERS - 1; i++) {
458         mxu_gpr[i] = tcg_global_mem_new(cpu_env,
459                                         offsetof(CPUMIPSState, active_tc.mxu_gpr[i]),
460                                         mxuregnames[i]);
461     }
462 
463     mxu_CR = tcg_global_mem_new(cpu_env,
464                                 offsetof(CPUMIPSState, active_tc.mxu_cr),
465                                 mxuregnames[NUMBER_OF_MXU_REGISTERS - 1]);
466 }
467 
468 /* MXU General purpose registers moves. */
469 static inline void gen_load_mxu_gpr(TCGv t, unsigned int reg)
470 {
471     if (reg == 0) {
472         tcg_gen_movi_tl(t, 0);
473     } else if (reg <= 15) {
474         tcg_gen_mov_tl(t, mxu_gpr[reg - 1]);
475     }
476 }
477 
478 static inline void gen_store_mxu_gpr(TCGv t, unsigned int reg)
479 {
480     if (reg > 0 && reg <= 15) {
481         tcg_gen_mov_tl(mxu_gpr[reg - 1], t);
482     }
483 }
484 
485 /* MXU control register moves. */
486 static inline void gen_load_mxu_cr(TCGv t)
487 {
488     tcg_gen_mov_tl(t, mxu_CR);
489 }
490 
491 static inline void gen_store_mxu_cr(TCGv t)
492 {
493     /* TODO: Add handling of RW rules for MXU_CR. */
494     tcg_gen_mov_tl(mxu_CR, t);
495 }
496 
497 /*
498  * S32I2M XRa, rb - Register move from GRF to XRF
499  */
500 static void gen_mxu_s32i2m(DisasContext *ctx)
501 {
502     TCGv t0;
503     uint32_t XRa, Rb;
504 
505     t0 = tcg_temp_new();
506 
507     XRa = extract32(ctx->opcode, 6, 5);
508     Rb = extract32(ctx->opcode, 16, 5);
509 
510     gen_load_gpr(t0, Rb);
511     if (XRa <= 15) {
512         gen_store_mxu_gpr(t0, XRa);
513     } else if (XRa == 16) {
514         gen_store_mxu_cr(t0);
515     }
516 }
517 
518 /*
519  * S32M2I XRa, rb - Register move from XRF to GRF
520  */
521 static void gen_mxu_s32m2i(DisasContext *ctx)
522 {
523     TCGv t0;
524     uint32_t XRa, Rb;
525 
526     t0 = tcg_temp_new();
527 
528     XRa = extract32(ctx->opcode, 6, 5);
529     Rb = extract32(ctx->opcode, 16, 5);
530 
531     if (XRa <= 15) {
532         gen_load_mxu_gpr(t0, XRa);
533     } else if (XRa == 16) {
534         gen_load_mxu_cr(t0);
535     }
536 
537     gen_store_gpr(t0, Rb);
538 }
539 
540 /*
541  * S8LDD XRa, Rb, s8, optn3 - Load a byte from memory to XRF
542  */
543 static void gen_mxu_s8ldd(DisasContext *ctx)
544 {
545     TCGv t0, t1;
546     uint32_t XRa, Rb, s8, optn3;
547 
548     t0 = tcg_temp_new();
549     t1 = tcg_temp_new();
550 
551     XRa = extract32(ctx->opcode, 6, 4);
552     s8 = extract32(ctx->opcode, 10, 8);
553     optn3 = extract32(ctx->opcode, 18, 3);
554     Rb = extract32(ctx->opcode, 21, 5);
555 
556     gen_load_gpr(t0, Rb);
557     tcg_gen_addi_tl(t0, t0, (int8_t)s8);
558 
559     switch (optn3) {
560     /* XRa[7:0] = tmp8 */
561     case MXU_OPTN3_PTN0:
562         tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
563         gen_load_mxu_gpr(t0, XRa);
564         tcg_gen_deposit_tl(t0, t0, t1, 0, 8);
565         break;
566     /* XRa[15:8] = tmp8 */
567     case MXU_OPTN3_PTN1:
568         tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
569         gen_load_mxu_gpr(t0, XRa);
570         tcg_gen_deposit_tl(t0, t0, t1, 8, 8);
571         break;
572     /* XRa[23:16] = tmp8 */
573     case MXU_OPTN3_PTN2:
574         tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
575         gen_load_mxu_gpr(t0, XRa);
576         tcg_gen_deposit_tl(t0, t0, t1, 16, 8);
577         break;
578     /* XRa[31:24] = tmp8 */
579     case MXU_OPTN3_PTN3:
580         tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
581         gen_load_mxu_gpr(t0, XRa);
582         tcg_gen_deposit_tl(t0, t0, t1, 24, 8);
583         break;
584     /* XRa = {8'b0, tmp8, 8'b0, tmp8} */
585     case MXU_OPTN3_PTN4:
586         tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
587         tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
588         break;
589     /* XRa = {tmp8, 8'b0, tmp8, 8'b0} */
590     case MXU_OPTN3_PTN5:
591         tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
592         tcg_gen_shli_tl(t1, t1, 8);
593         tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
594         break;
