xref: /openbmc/qemu/target/i386/tcg/decode-new.c.inc (revision 72baef13b9dce71f20ae840d9951e559e14abf6d)
1/*
2 * New-style decoder for i386 instructions
3 *
4 *  Copyright (c) 2022 Red Hat, Inc.
5 *
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * The decoder is mostly based on tables copied from the Intel SDM.  As
24 * a result, most operand load and writeback is done entirely in common
25 * table-driven code using the same operand type (X86_TYPE_*) and
26 * size (X86_SIZE_*) codes used in the manual.  There are a few differences
27 * though.
28 *
29 * Operand sizes
30 * -------------
31 *
32 * The manual lists d64 ("cannot encode 32-bit size in 64-bit mode") and f64
33 * ("cannot encode 16-bit or 32-bit size in 64-bit mode") as modifiers of the
34 * "v" or "z" sizes.  The decoder simply makes them separate operand sizes.
35 *
36 * The manual lists immediate far destinations as Ap (technically an implicit
37 * argument).  The decoder splits them into two immediates, using "Ip" for
38 * the offset part (that comes first in the instruction stream) and "Iw" for
39 * the segment/selector part.  The size of the offset is given by s->dflag
40 * and the instructions are illegal in 64-bit mode, so the choice of "Ip"
41 * is somewhat arbitrary; "Iv" or "Iz" would work just as well.
42 *
43 * Operand types
44 * -------------
45 *
46 * For memory-only operands, if the emitter functions wants to rely on
47 * generic load and writeback, the decoder needs to know the type of the
48 * operand.  Therefore, M is often replaced by the more specific EM and WM
49 * (respectively selecting an ALU operand, like the operand type E, or a
50 * vector operand like the operand type W).
51 *
52 * Immediates are almost always signed or masked away in helpers.  Two
53 * common exceptions are IN/OUT and absolute jumps.  For these, there is
54 * an additional custom operand type "I_unsigned".  Alternatively, the
55 * mask could be applied (and the original sign-extended value would be
56 * optimized away by TCG) in the emitter function.
57 *
58 * Finally, a "nop" operand type is used for multi-byte NOPs.  It accepts
59 * any value of mod including 11b (unlike M) but it does not try to
60 * interpret the operand (like M).
61 *
62 * Vector operands
63 * ---------------
64 *
65 * The main difference is that the V, U and W types are extended to
66 * cover MMX as well; if an instruction is like
67 *
68 *      por   Pq, Qq
69 *  66  por   Vx, Hx, Wx
70 *
71 * only the second row is included and the instruction is marked as a
72 * valid MMX instruction.  The MMX flag directs the decoder to rewrite
73 * the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing
74 * "x" to "q" if there is no prefix.
75 *
76 * In addition, the ss/ps/sd/pd types are sometimes mushed together as "x"
77 * if the difference is expressed via prefixes.  Individual instructions
78 * are separated by prefix in the generator functions.
79 *
80 * There is a custom size "xh" used to address half of a SSE/AVX operand.
81 * This points to a 64-bit operand for SSE operations, 128-bit operand
82 * for 256-bit AVX operands, etc.  It is used for conversion operations
83 * such as VCVTPH2PS or VCVTSS2SD.
84 *
85 * There are a couple cases in which instructions (e.g. MOVD) write the
86 * whole XMM or MM register but are established incorrectly in the manual
87 * as "d" or "q".  These have to be fixed for the decoder to work correctly.
88 *
89 * VEX exception classes
90 * ---------------------
91 *
92 * Speaking about imprecisions in the manual, the decoder treats all
93 * exception-class 4 instructions as having an optional VEX prefix, and
94 * all exception-class 6 instructions as having a mandatory VEX prefix.
95 * This is true except for a dozen instructions; these are in exception
96 * class 4 but do not ignore the VEX.W bit (which does not even exist
97 * without a VEX prefix).  These instructions are mostly listed in Intel's
98 * table 2-16, but with a few exceptions.
99 *
100 * The AMD manual has more precise subclasses for exceptions, and unlike Intel
101 * they list the VEX.W requirements in the exception classes as well (except
102 * when they don't).  AMD describes class 6 as "AVX Mixed Memory Argument"
103 * without defining what a mixed memory argument is, but still use 4 as the
104 * primary exception class... except when they don't.
105 *
106 * The summary is:
107 *                       Intel     AMD         VEX.W           note
108 * -------------------------------------------------------------------
109 * vpblendd              4         4J          0
110 * vpblendvb             4         4E-X        0               (*)
111 * vpbroadcastq          6         6D          0               (+)
112 * vpermd/vpermps        4         4H          0               (§)
113 * vpermq/vpermpd        4         4H-1        1               (§)
114 * vpermilpd/vpermilps   4         6E          0               (^)
115 * vpmaskmovd            6         4K          significant     (^)
116 * vpsllv                4         4K          significant
117 * vpsrav                4         4J          0
118 * vpsrlv                4         4K          significant
119 * vtestps/vtestpd       4         4G          0
120 *
121 *    (*)  AMD lists VPBLENDVB as related to SSE4.1 PBLENDVB, which may
122 *         explain why it is considered exception class 4.  However,
123 *         Intel says that VEX-only instructions should be in class 6...
124 *
125 *    (+)  Not found in Intel's table 2-16
126 *
127 *    (§)  4H and 4H-1 do not mention VEX.W requirements, which are
128 *         however present in the description of the instruction
129 *
130 *    (^)  these are the two cases in which Intel and AMD disagree on the
131 *         primary exception class
132 */
133
134#define X86_OP_NONE { 0 },
135
136#define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
137    .decode = glue(decode_, op),                                  \
138    .op0 = glue(X86_TYPE_, op0_),                                 \
139    .s0 = glue(X86_SIZE_, s0_),                                   \
140    .op1 = glue(X86_TYPE_, op1_),                                 \
141    .s1 = glue(X86_SIZE_, s1_),                                   \
142    .op2 = glue(X86_TYPE_, op2_),                                 \
143    .s2 = glue(X86_SIZE_, s2_),                                   \
144    .is_decode = true,                                            \
145    ## __VA_ARGS__                                                \
146}
147
148#define X86_OP_GROUP1(op, op0, s0, ...)                           \
149    X86_OP_GROUP3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__)
150#define X86_OP_GROUP2(op, op0, s0, op1, s1, ...)                  \
151    X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
152#define X86_OP_GROUPw(op, op0, s0, ...)                           \
153    X86_OP_GROUP3(op, op0, s0, None, None, None, None, ## __VA_ARGS__)
154#define X86_OP_GROUP0(op, ...)                                    \
155    X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__)
156
157#define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
158    .gen = glue(gen_, op),                                        \
159    .op0 = glue(X86_TYPE_, op0_),                                 \
160    .s0 = glue(X86_SIZE_, s0_),                                   \
161    .op1 = glue(X86_TYPE_, op1_),                                 \
162    .s1 = glue(X86_SIZE_, s1_),                                   \
163    .op2 = glue(X86_TYPE_, op2_),                                 \
164    .s2 = glue(X86_SIZE_, s2_),                                   \
165    ## __VA_ARGS__                                                \
166}
167
168#define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...)   \
169    X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_,            \
170        .op3 = X86_TYPE_I, .s3 = X86_SIZE_b,                      \
171        ## __VA_ARGS__)
172
173/*
174 * Short forms that are mostly useful for ALU opcodes and other
175 * one-byte opcodes.  For vector instructions it is usually
176 * clearer to write all three operands explicitly, because the
177 * corresponding gen_* function will use OP_PTRn rather than s->T0
178 * and s->T1.
179 */
180#define X86_OP_ENTRYrr(op, op0, s0, op1, s1, ...)                 \
181    X86_OP_ENTRY3(op, None, None, op0, s0, op1, s1, ## __VA_ARGS__)
182#define X86_OP_ENTRYwr(op, op0, s0, op1, s1, ...)                 \
183    X86_OP_ENTRY3(op, op0, s0, None, None, op1, s1, ## __VA_ARGS__)
184#define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...)                  \
185    X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
186#define X86_OP_ENTRYw(op, op0, s0, ...)                           \
187    X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__)
188#define X86_OP_ENTRYr(op, op0, s0, ...)                           \
189    X86_OP_ENTRY3(op, None, None, None, None, op0, s0, ## __VA_ARGS__)
190#define X86_OP_ENTRY1(op, op0, s0, ...)                           \
191    X86_OP_ENTRY3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__)
192#define X86_OP_ENTRY0(op, ...)                                    \
193    X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__)
194
195#define cpuid(feat) .cpuid = X86_FEAT_##feat,
196#define noseg .special = X86_SPECIAL_NoSeg,
197#define xchg .special = X86_SPECIAL_Locked,
198#define lock .special = X86_SPECIAL_HasLock,
199#define mmx .special = X86_SPECIAL_MMX,
200#define op0_Rd .special = X86_SPECIAL_Op0_Rd,
201#define op2_Ry .special = X86_SPECIAL_Op2_Ry,
202#define avx_movx .special = X86_SPECIAL_AVXExtMov,
203#define sextT0 .special = X86_SPECIAL_SExtT0,
204#define zextT0 .special = X86_SPECIAL_ZExtT0,
205
206#define vex1 .vex_class = 1,
207#define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar,
208#define vex2 .vex_class = 2,
209#define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar,
210#define vex3 .vex_class = 3,
211#define vex4 .vex_class = 4,
212#define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned,
213#define vex4_rep5 .vex_class = 4, .vex_special = X86_VEX_REPScalar,
214#define vex5 .vex_class = 5,
215#define vex6 .vex_class = 6,
216#define vex7 .vex_class = 7,
217#define vex8 .vex_class = 8,
218#define vex11 .vex_class = 11,
219#define vex12 .vex_class = 12,
220#define vex13 .vex_class = 13,
221
222#define chk(a) .check = X86_CHECK_##a,
223#define svm(a) .intercept = SVM_EXIT_##a,
224
225#define avx2_256 .vex_special = X86_VEX_AVX2_256,
226
227#define P_00          1
228#define P_66          (1 << PREFIX_DATA)
229#define P_F3          (1 << PREFIX_REPZ)
230#define P_F2          (1 << PREFIX_REPNZ)
231
232#define p_00          .valid_prefix = P_00,
233#define p_66          .valid_prefix = P_66,
234#define p_f3          .valid_prefix = P_F3,
235#define p_f2          .valid_prefix = P_F2,
236#define p_00_66       .valid_prefix = P_00 | P_66,
237#define p_00_f3       .valid_prefix = P_00 | P_F3,
238#define p_66_f2       .valid_prefix = P_66 | P_F2,
239#define p_00_66_f3    .valid_prefix = P_00 | P_66 | P_F3,
240#define p_66_f3_f2    .valid_prefix = P_66 | P_F3 | P_F2,
241#define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2,
242
243#define UNKNOWN_OPCODE ((X86OpEntry) {})
244
245static uint8_t get_modrm(DisasContext *s, CPUX86State *env)
246{
247    if (!s->has_modrm) {
248        s->modrm = x86_ldub_code(env, s);
249        s->has_modrm = true;
250    }
251    return s->modrm;
252}
253
254static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4])
255{
256    if (s->prefix & PREFIX_REPNZ) {
257        return &entries[3];
258    } else if (s->prefix & PREFIX_REPZ) {
259        return &entries[2];
260    } else if (s->prefix & PREFIX_DATA) {
261        return &entries[1];
262    } else {
263        return &entries[0];
264    }
265}
266
267static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
268{
269    /* only includes ldmxcsr and stmxcsr, because they have AVX variants.  */
270    static const X86OpEntry group15_reg[8] = {
271    };
272
273    static const X86OpEntry group15_mem[8] = {
274        [2] = X86_OP_ENTRYr(LDMXCSR,    E,d, vex5 chk(VEX128)),
275        [3] = X86_OP_ENTRYw(STMXCSR,    E,d, vex5 chk(VEX128)),
276    };
277
278    uint8_t modrm = get_modrm(s, env);
279    if ((modrm >> 6) == 3) {
280        *entry = group15_reg[(modrm >> 3) & 7];
281    } else {
282        *entry = group15_mem[(modrm >> 3) & 7];
283    }
284}
285
286static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
287{
288    static const X86GenFunc group17_gen[8] = {
289        NULL, gen_BLSR, gen_BLSMSK, gen_BLSI,
290    };
291    int op = (get_modrm(s, env) >> 3) & 7;
292    entry->gen = group17_gen[op];
293}
294
295static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
296{
297    static const X86OpEntry opcodes_group12[8] = {
298        {},
299        {},
300        X86_OP_ENTRY3(PSRLW_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
301        {},
302        X86_OP_ENTRY3(PSRAW_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
303        {},
304        X86_OP_ENTRY3(PSLLW_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
305        {},
306    };
307
308    int op = (get_modrm(s, env) >> 3) & 7;
309    *entry = opcodes_group12[op];
310}
311
312static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
313{
314    static const X86OpEntry opcodes_group13[8] = {
315        {},
316        {},
317        X86_OP_ENTRY3(PSRLD_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
318        {},
319        X86_OP_ENTRY3(PSRAD_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
320        {},
321        X86_OP_ENTRY3(PSLLD_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
322        {},
323    };
324
325    int op = (get_modrm(s, env) >> 3) & 7;
326    *entry = opcodes_group13[op];
327}
328
329static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
330{
331    static const X86OpEntry opcodes_group14[8] = {
332        /* grp14 */
333        {},
334        {},
335        X86_OP_ENTRY3(PSRLQ_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
336        X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
337        {},
338        {},
339        X86_OP_ENTRY3(PSLLQ_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
340        X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
341    };
342
343    int op = (get_modrm(s, env) >> 3) & 7;
344    *entry = opcodes_group14[op];
345}
346
347static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
348{
349    static const X86OpEntry opcodes_0F6F[4] = {
350        X86_OP_ENTRY3(MOVDQ,       P,q, None,None, Q,q, vex5 mmx),  /* movq */
