xref: /openbmc/qemu/target/i386/tcg/sysemu/misc_helper.c (revision efb359346c7af62dfa86f7ae7d3717a098b239f5)
1 /*
2  *  x86 misc helpers - sysemu code
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "exec/cpu_ldst.h"
25 #include "exec/address-spaces.h"
26 #include "exec/exec-all.h"
27 #include "tcg/helper-tcg.h"
28 #include "hw/i386/apic.h"
29 
30 void helper_outb(CPUX86State *env, uint32_t port, uint32_t data)
31 {
32     address_space_stb(&address_space_io, port, data,
33                       cpu_get_mem_attrs(env), NULL);
34 }
35 
36 target_ulong helper_inb(CPUX86State *env, uint32_t port)
37 {
38     return address_space_ldub(&address_space_io, port,
39                               cpu_get_mem_attrs(env), NULL);
40 }
41 
42 void helper_outw(CPUX86State *env, uint32_t port, uint32_t data)
43 {
44     address_space_stw(&address_space_io, port, data,
45                       cpu_get_mem_attrs(env), NULL);
46 }
47 
48 target_ulong helper_inw(CPUX86State *env, uint32_t port)
49 {
50     return address_space_lduw(&address_space_io, port,
51                               cpu_get_mem_attrs(env), NULL);
52 }
53 
54 void helper_outl(CPUX86State *env, uint32_t port, uint32_t data)
55 {
56     address_space_stl(&address_space_io, port, data,
57                       cpu_get_mem_attrs(env), NULL);
58 }
59 
60 target_ulong helper_inl(CPUX86State *env, uint32_t port)
61 {
62     return address_space_ldl(&address_space_io, port,
63                              cpu_get_mem_attrs(env), NULL);
64 }
65 
66 target_ulong helper_read_cr8(CPUX86State *env)
67 {
68     if (!(env->hflags2 & HF2_VINTR_MASK)) {
69         return cpu_get_apic_tpr(env_archcpu(env)->apic_state);
70     } else {
71         return env->int_ctl & V_TPR_MASK;
72     }
73 }
74 
75 void helper_write_crN(CPUX86State *env, int reg, target_ulong t0)
76 {
77     switch (reg) {
78     case 0:
79         /*
80         * If we reach this point, the CR0 write intercept is disabled.
81         * But we could still exit if the hypervisor has requested the selective
82         * intercept for bits other than TS and MP
83         */
84         if (cpu_svm_has_intercept(env, SVM_EXIT_CR0_SEL_WRITE) &&
85             ((env->cr[0] ^ t0) & ~(CR0_TS_MASK | CR0_MP_MASK))) {
86             cpu_vmexit(env, SVM_EXIT_CR0_SEL_WRITE, 0, GETPC());
87         }
88         cpu_x86_update_cr0(env, t0);
89         break;
90     case 3:
91         if ((env->efer & MSR_EFER_LMA) &&
92                 (t0 & ((~0ULL) << env_archcpu(env)->phys_bits))) {
93             cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
94         }
95         if (!(env->efer & MSR_EFER_LMA)) {
96             t0 &= 0xffffffffUL;
97         }
98         cpu_x86_update_cr3(env, t0);
99         break;
100     case 4:
101         if (t0 & cr4_reserved_bits(env)) {
102             cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC());
103         }
104         if (((t0 ^ env->cr[4]) & CR4_LA57_MASK) &&
105             (env->hflags & HF_CS64_MASK)) {
106             raise_exception_ra(env, EXCP0D_GPF, GETPC());
107         }
108         cpu_x86_update_cr4(env, t0);
109         break;
110     case 8:
111         if (!(env->hflags2 & HF2_VINTR_MASK)) {
112             bql_lock();
113             cpu_set_apic_tpr(env_archcpu(env)->apic_state, t0);
114             bql_unlock();
115         }
116         env->int_ctl = (env->int_ctl & ~V_TPR_MASK) | (t0 & V_TPR_MASK);