595     /* XRa = {{8{sign of tmp8}}, tmp8, {8{sign of tmp8}}, tmp8} */
596     case MXU_OPTN3_PTN6:
597         tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_SB);
598         tcg_gen_mov_tl(t0, t1);
599         tcg_gen_andi_tl(t0, t0, 0xFF00FFFF);
600         tcg_gen_shli_tl(t1, t1, 16);
601         tcg_gen_or_tl(t0, t0, t1);
602         break;
603     /* XRa = {tmp8, tmp8, tmp8, tmp8} */
604     case MXU_OPTN3_PTN7:
605         tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
606         tcg_gen_deposit_tl(t1, t1, t1, 8, 8);
607         tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
608         break;
609     }
610 
611     gen_store_mxu_gpr(t0, XRa);
612 }
613 
614 /*
615  * D16MUL XRa, XRb, XRc, XRd, optn2 - Signed 16 bit pattern multiplication
616  */
617 static void gen_mxu_d16mul(DisasContext *ctx)
618 {
619     TCGv t0, t1, t2, t3;
620     uint32_t XRa, XRb, XRc, XRd, optn2;
621 
622     t0 = tcg_temp_new();
623     t1 = tcg_temp_new();
624     t2 = tcg_temp_new();
625     t3 = tcg_temp_new();
626 
627     XRa = extract32(ctx->opcode, 6, 4);
628     XRb = extract32(ctx->opcode, 10, 4);
629     XRc = extract32(ctx->opcode, 14, 4);
630     XRd = extract32(ctx->opcode, 18, 4);
631     optn2 = extract32(ctx->opcode, 22, 2);
632 
633     gen_load_mxu_gpr(t1, XRb);
634     tcg_gen_sextract_tl(t0, t1, 0, 16);
635     tcg_gen_sextract_tl(t1, t1, 16, 16);
636     gen_load_mxu_gpr(t3, XRc);
637     tcg_gen_sextract_tl(t2, t3, 0, 16);
638     tcg_gen_sextract_tl(t3, t3, 16, 16);
639 
640     switch (optn2) {
641     case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
642         tcg_gen_mul_tl(t3, t1, t3);
643         tcg_gen_mul_tl(t2, t0, t2);
644         break;
645     case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
646         tcg_gen_mul_tl(t3, t0, t3);
647         tcg_gen_mul_tl(t2, t0, t2);
648         break;
649     case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
650         tcg_gen_mul_tl(t3, t1, t3);
651         tcg_gen_mul_tl(t2, t1, t2);
652         break;
653     case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
654         tcg_gen_mul_tl(t3, t0, t3);
655         tcg_gen_mul_tl(t2, t1, t2);
656         break;
657     }
658     gen_store_mxu_gpr(t3, XRa);
659     gen_store_mxu_gpr(t2, XRd);
660 }
661 
662 /*
663  * D16MAC XRa, XRb, XRc, XRd, aptn2, optn2 - Signed 16 bit pattern multiply
664  *                                           and accumulate
665  */
666 static void gen_mxu_d16mac(DisasContext *ctx)
667 {
668     TCGv t0, t1, t2, t3;
669     uint32_t XRa, XRb, XRc, XRd, optn2, aptn2;
670 
671     t0 = tcg_temp_new();
672     t1 = tcg_temp_new();
673     t2 = tcg_temp_new();
674     t3 = tcg_temp_new();
675 
676     XRa = extract32(ctx->opcode, 6, 4);
677     XRb = extract32(ctx->opcode, 10, 4);
678     XRc = extract32(ctx->opcode, 14, 4);
679     XRd = extract32(ctx->opcode, 18, 4);
680     optn2 = extract32(ctx->opcode, 22, 2);
681     aptn2 = extract32(ctx->opcode, 24, 2);
682 
683     gen_load_mxu_gpr(t1, XRb);
684     tcg_gen_sextract_tl(t0, t1, 0, 16);
685     tcg_gen_sextract_tl(t1, t1, 16, 16);
686 
687     gen_load_mxu_gpr(t3, XRc);
688     tcg_gen_sextract_tl(t2, t3, 0, 16);
689     tcg_gen_sextract_tl(t3, t3, 16, 16);
690 
691     switch (optn2) {
692     case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
693         tcg_gen_mul_tl(t3, t1, t3);
694         tcg_gen_mul_tl(t2, t0, t2);
695         break;
696     case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
697         tcg_gen_mul_tl(t3, t0, t3);
698         tcg_gen_mul_tl(t2, t0, t2);
699         break;
700     case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
701         tcg_gen_mul_tl(t3, t1, t3);
702         tcg_gen_mul_tl(t2, t1, t2);
703         break;
704     case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
705         tcg_gen_mul_tl(t3, t0, t3);
706         tcg_gen_mul_tl(t2, t1, t2);
707         break;
708     }
709     gen_load_mxu_gpr(t0, XRa);
710     gen_load_mxu_gpr(t1, XRd);
711 
712     switch (aptn2) {
713     case MXU_APTN2_AA:
714         tcg_gen_add_tl(t3, t0, t3);
715         tcg_gen_add_tl(t2, t1, t2);
