xref: /openbmc/qemu/target/m68k/op_helper.c (revision ac06724a715864942e2b5e28f92d5d5421f0a0b0)
1 /*
2  *  M68K helper routines
3  *
4  *  Copyright (c) 2007 CodeSourcery
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "exec/semihost.h"
25 
26 #if defined(CONFIG_USER_ONLY)
27 
28 void m68k_cpu_do_interrupt(CPUState *cs)
29 {
30     cs->exception_index = -1;
31 }
32 
33 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
34 {
35 }
36 
37 #else
38 
39 /* Try to fill the TLB and return an exception if error. If retaddr is
40    NULL, it means that the function was called in C code (i.e. not
41    from generated code or from helper.c) */
42 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
43               int mmu_idx, uintptr_t retaddr)
44 {
45     int ret;
46 
47     ret = m68k_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
48     if (unlikely(ret)) {
49         if (retaddr) {
50             /* now we have a real cpu fault */
51             cpu_restore_state(cs, retaddr);
52         }
53         cpu_loop_exit(cs);
54     }
55 }
56 
57 static void do_rte(CPUM68KState *env)
58 {
59     uint32_t sp;
60     uint32_t fmt;
61 
62     sp = env->aregs[7];
63     fmt = cpu_ldl_kernel(env, sp);
64     env->pc = cpu_ldl_kernel(env, sp + 4);
65     sp |= (fmt >> 28) & 3;
66     env->aregs[7] = sp + 8;
67 
68     helper_set_sr(env, fmt);
69 }
70 
71 static void do_interrupt_all(CPUM68KState *env, int is_hw)
72 {
73     CPUState *cs = CPU(m68k_env_get_cpu(env));
74     uint32_t sp;
75     uint32_t fmt;
76     uint32_t retaddr;
77     uint32_t vector;
78 
79     fmt = 0;
80     retaddr = env->pc;
81 
82     if (!is_hw) {
83         switch (cs->exception_index) {
84         case EXCP_RTE:
85             /* Return from an exception.  */
86             do_rte(env);
87             return;
88         case EXCP_HALT_INSN:
89             if (semihosting_enabled()
90                     && (env->sr & SR_S) != 0
91                     && (env->pc & 3) == 0
92                     && cpu_lduw_code(env, env->pc - 4) == 0x4e71
93                     && cpu_ldl_code(env, env->pc) == 0x4e7bf000) {
94                 env->pc += 4;
95                 do_m68k_semihosting(env, env->dregs[0]);
96                 return;
97             }
98             cs->halted = 1;
99             cs->exception_index = EXCP_HLT;
100             cpu_loop_exit(cs);
101             return;
102         }
103         if (cs->exception_index >= EXCP_TRAP0
104             && cs->exception_index <= EXCP_TRAP15) {
105             /* Move the PC after the trap instruction.  */
106             retaddr += 2;
107         }
108     }
109 
110     vector = cs->exception_index << 2;
111 
112     fmt |= 0x40000000;
113     fmt |= vector << 16;
114     fmt |= env->sr;
115     fmt |= cpu_m68k_get_ccr(env);
116 
117     env->sr |= SR_S;
118     if (is_hw) {
119         env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
120         env->sr &= ~SR_M;
121     }
122     m68k_switch_sp(env);
123     sp = env->aregs[7];
124     fmt |= (sp & 3) << 28;
125 
126     /* ??? This could cause MMU faults.  */
127     sp &= ~3;
128     sp -= 4;
129     cpu_stl_kernel(env, sp, retaddr);
130     sp -= 4;
131     cpu_stl_kernel(env, sp, fmt);
132     env->aregs[7] = sp;
133     /* Jump to vector.  */
134     env->pc = cpu_ldl_kernel(env, env->vbr + vector);
135 }
136 
137 void m68k_cpu_do_interrupt(CPUState *cs)
138 {
139     M68kCPU *cpu = M68K_CPU(cs);
140     CPUM68KState *env = &cpu->env;
141 
142     do_interrupt_all(env, 0);
143 }
144 
145 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
146 {
147     do_interrupt_all(env, 1);
148 }
149 #endif
150 
151 bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
152 {
153     M68kCPU *cpu = M68K_CPU(cs);
154     CPUM68KState *env = &cpu->env;
155 
156     if (interrupt_request & CPU_INTERRUPT_HARD
157         && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
158         /* Real hardware gets the interrupt vector via an IACK cycle
159            at this point.  Current emulated hardware doesn't rely on
160            this, so we provide/save the vector when the interrupt is
161            first signalled.  */
162         cs->exception_index = env->pending_vector;
163         do_interrupt_m68k_hardirq(env);
164         return true;