117 
118         CPUState *cs = env_cpu(env);
119         if (ctl_has_irq(env)) {
120             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
121         } else {
122             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
123         }
124         break;
125     default:
126         env->cr[reg] = t0;
127         break;
128     }
129 }
130 
131 void helper_wrmsr(CPUX86State *env)
132 {
133     uint64_t val;
134     CPUState *cs = env_cpu(env);
135 
136     cpu_svm_check_intercept_param(env, SVM_EXIT_MSR, 1, GETPC());
137 
138     val = ((uint32_t)env->regs[R_EAX]) |
139         ((uint64_t)((uint32_t)env->regs[R_EDX]) << 32);
140 
141     switch ((uint32_t)env->regs[R_ECX]) {
142     case MSR_IA32_SYSENTER_CS:
143         env->sysenter_cs = val & 0xffff;
144         break;
145     case MSR_IA32_SYSENTER_ESP:
146         env->sysenter_esp = val;
147         break;
148     case MSR_IA32_SYSENTER_EIP:
149         env->sysenter_eip = val;
150         break;
151     case MSR_IA32_APICBASE: {
152         int ret;
153 
154         if (val & MSR_IA32_APICBASE_RESERVED) {
155             goto error;
156         }
157 
158         ret = cpu_set_apic_base(env_archcpu(env)->apic_state, val);
159         if (ret < 0) {
160             goto error;
161         }
162         break;
163     }
164     case MSR_EFER:
165         {
166             uint64_t update_mask;
167 
168             update_mask = 0;
169             if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_SYSCALL) {
170                 update_mask |= MSR_EFER_SCE;
171             }
172             if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
173                 update_mask |= MSR_EFER_LME;
174             }
175             if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_FFXSR) {
176                 update_mask |= MSR_EFER_FFXSR;
177             }
178             if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_NX) {
179                 update_mask |= MSR_EFER_NXE;
180             }
181             if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
182                 update_mask |= MSR_EFER_SVME;
183             }
184             if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_FFXSR) {
185                 update_mask |= MSR_EFER_FFXSR;
186             }
187             cpu_load_efer(env, (env->efer & ~update_mask) |
188                           (val & update_mask));
189         }
190         break;
191     case MSR_STAR:
192         env->star = val;
193         break;
194     case MSR_PAT:
195         env->pat = val;
196         break;
197     case MSR_IA32_PKRS:
198         if (val & 0xFFFFFFFF00000000ull) {
199             goto error;
200         }
201         env->pkrs = val;
202         tlb_flush(cs);
203         break;
204     case MSR_VM_HSAVE_PA:
205         if (val & (0xfff | ((~0ULL) << env_archcpu(env)->phys_bits))) {
206             goto error;
207         }
208         env->vm_hsave = val;
209         break;
210 #ifdef TARGET_X86_64
211     case MSR_LSTAR:
212         env->lstar = val;
213         break;
214     case MSR_CSTAR:
215         env->cstar = val;
216         break;
217     case MSR_FMASK:
218         env->fmask = val;
219         break;
220     case MSR_FSBASE:
221         env->segs[R_FS].base = val;
222         break;
223     case MSR_GSBASE:
224         env->segs[R_GS].base = val;
225         break;