351        X86_OP_ENTRY3(MOVDQ,       V,x, None,None, W,x, vex1),      /* movdqa */
352        X86_OP_ENTRY3(MOVDQ,       V,x, None,None, W,x, vex4_unal), /* movdqu */
353        {},
354    };
355    *entry = *decode_by_prefix(s, opcodes_0F6F);
356}
357
358static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
359{
360    static const X86OpEntry pshufw[4] = {
361        X86_OP_ENTRY3(PSHUFW,  P,q, Q,q, I,b, vex4 mmx),
362        X86_OP_ENTRY3(PSHUFD,  V,x, W,x, I,b, vex4 avx2_256),
363        X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256),
364        X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256),
365    };
366
367    *entry = *decode_by_prefix(s, pshufw);
368}
369
370static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
371{
372    if (!(s->prefix & PREFIX_VEX)) {
373        entry->gen = gen_EMMS;
374    } else if (!s->vex_l) {
375        entry->gen = gen_VZEROUPPER;
376        entry->vex_class = 8;
377    } else {
378        entry->gen = gen_VZEROALL;
379        entry->vex_class = 8;
380    }
381}
382
383static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
384{
385    static const X86OpEntry opcodes_0F78[4] = {
386        {},
387        X86_OP_ENTRY3(EXTRQ_i,       V,x, None,None, I,w,  cpuid(SSE4A)), /* AMD extension */
388        {},
389        X86_OP_ENTRY3(INSERTQ_i,     V,x, U,x, I,w,        cpuid(SSE4A)), /* AMD extension */
390    };
391    *entry = *decode_by_prefix(s, opcodes_0F78);
392}
393
394static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
395{
396    if (s->prefix & PREFIX_REPNZ) {
397        entry->gen = gen_INSERTQ_r; /* AMD extension */
398    } else if (s->prefix & PREFIX_DATA) {
399        entry->gen = gen_EXTRQ_r; /* AMD extension */
400    } else {
401        entry->gen = NULL;
402    };
403}
404
405static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
406{
407    static const X86OpEntry opcodes_0F7E[4] = {
408        X86_OP_ENTRY3(MOVD_from,  E,y, None,None, P,y, vex5 mmx),
409        X86_OP_ENTRY3(MOVD_from,  E,y, None,None, V,y, vex5),
410        X86_OP_ENTRY3(MOVQ,       V,x, None,None, W,q, vex5),  /* wrong dest Vy on SDM! */
411        {},
412    };
413    *entry = *decode_by_prefix(s, opcodes_0F7E);
414}
415
416static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
417{
418    static const X86OpEntry opcodes_0F7F[4] = {
419        X86_OP_ENTRY3(MOVDQ,       W,x, None,None, V,x, vex5 mmx), /* movq */
420        X86_OP_ENTRY3(MOVDQ,       W,x, None,None, V,x, vex1), /* movdqa */
421        X86_OP_ENTRY3(MOVDQ,       W,x, None,None, V,x, vex4_unal), /* movdqu */
422        {},
423    };
424    *entry = *decode_by_prefix(s, opcodes_0F7F);
425}
426
427static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
428{
429    static const X86OpEntry movq[4] = {
430        {},
431        X86_OP_ENTRY3(MOVQ,    W,x,  None, None, V,q, vex5),
432        X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q),
433        X86_OP_ENTRY3(MOVq_dq, P,q,  None, None, U,q),
434    };
435
436    *entry = *decode_by_prefix(s, movq);
437}
438
439static const X86OpEntry opcodes_0F38_00toEF[240] = {
440    [0x00] = X86_OP_ENTRY3(PSHUFB,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
441    [0x01] = X86_OP_ENTRY3(PHADDW,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
442    [0x02] = X86_OP_ENTRY3(PHADDD,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
443    [0x03] = X86_OP_ENTRY3(PHADDSW,   V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
444    [0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
445    [0x05] = X86_OP_ENTRY3(PHSUBW,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
446    [0x06] = X86_OP_ENTRY3(PHSUBD,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
447    [0x07] = X86_OP_ENTRY3(PHSUBSW,   V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
448
449    [0x10] = X86_OP_ENTRY2(PBLENDVB,  V,x,         W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
450    [0x13] = X86_OP_ENTRY2(VCVTPH2PS, V,x,         W,xh, vex11 chk(W0) cpuid(F16C) p_66),
451    [0x14] = X86_OP_ENTRY2(BLENDVPS,  V,x,         W,x,  vex4 cpuid(SSE41) p_66),
452    [0x15] = X86_OP_ENTRY2(BLENDVPD,  V,x,         W,x,  vex4 cpuid(SSE41) p_66),
453    /* Listed incorrectly as type 4 */
454    [0x16] = X86_OP_ENTRY3(VPERMD,    V,qq, H,qq,      W,qq,  vex6 chk(W0) cpuid(AVX2) p_66), /* vpermps */
455    [0x17] = X86_OP_ENTRY3(VPTEST,    None,None, V,x,  W,x,   vex4 cpuid(SSE41) p_66),
456
457    /*
458     * Source operand listed as Mq/Ux and similar in the manual; incorrectly listed
459     * as 128-bit only in 2-17.
460     */
461    [0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
462    [0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
463    [0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x,  None,None, W,w,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
464    [0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
465    [0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
466    [0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
467
468    /* Same as PMOVSX.  */
469    [0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
470    [0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
471    [0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x,  None,None, W,w,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
472    [0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
473    [0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
474    [0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
475    [0x36] = X86_OP_ENTRY3(VPERMD,    V,qq, H,qq,      W,qq,  vex6 chk(W0) cpuid(AVX2) p_66),
476    [0x37] = X86_OP_ENTRY3(PCMPGTQ,   V,x,  H,x,       W,x,   vex4 cpuid(SSE42) avx2_256 p_66),
477
478    [0x40] = X86_OP_ENTRY3(PMULLD,      V,x,  H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
479    [0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66),
480    /* Listed incorrectly as type 4 */
481    [0x45] = X86_OP_ENTRY3(VPSRLV,      V,x,  H,x,       W,x,  vex6 cpuid(AVX2) p_66),
482    [0x46] = X86_OP_ENTRY3(VPSRAV,      V,x,  H,x,       W,x,  vex6 chk(W0) cpuid(AVX2) p_66),
483    [0x47] = X86_OP_ENTRY3(VPSLLV,      V,x,  H,x,       W,x,  vex6 cpuid(AVX2) p_66),
484
485    [0x90] = X86_OP_ENTRY3(VPGATHERD, V,x,  H,x,  M,d,  vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */
486    [0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x,  H,x,  M,q,  vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */
487    [0x92] = X86_OP_ENTRY3(VPGATHERD, V,x,  H,x,  M,d,  vex12 cpuid(AVX2) p_66), /* vgatherdps/d */
488    [0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x,  H,x,  M,q,  vex12 cpuid(AVX2) p_66), /* vgatherqps/d */
489
490    /* Should be exception type 2 but they do not have legacy SSE equivalents? */
491    [0x96] = X86_OP_ENTRY3(VFMADDSUB132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
492    [0x97] = X86_OP_ENTRY3(VFMSUBADD132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
493
494    [0xa6] = X86_OP_ENTRY3(VFMADDSUB213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
495    [0xa7] = X86_OP_ENTRY3(VFMSUBADD213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
496
497    [0xb6] = X86_OP_ENTRY3(VFMADDSUB231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
498    [0xb7] = X86_OP_ENTRY3(VFMSUBADD231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
499
500    [0x08] = X86_OP_ENTRY3(PSIGNB,    V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
501    [0x09] = X86_OP_ENTRY3(PSIGNW,    V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
502    [0x0a] = X86_OP_ENTRY3(PSIGND,    V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
503    [0x0b] = X86_OP_ENTRY3(PMULHRSW,  V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
504    /* Listed incorrectly as type 4 */
505    [0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x,        H,x,  W,x,  vex6 chk(W0) cpuid(AVX) p_00_66),
506    [0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x,        H,x,  W,x,  vex6 chk(W0) cpuid(AVX) p_66),
507    [0x0e] = X86_OP_ENTRY3(VTESTPS,   None,None,  V,x,  W,x,  vex6 chk(W0) cpuid(AVX) p_66),
508    [0x0f] = X86_OP_ENTRY3(VTESTPD,   None,None,  V,x,  W,x,  vex6 chk(W0) cpuid(AVX) p_66),
509
510    [0x18] = X86_OP_ENTRY3(VPBROADCASTD,   V,x,  None,None, W,d,  vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastss */
511    [0x19] = X86_OP_ENTRY3(VPBROADCASTQ,   V,qq, None,None, W,q,  vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastsd */
512    [0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX) p_66),
513    [0x1c] = X86_OP_ENTRY3(PABSB,          V,x,  None,None, W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
514    [0x1d] = X86_OP_ENTRY3(PABSW,          V,x,  None,None, W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
515    [0x1e] = X86_OP_ENTRY3(PABSD,          V,x,  None,None, W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
516
517    [0x28] = X86_OP_ENTRY3(PMULDQ,        V,x, H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
518    [0x29] = X86_OP_ENTRY3(PCMPEQQ,       V,x, H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
519    [0x2a] = X86_OP_ENTRY3(MOVDQ,         V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */
520    [0x2b] = X86_OP_ENTRY3(VPACKUSDW,     V,x, H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
521    [0x2c] = X86_OP_ENTRY3(VMASKMOVPS,    V,x, H,x,       WM,x, vex6 chk(W0) cpuid(AVX) p_66),
522    [0x2d] = X86_OP_ENTRY3(VMASKMOVPD,    V,x, H,x,       WM,x, vex6 chk(W0) cpuid(AVX) p_66),
523    /* Incorrectly listed as Mx,Hx,Vx in the manual */
524    [0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x,       H,x,  vex6 chk(W0) cpuid(AVX) p_66),
525    [0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x,       H,x,  vex6 chk(W0) cpuid(AVX) p_66),
526
527    [0x38] = X86_OP_ENTRY3(PMINSB,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
528    [0x39] = X86_OP_ENTRY3(PMINSD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
529    [0x3a] = X86_OP_ENTRY3(PMINUW,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
530    [0x3b] = X86_OP_ENTRY3(PMINUD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
531    [0x3c] = X86_OP_ENTRY3(PMAXSB,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
532    [0x3d] = X86_OP_ENTRY3(PMAXSD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
533    [0x3e] = X86_OP_ENTRY3(PMAXUW,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
534    [0x3f] = X86_OP_ENTRY3(PMAXUD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
535
536    /* VPBROADCASTQ not listed as W0 in table 2-16 */
537    [0x58] = X86_OP_ENTRY3(VPBROADCASTD,   V,x,  None,None, W,d,  vex6 chk(W0) cpuid(AVX2) p_66),
538    [0x59] = X86_OP_ENTRY3(VPBROADCASTQ,   V,x,  None,None, W,q,  vex6 chk(W0) cpuid(AVX2) p_66),
539    [0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX2) p_66),
540
541    [0x78] = X86_OP_ENTRY3(VPBROADCASTB,   V,x,  None,None, W,b,  vex6 chk(W0) cpuid(AVX2) p_66),
542    [0x79] = X86_OP_ENTRY3(VPBROADCASTW,   V,x,  None,None, W,w,  vex6 chk(W0) cpuid(AVX2) p_66),
543
544    [0x8c] = X86_OP_ENTRY3(VPMASKMOV,    V,x,  H,x, WM,x, vex6 cpuid(AVX2) p_66),
545    [0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x,  V,x, H,x,  vex6 cpuid(AVX2) p_66),
546
547    /* Should be exception type 2 or 3 but they do not have legacy SSE equivalents? */
548    [0x98] = X86_OP_ENTRY3(VFMADD132Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
549    [0x99] = X86_OP_ENTRY3(VFMADD132Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
550    [0x9a] = X86_OP_ENTRY3(VFMSUB132Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
551    [0x9b] = X86_OP_ENTRY3(VFMSUB132Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
552    [0x9c] = X86_OP_ENTRY3(VFNMADD132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
553    [0x9d] = X86_OP_ENTRY3(VFNMADD132Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
554    [0x9e] = X86_OP_ENTRY3(VFNMSUB132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
555    [0x9f] = X86_OP_ENTRY3(VFNMSUB132Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
556
557    [0xa8] = X86_OP_ENTRY3(VFMADD213Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
558    [0xa9] = X86_OP_ENTRY3(VFMADD213Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
559    [0xaa] = X86_OP_ENTRY3(VFMSUB213Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
560    [0xab] = X86_OP_ENTRY3(VFMSUB213Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
561    [0xac] = X86_OP_ENTRY3(VFNMADD213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
562    [0xad] = X86_OP_ENTRY3(VFNMADD213Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
563    [0xae] = X86_OP_ENTRY3(VFNMSUB213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
564    [0xaf] = X86_OP_ENTRY3(VFNMSUB213Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
565
566    [0xb8] = X86_OP_ENTRY3(VFMADD231Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
567    [0xb9] = X86_OP_ENTRY3(VFMADD231Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
568    [0xba] = X86_OP_ENTRY3(VFMSUB231Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
569    [0xbb] = X86_OP_ENTRY3(VFMSUB231Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
570    [0xbc] = X86_OP_ENTRY3(VFNMADD231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
571    [0xbd] = X86_OP_ENTRY3(VFNMADD231Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
572    [0xbe] = X86_OP_ENTRY3(VFNMSUB231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
573    [0xbf] = X86_OP_ENTRY3(VFNMSUB231Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
574
575    [0xc8] = X86_OP_ENTRY2(SHA1NEXTE,   V,dq, W,dq, cpuid(SHA_NI)),
576    [0xc9] = X86_OP_ENTRY2(SHA1MSG1,    V,dq, W,dq, cpuid(SHA_NI)),
577    [0xca] = X86_OP_ENTRY2(SHA1MSG2,    V,dq, W,dq, cpuid(SHA_NI)),
578    [0xcb] = X86_OP_ENTRY2(SHA256RNDS2, V,dq, W,dq, cpuid(SHA_NI)),
579    [0xcc] = X86_OP_ENTRY2(SHA256MSG1,  V,dq, W,dq, cpuid(SHA_NI)),
580    [0xcd] = X86_OP_ENTRY2(SHA256MSG2,  V,dq, W,dq, cpuid(SHA_NI)),
581
582    [0xdb] = X86_OP_ENTRY3(VAESIMC,     V,dq, None,None, W,dq, vex4 cpuid(AES) p_66),
583    [0xdc] = X86_OP_ENTRY3(VAESENC,     V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
584    [0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
585    [0xde] = X86_OP_ENTRY3(VAESDEC,     V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
586    [0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
587
588    /*
589     * REG selects srcdest2 operand, VEX.vvvv selects src3.  VEX class not found
590     * in manual, assumed to be 13 from the VEX.L0 constraint.