716         break;
717     case MXU_APTN2_AS:
718         tcg_gen_add_tl(t3, t0, t3);
719         tcg_gen_sub_tl(t2, t1, t2);
720         break;
721     case MXU_APTN2_SA:
722         tcg_gen_sub_tl(t3, t0, t3);
723         tcg_gen_add_tl(t2, t1, t2);
724         break;
725     case MXU_APTN2_SS:
726         tcg_gen_sub_tl(t3, t0, t3);
727         tcg_gen_sub_tl(t2, t1, t2);
728         break;
729     }
730     gen_store_mxu_gpr(t3, XRa);
731     gen_store_mxu_gpr(t2, XRd);
732 }
733 
734 /*
735  * Q8MUL   XRa, XRb, XRc, XRd - Parallel unsigned 8 bit pattern multiply
736  * Q8MULSU XRa, XRb, XRc, XRd - Parallel signed 8 bit pattern multiply
737  */
738 static void gen_mxu_q8mul_q8mulsu(DisasContext *ctx)
739 {
740     TCGv t0, t1, t2, t3, t4, t5, t6, t7;
741     uint32_t XRa, XRb, XRc, XRd, sel;
742 
743     t0 = tcg_temp_new();
744     t1 = tcg_temp_new();
745     t2 = tcg_temp_new();
746     t3 = tcg_temp_new();
747     t4 = tcg_temp_new();
748     t5 = tcg_temp_new();
749     t6 = tcg_temp_new();
750     t7 = tcg_temp_new();
751 
752     XRa = extract32(ctx->opcode, 6, 4);
753     XRb = extract32(ctx->opcode, 10, 4);
754     XRc = extract32(ctx->opcode, 14, 4);
755     XRd = extract32(ctx->opcode, 18, 4);
756     sel = extract32(ctx->opcode, 22, 2);
757 
758     gen_load_mxu_gpr(t3, XRb);
759     gen_load_mxu_gpr(t7, XRc);
760 
761     if (sel == 0x2) {
762         /* Q8MULSU */
763         tcg_gen_ext8s_tl(t0, t3);
764         tcg_gen_shri_tl(t3, t3, 8);
765         tcg_gen_ext8s_tl(t1, t3);
766         tcg_gen_shri_tl(t3, t3, 8);
767         tcg_gen_ext8s_tl(t2, t3);
768         tcg_gen_shri_tl(t3, t3, 8);
769         tcg_gen_ext8s_tl(t3, t3);
770     } else {
771         /* Q8MUL */
772         tcg_gen_ext8u_tl(t0, t3);
773         tcg_gen_shri_tl(t3, t3, 8);
774         tcg_gen_ext8u_tl(t1, t3);
775         tcg_gen_shri_tl(t3, t3, 8);
776         tcg_gen_ext8u_tl(t2, t3);
777         tcg_gen_shri_tl(t3, t3, 8);
778         tcg_gen_ext8u_tl(t3, t3);
779     }
780 
781     tcg_gen_ext8u_tl(t4, t7);
782     tcg_gen_shri_tl(t7, t7, 8);
783     tcg_gen_ext8u_tl(t5, t7);
784     tcg_gen_shri_tl(t7, t7, 8);
785     tcg_gen_ext8u_tl(t6, t7);
786     tcg_gen_shri_tl(t7, t7, 8);
787     tcg_gen_ext8u_tl(t7, t7);
788 
789     tcg_gen_mul_tl(t0, t0, t4);
790     tcg_gen_mul_tl(t1, t1, t5);
791     tcg_gen_mul_tl(t2, t2, t6);
792     tcg_gen_mul_tl(t3, t3, t7);
793 
794     tcg_gen_andi_tl(t0, t0, 0xFFFF);
795     tcg_gen_andi_tl(t1, t1, 0xFFFF);
796     tcg_gen_andi_tl(t2, t2, 0xFFFF);
797     tcg_gen_andi_tl(t3, t3, 0xFFFF);
798 
799     tcg_gen_shli_tl(t1, t1, 16);
800     tcg_gen_shli_tl(t3, t3, 16);
801 
802     tcg_gen_or_tl(t0, t0, t1);
803     tcg_gen_or_tl(t1, t2, t3);
804 
805     gen_store_mxu_gpr(t0, XRd);
806     gen_store_mxu_gpr(t1, XRa);
807 }
808 
809 /*
810  * S32LDD  XRa, Rb, S12 - Load a word from memory to XRF
811  * S32LDDR XRa, Rb, S12 - Load a word from memory to XRF, reversed byte seq.
812  */
813 static void gen_mxu_s32ldd_s32lddr(DisasContext *ctx)
814 {
815     TCGv t0, t1;
816     uint32_t XRa, Rb, s12, sel;
817 
818     t0 = tcg_temp_new();
819     t1 = tcg_temp_new();
820 
821     XRa = extract32(ctx->opcode, 6, 4);
822     s12 = extract32(ctx->opcode, 10, 10);
823     sel = extract32(ctx->opcode, 20, 1);
824     Rb = extract32(ctx->opcode, 21, 5);
825 
826     gen_load_gpr(t0, Rb);
827 
828     tcg_gen_movi_tl(t1, s12);
829     tcg_gen_shli_tl(t1, t1, 2);
830     if (s12 & 0x200) {
831         tcg_gen_ori_tl(t1, t1, 0xFFFFF000);
832     }
833     tcg_gen_add_tl(t1, t0, t1);
834     tcg_gen_qemu_ld_tl(t1, t1, ctx->mem_idx, (MO_TESL ^ (sel * MO_BSWAP)) |
835                        ctx->default_tcg_memop_mask);
836 
837     gen_store_mxu_gpr(t1, XRa);
838 }
839 
840 
841 /*
842  *                 MXU instruction category: logic
843  *                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
844  *
845  *               S32NOR    S32AND    S32OR    S32XOR
846  */
847 
848 /*
849  *  S32NOR XRa, XRb, XRc
850  *    Update XRa with the result of logical bitwise 'nor' operation
851  *    applied to the content of XRb and XRc.