226     case MSR_KERNELGSBASE:
227         env->kernelgsbase = val;
228         break;
229 #endif
230     case MSR_MTRRphysBase(0):
231     case MSR_MTRRphysBase(1):
232     case MSR_MTRRphysBase(2):
233     case MSR_MTRRphysBase(3):
234     case MSR_MTRRphysBase(4):
235     case MSR_MTRRphysBase(5):
236     case MSR_MTRRphysBase(6):
237     case MSR_MTRRphysBase(7):
238         env->mtrr_var[((uint32_t)env->regs[R_ECX] -
239                        MSR_MTRRphysBase(0)) / 2].base = val;
240         break;
241     case MSR_MTRRphysMask(0):
242     case MSR_MTRRphysMask(1):
243     case MSR_MTRRphysMask(2):
244     case MSR_MTRRphysMask(3):
245     case MSR_MTRRphysMask(4):
246     case MSR_MTRRphysMask(5):
247     case MSR_MTRRphysMask(6):
248     case MSR_MTRRphysMask(7):
249         env->mtrr_var[((uint32_t)env->regs[R_ECX] -
250                        MSR_MTRRphysMask(0)) / 2].mask = val;
251         break;
252     case MSR_MTRRfix64K_00000:
253         env->mtrr_fixed[(uint32_t)env->regs[R_ECX] -
254                         MSR_MTRRfix64K_00000] = val;
255         break;
256     case MSR_MTRRfix16K_80000:
257     case MSR_MTRRfix16K_A0000:
258         env->mtrr_fixed[(uint32_t)env->regs[R_ECX] -
259                         MSR_MTRRfix16K_80000 + 1] = val;
260         break;
261     case MSR_MTRRfix4K_C0000:
262     case MSR_MTRRfix4K_C8000:
263     case MSR_MTRRfix4K_D0000:
264     case MSR_MTRRfix4K_D8000:
265     case MSR_MTRRfix4K_E0000:
266     case MSR_MTRRfix4K_E8000:
267     case MSR_MTRRfix4K_F0000:
268     case MSR_MTRRfix4K_F8000:
269         env->mtrr_fixed[(uint32_t)env->regs[R_ECX] -
270                         MSR_MTRRfix4K_C0000 + 3] = val;
271         break;
272     case MSR_MTRRdefType:
273         env->mtrr_deftype = val;
274         break;
275     case MSR_MCG_STATUS:
276         env->mcg_status = val;
277         break;
278     case MSR_MCG_CTL:
279         if ((env->mcg_cap & MCG_CTL_P)
280             && (val == 0 || val == ~(uint64_t)0)) {
281             env->mcg_ctl = val;
282         }
283         break;
284     case MSR_TSC_AUX:
285         env->tsc_aux = val;
286         break;
287     case MSR_IA32_MISC_ENABLE:
288         env->msr_ia32_misc_enable = val;
289         break;
290     case MSR_IA32_BNDCFGS:
291         /* FIXME: #GP if reserved bits are set.  */
292         /* FIXME: Extend highest implemented bit of linear address.  */
293         env->msr_bndcfgs = val;
294         cpu_sync_bndcs_hflags(env);
295         break;
296     case MSR_APIC_START ... MSR_APIC_END: {
297         int ret;
298         int index = (uint32_t)env->regs[R_ECX] - MSR_APIC_START;
299 
300         bql_lock();
301         ret = apic_msr_write(index, val);
302         bql_unlock();
303         if (ret < 0) {
304             goto error;
305         }
306 
307         break;
308     }
309     default:
310         if ((uint32_t)env->regs[R_ECX] >= MSR_MC0_CTL
311             && (uint32_t)env->regs[R_ECX] < MSR_MC0_CTL +
312             (4 * env->mcg_cap & 0xff)) {
313             uint32_t offset = (uint32_t)env->regs[R_ECX] - MSR_MC0_CTL;
314             if ((offset & 0x3) != 0
315                 || (val == 0 || val == ~(uint64_t)0)) {
316                 env->mce_banks[offset] = val;
317             }
318             break;
319         }
320         /* XXX: exception? */
321         break;
322     }
323     return;
324 error:
325     raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
326 }
327 
328 void helper_rdmsr(CPUX86State *env)
329 {
330     X86CPU *x86_cpu = env_archcpu(env);
331     uint64_t val;
332 
333     cpu_svm_check_intercept_param(env, SVM_EXIT_MSR, 0, GETPC());
334 
335     switch ((uint32_t)env->regs[R_ECX]) {
336     case MSR_IA32_SYSENTER_CS:
337         val = env->sysenter_cs;
338         break;
339     case MSR_IA32_SYSENTER_ESP:
340         val = env->sysenter_esp;
341         break;
342     case MSR_IA32_SYSENTER_EIP:
343         val = env->sysenter_eip;
344         break;
345     case MSR_IA32_APICBASE:
346         val = cpu_get_apic_base(env_archcpu(env)->apic_state);
347         break;
348     case MSR_EFER:
349         val = env->efer;
350         break;
351     case MSR_STAR:
352         val = env->star;
353         break;
354     case MSR_PAT:
355         val = env->pat;
356         break;
357     case MSR_IA32_PKRS:
358         val = env->pkrs;
359         break;
360     case MSR_VM_HSAVE_PA:
361         val = env->vm_hsave;
362         break;
363     case MSR_IA32_PERF_STATUS:
364         /* tsc_increment_by_tick */
365         val = 1000ULL;
366         /* CPU multiplier */
367         val |= (((uint64_t)4ULL) << 40);
368         break;
369 #ifdef TARGET_X86_64
370     case MSR_LSTAR:
371         val = env->lstar;
372         break;
373     case MSR_CSTAR:
374         val = env->cstar;
375         break;
376     case MSR_FMASK:
377         val = env->fmask;
378         break;
379     case MSR_FSBASE:
380         val = env->segs[R_FS].base;
381         break;
382     case MSR_GSBASE:
383         val = env->segs[R_GS].base;
384         break;
385     case MSR_KERNELGSBASE:
386         val = env->kernelgsbase;
387         break;
388     case MSR_TSC_AUX:
389         val = env->tsc_aux;
390         break;
391 #endif
392     case MSR_SMI_COUNT:
393         val = env->msr_smi_count;
394         break;
395     case MSR_MTRRphysBase(0):
396     case MSR_MTRRphysBase(1):
397     case MSR_MTRRphysBase(2):
398     case MSR_MTRRphysBase(3):
399     case MSR_MTRRphysBase(4):
400     case MSR_MTRRphysBase(5):
401     case MSR_MTRRphysBase(6):
402     case MSR_MTRRphysBase(7):
403         val = env->mtrr_var[((uint32_t)env->regs[R_ECX] -
404                              MSR_MTRRphysBase(0)) / 2].base;
405         break;
406     case MSR_MTRRphysMask(0):
407     case MSR_MTRRphysMask(1):
408     case MSR_MTRRphysMask(2):
409     case MSR_MTRRphysMask(3):
410     case MSR_MTRRphysMask(4):
411     case MSR_MTRRphysMask(5):
412     case MSR_MTRRphysMask(6):
413     case MSR_MTRRphysMask(7):
414         val = env->mtrr_var[((uint32_t)env->regs[R_ECX] -
415                              MSR_MTRRphysMask(0)) / 2].mask;
416         break;
417     case MSR_MTRRfix64K_00000:
418         val = env->mtrr_fixed[0];
419         break;
420     case MSR_MTRRfix16K_80000:
421     case MSR_MTRRfix16K_A0000:
422         val = env->mtrr_fixed[(uint32_t)env->regs[R_ECX] -
423                               MSR_MTRRfix16K_80000 + 1];
424         break;
425     case MSR_MTRRfix4K_C0000:
426     case MSR_MTRRfix4K_C8000:
427     case MSR_MTRRfix4K_D0000:
428     case MSR_MTRRfix4K_D8000:
429     case MSR_MTRRfix4K_E0000:
430     case MSR_MTRRfix4K_E8000:
431     case MSR_MTRRfix4K_F0000:
432     case MSR_MTRRfix4K_F8000:
433         val = env->mtrr_fixed[(uint32_t)env->regs[R_ECX] -