591     */
592    [0xe0] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
593    [0xe1] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
594    [0xe2] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
595    [0xe3] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
596    [0xe4] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
597    [0xe5] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
598    [0xe6] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
599    [0xe7] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
600
601    [0xe8] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
602    [0xe9] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
603    [0xea] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
604    [0xeb] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
605    [0xec] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
606    [0xed] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
607    [0xee] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
608    [0xef] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
609};
610
611/* five rows for no prefix, 66, F3, F2, 66+F2  */
612static const X86OpEntry opcodes_0F38_F0toFF[16][5] = {
613    [0] = {
614        X86_OP_ENTRY3(MOVBE, G,y, M,y, None,None, cpuid(MOVBE)),
615        X86_OP_ENTRY3(MOVBE, G,w, M,w, None,None, cpuid(MOVBE)),
616        {},
617        X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
618        X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
619    },
620    [1] = {
621        X86_OP_ENTRY3(MOVBE, M,y, G,y, None,None, cpuid(MOVBE)),
622        X86_OP_ENTRY3(MOVBE, M,w, G,w, None,None, cpuid(MOVBE)),
623        {},
624        X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)),
625        X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)),
626    },
627    [2] = {
628        X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)),
629        {},
630        {},
631        {},
632        {},
633    },
634    [3] = {
635        X86_OP_GROUP3(group17, B,y, E,y, None,None, vex13 cpuid(BMI1)),
636        {},
637        {},
638        {},
639        {},
640    },
641    [5] = {
642        X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)),
643        {},
644        X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)),
645        X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)),
646        {},
647    },
648    [6] = {
649        {},
650        X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)),
651        X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)),
652        X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)),
653        {},
654    },
655    [7] = {
656        X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)),
657        X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
658        X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 sextT0 cpuid(BMI1)),
659        X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)),
660        {},
661    },
662};
663
664static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
665{
666    *b = x86_ldub_code(env, s);
667    if (*b < 0xf0) {
668        *entry = opcodes_0F38_00toEF[*b];
669    } else {
670        int row = 0;
671        if (s->prefix & PREFIX_REPZ) {
672            /* The REPZ (F3) prefix has priority over 66 */
673            row = 2;
674        } else {
675            row += s->prefix & PREFIX_REPNZ ? 3 : 0;
676            row += s->prefix & PREFIX_DATA ? 1 : 0;
677        }
678        *entry = opcodes_0F38_F0toFF[*b & 15][row];
679    }
680}
681
682static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
683{
684    static const X86OpEntry
685        vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66),
686        vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d,  vex5 cpuid(SSE41) p_66);
687
688    int modrm = get_modrm(s, env);
689    *entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem;
690}
691
692static const X86OpEntry opcodes_0F3A[256] = {
693    /*
694     * These are VEX-only, but incorrectly listed in the manual as exception type 4.
695     * Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256
696     * only.
697     */
698    [0x00] = X86_OP_ENTRY3(VPERMQ,      V,qq, W,qq, I,b,  vex6 chk(W1) cpuid(AVX2) p_66),
699    [0x01] = X86_OP_ENTRY3(VPERMQ,      V,qq, W,qq, I,b,  vex6 chk(W1) cpuid(AVX2) p_66), /* VPERMPD */
700    [0x02] = X86_OP_ENTRY4(VBLENDPS,    V,x,  H,x,  W,x,  vex6 chk(W0) cpuid(AVX2) p_66), /* VPBLENDD */
701    [0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x,  W,x,  I,b,  vex6 chk(W0) cpuid(AVX) p_66),
702    [0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x,  W,x,  I,b,  vex6 chk(W0) cpuid(AVX) p_66),
703    [0x06] = X86_OP_ENTRY4(VPERM2x128,  V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66),
704
705    [0x14] = X86_OP_ENTRY3(PEXTRB,     E,b,  V,dq, I,b,  vex5 cpuid(SSE41) op0_Rd p_66),
706    [0x15] = X86_OP_ENTRY3(PEXTRW,     E,w,  V,dq, I,b,  vex5 cpuid(SSE41) op0_Rd p_66),
707    [0x16] = X86_OP_ENTRY3(PEXTR,      E,y,  V,dq, I,b,  vex5 cpuid(SSE41) p_66),
708    [0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d,  V,dq, I,b,  vex5 cpuid(SSE41) p_66),
709    [0x1d] = X86_OP_ENTRY3(VCVTPS2PH,  W,xh, V,x,  I,b,  vex11 chk(W0) cpuid(F16C) p_66),
710
711    [0x20] = X86_OP_ENTRY4(PINSRB,     V,dq, H,dq, E,b,  vex5 cpuid(SSE41) op2_Ry p_66),
712    [0x21] = X86_OP_GROUP0(VINSERTPS),
713    [0x22] = X86_OP_ENTRY4(PINSR,      V,dq, H,dq, E,y,  vex5 cpuid(SSE41) p_66),
714
715    [0x40] = X86_OP_ENTRY4(VDDPS,      V,x,  H,x,  W,x,  vex2 cpuid(SSE41) p_66),
716    [0x41] = X86_OP_ENTRY4(VDDPD,      V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66),
717    [0x42] = X86_OP_ENTRY4(VMPSADBW,   V,x,  H,x,  W,x,  vex2 cpuid(SSE41) avx2_256 p_66),
718    [0x44] = X86_OP_ENTRY4(PCLMULQDQ,  V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66),
719    [0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66),
720
721    [0x60] = X86_OP_ENTRY4(PCMPESTRM,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
722    [0x61] = X86_OP_ENTRY4(PCMPESTRI,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
723    [0x62] = X86_OP_ENTRY4(PCMPISTRM,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
724    [0x63] = X86_OP_ENTRY4(PCMPISTRI,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
725
726    [0x08] = X86_OP_ENTRY3(VROUNDPS,   V,x,  W,x,  I,b,  vex2 cpuid(SSE41) p_66),
727    [0x09] = X86_OP_ENTRY3(VROUNDPD,   V,x,  W,x,  I,b,  vex2 cpuid(SSE41) p_66),
728    /*
729     * Not listed as four operand in the manual.  Also writes and reads 128-bits
730     * from the first two operands due to the V operand picking higher entries of
731     * the H operand; the "Vss,Hss,Wss" description from the manual is incorrect.
732     * For other unary operations such as VSQRTSx this is hidden by the "REPScalar"
733     * value of vex_special, because the table lists the operand types of VSQRTPx.
734     */
735    [0x0a] = X86_OP_ENTRY4(VROUNDSS,   V,x,  H,x, W,ss, vex3 cpuid(SSE41) p_66),
736    [0x0b] = X86_OP_ENTRY4(VROUNDSD,   V,x,  H,x, W,sd, vex3 cpuid(SSE41) p_66),
737    [0x0c] = X86_OP_ENTRY4(VBLENDPS,   V,x,  H,x,  W,x,  vex4 cpuid(SSE41) p_66),
738    [0x0d] = X86_OP_ENTRY4(VBLENDPD,   V,x,  H,x,  W,x,  vex4 cpuid(SSE41) p_66),
739    [0x0e] = X86_OP_ENTRY4(VPBLENDW,   V,x,  H,x,  W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
740    [0x0f] = X86_OP_ENTRY4(PALIGNR,    V,x,  H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
741
742    [0x18] = X86_OP_ENTRY4(VINSERTx128,  V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66),
743    [0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b,  vex6 chk(W0) cpuid(AVX) p_66),
744
745    [0x38] = X86_OP_ENTRY4(VINSERTx128,  V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66),
746    [0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b,  vex6 chk(W0) cpuid(AVX2) p_66),
747
748    /* Listed incorrectly as type 4 */
749    [0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x,  H,x,  W,x,   vex6 chk(W0) cpuid(AVX) p_66),
750    [0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x,  H,x,  W,x,   vex6 chk(W0) cpuid(AVX) p_66),
751    [0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x,  H,x,  W,x,   vex6 chk(W0) cpuid(AVX) p_66 avx2_256),
752
753    [0xcc] = X86_OP_ENTRY3(SHA1RNDS4,  V,dq, W,dq, I,b,  cpuid(SHA_NI)),
754
755    [0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b,  vex4 cpuid(AES) p_66),
756
757    [0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2),
758};
759
760static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
761{
762    *b = x86_ldub_code(env, s);
763    *entry = opcodes_0F3A[*b];
764}
765
766/*
767 * There are some mistakes in the operands in the manual, and the load/store/register
768 * cases are easiest to keep separate, so the entries for 10-17 follow simplicity and
769 * efficiency of implementation rather than copying what the manual says.
770 *
771 * In particular:
772 *
773 * 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b,
774 * but this is not mentioned in the tables.
775 *
776 * 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their
777 * operands, which must therefore be dq; MOVLPD and MOVLPS also write the high
778 * quadword of the V operand.
779 */
780static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
781{
782    static const X86OpEntry opcodes_0F10_reg[4] = {
783        X86_OP_ENTRY3(MOVDQ,   V,x,  None,None, W,x, vex4_unal), /* MOVUPS */
784        X86_OP_ENTRY3(MOVDQ,   V,x,  None,None, W,x, vex4_unal), /* MOVUPD */
785        X86_OP_ENTRY3(VMOVSS,  V,x,  H,x,       W,x, vex5),
786        X86_OP_ENTRY3(VMOVLPx, V,x,  H,x,       W,x, vex5), /* MOVSD */
787    };
788
789    static const X86OpEntry opcodes_0F10_mem[4] = {
790        X86_OP_ENTRY3(MOVDQ,      V,x,  None,None, W,x,  vex4_unal), /* MOVUPS */
791        X86_OP_ENTRY3(MOVDQ,      V,x,  None,None, W,x,  vex4_unal), /* MOVUPD */
792        X86_OP_ENTRY3(VMOVSS_ld,  V,x,  H,x,       M,ss, vex5),
793        X86_OP_ENTRY3(VMOVSD_ld,  V,x,  H,x,       M,sd, vex5),
794    };
795
796    if ((get_modrm(s, env) >> 6) == 3) {
797        *entry = *decode_by_prefix(s, opcodes_0F10_reg);
798    } else {
799        *entry = *decode_by_prefix(s, opcodes_0F10_mem);
800    }
801}
802
803static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
804{
805    static const X86OpEntry opcodes_0F11_reg[4] = {
806        X86_OP_ENTRY3(MOVDQ,   W,x,  None,None, V,x, vex4), /* MOVUPS */
807        X86_OP_ENTRY3(MOVDQ,   W,x,  None,None, V,x, vex4), /* MOVUPD */
808        X86_OP_ENTRY3(VMOVSS,  W,x,  H,x,       V,x, vex5),
809        X86_OP_ENTRY3(VMOVLPx, W,x,  H,x,       V,q, vex5), /* MOVSD */
810    };
811
812    static const X86OpEntry opcodes_0F11_mem[4] = {
813        X86_OP_ENTRY3(MOVDQ,      W,x,  None,None, V,x, vex4), /* MOVUPS */
814        X86_OP_ENTRY3(MOVDQ,      W,x,  None,None, V,x, vex4), /* MOVUPD */
815        X86_OP_ENTRY3(VMOVSS_st,  M,ss, None,None, V,x, vex5),
816        X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex5), /* MOVSD */
817    };
818
819    if ((get_modrm(s, env) >> 6) == 3) {
820        *entry = *decode_by_prefix(s, opcodes_0F11_reg);
821    } else {
822        *entry = *decode_by_prefix(s, opcodes_0F11_mem);
823    }
824}
825
826static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
827{
828    static const X86OpEntry opcodes_0F12_mem[4] = {
829        /*
830         * Use dq for operand for compatibility with gen_MOVSD and
831         * to allow VEX128 only.