165     }
166     return false;
167 }
168 
169 static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
170 {
171     CPUState *cs = CPU(m68k_env_get_cpu(env));
172 
173     cs->exception_index = tt;
174     cpu_loop_exit_restore(cs, raddr);
175 }
176 
177 static void raise_exception(CPUM68KState *env, int tt)
178 {
179     raise_exception_ra(env, tt, 0);
180 }
181 
182 void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
183 {
184     raise_exception(env, tt);
185 }
186 
187 void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den)
188 {
189     uint32_t num = env->dregs[destr];
190     uint32_t quot, rem;
191 
192     if (den == 0) {
193         raise_exception_ra(env, EXCP_DIV0, GETPC());
194     }
195     quot = num / den;
196     rem = num % den;
197 
198     env->cc_c = 0; /* always cleared, even if overflow */
199     if (quot > 0xffff) {
200         env->cc_v = -1;
201         /* real 68040 keeps N and unset Z on overflow,
202          * whereas documentation says "undefined"
203          */
204         env->cc_z = 1;
205         return;
206     }
207     env->dregs[destr] = deposit32(quot, 16, 16, rem);
208     env->cc_z = (int16_t)quot;
209     env->cc_n = (int16_t)quot;
210     env->cc_v = 0;
211 }
212 
213 void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den)
214 {
215     int32_t num = env->dregs[destr];
216     uint32_t quot, rem;
217 
218     if (den == 0) {
219         raise_exception_ra(env, EXCP_DIV0, GETPC());
220     }
221     quot = num / den;
222     rem = num % den;
223 
224     env->cc_c = 0; /* always cleared, even if overflow */
225     if (quot != (int16_t)quot) {
226         env->cc_v = -1;
227         /* nothing else is modified */
228         /* real 68040 keeps N and unset Z on overflow,
229          * whereas documentation says "undefined"
230          */
231         env->cc_z = 1;
232         return;
233     }
234     env->dregs[destr] = deposit32(quot, 16, 16, rem);
235     env->cc_z = (int16_t)quot;
236     env->cc_n = (int16_t)quot;
237     env->cc_v = 0;
238 }
239 
240 void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den)
241 {
242     uint32_t num = env->dregs[numr];
243     uint32_t quot, rem;
244 
245     if (den == 0) {
246         raise_exception_ra(env, EXCP_DIV0, GETPC());
247     }
248     quot = num / den;
249     rem = num % den;
250 
251     env->cc_c = 0;
252     env->cc_z = quot;
253     env->cc_n = quot;
254     env->cc_v = 0;
255 
256     if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
257         if (numr == regr) {
258             env->dregs[numr] = quot;
259         } else {
260             env->dregs[regr] = rem;
261         }
262     } else {
263         env->dregs[regr] = rem;
264         env->dregs[numr] = quot;
265     }
266 }
267 
268 void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den)
269 {
270     int32_t num = env->dregs[numr];
271     int32_t quot, rem;
272 
273     if (den == 0) {
274         raise_exception_ra(env, EXCP_DIV0, GETPC());
275     }
276     quot = num / den;
277     rem = num % den;
278 
279     env->cc_c = 0;
280     env->cc_z = quot;
281     env->cc_n = quot;
282     env->cc_v = 0;
283 
284     if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
285         if (numr == regr) {
286             env->dregs[numr] = quot;
287         } else {
288             env->dregs[regr] = rem;
289         }
290     } else {
291         env->dregs[regr] = rem;
292         env->dregs[numr] = quot;
293     }
294 }
295 
296 void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den)
297 {
298     uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
299     uint64_t quot;
300     uint32_t rem;
301 
302     if (den == 0) {
303         raise_exception_ra(env, EXCP_DIV0, GETPC());
304     }
305     quot = num / den;
306     rem = num % den;
307 
308     env->cc_c = 0; /* always cleared, even if overflow */
309     if (quot > 0xffffffffULL) {
310         env->cc_v = -1;
311         /* real 68040 keeps N and unset Z on overflow,
312          * whereas documentation says "undefined"
313          */
314         env->cc_z = 1;
315         return;
316     }
317     env->cc_z = quot;
318     env->cc_n = quot;
319     env->cc_v = 0;
320 
321     /*
322      * If Dq and Dr are the same, the quotient is returned.