852  */
853 static void gen_mxu_S32NOR(DisasContext *ctx)
854 {
855     uint32_t pad, XRc, XRb, XRa;
856 
857     pad = extract32(ctx->opcode, 21, 5);
858     XRc = extract32(ctx->opcode, 14, 4);
859     XRb = extract32(ctx->opcode, 10, 4);
860     XRa = extract32(ctx->opcode,  6, 4);
861 
862     if (unlikely(pad != 0)) {
863         /* opcode padding incorrect -> do nothing */
864     } else if (unlikely(XRa == 0)) {
865         /* destination is zero register -> do nothing */
866     } else if (unlikely((XRb == 0) && (XRc == 0))) {
867         /* both operands zero registers -> just set destination to all 1s */
868         tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0xFFFFFFFF);
869     } else if (unlikely(XRb == 0)) {
870         /* XRb zero register -> just set destination to the negation of XRc */
871         tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
872     } else if (unlikely(XRc == 0)) {
873         /* XRa zero register -> just set destination to the negation of XRb */
874         tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
875     } else if (unlikely(XRb == XRc)) {
876         /* both operands same -> just set destination to the negation of XRb */
877         tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
878     } else {
879         /* the most general case */
880         tcg_gen_nor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
881     }
882 }
883 
884 /*
885  *  S32AND XRa, XRb, XRc
886  *    Update XRa with the result of logical bitwise 'and' operation
887  *    applied to the content of XRb and XRc.
888  */
889 static void gen_mxu_S32AND(DisasContext *ctx)
890 {
891     uint32_t pad, XRc, XRb, XRa;
892 
893     pad = extract32(ctx->opcode, 21, 5);
894     XRc = extract32(ctx->opcode, 14, 4);
895     XRb = extract32(ctx->opcode, 10, 4);
896     XRa = extract32(ctx->opcode,  6, 4);
897 
898     if (unlikely(pad != 0)) {
899         /* opcode padding incorrect -> do nothing */
900     } else if (unlikely(XRa == 0)) {
901         /* destination is zero register -> do nothing */
902     } else if (unlikely((XRb == 0) || (XRc == 0))) {
903         /* one of operands zero register -> just set destination to all 0s */
904         tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
905     } else if (unlikely(XRb == XRc)) {
906         /* both operands same -> just set destination to one of them */
907         tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
908     } else {
909         /* the most general case */
910         tcg_gen_and_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
911     }
912 }
913 
914 /*
915  *  S32OR XRa, XRb, XRc
916  *    Update XRa with the result of logical bitwise 'or' operation
917  *    applied to the content of XRb and XRc.
918  */
919 static void gen_mxu_S32OR(DisasContext *ctx)
920 {
921     uint32_t pad, XRc, XRb, XRa;
922 
923     pad = extract32(ctx->opcode, 21, 5);
924     XRc = extract32(ctx->opcode, 14, 4);
925     XRb = extract32(ctx->opcode, 10, 4);
926     XRa = extract32(ctx->opcode,  6, 4);
927 
928     if (unlikely(pad != 0)) {
929         /* opcode padding incorrect -> do nothing */
930     } else if (unlikely(XRa == 0)) {
931         /* destination is zero register -> do nothing */
932     } else if (unlikely((XRb == 0) && (XRc == 0))) {
933         /* both operands zero registers -> just set destination to all 0s */
934         tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
935     } else if (unlikely(XRb == 0)) {
936         /* XRb zero register -> just set destination to the content of XRc */
937         tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
938     } else if (unlikely(XRc == 0)) {
939         /* XRc zero register -> just set destination to the content of XRb */
940         tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
941     } else if (unlikely(XRb == XRc)) {
942         /* both operands same -> just set destination to one of them */
943         tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
944     } else {
945         /* the most general case */
946         tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
947     }
948 }
949 
950 /*
951  *  S32XOR XRa, XRb, XRc
952  *    Update XRa with the result of logical bitwise 'xor' operation
953  *    applied to the content of XRb and XRc.
954  */
955 static void gen_mxu_S32XOR(DisasContext *ctx)
956 {
957     uint32_t pad, XRc, XRb, XRa;
958 
959     pad = extract32(ctx->opcode, 21, 5);
960     XRc = extract32(ctx->opcode, 14, 4);
961     XRb = extract32(ctx->opcode, 10, 4);
962     XRa = extract32(ctx->opcode,  6, 4);
963 
964     if (unlikely(pad != 0)) {
965         /* opcode padding incorrect -> do nothing */
966     } else if (unlikely(XRa == 0)) {
967         /* destination is zero register -> do nothing */
968     } else if (unlikely((XRb == 0) && (XRc == 0))) {
969         /* both operands zero registers -> just set destination to all 0s */
970         tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
971     } else if (unlikely(XRb == 0)) {
972         /* XRb zero register -> just set destination to the content of XRc */
973         tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
974     } else if (unlikely(XRc == 0)) {
975         /* XRc zero register -> just set destination to the content of XRb */
976         tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
977     } else if (unlikely(XRb == XRc)) {
978         /* both operands same -> just set destination to all 0s */
979         tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
980     } else {
981         /* the most general case */
982         tcg_gen_xor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
983     }
984 }
985 
986 
987 /*
988  *                   MXU instruction category max/min
989  *                   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
990  *
991  *                     S32MAX     D16MAX     Q8MAX
992  *                     S32MIN     D16MIN     Q8MIN
993  */
994 
995 /*
996  *  S32MAX XRa, XRb, XRc
997  *    Update XRa with the maximum of signed 32-bit integers contained
998  *    in XRb and XRc.