832         */
833        X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVLPS */
834        X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVLPD */
835        X86_OP_ENTRY3(VMOVSLDUP,  V,x,  None,None, W,x, vex4 cpuid(SSE3)),
836        X86_OP_ENTRY3(VMOVDDUP,   V,x,  None,None, WM,q, vex5 cpuid(SSE3)), /* qq if VEX.256 */
837    };
838    static const X86OpEntry opcodes_0F12_reg[4] = {
839        X86_OP_ENTRY3(VMOVHLPS,  V,dq, H,dq,       U,dq, vex7),
840        X86_OP_ENTRY3(VMOVLPx,   W,x,  H,x,        U,q,  vex5), /* MOVLPD */
841        X86_OP_ENTRY3(VMOVSLDUP, V,x,  None,None,  U,x,  vex4 cpuid(SSE3)),
842        X86_OP_ENTRY3(VMOVDDUP,  V,x,  None,None,  U,x,  vex5 cpuid(SSE3)),
843    };
844
845    if ((get_modrm(s, env) >> 6) == 3) {
846        *entry = *decode_by_prefix(s, opcodes_0F12_reg);
847    } else {
848        *entry = *decode_by_prefix(s, opcodes_0F12_mem);
849        if ((s->prefix & PREFIX_REPNZ) && s->vex_l) {
850            entry->s2 = X86_SIZE_qq;
851        }
852    }
853}
854
855static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
856{
857    static const X86OpEntry opcodes_0F16_mem[4] = {
858        /*
859         * Operand 1 technically only reads the low 64 bits, but uses dq so that
860         * it is easier to check for op0 == op1 in an endianness-neutral manner.
861         */
862        X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVHPS */
863        X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVHPD */
864        X86_OP_ENTRY3(VMOVSHDUP,  V,x,  None,None, W,x, vex4 cpuid(SSE3)),
865        {},
866    };
867    static const X86OpEntry opcodes_0F16_reg[4] = {
868        /* Same as above, operand 1 could be Hq if it wasn't for big-endian.  */
869        X86_OP_ENTRY3(VMOVLHPS,  V,dq, H,dq,      U,q, vex7),
870        X86_OP_ENTRY3(VMOVHPx,   V,x,  H,x,       U,x, vex5), /* MOVHPD */
871        X86_OP_ENTRY3(VMOVSHDUP, V,x,  None,None, U,x, vex4 cpuid(SSE3)),
872        {},
873    };
874
875    if ((get_modrm(s, env) >> 6) == 3) {
876        *entry = *decode_by_prefix(s, opcodes_0F16_reg);
877    } else {
878        *entry = *decode_by_prefix(s, opcodes_0F16_mem);
879    }
880}
881
882static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
883{
884    static const X86OpEntry opcodes_0F2A[4] = {
885        X86_OP_ENTRY3(CVTPI2Px,  V,x,  None,None, Q,q),
886        X86_OP_ENTRY3(CVTPI2Px,  V,x,  None,None, Q,q),
887        X86_OP_ENTRY3(VCVTSI2Sx, V,x,  H,x, E,y,        vex3),
888        X86_OP_ENTRY3(VCVTSI2Sx, V,x,  H,x, E,y,        vex3),
889    };
890    *entry = *decode_by_prefix(s, opcodes_0F2A);
891}
892
893static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
894{
895    static const X86OpEntry opcodes_0F2B[4] = {
896        X86_OP_ENTRY3(MOVDQ,      M,x,  None,None, V,x, vex1), /* MOVNTPS */
897        X86_OP_ENTRY3(MOVDQ,      M,x,  None,None, V,x, vex1), /* MOVNTPD */
898        /* AMD extensions */
899        X86_OP_ENTRY3(VMOVSS_st,  M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */
900        X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */
901    };
902
903    *entry = *decode_by_prefix(s, opcodes_0F2B);
904}
905
906static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
907{
908    static const X86OpEntry opcodes_0F2C[4] = {
909        /* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit.  */
910        X86_OP_ENTRY3(CVTTPx2PI,  P,q,  None,None, W,q),
911        X86_OP_ENTRY3(CVTTPx2PI,  P,q,  None,None, W,dq),
912        X86_OP_ENTRY3(VCVTTSx2SI, G,y,  None,None, W,ss, vex3),
913        X86_OP_ENTRY3(VCVTTSx2SI, G,y,  None,None, W,sd, vex3),
914    };
915    *entry = *decode_by_prefix(s, opcodes_0F2C);
916}
917
918static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
919{
920    static const X86OpEntry opcodes_0F2D[4] = {
921        /* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit.  */
922        X86_OP_ENTRY3(CVTPx2PI,  P,q,  None,None, W,q),
923        X86_OP_ENTRY3(CVTPx2PI,  P,q,  None,None, W,dq),
924        X86_OP_ENTRY3(VCVTSx2SI, G,y,  None,None, W,ss, vex3),
925        X86_OP_ENTRY3(VCVTSx2SI, G,y,  None,None, W,sd, vex3),
926    };
927    *entry = *decode_by_prefix(s, opcodes_0F2D);
928}
929
930static void decode_VxCOMISx(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
931{
932    /*
933     * VUCOMISx and VCOMISx are different and use no-prefix and 0x66 for SS and SD
934     * respectively.  Scalar values usually are associated with 0xF2 and 0xF3, for
935     * which X86_VEX_REPScalar exists, but here it has to be decoded by hand.
936     */
937    entry->s1 = entry->s2 = (s->prefix & PREFIX_DATA ? X86_SIZE_sd : X86_SIZE_ss);
938    entry->gen = (*b == 0x2E ? gen_VUCOMI : gen_VCOMI);
939}
940
941static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
942{
943    if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) {
944        entry->op1 = X86_TYPE_None;
945        entry->s1 = X86_SIZE_None;
946    }
947    switch (*b) {
948    case 0x51: entry->gen = gen_VSQRT; break;
949    case 0x52: entry->gen = gen_VRSQRT; break;
950    case 0x53: entry->gen = gen_VRCP; break;
951    }
952}
953
954static void decode_0F5A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
955{
956    static const X86OpEntry opcodes_0F5A[4] = {
957        X86_OP_ENTRY2(VCVTPS2PD,  V,x,       W,xh, vex2),      /* VCVTPS2PD */
958        X86_OP_ENTRY2(VCVTPD2PS,  V,x,       W,x,  vex2),      /* VCVTPD2PS */
959        X86_OP_ENTRY3(VCVTSS2SD,  V,x,  H,x, W,x,  vex2_rep3), /* VCVTSS2SD */
960        X86_OP_ENTRY3(VCVTSD2SS,  V,x,  H,x, W,x,  vex2_rep3), /* VCVTSD2SS */
961    };
962    *entry = *decode_by_prefix(s, opcodes_0F5A);
963}
964
965static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
966{
967    static const X86OpEntry opcodes_0F5B[4] = {
968        X86_OP_ENTRY2(VCVTDQ2PS,   V,x, W,x,      vex2),
969        X86_OP_ENTRY2(VCVTPS2DQ,   V,x, W,x,      vex2),
970        X86_OP_ENTRY2(VCVTTPS2DQ,  V,x, W,x,      vex2),
971        {},
972    };
973    *entry = *decode_by_prefix(s, opcodes_0F5B);
974}
975
976static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
977{
978    static const X86OpEntry opcodes_0FE6[4] = {
979        {},
980        X86_OP_ENTRY2(VCVTTPD2DQ,  V,x, W,x,      vex2),
981        X86_OP_ENTRY2(VCVTDQ2PD,   V,x, W,x,      vex5),
982        X86_OP_ENTRY2(VCVTPD2DQ,   V,x, W,x,      vex2),
983    };
984    *entry = *decode_by_prefix(s, opcodes_0FE6);
985}
986
987static const X86OpEntry opcodes_0F[256] = {
988    [0x0E] = X86_OP_ENTRY0(EMMS,                              cpuid(3DNOW)), /* femms */
989    /*
990     * 3DNow!'s opcode byte comes *after* modrm and displacements, making it
991     * more like an Ib operand.  Dispatch to the right helper in a single gen_*
992     * function.
993     */
994    [0x0F] = X86_OP_ENTRY3(3dnow,       P,q, Q,q, I,b,        cpuid(3DNOW)),
995
996    [0x10] = X86_OP_GROUP0(0F10),
997    [0x11] = X86_OP_GROUP0(0F11),
998    [0x12] = X86_OP_GROUP0(0F12),
999    [0x13] = X86_OP_ENTRY3(VMOVLPx_st,  M,q, None,None, V,q,  vex5 p_00_66),
1000    [0x14] = X86_OP_ENTRY3(VUNPCKLPx,   V,x, H,x, W,x,        vex4 p_00_66),
1001    [0x15] = X86_OP_ENTRY3(VUNPCKHPx,   V,x, H,x, W,x,        vex4 p_00_66),
1002    [0x16] = X86_OP_GROUP0(0F16),
1003    /* Incorrectly listed as Mq,Vq in the manual */
1004    [0x17] = X86_OP_ENTRY3(VMOVHPx_st,  M,q, None,None, V,dq, vex5 p_00_66),
1005
1006    [0x40] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1007    [0x41] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1008    [0x42] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1009    [0x43] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1010    [0x44] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1011    [0x45] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1012    [0x46] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1013    [0x47] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1014
1015    [0x50] = X86_OP_ENTRY3(MOVMSK,     G,y, None,None, U,x, vex7 p_00_66),
1016    [0x51] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), /* sqrtps */
1017    [0x52] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rsqrtps */
1018    [0x53] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rcpps */
1019    [0x54] = X86_OP_ENTRY3(PAND,       V,x, H,x, W,x,  vex4 p_00_66), /* vand */
1020    [0x55] = X86_OP_ENTRY3(PANDN,      V,x, H,x, W,x,  vex4 p_00_66), /* vandn */
1021    [0x56] = X86_OP_ENTRY3(POR,        V,x, H,x, W,x,  vex4 p_00_66), /* vor */
1022    [0x57] = X86_OP_ENTRY3(PXOR,       V,x, H,x, W,x,  vex4 p_00_66), /* vxor */
1023
1024    [0x60] = X86_OP_ENTRY3(PUNPCKLBW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1025    [0x61] = X86_OP_ENTRY3(PUNPCKLWD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1026    [0x62] = X86_OP_ENTRY3(PUNPCKLDQ,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1027    [0x63] = X86_OP_ENTRY3(PACKSSWB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1028    [0x64] = X86_OP_ENTRY3(PCMPGTB,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1029    [0x65] = X86_OP_ENTRY3(PCMPGTW,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1030    [0x66] = X86_OP_ENTRY3(PCMPGTD,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1031    [0x67] = X86_OP_ENTRY3(PACKUSWB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1032
1033    [0x70] = X86_OP_GROUP0(0F70),
1034    [0x71] = X86_OP_GROUP0(group12),
1035    [0x72] = X86_OP_GROUP0(group13),
1036    [0x73] = X86_OP_GROUP0(group14),
1037    [0x74] = X86_OP_ENTRY3(PCMPEQB,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1038    [0x75] = X86_OP_ENTRY3(PCMPEQW,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1039    [0x76] = X86_OP_ENTRY3(PCMPEQD,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1040    [0x77] = X86_OP_GROUP0(0F77),
1041
1042    [0x80] = X86_OP_ENTRYr(Jcc, J,z_f64),
1043    [0x81] = X86_OP_ENTRYr(Jcc, J,z_f64),
1044    [0x82] = X86_OP_ENTRYr(Jcc, J,z_f64),
1045    [0x83] = X86_OP_ENTRYr(Jcc, J,z_f64),