323      * therefore we set Dq last.
324      */
325 
326     env->dregs[regr] = rem;
327     env->dregs[numr] = quot;
328 }
329 
330 void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den)
331 {
332     int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
333     int64_t quot;
334     int32_t rem;
335 
336     if (den == 0) {
337         raise_exception_ra(env, EXCP_DIV0, GETPC());
338     }
339     quot = num / den;
340     rem = num % den;
341 
342     env->cc_c = 0; /* always cleared, even if overflow */
343     if (quot != (int32_t)quot) {
344         env->cc_v = -1;
345         /* real 68040 keeps N and unset Z on overflow,
346          * whereas documentation says "undefined"
347          */
348         env->cc_z = 1;
349         return;
350     }
351     env->cc_z = quot;
352     env->cc_n = quot;
353     env->cc_v = 0;
354 
355     /*
356      * If Dq and Dr are the same, the quotient is returned.
357      * therefore we set Dq last.
358      */
359 
360     env->dregs[regr] = rem;
361     env->dregs[numr] = quot;
362 }
363 
364 void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
365 {
366     uint32_t Dc1 = extract32(regs, 9, 3);
367     uint32_t Dc2 = extract32(regs, 6, 3);
368     uint32_t Du1 = extract32(regs, 3, 3);
369     uint32_t Du2 = extract32(regs, 0, 3);
370     int16_t c1 = env->dregs[Dc1];
371     int16_t c2 = env->dregs[Dc2];
372     int16_t u1 = env->dregs[Du1];
373     int16_t u2 = env->dregs[Du2];
374     int16_t l1, l2;
375     uintptr_t ra = GETPC();
376 
377     if (parallel_cpus) {
378         /* Tell the main loop we need to serialize this insn.  */
379         cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
380     } else {
381         /* We're executing in a serial context -- no need to be atomic.  */
382         l1 = cpu_lduw_data_ra(env, a1, ra);
383         l2 = cpu_lduw_data_ra(env, a2, ra);
384         if (l1 == c1 && l2 == c2) {
385             cpu_stw_data_ra(env, a1, u1, ra);
386             cpu_stw_data_ra(env, a2, u2, ra);
387         }
388     }
389 
390     if (c1 != l1) {
391         env->cc_n = l1;
392         env->cc_v = c1;
393     } else {
394         env->cc_n = l2;
395         env->cc_v = c2;
396     }
397     env->cc_op = CC_OP_CMPW;
398     env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
399     env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
400 }
401 
402 void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
403 {
404     uint32_t Dc1 = extract32(regs, 9, 3);
405     uint32_t Dc2 = extract32(regs, 6, 3);
406     uint32_t Du1 = extract32(regs, 3, 3);
407     uint32_t Du2 = extract32(regs, 0, 3);
408     uint32_t c1 = env->dregs[Dc1];
409     uint32_t c2 = env->dregs[Dc2];
410     uint32_t u1 = env->dregs[Du1];
411     uint32_t u2 = env->dregs[Du2];
412     uint32_t l1, l2;
413     uintptr_t ra = GETPC();
414 #if defined(CONFIG_ATOMIC64) && !defined(CONFIG_USER_ONLY)
415     int mmu_idx = cpu_mmu_index(env, 0);
416     TCGMemOpIdx oi;
417 #endif
418 
419     if (parallel_cpus) {
420         /* We're executing in a parallel context -- must be atomic.  */
421 #ifdef CONFIG_ATOMIC64
422         uint64_t c, u, l;
423         if ((a1 & 7) == 0 && a2 == a1 + 4) {
424             c = deposit64(c2, 32, 32, c1);
425             u = deposit64(u2, 32, 32, u1);
426 #ifdef CONFIG_USER_ONLY
427             l = helper_atomic_cmpxchgq_be(env, a1, c, u);
428 #else
429             oi = make_memop_idx(MO_BEQ, mmu_idx);
430             l = helper_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
431 #endif
432             l1 = l >> 32;
433             l2 = l;
434         } else if ((a2 & 7) == 0 && a1 == a2 + 4) {
435             c = deposit64(c1, 32, 32, c2);