999  *
1000  *  S32MIN XRa, XRb, XRc
1001  *    Update XRa with the minimum of signed 32-bit integers contained
1002  *    in XRb and XRc.
1003  */
1004 static void gen_mxu_S32MAX_S32MIN(DisasContext *ctx)
1005 {
1006     uint32_t pad, opc, XRc, XRb, XRa;
1007 
1008     pad = extract32(ctx->opcode, 21, 5);
1009     opc = extract32(ctx->opcode, 18, 3);
1010     XRc = extract32(ctx->opcode, 14, 4);
1011     XRb = extract32(ctx->opcode, 10, 4);
1012     XRa = extract32(ctx->opcode,  6, 4);
1013 
1014     if (unlikely(pad != 0)) {
1015         /* opcode padding incorrect -> do nothing */
1016     } else if (unlikely(XRa == 0)) {
1017         /* destination is zero register -> do nothing */
1018     } else if (unlikely((XRb == 0) && (XRc == 0))) {
1019         /* both operands zero registers -> just set destination to zero */
1020         tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
1021     } else if (unlikely((XRb == 0) || (XRc == 0))) {
1022         /* exactly one operand is zero register - find which one is not...*/
1023         uint32_t XRx = XRb ? XRb : XRc;
1024         /* ...and do max/min operation with one operand 0 */
1025         if (opc == OPC_MXU_S32MAX) {
1026             tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
1027         } else {
1028             tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
1029         }
1030     } else if (unlikely(XRb == XRc)) {
1031         /* both operands same -> just set destination to one of them */
1032         tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
1033     } else {
1034         /* the most general case */
1035         if (opc == OPC_MXU_S32MAX) {
1036             tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
1037                                                mxu_gpr[XRc - 1]);
1038         } else {
1039             tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
1040                                                mxu_gpr[XRc - 1]);
1041         }
1042     }
1043 }
1044 
1045 /*
1046  *  D16MAX
1047  *    Update XRa with the 16-bit-wise maximums of signed integers
1048  *    contained in XRb and XRc.
1049  *
1050  *  D16MIN
1051  *    Update XRa with the 16-bit-wise minimums of signed integers
1052  *    contained in XRb and XRc.
1053  */
1054 static void gen_mxu_D16MAX_D16MIN(DisasContext *ctx)
1055 {
1056     uint32_t pad, opc, XRc, XRb, XRa;
1057 
1058     pad = extract32(ctx->opcode, 21, 5);
1059     opc = extract32(ctx->opcode, 18, 3);
1060     XRc = extract32(ctx->opcode, 14, 4);
1061     XRb = extract32(ctx->opcode, 10, 4);
1062     XRa = extract32(ctx->opcode,  6, 4);
1063 
1064     if (unlikely(pad != 0)) {
1065         /* opcode padding incorrect -> do nothing */
1066     } else if (unlikely(XRa == 0)) {
1067         /* destination is zero register -> do nothing */
1068     } else if (unlikely((XRb == 0) && (XRc == 0))) {
1069         /* both operands zero registers -> just set destination to zero */
1070         tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
1071     } else if (unlikely((XRb == 0) || (XRc == 0))) {
1072         /* exactly one operand is zero register - find which one is not...*/
1073         uint32_t XRx = XRb ? XRb : XRc;
1074         /* ...and do half-word-wise max/min with one operand 0 */
1075         TCGv_i32 t0 = tcg_temp_new();
1076         TCGv_i32 t1 = tcg_constant_i32(0);
1077 
1078         /* the left half-word first */
1079         tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFFFF0000);
1080         if (opc == OPC_MXU_D16MAX) {
1081             tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
1082         } else {
1083             tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
1084         }
1085 
1086         /* the right half-word */
1087         tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0x0000FFFF);
1088         /* move half-words to the leftmost position */
1089         tcg_gen_shli_i32(t0, t0, 16);
1090         /* t0 will be max/min of t0 and t1 */
1091         if (opc == OPC_MXU_D16MAX) {
1092             tcg_gen_smax_i32(t0, t0, t1);
1093         } else {
1094             tcg_gen_smin_i32(t0, t0, t1);
1095         }
1096         /* return resulting half-words to its original position */
1097         tcg_gen_shri_i32(t0, t0, 16);
1098         /* finally update the destination */
1099         tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
1100     } else if (unlikely(XRb == XRc)) {
1101         /* both operands same -> just set destination to one of them */
1102         tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
1103     } else {
1104         /* the most general case */
1105         TCGv_i32 t0 = tcg_temp_new();
1106         TCGv_i32 t1 = tcg_temp_new();
1107 
1108         /* the left half-word first */
1109         tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFFFF0000);
1110         tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
1111         if (opc == OPC_MXU_D16MAX) {
1112             tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
1113         } else {
1114             tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
1115         }
1116 
1117         /* the right half-word */
1118         tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
1119         tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0x0000FFFF);
1120         /* move half-words to the leftmost position */
1121         tcg_gen_shli_i32(t0, t0, 16);
1122         tcg_gen_shli_i32(t1, t1, 16);
1123         /* t0 will be max/min of t0 and t1 */
1124         if (opc == OPC_MXU_D16MAX) {
1125             tcg_gen_smax_i32(t0, t0, t1);
1126         } else {
1127             tcg_gen_smin_i32(t0, t0, t1);
1128         }
1129         /* return resulting half-words to its original position */
1130         tcg_gen_shri_i32(t0, t0, 16);
1131         /* finally update the destination */
1132         tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
1133     }
1134 }
1135 
1136 /*
1137  *  Q8MAX
1138  *    Update XRa with the 8-bit-wise maximums of signed integers
1139  *    contained in XRb and XRc.