1046    [0x84] = X86_OP_ENTRYr(Jcc, J,z_f64),
1047    [0x85] = X86_OP_ENTRYr(Jcc, J,z_f64),
1048    [0x86] = X86_OP_ENTRYr(Jcc, J,z_f64),
1049    [0x87] = X86_OP_ENTRYr(Jcc, J,z_f64),
1050
1051    [0x90] = X86_OP_ENTRYw(SETcc, E,b),
1052    [0x91] = X86_OP_ENTRYw(SETcc, E,b),
1053    [0x92] = X86_OP_ENTRYw(SETcc, E,b),
1054    [0x93] = X86_OP_ENTRYw(SETcc, E,b),
1055    [0x94] = X86_OP_ENTRYw(SETcc, E,b),
1056    [0x95] = X86_OP_ENTRYw(SETcc, E,b),
1057    [0x96] = X86_OP_ENTRYw(SETcc, E,b),
1058    [0x97] = X86_OP_ENTRYw(SETcc, E,b),
1059
1060    [0xa0] = X86_OP_ENTRYr(PUSH, FS, w),
1061    [0xa1] = X86_OP_ENTRYw(POP, FS, w),
1062
1063    [0x0b] = X86_OP_ENTRY0(UD),           /* UD2 */
1064    [0x0d] = X86_OP_ENTRY1(NOP,  M,v),    /* 3DNow! prefetch */
1065
1066    [0x18] = X86_OP_ENTRY1(NOP,  nop,v),  /* prefetch/reserved NOP */
1067    [0x19] = X86_OP_ENTRY1(NOP,  nop,v),  /* reserved NOP */
1068    [0x1c] = X86_OP_ENTRY1(NOP,  nop,v),  /* reserved NOP */
1069    [0x1d] = X86_OP_ENTRY1(NOP,  nop,v),  /* reserved NOP */
1070    [0x1e] = X86_OP_ENTRY1(NOP,  nop,v),  /* reserved NOP */
1071    [0x1f] = X86_OP_ENTRY1(NOP,  nop,v),  /* NOP/reserved NOP */
1072
1073    [0x28] = X86_OP_ENTRY3(MOVDQ,      V,x,  None,None, W,x, vex1 p_00_66), /* MOVAPS */
1074    [0x29] = X86_OP_ENTRY3(MOVDQ,      W,x,  None,None, V,x, vex1 p_00_66), /* MOVAPS */
1075    [0x2A] = X86_OP_GROUP0(0F2A),
1076    [0x2B] = X86_OP_GROUP0(0F2B),
1077    [0x2C] = X86_OP_GROUP0(0F2C),
1078    [0x2D] = X86_OP_GROUP0(0F2D),
1079    [0x2E] = X86_OP_GROUP3(VxCOMISx,   None,None, V,x, W,x,  vex3 p_00_66), /* VUCOMISS/SD */
1080    [0x2F] = X86_OP_GROUP3(VxCOMISx,   None,None, V,x, W,x,  vex3 p_00_66), /* VCOMISS/SD */
1081
1082    [0x38] = X86_OP_GROUP0(0F38),
1083    [0x3a] = X86_OP_GROUP0(0F3A),
1084
1085    [0x48] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1086    [0x49] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1087    [0x4a] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1088    [0x4b] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1089    [0x4c] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1090    [0x4d] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1091    [0x4e] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1092    [0x4f] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1093
1094    [0x58] = X86_OP_ENTRY3(VADD,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
1095    [0x59] = X86_OP_ENTRY3(VMUL,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
1096    [0x5a] = X86_OP_GROUP0(0F5A),
1097    [0x5b] = X86_OP_GROUP0(0F5B),
1098    [0x5c] = X86_OP_ENTRY3(VSUB,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
1099    [0x5d] = X86_OP_ENTRY3(VMIN,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
1100    [0x5e] = X86_OP_ENTRY3(VDIV,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
1101    [0x5f] = X86_OP_ENTRY3(VMAX,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
1102
1103    [0x68] = X86_OP_ENTRY3(PUNPCKHBW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1104    [0x69] = X86_OP_ENTRY3(PUNPCKHWD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1105    [0x6a] = X86_OP_ENTRY3(PUNPCKHDQ,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1106    [0x6b] = X86_OP_ENTRY3(PACKSSDW,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1107    [0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x,  vex4 p_66 avx2_256),
1108    [0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x,  vex4 p_66 avx2_256),
1109    [0x6e] = X86_OP_ENTRY3(MOVD_to,    V,x, None,None, E,y, vex5 mmx p_00_66),  /* wrong dest Vy on SDM! */
1110    [0x6f] = X86_OP_GROUP0(0F6F),
1111
1112    [0x78] = X86_OP_GROUP0(0F78),
1113    [0x79] = X86_OP_GROUP2(0F79,       V,x, U,x,       cpuid(SSE4A)),
1114    [0x7c] = X86_OP_ENTRY3(VHADD,      V,x, H,x, W,x,  vex2 cpuid(SSE3) p_66_f2),
1115    [0x7d] = X86_OP_ENTRY3(VHSUB,      V,x, H,x, W,x,  vex2 cpuid(SSE3) p_66_f2),
1116    [0x7e] = X86_OP_GROUP0(0F7E),
1117    [0x7f] = X86_OP_GROUP0(0F7F),
1118
1119    [0x88] = X86_OP_ENTRYr(Jcc, J,z_f64),
1120    [0x89] = X86_OP_ENTRYr(Jcc, J,z_f64),
1121    [0x8a] = X86_OP_ENTRYr(Jcc, J,z_f64),
1122    [0x8b] = X86_OP_ENTRYr(Jcc, J,z_f64),
1123    [0x8c] = X86_OP_ENTRYr(Jcc, J,z_f64),
1124    [0x8d] = X86_OP_ENTRYr(Jcc, J,z_f64),
1125    [0x8e] = X86_OP_ENTRYr(Jcc, J,z_f64),
1126    [0x8f] = X86_OP_ENTRYr(Jcc, J,z_f64),
1127
1128    [0x98] = X86_OP_ENTRYw(SETcc, E,b),
1129    [0x99] = X86_OP_ENTRYw(SETcc, E,b),
1130    [0x9a] = X86_OP_ENTRYw(SETcc, E,b),
1131    [0x9b] = X86_OP_ENTRYw(SETcc, E,b),
1132    [0x9c] = X86_OP_ENTRYw(SETcc, E,b),
1133    [0x9d] = X86_OP_ENTRYw(SETcc, E,b),
1134    [0x9e] = X86_OP_ENTRYw(SETcc, E,b),
1135    [0x9f] = X86_OP_ENTRYw(SETcc, E,b),
1136
1137    [0xa8] = X86_OP_ENTRYr(PUSH,   GS, w),
1138    [0xa9] = X86_OP_ENTRYw(POP,    GS, w),
1139    [0xae] = X86_OP_GROUP0(group15),
1140    /*
1141     * It's slightly more efficient to put Ev operand in T0 and allow gen_IMUL3
1142     * to assume sextT0.  Multiplication is commutative anyway.
1143     */
1144    [0xaf] = X86_OP_ENTRY3(IMUL3,  G,v, E,v, 2op,v, sextT0),
1145
1146    [0xb2] = X86_OP_ENTRY3(LSS,    G,v, EM,p, None, None),
1147    [0xb4] = X86_OP_ENTRY3(LFS,    G,v, EM,p, None, None),
1148    [0xb5] = X86_OP_ENTRY3(LGS,    G,v, EM,p, None, None),
1149    [0xb6] = X86_OP_ENTRY3(MOV,    G,v, E,b, None, None, zextT0), /* MOVZX */
1150    [0xb7] = X86_OP_ENTRY3(MOV,    G,v, E,w, None, None, zextT0), /* MOVZX */
1151
1152    /* decoded as modrm, which is visible as a difference between page fault and #UD */
1153    [0xb9] = X86_OP_ENTRYr(UD,     nop,v),                        /* UD1 */
1154    [0xbe] = X86_OP_ENTRY3(MOV,    G,v, E,b, None, None, sextT0), /* MOVSX */
1155    [0xbf] = X86_OP_ENTRY3(MOV,    G,v, E,w, None, None, sextT0), /* MOVSX */
1156
1157    [0xc2] = X86_OP_ENTRY4(VCMP,       V,x, H,x, W,x,       vex2_rep3 p_00_66_f3_f2),
1158    [0xc3] = X86_OP_ENTRY3(MOV,        EM,y,G,y, None,None, cpuid(SSE2)), /* MOVNTI */
1159    [0xc4] = X86_OP_ENTRY4(PINSRW,     V,dq,H,dq,E,w,       vex5 mmx p_00_66),
1160    [0xc5] = X86_OP_ENTRY3(PEXTRW,     G,d, U,dq,I,b,       vex5 mmx p_00_66),
1161    [0xc6] = X86_OP_ENTRY4(VSHUF,      V,x, H,x, W,x,       vex4 p_00_66),
1162
1163    [0xc8] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1164    [0xc9] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1165    [0xca] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1166    [0xcb] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1167    [0xcc] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1168    [0xcd] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1169    [0xce] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1170    [0xcf] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1171
1172    [0xd0] = X86_OP_ENTRY3(VADDSUB,   V,x, H,x, W,x,        vex2 cpuid(SSE3) p_66_f2),
1173    [0xd1] = X86_OP_ENTRY3(PSRLW_r,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1174    [0xd2] = X86_OP_ENTRY3(PSRLD_r,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1175    [0xd3] = X86_OP_ENTRY3(PSRLQ_r,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1176    [0xd4] = X86_OP_ENTRY3(PADDQ,     V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1177    [0xd5] = X86_OP_ENTRY3(PMULLW,    V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1178    [0xd6] = X86_OP_GROUP0(0FD6),
1179    [0xd7] = X86_OP_ENTRY3(PMOVMSKB,  G,d, None,None, U,x,  vex7 mmx avx2_256 p_00_66),
1180
1181    [0xe0] = X86_OP_ENTRY3(PAVGB,     V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1182    [0xe1] = X86_OP_ENTRY3(PSRAW_r,   V,x, H,x, W,x,        vex7 mmx avx2_256 p_00_66),
1183    [0xe2] = X86_OP_ENTRY3(PSRAD_r,   V,x, H,x, W,x,        vex7 mmx avx2_256 p_00_66),
1184    [0xe3] = X86_OP_ENTRY3(PAVGW,     V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1185    [0xe4] = X86_OP_ENTRY3(PMULHUW,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1186    [0xe5] = X86_OP_ENTRY3(PMULHW,    V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1187    [0xe6] = X86_OP_GROUP0(0FE6),
1188    [0xe7] = X86_OP_ENTRY3(MOVDQ,     W,x, None,None, V,x,  vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */
1189
1190    [0xf0] = X86_OP_ENTRY3(MOVDQ,    V,x, None,None, WM,x,  vex4_unal cpuid(SSE3) p_f2), /* LDDQU */
1191    [0xf1] = X86_OP_ENTRY3(PSLLW_r,  V,x, H,x, W,x,         vex7 mmx avx2_256 p_00_66),
1192    [0xf2] = X86_OP_ENTRY3(PSLLD_r,  V,x, H,x, W,x,         vex7 mmx avx2_256 p_00_66),
1193    [0xf3] = X86_OP_ENTRY3(PSLLQ_r,  V,x, H,x, W,x,         vex7 mmx avx2_256 p_00_66),
1194    [0xf4] = X86_OP_ENTRY3(PMULUDQ,  V,x, H,x, W,x,         vex4 mmx avx2_256 p_00_66),
1195    [0xf5] = X86_OP_ENTRY3(PMADDWD,  V,x, H,x, W,x,         vex4 mmx avx2_256 p_00_66),
1196    [0xf6] = X86_OP_ENTRY3(PSADBW,   V,x, H,x, W,x,         vex4 mmx avx2_256 p_00_66),
1197    [0xf7] = X86_OP_ENTRY3(MASKMOV,  None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66),
1198
1199    /* Incorrectly missing from 2-17 */
1200    [0xd8] = X86_OP_ENTRY3(PSUBUSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1201    [0xd9] = X86_OP_ENTRY3(PSUBUSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1202    [0xda] = X86_OP_ENTRY3(PMINUB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1203    [0xdb] = X86_OP_ENTRY3(PAND,     V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1204    [0xdc] = X86_OP_ENTRY3(PADDUSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1205    [0xdd] = X86_OP_ENTRY3(PADDUSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1206    [0xde] = X86_OP_ENTRY3(PMAXUB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1207    [0xdf] = X86_OP_ENTRY3(PANDN,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1208