436             u = deposit64(u1, 32, 32, u2);
437 #ifdef CONFIG_USER_ONLY
438             l = helper_atomic_cmpxchgq_be(env, a2, c, u);
439 #else
440             oi = make_memop_idx(MO_BEQ, mmu_idx);
441             l = helper_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
442 #endif
443             l2 = l >> 32;
444             l1 = l;
445         } else
446 #endif
447         {
448             /* Tell the main loop we need to serialize this insn.  */
449             cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
450         }
451     } else {
452         /* We're executing in a serial context -- no need to be atomic.  */
453         l1 = cpu_ldl_data_ra(env, a1, ra);
454         l2 = cpu_ldl_data_ra(env, a2, ra);
455         if (l1 == c1 && l2 == c2) {
456             cpu_stl_data_ra(env, a1, u1, ra);
457             cpu_stl_data_ra(env, a2, u2, ra);
458         }
459     }
460 
461     if (c1 != l1) {
462         env->cc_n = l1;
463         env->cc_v = c1;
464     } else {
465         env->cc_n = l2;
466         env->cc_v = c2;
467     }
468     env->cc_op = CC_OP_CMPL;
469     env->dregs[Dc1] = l1;
470     env->dregs[Dc2] = l2;
471 }
472 
473 struct bf_data {
474     uint32_t addr;
475     uint32_t bofs;
476     uint32_t blen;
477     uint32_t len;
478 };
479 
480 static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
481 {
482     int bofs, blen;
483 
484     /* Bound length; map 0 to 32.  */
485     len = ((len - 1) & 31) + 1;
486 
487     /* Note that ofs is signed.  */
488     addr += ofs / 8;
489     bofs = ofs % 8;
490     if (bofs < 0) {
491         bofs += 8;
492         addr -= 1;
493     }
494 
495     /* Compute the number of bytes required (minus one) to
496        satisfy the bitfield.  */
497     blen = (bofs + len - 1) / 8;
498 
499     /* Canonicalize the bit offset for data loaded into a 64-bit big-endian
500        word.  For the cases where BLEN is not a power of 2, adjust ADDR so
501        that we can use the next power of two sized load without crossing a
502        page boundary, unless the field itself crosses the boundary.  */
503     switch (blen) {
504     case 0:
505         bofs += 56;
506         break;
507     case 1:
508         bofs += 48;
509         break;
510     case 2:
511         if (addr & 1) {
512             bofs += 8;
513             addr -= 1;
514         }
515         /* fallthru */
516     case 3:
517         bofs += 32;
518         break;
519     case 4:
520         if (addr & 3) {
521             bofs += 8 * (addr & 3);
522             addr &= -4;
523         }
524         break;
525     default:
526         g_assert_not_reached();
527     }
528 
529     return (struct bf_data){
530         .addr = addr,
531         .bofs = bofs,
532         .blen = blen,
533         .len = len,
534     };
535 }
536 
537 static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
538                         uintptr_t ra)
539 {
540     switch (blen) {
541     case 0:
542         return cpu_ldub_data_ra(env, addr, ra);
543     case 1:
544         return cpu_lduw_data_ra(env, addr, ra);
545     case 2:
546     case 3:
547         return cpu_ldl_data_ra(env, addr, ra);
548     case 4:
549         return cpu_ldq_data_ra(env, addr, ra);
550     default:
551         g_assert_not_reached();
552     }
553 }
554 
555 static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
556                      uint64_t data, uintptr_t ra)
557 {
558     switch (blen) {
559     case 0:
560         cpu_stb_data_ra(env, addr, data, ra);
561         break;
562     case 1:
563         cpu_stw_data_ra(env, addr, data, ra);
564         break;
565     case 2:
566     case 3:
567         cpu_stl_data_ra(env, addr, data, ra);
568         break;