434                               MSR_MTRRfix4K_C0000 + 3];
435         break;
436     case MSR_MTRRdefType:
437         val = env->mtrr_deftype;
438         break;
439     case MSR_MTRRcap:
440         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
441             val = MSR_MTRRcap_VCNT | MSR_MTRRcap_FIXRANGE_SUPPORT |
442                 MSR_MTRRcap_WC_SUPPORTED;
443         } else {
444             /* XXX: exception? */
445             val = 0;
446         }
447         break;
448     case MSR_MCG_CAP:
449         val = env->mcg_cap;
450         break;
451     case MSR_MCG_CTL:
452         if (env->mcg_cap & MCG_CTL_P) {
453             val = env->mcg_ctl;
454         } else {
455             val = 0;
456         }
457         break;
458     case MSR_MCG_STATUS:
459         val = env->mcg_status;
460         break;
461     case MSR_IA32_MISC_ENABLE:
462         val = env->msr_ia32_misc_enable;
463         break;
464     case MSR_IA32_BNDCFGS:
465         val = env->msr_bndcfgs;
466         break;
467      case MSR_IA32_UCODE_REV:
468         val = x86_cpu->ucode_rev;
469         break;
470     case MSR_CORE_THREAD_COUNT: {
471         CPUState *cs = CPU(x86_cpu);
472         val = (cs->nr_threads * cs->nr_cores) | (cs->nr_cores << 16);
473         break;
474     }
475     case MSR_APIC_START ... MSR_APIC_END: {
476         int ret;
477         int index = (uint32_t)env->regs[R_ECX] - MSR_APIC_START;
478 
479         bql_lock();
480         ret = apic_msr_read(index, &val);
481         bql_unlock();
482         if (ret < 0) {
483             raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC());
484         }
485 
486         break;
487     }
488     default:
489         if ((uint32_t)env->regs[R_ECX] >= MSR_MC0_CTL
490             && (uint32_t)env->regs[R_ECX] < MSR_MC0_CTL +
491             (4 * env->mcg_cap & 0xff)) {
492             uint32_t offset = (uint32_t)env->regs[R_ECX] - MSR_MC0_CTL;
493             val = env->mce_banks[offset];
494             break;
495         }
496         /* XXX: exception? */
497         val = 0;
498         break;
499     }
500     env->regs[R_EAX] = (uint32_t)(val);
501     env->regs[R_EDX] = (uint32_t)(val >> 32);
502 }
503 
504 void helper_flush_page(CPUX86State *env, target_ulong addr)
505 {
506     tlb_flush_page(env_cpu(env), addr);
507 }
508 
509 G_NORETURN void helper_hlt(CPUX86State *env)
510 {
511     CPUState *cs = env_cpu(env);
512 
513     do_end_instruction(env);
514     cs->halted = 1;
515     cs->exception_index = EXCP_HLT;
516     cpu_loop_exit(cs);
517 }
518 
519 void helper_monitor(CPUX86State *env, target_ulong ptr)
520 {
521     if ((uint32_t)env->regs[R_ECX] != 0) {
522         raise_exception_ra(env, EXCP0D_GPF, GETPC());
523     }
524     /* XXX: store address? */
525     cpu_svm_check_intercept_param(env, SVM_EXIT_MONITOR, 0, GETPC());
526 }
527 
528 G_NORETURN void helper_mwait(CPUX86State *env, int next_eip_addend)
529 {
530     CPUState *cs = env_cpu(env);
531 
532     if ((uint32_t)env->regs[R_ECX] != 0) {
533         raise_exception_ra(env, EXCP0D_GPF, GETPC());
534     }
535     cpu_svm_check_intercept_param(env, SVM_EXIT_MWAIT, 0, GETPC());
536     env->eip += next_eip_addend;
537 
538     /* XXX: not complete but not completely erroneous */
539     if (cs->cpu_index != 0 || CPU_NEXT(cs) != NULL) {
540         helper_pause(env);
541     } else {
542         helper_hlt(env);
543     }
544 }
545