1209    [0xe8] = X86_OP_ENTRY3(PSUBSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1210    [0xe9] = X86_OP_ENTRY3(PSUBSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1211    [0xea] = X86_OP_ENTRY3(PMINSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1212    [0xeb] = X86_OP_ENTRY3(POR,     V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1213    [0xec] = X86_OP_ENTRY3(PADDSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1214    [0xed] = X86_OP_ENTRY3(PADDSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1215    [0xee] = X86_OP_ENTRY3(PMAXSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1216    [0xef] = X86_OP_ENTRY3(PXOR,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1217
1218    [0xf8] = X86_OP_ENTRY3(PSUBB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1219    [0xf9] = X86_OP_ENTRY3(PSUBW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1220    [0xfa] = X86_OP_ENTRY3(PSUBD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1221    [0xfb] = X86_OP_ENTRY3(PSUBQ,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1222    [0xfc] = X86_OP_ENTRY3(PADDB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1223    [0xfd] = X86_OP_ENTRY3(PADDW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1224    [0xfe] = X86_OP_ENTRY3(PADDD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1225    [0xff] = X86_OP_ENTRYr(UD,     nop,v),                        /* UD0 */
1226};
1227
1228static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1229{
1230    *entry = opcodes_0F[*b];
1231}
1232
1233static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1234{
1235    *b = x86_ldub_code(env, s);
1236    do_decode_0F(s, env, entry, b);
1237}
1238
1239static void decode_63(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1240{
1241    static const X86OpEntry arpl = X86_OP_ENTRY2(ARPL, E,w, G,w, chk(prot));
1242    static const X86OpEntry mov = X86_OP_ENTRY3(MOV, G,v, E,v, None, None);
1243    static const X86OpEntry movsxd = X86_OP_ENTRY3(MOV, G,v, E,d, None, None, sextT0);
1244    if (!CODE64(s)) {
1245        *entry = arpl;
1246    } else if (REX_W(s)) {
1247        *entry = movsxd;
1248    } else {
1249        *entry = mov;
1250    }
1251}
1252
1253static void decode_group1(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1254{
1255    static const X86GenFunc group1_gen[8] = {
1256        gen_ADD, gen_OR, gen_ADC, gen_SBB, gen_AND, gen_SUB, gen_XOR, gen_SUB,
1257    };
1258    int op = (get_modrm(s, env) >> 3) & 7;
1259    entry->gen = group1_gen[op];
1260
1261    if (op == 7) {
1262        /* prevent writeback for CMP */
1263        entry->op1 = entry->op0;
1264        entry->op0 = X86_TYPE_None;
1265        entry->s0 = X86_SIZE_None;
1266    } else {
1267        entry->special = X86_SPECIAL_HasLock;
1268    }
1269}
1270
1271static void decode_group1A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1272{
1273    int op = (get_modrm(s, env) >> 3) & 7;
1274    if (op != 0) {
1275        /* could be XOP prefix too */
1276        *entry = UNKNOWN_OPCODE;
1277    } else {
1278        entry->gen = gen_POP;
1279        /* The address must use the value of ESP after the pop.  */
1280        s->popl_esp_hack = 1 << mo_pushpop(s, s->dflag);
1281    }
1282}
1283
1284static void decode_group2(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1285{
1286    static const X86GenFunc group2_gen[8] = {
1287        gen_ROL, gen_ROR, gen_RCL, gen_RCR,
1288        gen_SHL, gen_SHR, gen_SHL /* SAL, undocumented */, gen_SAR,
1289    };
1290    int op = (get_modrm(s, env) >> 3) & 7;
1291    entry->gen = group2_gen[op];
1292    if (op == 7) {
1293        entry->special = X86_SPECIAL_SExtT0;
1294    } else {
1295        entry->special = X86_SPECIAL_ZExtT0;
1296    }
1297}
1298
1299static void decode_group3(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1300{
1301    static const X86OpEntry opcodes_grp3[16] = {
1302        /* 0xf6 */
1303        [0x00] = X86_OP_ENTRYrr(AND, E,b, I,b),
1304        [0x02] = X86_OP_ENTRY1(NOT,  E,b,      lock),
1305        [0x03] = X86_OP_ENTRY1(NEG,  E,b,      lock),
1306        [0x04] = X86_OP_ENTRYrr(MUL, E,b, 0,b, zextT0),
1307        [0x05] = X86_OP_ENTRYrr(IMUL,E,b, 0,b, sextT0),
1308        [0x06] = X86_OP_ENTRYr(DIV,  E,b),
1309        [0x07] = X86_OP_ENTRYr(IDIV, E,b),
1310
1311        /* 0xf7 */
1312        [0x08] = X86_OP_ENTRYrr(AND, E,v, I,z),
1313        [0x0a] = X86_OP_ENTRY1(NOT,  E,v,      lock),
1314        [0x0b] = X86_OP_ENTRY1(NEG,  E,v,      lock),
1315        [0x0c] = X86_OP_ENTRYrr(MUL, E,v, 0,v, zextT0),
1316        [0x0d] = X86_OP_ENTRYrr(IMUL,E,v, 0,v, sextT0),
1317        [0x0e] = X86_OP_ENTRYr(DIV,  E,v),
1318        [0x0f] = X86_OP_ENTRYr(IDIV, E,v),
1319    };
1320
1321    int w = (*b & 1);
1322    int reg = (get_modrm(s, env) >> 3) & 7;
1323
1324    *entry = opcodes_grp3[(w << 3) | reg];
1325}
1326
1327static void decode_group4_5(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1328{
1329    static const X86OpEntry opcodes_grp4_5[16] = {
1330        /* 0xfe */
1331        [0x00] = X86_OP_ENTRY1(INC,     E,b,                           lock),
1332        [0x01] = X86_OP_ENTRY1(DEC,     E,b,                           lock),
1333
1334        /* 0xff */
1335        [0x08] = X86_OP_ENTRY1(INC,     E,v,                           lock),
1336        [0x09] = X86_OP_ENTRY1(DEC,     E,v,                           lock),
1337        [0x0a] = X86_OP_ENTRY3(CALL_m,  None, None, E,f64, None, None, zextT0),
1338        [0x0b] = X86_OP_ENTRYr(CALLF_m, M,p),
1339        [0x0c] = X86_OP_ENTRY3(JMP_m,   None, None, E,f64, None, None, zextT0),
1340        [0x0d] = X86_OP_ENTRYr(JMPF_m,  M,p),
1341        [0x0e] = X86_OP_ENTRYr(PUSH,    E,f64),
1342    };
1343
1344    int w = (*b & 1);
1345    int reg = (get_modrm(s, env) >> 3) & 7;
1346
1347    *entry = opcodes_grp4_5[(w << 3) | reg];
1348}
1349
1350
1351static void decode_group11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1352{
1353    int op = (get_modrm(s, env) >> 3) & 7;
1354    if (op != 0) {
1355        *entry = UNKNOWN_OPCODE;
1356    } else {
1357        entry->gen = gen_MOV;
1358    }
1359}
1360
1361static const X86OpEntry opcodes_root[256] = {
1362    [0x00] = X86_OP_ENTRY2(ADD, E,b, G,b, lock),
1363    [0x01] = X86_OP_ENTRY2(ADD, E,v, G,v, lock),
1364    [0x02] = X86_OP_ENTRY2(ADD, G,b, E,b, lock),
1365    [0x03] = X86_OP_ENTRY2(ADD, G,v, E,v, lock),
1366    [0x04] = X86_OP_ENTRY2(ADD, 0,b, I,b, lock),   /* AL, Ib */
1367    [0x05] = X86_OP_ENTRY2(ADD, 0,v, I,z, lock),   /* rAX, Iz */
1368    [0x06] = X86_OP_ENTRYr(PUSH, ES, w, chk(i64)),
1369    [0x07] = X86_OP_ENTRYw(POP, ES, w, chk(i64)),
1370
1371    [0x10] = X86_OP_ENTRY2(ADC, E,b, G,b, lock),
1372    [0x11] = X86_OP_ENTRY2(ADC, E,v, G,v, lock),
1373    [0x12] = X86_OP_ENTRY2(ADC, G,b, E,b, lock),
1374    [0x13] = X86_OP_ENTRY2(ADC, G,v, E,v, lock),
1375    [0x14] = X86_OP_ENTRY2(ADC, 0,b, I,b, lock),   /* AL, Ib */
1376    [0x15] = X86_OP_ENTRY2(ADC, 0,v, I,z, lock),   /* rAX, Iz */
1377    [0x16] = X86_OP_ENTRYr(PUSH, SS, w, chk(i64)),
1378    [0x17] = X86_OP_ENTRYw(POP, SS, w, chk(i64)),
1379
1380    [0x20] = X86_OP_ENTRY2(AND, E,b, G,b, lock),
1381    [0x21] = X86_OP_ENTRY2(AND, E,v, G,v, lock),
1382    [0x22] = X86_OP_ENTRY2(AND, G,b, E,b, lock),
1383    [0x23] = X86_OP_ENTRY2(AND, G,v, E,v, lock),
1384    [0x24] = X86_OP_ENTRY2(AND, 0,b, I,b, lock),   /* AL, Ib */
1385    [0x25] = X86_OP_ENTRY2(AND, 0,v, I,z, lock),   /* rAX, Iz */
1386    [0x26] = {},
1387    [0x27] = X86_OP_ENTRY0(DAA, chk(i64)),
1388
1389    [0x30] = X86_OP_ENTRY2(XOR, E,b, G,b, lock),
1390    [0x31] = X86_OP_ENTRY2(XOR, E,v, G,v, lock),
1391    [0x32] = X86_OP_ENTRY2(XOR, G,b, E,b, lock),
1392    [0x33] = X86_OP_ENTRY2(XOR, G,v, E,v, lock),
1393    [0x34] = X86_OP_ENTRY2(XOR, 0,b, I,b, lock),   /* AL, Ib */
1394    [0x35] = X86_OP_ENTRY2(XOR, 0,v, I,z, lock),   /* rAX, Iz */
1395    [0x36] = {},
1396    [0x37] = X86_OP_ENTRY0(AAA, chk(i64)),
1397
1398    [0x40] = X86_OP_ENTRY1(INC, 0,v, chk(i64)),
1399    [0x41] = X86_OP_ENTRY1(INC, 1,v, chk(i64)),
1400    [0x42] = X86_OP_ENTRY1(INC, 2,v, chk(i64)),
1401    [0x43] = X86_OP_ENTRY1(INC, 3,v, chk(i64)),
1402    [0x44] = X86_OP_ENTRY1(INC, 4,v, chk(i64)),
1403    [0x45] = X86_OP_ENTRY1(INC, 5,v, chk(i64)),
1404    [0x46] = X86_OP_ENTRY1(INC, 6,v, chk(i64)),
1405    [0x47] = X86_OP_ENTRY1(INC, 7,v, chk(i64)),
1406
1407    [0x50] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1408    [0x51] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1409    [0x52] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1410    [0x53] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1411    [0x54] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1412    [0x55] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1413    [0x56] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1414    [0x57] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1415
1416    [0x60] = X86_OP_ENTRY0(PUSHA, chk(i64)),
1417    [0x61] = X86_OP_ENTRY0(POPA, chk(i64)),
1418    [0x62] = X86_OP_ENTRYrr(BOUND, G,v, M,a, chk(i64)),
1419    [0x63] = X86_OP_GROUP0(63),
1420    [0x64] = {},
1421    [0x65] = {},
1422    [0x66] = {},
1423    [0x67] = {},
1424
1425    [0x70] = X86_OP_ENTRYr(Jcc, J,b),
1426    [0x71] = X86_OP_ENTRYr(Jcc, J,b),
1427    [0x72] = X86_OP_ENTRYr(Jcc, J,b),
1428    [0x73] = X86_OP_ENTRYr(Jcc, J,b),
1429    [0x74] = X86_OP_ENTRYr(Jcc, J,b),
1430    [0x75] = X86_OP_ENTRYr(Jcc, J,b),
1431    [0x76] = X86_OP_ENTRYr(Jcc, J,b),
1432    [0x77] = X86_OP_ENTRYr(Jcc, J,b),
1433
1434    [0x80] = X86_OP_GROUP2(group1, E,b, I,b),
1435    [0x81] = X86_OP_GROUP2(group1, E,v, I,z),
1436    [0x82] = X86_OP_GROUP2(group1, E,b, I,b, chk(i64)),
1437    [0x83] = X86_OP_GROUP2(group1, E,v, I,b),
1438    [0x84] = X86_OP_ENTRYrr(AND, E,b, G,b),
1439    [0x85] = X86_OP_ENTRYrr(AND, E,v, G,v),
1440    [0x86] = X86_OP_ENTRY2(XCHG, E,b, G,b, xchg),
1441    [0x87] = X86_OP_ENTRY2(XCHG, E,v, G,v, xchg),
1442