569     case 4:
570         cpu_stq_data_ra(env, addr, data, ra);
571         break;
572     default:
573         g_assert_not_reached();
574     }
575 }
576 
577 uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
578                             int32_t ofs, uint32_t len)
579 {
580     uintptr_t ra = GETPC();
581     struct bf_data d = bf_prep(addr, ofs, len);
582     uint64_t data = bf_load(env, d.addr, d.blen, ra);
583 
584     return (int64_t)(data << d.bofs) >> (64 - d.len);
585 }
586 
587 uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
588                             int32_t ofs, uint32_t len)
589 {
590     uintptr_t ra = GETPC();
591     struct bf_data d = bf_prep(addr, ofs, len);
592     uint64_t data = bf_load(env, d.addr, d.blen, ra);
593 
594     /* Put CC_N at the top of the high word; put the zero-extended value
595        at the bottom of the low word.  */
596     data <<= d.bofs;
597     data >>= 64 - d.len;
598     data |= data << (64 - d.len);
599 
600     return data;
601 }
602 
603 uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
604                            int32_t ofs, uint32_t len)
605 {
606     uintptr_t ra = GETPC();
607     struct bf_data d = bf_prep(addr, ofs, len);
608     uint64_t data = bf_load(env, d.addr, d.blen, ra);
609     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
610 
611     data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);
612 
613     bf_store(env, d.addr, d.blen, data, ra);
614 
615     /* The field at the top of the word is also CC_N for CC_OP_LOGIC.  */
616     return val << (32 - d.len);
617 }
618 
619 uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
620                            int32_t ofs, uint32_t len)
621 {
622     uintptr_t ra = GETPC();
623     struct bf_data d = bf_prep(addr, ofs, len);
624     uint64_t data = bf_load(env, d.addr, d.blen, ra);
625     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
626 
627     bf_store(env, d.addr, d.blen, data ^ mask, ra);
628 
629     return ((data & mask) << d.bofs) >> 32;
630 }
631 
632 uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
633                            int32_t ofs, uint32_t len)
634 {
635     uintptr_t ra = GETPC();
636     struct bf_data d = bf_prep(addr, ofs, len);
637     uint64_t data = bf_load(env, d.addr, d.blen, ra);
638     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
639 
640     bf_store(env, d.addr, d.blen, data & ~mask, ra);
641 
642     return ((data & mask) << d.bofs) >> 32;
643 }
644 
645 uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
646                            int32_t ofs, uint32_t len)
647 {
648     uintptr_t ra = GETPC();
649     struct bf_data d = bf_prep(addr, ofs, len);
650     uint64_t data = bf_load(env, d.addr, d.blen, ra);
651     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
652 
653     bf_store(env, d.addr, d.blen, data | mask, ra);
654 
655     return ((data & mask) << d.bofs) >> 32;
656 }
657 
658 uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
659 {
660     return (n ? clz32(n) : len) + ofs;
661 }
662 
663 uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
664                            int32_t ofs, uint32_t len)
665 {
666     uintptr_t ra = GETPC();
667     struct bf_data d = bf_prep(addr, ofs, len);
668     uint64_t data = bf_load(env, d.addr, d.blen, ra);
669     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
670     uint64_t n = (data & mask) << d.bofs;
671     uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
672 
673     /* Return FFO in the low word and N in the high word.
674        Note that because of MASK and the shift, the low word
675        is already zero.  */
676     return n | ffo;
677 }
678