1140  *
1141  *  Q8MIN
1142  *    Update XRa with the 8-bit-wise minimums of signed integers
1143  *    contained in XRb and XRc.
1144  */
1145 static void gen_mxu_Q8MAX_Q8MIN(DisasContext *ctx)
1146 {
1147     uint32_t pad, opc, XRc, XRb, XRa;
1148 
1149     pad = extract32(ctx->opcode, 21, 5);
1150     opc = extract32(ctx->opcode, 18, 3);
1151     XRc = extract32(ctx->opcode, 14, 4);
1152     XRb = extract32(ctx->opcode, 10, 4);
1153     XRa = extract32(ctx->opcode,  6, 4);
1154 
1155     if (unlikely(pad != 0)) {
1156         /* opcode padding incorrect -> do nothing */
1157     } else if (unlikely(XRa == 0)) {
1158         /* destination is zero register -> do nothing */
1159     } else if (unlikely((XRb == 0) && (XRc == 0))) {
1160         /* both operands zero registers -> just set destination to zero */
1161         tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
1162     } else if (unlikely((XRb == 0) || (XRc == 0))) {
1163         /* exactly one operand is zero register - make it be the first...*/
1164         uint32_t XRx = XRb ? XRb : XRc;
1165         /* ...and do byte-wise max/min with one operand 0 */
1166         TCGv_i32 t0 = tcg_temp_new();
1167         TCGv_i32 t1 = tcg_constant_i32(0);
1168         int32_t i;
1169 
1170         /* the leftmost byte (byte 3) first */
1171         tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF000000);
1172         if (opc == OPC_MXU_Q8MAX) {
1173             tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
1174         } else {
1175             tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
1176         }
1177 
1178         /* bytes 2, 1, 0 */
1179         for (i = 2; i >= 0; i--) {
1180             /* extract the byte */
1181             tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF << (8 * i));
1182             /* move the byte to the leftmost position */
1183             tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
1184             /* t0 will be max/min of t0 and t1 */
1185             if (opc == OPC_MXU_Q8MAX) {
1186                 tcg_gen_smax_i32(t0, t0, t1);
1187             } else {
1188                 tcg_gen_smin_i32(t0, t0, t1);
1189             }
1190             /* return resulting byte to its original position */
1191             tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
1192             /* finally update the destination */
1193             tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
1194         }
1195     } else if (unlikely(XRb == XRc)) {
1196         /* both operands same -> just set destination to one of them */
1197         tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
1198     } else {
1199         /* the most general case */
1200         TCGv_i32 t0 = tcg_temp_new();
1201         TCGv_i32 t1 = tcg_temp_new();
1202         int32_t i;
1203 
1204         /* the leftmost bytes (bytes 3) first */
1205         tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF000000);
1206         tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
1207         if (opc == OPC_MXU_Q8MAX) {
1208             tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
1209         } else {
1210             tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
1211         }
1212 
1213         /* bytes 2, 1, 0 */
1214         for (i = 2; i >= 0; i--) {
1215             /* extract corresponding bytes */
1216             tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF << (8 * i));
1217             tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF << (8 * i));
1218             /* move the bytes to the leftmost position */
1219             tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
1220             tcg_gen_shli_i32(t1, t1, 8 * (3 - i));
1221             /* t0 will be max/min of t0 and t1 */
1222             if (opc == OPC_MXU_Q8MAX) {
1223                 tcg_gen_smax_i32(t0, t0, t1);
1224             } else {
1225                 tcg_gen_smin_i32(t0, t0, t1);
1226             }
1227             /* return resulting byte to its original position */
1228             tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
1229             /* finally update the destination */
1230             tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
1231         }
1232     }
1233 }
1234 
1235 
1236 /*
1237  *                 MXU instruction category: align
1238  *                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1239  *
1240  *                       S32ALN     S32ALNI
1241  */
1242 
1243 /*
1244  *  S32ALNI XRc, XRb, XRa, optn3
1245  *    Arrange bytes from XRb and XRc according to one of five sets of
1246  *    rules determined by optn3, and place the result in XRa.