1443    [0x90] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1444    [0x91] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1445    [0x92] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1446    [0x93] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1447    [0x94] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1448    [0x95] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1449    [0x96] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1450    [0x97] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1451
1452    [0xA0] = X86_OP_ENTRY3(MOV, 0,b, O,b, None, None), /* AL, Ob */
1453    [0xA1] = X86_OP_ENTRY3(MOV, 0,v, O,v, None, None), /* rAX, Ov */
1454    [0xA2] = X86_OP_ENTRY3(MOV, O,b, 0,b, None, None), /* Ob, AL */
1455    [0xA3] = X86_OP_ENTRY3(MOV, O,v, 0,v, None, None), /* Ov, rAX */
1456    [0xA4] = X86_OP_ENTRYrr(MOVS, Y,b, X,b),
1457    [0xA5] = X86_OP_ENTRYrr(MOVS, Y,v, X,v),
1458    [0xA6] = X86_OP_ENTRYrr(CMPS, Y,b, X,b),
1459    [0xA7] = X86_OP_ENTRYrr(CMPS, Y,v, X,v),
1460
1461    [0xB0] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1462    [0xB1] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1463    [0xB2] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1464    [0xB3] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1465    [0xB4] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1466    [0xB5] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1467    [0xB6] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1468    [0xB7] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1469
1470    [0xC0] = X86_OP_GROUP2(group2, E,b, I,b),
1471    [0xC1] = X86_OP_GROUP2(group2, E,v, I,b),
1472    [0xC2] = X86_OP_ENTRYr(RET, I,w),
1473    [0xC3] = X86_OP_ENTRY0(RET),
1474    [0xC4] = X86_OP_ENTRY3(LES, G,z, EM,p, None, None, chk(i64)),
1475    [0xC5] = X86_OP_ENTRY3(LDS, G,z, EM,p, None, None, chk(i64)),
1476    [0xC6] = X86_OP_GROUP3(group11, E,b, I,b, None, None), /* reg=000b */
1477    [0xC7] = X86_OP_GROUP3(group11, E,v, I,z, None, None), /* reg=000b */
1478
1479    [0xD0] = X86_OP_GROUP1(group2, E,b),
1480    [0xD1] = X86_OP_GROUP1(group2, E,v),
1481    [0xD2] = X86_OP_GROUP2(group2, E,b, 1,b), /* CL */
1482    [0xD3] = X86_OP_GROUP2(group2, E,v, 1,b), /* CL */
1483    [0xD4] = X86_OP_ENTRY2(AAM, 0,w, I,b),
1484    [0xD5] = X86_OP_ENTRY2(AAD, 0,w, I,b),
1485    [0xD6] = X86_OP_ENTRYw(SALC, 0,b),
1486    [0xD7] = X86_OP_ENTRY1(XLAT, 0,b, zextT0), /* AL read/written */
1487
1488    [0xE0] = X86_OP_ENTRYr(LOOPNE, J,b), /* implicit: CX with aflag size */
1489    [0xE1] = X86_OP_ENTRYr(LOOPE,  J,b), /* implicit: CX with aflag size */
1490    [0xE2] = X86_OP_ENTRYr(LOOP,   J,b), /* implicit: CX with aflag size */
1491    [0xE3] = X86_OP_ENTRYr(JCXZ,   J,b), /* implicit: CX with aflag size */
1492    [0xE4] = X86_OP_ENTRYwr(IN,    0,b, I_unsigned,b), /* AL */
1493    [0xE5] = X86_OP_ENTRYwr(IN,    0,v, I_unsigned,b), /* AX/EAX */
1494    [0xE6] = X86_OP_ENTRYrr(OUT,   0,b, I_unsigned,b), /* AL */
1495    [0xE7] = X86_OP_ENTRYrr(OUT,   0,v, I_unsigned,b), /* AX/EAX */
1496
1497    [0xF1] = X86_OP_ENTRY0(INT1,   svm(ICEBP)),
1498    [0xF4] = X86_OP_ENTRY0(HLT,    chk(cpl0)),
1499    [0xF5] = X86_OP_ENTRY0(CMC),
1500    [0xF6] = X86_OP_GROUP1(group3, E,b),
1501    [0xF7] = X86_OP_GROUP1(group3, E,v),
1502
1503    [0x08] = X86_OP_ENTRY2(OR, E,b, G,b, lock),
1504    [0x09] = X86_OP_ENTRY2(OR, E,v, G,v, lock),
1505    [0x0A] = X86_OP_ENTRY2(OR, G,b, E,b, lock),
1506    [0x0B] = X86_OP_ENTRY2(OR, G,v, E,v, lock),
1507    [0x0C] = X86_OP_ENTRY2(OR, 0,b, I,b, lock),   /* AL, Ib */
1508    [0x0D] = X86_OP_ENTRY2(OR, 0,v, I,z, lock),   /* rAX, Iz */
1509    [0x0E] = X86_OP_ENTRYr(PUSH, CS, w, chk(i64)),
1510    [0x0F] = X86_OP_GROUP0(0F),
1511
1512    [0x18] = X86_OP_ENTRY2(SBB, E,b, G,b, lock),
1513    [0x19] = X86_OP_ENTRY2(SBB, E,v, G,v, lock),
1514    [0x1A] = X86_OP_ENTRY2(SBB, G,b, E,b, lock),
1515    [0x1B] = X86_OP_ENTRY2(SBB, G,v, E,v, lock),
1516    [0x1C] = X86_OP_ENTRY2(SBB, 0,b, I,b, lock),   /* AL, Ib */
1517    [0x1D] = X86_OP_ENTRY2(SBB, 0,v, I,z, lock),   /* rAX, Iz */
1518    [0x1E] = X86_OP_ENTRYr(PUSH, DS, w, chk(i64)),
1519    [0x1F] = X86_OP_ENTRYw(POP, DS, w, chk(i64)),
1520
1521    [0x28] = X86_OP_ENTRY2(SUB, E,b, G,b, lock),
1522    [0x29] = X86_OP_ENTRY2(SUB, E,v, G,v, lock),
1523    [0x2A] = X86_OP_ENTRY2(SUB, G,b, E,b, lock),
1524    [0x2B] = X86_OP_ENTRY2(SUB, G,v, E,v, lock),
1525    [0x2C] = X86_OP_ENTRY2(SUB, 0,b, I,b, lock),   /* AL, Ib */
1526    [0x2D] = X86_OP_ENTRY2(SUB, 0,v, I,z, lock),   /* rAX, Iz */
1527    [0x2E] = {},
1528    [0x2F] = X86_OP_ENTRY0(DAS, chk(i64)),
1529
1530    [0x38] = X86_OP_ENTRYrr(SUB, E,b, G,b),
1531    [0x39] = X86_OP_ENTRYrr(SUB, E,v, G,v),
1532    [0x3A] = X86_OP_ENTRYrr(SUB, G,b, E,b),
1533    [0x3B] = X86_OP_ENTRYrr(SUB, G,v, E,v),
1534    [0x3C] = X86_OP_ENTRYrr(SUB, 0,b, I,b),   /* AL, Ib */
1535    [0x3D] = X86_OP_ENTRYrr(SUB, 0,v, I,z),   /* rAX, Iz */
1536    [0x3E] = {},
1537    [0x3F] = X86_OP_ENTRY0(AAS, chk(i64)),
1538
1539    [0x48] = X86_OP_ENTRY1(DEC, 0,v, chk(i64)),
1540    [0x49] = X86_OP_ENTRY1(DEC, 1,v, chk(i64)),
1541    [0x4A] = X86_OP_ENTRY1(DEC, 2,v, chk(i64)),
1542    [0x4B] = X86_OP_ENTRY1(DEC, 3,v, chk(i64)),
1543    [0x4C] = X86_OP_ENTRY1(DEC, 4,v, chk(i64)),
1544    [0x4D] = X86_OP_ENTRY1(DEC, 5,v, chk(i64)),
1545    [0x4E] = X86_OP_ENTRY1(DEC, 6,v, chk(i64)),
1546    [0x4F] = X86_OP_ENTRY1(DEC, 7,v, chk(i64)),
1547
1548    [0x58] = X86_OP_ENTRYw(POP, LoBits,d64),
1549    [0x59] = X86_OP_ENTRYw(POP, LoBits,d64),
1550    [0x5A] = X86_OP_ENTRYw(POP, LoBits,d64),
1551    [0x5B] = X86_OP_ENTRYw(POP, LoBits,d64),
1552    [0x5C] = X86_OP_ENTRYw(POP, LoBits,d64),
1553    [0x5D] = X86_OP_ENTRYw(POP, LoBits,d64),
1554    [0x5E] = X86_OP_ENTRYw(POP, LoBits,d64),
1555    [0x5F] = X86_OP_ENTRYw(POP, LoBits,d64),
1556
1557    [0x68] = X86_OP_ENTRYr(PUSH, I,z),
1558    [0x69] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,z, sextT0),
1559    [0x6A] = X86_OP_ENTRYr(PUSH, I,b),
1560    [0x6B] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,b, sextT0),
1561    [0x6C] = X86_OP_ENTRYrr(INS, Y,b, 2,w), /* DX */
1562    [0x6D] = X86_OP_ENTRYrr(INS, Y,z, 2,w), /* DX */
1563    [0x6E] = X86_OP_ENTRYrr(OUTS, X,b, 2,w), /* DX */
1564    [0x6F] = X86_OP_ENTRYrr(OUTS, X,z, 2,w), /* DX */
1565
1566    [0x78] = X86_OP_ENTRYr(Jcc, J,b),
1567    [0x79] = X86_OP_ENTRYr(Jcc, J,b),
1568    [0x7A] = X86_OP_ENTRYr(Jcc, J,b),
1569    [0x7B] = X86_OP_ENTRYr(Jcc, J,b),
1570    [0x7C] = X86_OP_ENTRYr(Jcc, J,b),
1571    [0x7D] = X86_OP_ENTRYr(Jcc, J,b),
1572    [0x7E] = X86_OP_ENTRYr(Jcc, J,b),
1573    [0x7F] = X86_OP_ENTRYr(Jcc, J,b),
1574
1575    [0x88] = X86_OP_ENTRY3(MOV, E,b, G,b, None, None),
1576    [0x89] = X86_OP_ENTRY3(MOV, E,v, G,v, None, None),
1577    [0x8A] = X86_OP_ENTRY3(MOV, G,b, E,b, None, None),
1578    [0x8B] = X86_OP_ENTRY3(MOV, G,v, E,v, None, None),
1579    [0x8C] = X86_OP_ENTRY3(MOV, E,v, S,w, None, None),
1580    [0x8D] = X86_OP_ENTRY3(LEA, G,v, M,v, None, None, noseg),
1581    [0x8E] = X86_OP_ENTRY3(MOV, S,w, E,v, None, None),
1582    [0x8F] = X86_OP_GROUPw(group1A, E,v),
1583
1584    [0x98] = X86_OP_ENTRY1(CBW,    0,v), /* rAX */
1585    [0x99] = X86_OP_ENTRY3(CWD,    2,v, 0,v, None, None), /* rDX, rAX */
1586    [0x9A] = X86_OP_ENTRYrr(CALLF, I_unsigned,p, I_unsigned,w, chk(i64)),
1587    [0x9B] = X86_OP_ENTRY0(WAIT),
1588    [0x9C] = X86_OP_ENTRY0(PUSHF,  chk(vm86_iopl) svm(PUSHF)),
1589    [0x9D] = X86_OP_ENTRY0(POPF,   chk(vm86_iopl) svm(POPF)),
1590    [0x9E] = X86_OP_ENTRY0(SAHF),
1591    [0x9F] = X86_OP_ENTRY0(LAHF),
1592
1593    [0xA8] = X86_OP_ENTRYrr(AND, 0,b, I,b),   /* AL, Ib */
1594    [0xA9] = X86_OP_ENTRYrr(AND, 0,v, I,z),   /* rAX, Iz */
1595    [0xAA] = X86_OP_ENTRY3(STOS, Y,b, 0,b, None, None),
1596    [0xAB] = X86_OP_ENTRY3(STOS, Y,v, 0,v, None, None),
1597    /* Manual writeback because REP LODS (!) has to write EAX/RAX after every LODS.  */
1598    [0xAC] = X86_OP_ENTRYr(LODS, X,b),
1599    [0xAD] = X86_OP_ENTRYr(LODS, X,v),
1600    [0xAE] = X86_OP_ENTRYrr(SCAS, 0,b, Y,b),
1601    [0xAF] = X86_OP_ENTRYrr(SCAS, 0,v, Y,v),
1602
1603    [0xB8] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
1604    [0xB9] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
1605    [0xBA] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
1606    [0xBB] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
1607    [0xBC] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
1608    [0xBD] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
1609    [0xBE] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
1610    [0xBF] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
1611
1612    [0xC8] = X86_OP_ENTRYrr(ENTER, I,w, I,b),
1613    [0xC9] = X86_OP_ENTRY1(LEAVE, A,d64),
1614    [0xCA] = X86_OP_ENTRYr(RETF,  I,w),
1615    [0xCB] = X86_OP_ENTRY0(RETF),
1616    [0xCC] = X86_OP_ENTRY0(INT3),
1617    [0xCD] = X86_OP_ENTRYr(INT, I,b,  chk(vm86_iopl)),
1618    [0xCE] = X86_OP_ENTRY0(INTO),
1619    [0xCF] = X86_OP_ENTRY0(IRET,      chk(vm86_iopl) svm(IRET)),
1620
1621    [0xE8] = X86_OP_ENTRYr(CALL,   J,z_f64),
1622    [0xE9] = X86_OP_ENTRYr(JMP,    J,z_f64),
1623    [0xEA] = X86_OP_ENTRYrr(JMPF,  I_unsigned,p, I_unsigned,w, chk(i64)),
1624    [0xEB] = X86_OP_ENTRYr(JMP,    J,b),
1625    [0xEC] = X86_OP_ENTRYwr(IN,    0,b, 2,w), /* AL, DX */
1626    [0xED] = X86_OP_ENTRYwr(IN,    0,v, 2,w), /* AX/EAX, DX */
1627    [0xEE] = X86_OP_ENTRYrr(OUT,   0,b, 2,w), /* DX, AL */
1628    [0xEF] = X86_OP_ENTRYrr(OUT,   0,v, 2,w), /* DX, AX/EAX */
1629
1630    [0xF8] = X86_OP_ENTRY0(CLC),
1631    [0xF9] = X86_OP_ENTRY0(STC),
1632    [0xFA] = X86_OP_ENTRY0(CLI,    chk(iopl)),
1633    [0xFB] = X86_OP_ENTRY0(STI,    chk(iopl)),
1634    [0xFC] = X86_OP_ENTRY0(CLD),
1635    [0xFD] = X86_OP_ENTRY0(STD),
1636    [0xFE] = X86_OP_GROUP1(group4_5, E,b),
1637    [0xFF] = X86_OP_GROUP1(group4_5, E,v),
1638};
1639
1640#undef mmx
1641#undef vex1
1642#undef vex2
1643#undef vex3
1644#undef vex4
1645#undef vex4_unal
1646#undef vex5
1647#undef vex6
1648#undef vex7
1649#undef vex8
1650#undef vex11
1651#undef vex12
1652#undef vex13
1653
1654/*
1655 * Decode the fixed part of the opcode and place the last
1656 * in b.