1247  */
1248 static void gen_mxu_S32ALNI(DisasContext *ctx)
1249 {
1250     uint32_t optn3, pad, XRc, XRb, XRa;
1251 
1252     optn3 = extract32(ctx->opcode,  23, 3);
1253     pad   = extract32(ctx->opcode,  21, 2);
1254     XRc   = extract32(ctx->opcode, 14, 4);
1255     XRb   = extract32(ctx->opcode, 10, 4);
1256     XRa   = extract32(ctx->opcode,  6, 4);
1257 
1258     if (unlikely(pad != 0)) {
1259         /* opcode padding incorrect -> do nothing */
1260     } else if (unlikely(XRa == 0)) {
1261         /* destination is zero register -> do nothing */
1262     } else if (unlikely((XRb == 0) && (XRc == 0))) {
1263         /* both operands zero registers -> just set destination to all 0s */
1264         tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
1265     } else if (unlikely(XRb == 0)) {
1266         /* XRb zero register -> just appropriatelly shift XRc into XRa */
1267         switch (optn3) {
1268         case MXU_OPTN3_PTN0:
1269             tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
1270             break;
1271         case MXU_OPTN3_PTN1:
1272         case MXU_OPTN3_PTN2:
1273         case MXU_OPTN3_PTN3:
1274             tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1],
1275                              8 * (4 - optn3));
1276             break;
1277         case MXU_OPTN3_PTN4:
1278             tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
1279             break;
1280         }
1281     } else if (unlikely(XRc == 0)) {
1282         /* XRc zero register -> just appropriatelly shift XRb into XRa */
1283         switch (optn3) {
1284         case MXU_OPTN3_PTN0:
1285             tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
1286             break;
1287         case MXU_OPTN3_PTN1:
1288         case MXU_OPTN3_PTN2:
1289         case MXU_OPTN3_PTN3:
1290             tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
1291             break;
1292         case MXU_OPTN3_PTN4:
1293             tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
1294             break;
1295         }
1296     } else if (unlikely(XRb == XRc)) {
1297         /* both operands same -> just rotation or moving from any of them */
1298         switch (optn3) {
1299         case MXU_OPTN3_PTN0:
1300         case MXU_OPTN3_PTN4:
1301             tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
1302             break;
1303         case MXU_OPTN3_PTN1:
1304         case MXU_OPTN3_PTN2:
1305         case MXU_OPTN3_PTN3:
1306             tcg_gen_rotli_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
1307             break;
1308         }
1309     } else {
1310         /* the most general case */
1311         switch (optn3) {
1312         case MXU_OPTN3_PTN0:
1313             {
1314                 /*                                         */
1315                 /*         XRb                XRc          */
1316                 /*  +---------------+                      */
1317                 /*  | A   B   C   D |    E   F   G   H     */
1318                 /*  +-------+-------+                      */
1319                 /*          |                              */
1320                 /*         XRa                             */
1321                 /*                                         */
1322 
1323                 tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
1324             }
1325             break;
1326         case MXU_OPTN3_PTN1:
1327             {
1328                 /*                                         */
1329                 /*         XRb                 XRc         */
1330                 /*      +-------------------+              */
1331                 /*    A | B   C   D       E | F   G   H    */
1332                 /*      +---------+---------+              */
1333                 /*                |                        */
1334                 /*               XRa                       */
1335                 /*                                         */
1336 
1337                 TCGv_i32 t0 = tcg_temp_new();
1338                 TCGv_i32 t1 = tcg_temp_new();
1339 
1340                 tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x00FFFFFF);
1341                 tcg_gen_shli_i32(t0, t0, 8);
1342 
1343                 tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
1344                 tcg_gen_shri_i32(t1, t1, 24);
1345 
1346                 tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
1347             }
1348             break;
1349         case MXU_OPTN3_PTN2:
1350             {
1351                 /*                                         */
1352                 /*         XRb                 XRc         */
1353                 /*          +-------------------+          */
1354                 /*    A   B | C   D       E   F | G   H    */
1355                 /*          +---------+---------+          */
1356                 /*                    |                    */
1357                 /*                   XRa                   */
1358                 /*                                         */
1359 
1360                 TCGv_i32 t0 = tcg_temp_new();
1361                 TCGv_i32 t1 = tcg_temp_new();
1362 
1363                 tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
1364                 tcg_gen_shli_i32(t0, t0, 16);
1365 
1366                 tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
1367                 tcg_gen_shri_i32(t1, t1, 16);
1368 
1369                 tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
1370             }
1371             break;
1372         case MXU_OPTN3_PTN3:
1373             {
1374                 /*                                         */
1375                 /*         XRb                 XRc         */
1376                 /*              +-------------------+      */
1377                 /*    A   B   C | D       E   F   G | H    */
1378                 /*              +---------+---------+      */
1379                 /*                        |                */
1380                 /*                       XRa               */
1381                 /*                                         */
1382 
1383                 TCGv_i32 t0 = tcg_temp_new();
1384                 TCGv_i32 t1 = tcg_temp_new();
1385 
1386                 tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x000000FF);
1387                 tcg_gen_shli_i32(t0, t0, 24);
1388 
1389                 tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFFFF00);
1390                 tcg_gen_shri_i32(t1, t1, 8);
1391 
1392                 tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
1393             }
1394             break;
1395         case MXU_OPTN3_PTN4:
1396             {
1397                 /*                                         */
1398                 /*         XRb                 XRc         */
1399                 /*                     +---------------+   */
1400                 /*    A   B   C   D    | E   F   G   H |   */
1401                 /*                     +-------+-------+   */
1402                 /*                             |           */
1403                 /*                            XRa          */
1404                 /*                                         */
1405 
1406                 tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
1407             }
1408             break;
1409         }
1410     }
1411 }
1412 
1413 
1414 /*
1415  * Decoding engine for MXU
1416  * =======================
1417  */
1418 
1419 static void decode_opc_mxu__pool00(DisasContext *ctx)
1420 {
1421     uint32_t opcode = extract32(ctx->opcode, 18, 3);
1422 
1423     switch (opcode) {
1424     case OPC_MXU_S32MAX:
1425     case OPC_MXU_S32MIN:
1426         gen_mxu_S32MAX_S32MIN(ctx);
1427         break;
1428     case OPC_MXU_D16MAX:
1429     case OPC_MXU_D16MIN:
1430         gen_mxu_D16MAX_D16MIN(ctx);
1431         break;
1432     case OPC_MXU_Q8MAX:
1433     case OPC_MXU_Q8MIN:
1434         gen_mxu_Q8MAX_Q8MIN(ctx);
1435         break;
1436     default:
1437         MIPS_INVAL("decode_opc_mxu");
1438         gen_reserved_instruction(ctx);
1439         break;
1440     }
1441 }
1442 
1443 static void decode_opc_mxu__pool04(DisasContext *ctx)
1444 {
1445     uint32_t opcode = extract32(ctx->opcode, 20, 1);
1446 
1447     switch (opcode) {
1448     case OPC_MXU_S32LDD:
1449     case OPC_MXU_S32LDDR:
1450         gen_mxu_s32ldd_s32lddr(ctx);
1451         break;
1452     default:
1453         MIPS_INVAL("decode_opc_mxu");
1454         gen_reserved_instruction(ctx);
1455         break;
1456     }
1457 }
1458 
1459 static void decode_opc_mxu__pool16(DisasContext *ctx)
1460 {
1461     uint32_t opcode = extract32(ctx->opcode, 18, 3);
1462 
1463     switch (opcode) {
1464     case OPC_MXU_S32ALNI:
1465         gen_mxu_S32ALNI(ctx);
1466         break;
1467     case OPC_MXU_S32NOR:
1468         gen_mxu_S32NOR(ctx);
1469         break;
1470     case OPC_MXU_S32AND:
1471         gen_mxu_S32AND(ctx);
1472         break;
1473     case OPC_MXU_S32OR:
1474         gen_mxu_S32OR(ctx);
1475         break;
1476     case OPC_MXU_S32XOR:
1477         gen_mxu_S32XOR(ctx);
1478         break;
1479     default:
1480         MIPS_INVAL("decode_opc_mxu");
1481         gen_reserved_instruction(ctx);
1482         break;
1483     }
1484 }
1485 
1486 static void decode_opc_mxu__pool19(DisasContext *ctx)
1487 {
1488     uint32_t opcode = extract32(ctx->opcode, 22, 2);
1489 
1490     switch (opcode) {
1491     case OPC_MXU_Q8MUL:
1492     case OPC_MXU_Q8MULSU:
1493         gen_mxu_q8mul_q8mulsu(ctx);
1494         break;
1495     default:
1496         MIPS_INVAL("decode_opc_mxu");
1497         gen_reserved_instruction(ctx);
1498         break;
1499     }
1500 }
1501 
1502 bool decode_ase_mxu(DisasContext *ctx, uint32_t insn)
1503 {
1504     uint32_t opcode = extract32(insn, 0, 6);
1505 
1506     if (opcode == OPC_MXU_S32M2I) {
1507         gen_mxu_s32m2i(ctx);
1508         return true;
1509     }
1510 
1511     if (opcode == OPC_MXU_S32I2M) {
1512         gen_mxu_s32i2m(ctx);
1513         return true;
1514     }
1515 
1516     {
1517         TCGv t_mxu_cr = tcg_temp_new();
1518         TCGLabel *l_exit = gen_new_label();
1519 
1520         gen_load_mxu_cr(t_mxu_cr);
1521         tcg_gen_andi_tl(t_mxu_cr, t_mxu_cr, MXU_CR_MXU_EN);
1522         tcg_gen_brcondi_tl(TCG_COND_NE, t_mxu_cr, MXU_CR_MXU_EN, l_exit);
1523 
1524         switch (opcode) {
1525         case OPC_MXU__POOL00:
1526             decode_opc_mxu__pool00(ctx);
1527             break;
1528         case OPC_MXU_D16MUL:
1529             gen_mxu_d16mul(ctx);
1530             break;
1531         case OPC_MXU_D16MAC:
1532             gen_mxu_d16mac(ctx);
1533             break;
1534         case OPC_MXU__POOL04:
1535             decode_opc_mxu__pool04(ctx);
1536             break;
1537         case OPC_MXU_S8LDD:
1538             gen_mxu_s8ldd(ctx);
1539             break;
1540         case OPC_MXU__POOL16:
1541             decode_opc_mxu__pool16(ctx);
1542             break;
1543         case OPC_MXU__POOL19:
1544             decode_opc_mxu__pool19(ctx);
1545             break;
1546         default:
1547             MIPS_INVAL("decode_opc_mxu");
1548             gen_reserved_instruction(ctx);
1549         }
1550 
1551         gen_set_label(l_exit);
1552     }
1553 
1554     return true;
1555 }
1556