1657 */
1658static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1659{
1660    *entry = opcodes_root[*b];
1661}
1662
1663
1664static int decode_modrm(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
1665                        X86DecodedOp *op, X86OpType type)
1666{
1667    int modrm = get_modrm(s, env);
1668    if ((modrm >> 6) == 3) {
1669        op->n = (modrm & 7);
1670        if (type != X86_TYPE_Q && type != X86_TYPE_N) {
1671            op->n |= REX_B(s);
1672        }
1673    } else {
1674        op->has_ea = true;
1675        op->n = -1;
1676        decode->mem = gen_lea_modrm_0(env, s, get_modrm(s, env));
1677    }
1678    return modrm;
1679}
1680
1681static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot)
1682{
1683    switch (size) {
1684    case X86_SIZE_b:  /* byte */
1685        *ot = MO_8;
1686        return true;
1687
1688    case X86_SIZE_d:  /* 32-bit */
1689    case X86_SIZE_ss: /* SSE/AVX scalar single precision */
1690        *ot = MO_32;
1691        return true;
1692
1693    case X86_SIZE_p:  /* Far pointer, return offset size */
1694    case X86_SIZE_s:  /* Descriptor, return offset size */
1695    case X86_SIZE_v:  /* 16/32/64-bit, based on operand size */
1696        *ot = s->dflag;
1697        return true;
1698
1699    case X86_SIZE_pi: /* MMX */
1700    case X86_SIZE_q:  /* 64-bit */
1701    case X86_SIZE_sd: /* SSE/AVX scalar double precision */
1702        *ot = MO_64;
1703        return true;
1704
1705    case X86_SIZE_w:  /* 16-bit */
1706        *ot = MO_16;
1707        return true;
1708
1709    case X86_SIZE_y:  /* 32/64-bit, based on operand size */
1710        *ot = s->dflag == MO_16 ? MO_32 : s->dflag;
1711        return true;
1712
1713    case X86_SIZE_z:  /* 16-bit for 16-bit operand size, else 32-bit */
1714        *ot = s->dflag == MO_16 ? MO_16 : MO_32;
1715        return true;
1716
1717    case X86_SIZE_z_f64:  /* 32-bit for 32-bit operand size or 64-bit mode, else 16-bit */
1718        *ot = !CODE64(s) && s->dflag == MO_16 ? MO_16 : MO_32;
1719        return true;
1720
1721    case X86_SIZE_dq: /* SSE/AVX 128-bit */
1722        if (e->special == X86_SPECIAL_MMX &&
1723            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1724            *ot = MO_64;
1725            return true;
1726        }
1727        if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) {
1728            return false;
1729        }
1730        *ot = MO_128;
1731        return true;
1732
1733    case X86_SIZE_qq: /* AVX 256-bit */
1734        if (!s->vex_l) {
1735            return false;
1736        }
1737        *ot = MO_256;
1738        return true;
1739
1740    case X86_SIZE_x:  /* 128/256-bit, based on operand size */
1741        if (e->special == X86_SPECIAL_MMX &&
1742            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1743            *ot = MO_64;
1744            return true;
1745        }
1746        /* fall through */
1747    case X86_SIZE_ps: /* SSE/AVX packed single precision */
1748    case X86_SIZE_pd: /* SSE/AVX packed double precision */
1749        *ot = s->vex_l ? MO_256 : MO_128;
1750        return true;
1751
1752    case X86_SIZE_xh: /* SSE/AVX packed half register */
1753        *ot = s->vex_l ? MO_128 : MO_64;
1754        return true;
1755
1756    case X86_SIZE_d64:  /* Default to 64-bit in 64-bit mode */
1757        *ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag;
1758        return true;
1759
1760    case X86_SIZE_f64:  /* Ignore size override prefix in 64-bit mode */
1761        *ot = CODE64(s) ? MO_64 : s->dflag;
1762        return true;
1763
1764    default:
1765        *ot = -1;
1766        return true;
1767    }
1768}
1769
1770static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
1771                      X86DecodedOp *op, X86OpType type, int b)
1772{
1773    int modrm;
1774
1775    switch (type) {
1776    case X86_TYPE_None:  /* Implicit or absent */
1777    case X86_TYPE_A:  /* Implicit */
1778    case X86_TYPE_F:  /* EFLAGS/RFLAGS */
1779    case X86_TYPE_X:  /* string source */
1780    case X86_TYPE_Y:  /* string destination */
1781        break;
1782
1783    case X86_TYPE_B:  /* VEX.vvvv selects a GPR */
1784        op->unit = X86_OP_INT;
1785        op->n = s->vex_v;
1786        break;
1787
1788    case X86_TYPE_C:  /* REG in the modrm byte selects a control register */
1789        op->unit = X86_OP_CR;
1790        goto get_reg;
1791
1792    case X86_TYPE_D:  /* REG in the modrm byte selects a debug register */
1793        op->unit = X86_OP_DR;
1794        goto get_reg;
1795
1796    case X86_TYPE_G:  /* REG in the modrm byte selects a GPR */
1797        op->unit = X86_OP_INT;
1798        goto get_reg;
1799
1800    case X86_TYPE_S:  /* reg selects a segment register */
1801        op->unit = X86_OP_SEG;
1802        goto get_reg;
1803
1804    case X86_TYPE_P:
1805        op->unit = X86_OP_MMX;
1806        goto get_reg;
1807
1808    case X86_TYPE_V:  /* reg in the modrm byte selects an XMM/YMM register */
1809        if (decode->e.special == X86_SPECIAL_MMX &&
1810            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1811            op->unit = X86_OP_MMX;
1812        } else {
1813            op->unit = X86_OP_SSE;
1814        }
1815    get_reg:
1816        op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s);
1817        break;
1818
1819    case X86_TYPE_E:  /* ALU modrm operand */
1820        op->unit = X86_OP_INT;
1821        goto get_modrm;
1822
1823    case X86_TYPE_Q:  /* MMX modrm operand */
1824        op->unit = X86_OP_MMX;
1825        goto get_modrm;
1826
1827    case X86_TYPE_W:  /* XMM/YMM modrm operand */
1828        if (decode->e.special == X86_SPECIAL_MMX &&
1829            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1830            op->unit = X86_OP_MMX;
1831        } else {
1832            op->unit = X86_OP_SSE;
1833        }
1834        goto get_modrm;
1835
1836    case X86_TYPE_N:  /* R/M in the modrm byte selects an MMX register */
1837        op->unit = X86_OP_MMX;
1838        goto get_modrm_reg;
1839
1840    case X86_TYPE_U:  /* R/M in the modrm byte selects an XMM/YMM register */
1841        if (decode->e.special == X86_SPECIAL_MMX &&
1842            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1843            op->unit = X86_OP_MMX;
1844        } else {
1845            op->unit = X86_OP_SSE;
1846        }
1847        goto get_modrm_reg;
1848
1849    case X86_TYPE_R:  /* R/M in the modrm byte selects a register */
1850        op->unit = X86_OP_INT;
1851    get_modrm_reg:
1852        modrm = get_modrm(s, env);
1853        if ((modrm >> 6) != 3) {
1854            return false;
1855        }
1856        goto get_modrm;
1857
1858    case X86_TYPE_WM:  /* modrm byte selects an XMM/YMM memory operand */
1859        op->unit = X86_OP_SSE;
1860        goto get_modrm_mem;
1861
1862    case X86_TYPE_EM:  /* modrm byte selects an ALU memory operand */
1863        op->unit = X86_OP_INT;
1864        /* fall through */
1865    case X86_TYPE_M:  /* modrm byte selects a memory operand */
1866    get_modrm_mem:
1867        modrm = get_modrm(s, env);
1868        if ((modrm >> 6) == 3) {
1869            return false;
1870        }
1871        /* fall through */
1872    case X86_TYPE_nop:  /* modrm operand decoded but not fetched */
1873    get_modrm:
1874        decode_modrm(s, env, decode, op, type);
1875        break;
1876
1877    case X86_TYPE_O:  /* Absolute address encoded in the instruction */
1878        op->unit = X86_OP_INT;
1879        op->has_ea = true;
1880        op->n = -1;
1881        decode->mem = (AddressParts) {
1882            .def_seg = R_DS,
1883            .base = -1,
1884            .index = -1,
1885            .disp = insn_get_addr(env, s, s->aflag)
1886        };
1887        break;
1888
1889    case X86_TYPE_H:  /* For AVX, VEX.vvvv selects an XMM/YMM register */
1890        if ((s->prefix & PREFIX_VEX)) {
1891            op->unit = X86_OP_SSE;
1892            op->n = s->vex_v;
1893            break;
1894        }
1895        if (op == &decode->op[0]) {
1896            /* shifts place the destination in VEX.vvvv, use modrm */
1897            return decode_op(s, env, decode, op, decode->e.op1, b);
1898        } else {
1899            return decode_op(s, env, decode, op, decode->e.op0, b);
1900        }
1901
1902    case X86_TYPE_I:  /* Immediate */
1903    case X86_TYPE_J:  /* Relative offset for a jump */
1904        op->unit = X86_OP_IMM;
1905        decode->immediate = op->imm = insn_get_signed(env, s, op->ot);
1906        break;
1907
1908    case X86_TYPE_I_unsigned:  /* Immediate */
1909        op->unit = X86_OP_IMM;
1910        decode->immediate = op->imm = insn_get(env, s, op->ot);
1911        break;
1912
1913    case X86_TYPE_L:  /* The upper 4 bits of the immediate select a 128-bit register */
1914        op->n = insn_get(env, s, op->ot) >> 4;
1915        break;
1916
1917    case X86_TYPE_2op:
1918        *op = decode->op[0];
1919        break;
1920
1921    case X86_TYPE_LoBits:
1922        op->n = (b & 7) | REX_B(s);
1923        op->unit = X86_OP_INT;
1924        break;
1925
1926    case X86_TYPE_0 ... X86_TYPE_7:
1927        op->n = type - X86_TYPE_0;
1928        op->unit = X86_OP_INT;
1929        break;
1930
1931    case X86_TYPE_ES ... X86_TYPE_GS:
1932        op->n = type - X86_TYPE_ES;
1933        op->unit = X86_OP_SEG;
1934        break;
1935    }
1936
1937    return true;
1938}
1939
1940static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e)
1941{
1942    uint16_t sse_prefixes;
1943
1944    if (!e->valid_prefix) {
1945        return true;
1946    }
1947    if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
1948        /* In SSE instructions, 0xF3 and 0xF2 cancel 0x66.  */
1949        s->prefix &= ~PREFIX_DATA;
1950    }
1951
1952    /* Now, either zero or one bit is set in sse_prefixes.  */
1953    sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA);
1954    return e->valid_prefix & (1 << sse_prefixes);
1955}
1956
1957static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func,
1958                        X86DecodedInsn *decode)
1959{
1960    X86OpEntry *e = &decode->e;
1961
1962    decode_func(s, env, e, &decode->b);
1963    while (e->is_decode) {
1964        e->is_decode = false;
1965        e->decode(s, env, e, &decode->b);
1966    }
1967
1968    if (!validate_sse_prefix(s, e)) {
1969        return false;
1970    }
1971
1972    /* First compute size of operands in order to initialize s->rip_offset.  */
1973    if (e->op0 != X86_TYPE_None) {
1974        if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) {
1975            return false;
1976        }
1977        if (e->op0 == X86_TYPE_I) {
1978            s->rip_offset += 1 << decode->op[0].ot;
1979        }
1980    }
1981    if (e->op1 != X86_TYPE_None) {
1982        if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) {
1983            return false;
1984        }
1985        if (e->op1 == X86_TYPE_I) {
1986            s->rip_offset += 1 << decode->op[1].ot;
1987        }
1988    }
1989    if (e->op2 != X86_TYPE_None) {
1990        if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) {
1991            return false;
1992        }
1993        if (e->op2 == X86_TYPE_I) {
1994            s->rip_offset += 1 << decode->op[2].ot;
1995        }
1996    }
1997    if (e->op3 != X86_TYPE_None) {
1998        /*
1999         * A couple instructions actually use the extra immediate byte for an Lx
2000         * register operand; those are handled in the gen_* functions as one off.
2001         */
2002        assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b);
2003        s->rip_offset += 1;
2004    }
2005
2006    if (e->op0 != X86_TYPE_None &&
2007        !decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) {
2008        return false;
2009    }
2010
2011    if (e->op1 != X86_TYPE_None &&
2012        !decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) {
2013        return false;
2014    }
2015
2016    if (e->op2 != X86_TYPE_None &&
2017        !decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) {
2018        return false;
2019    }
2020
2021    if (e->op3 != X86_TYPE_None) {
2022        decode->immediate = insn_get_signed(env, s, MO_8);
2023    }
2024
2025    return true;
2026}
2027
2028static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid)
2029{
2030    switch (cpuid) {
2031    case X86_FEAT_None:
2032        return true;
2033    case X86_FEAT_CMOV:
2034        return (s->cpuid_features & CPUID_CMOV);
2035    case X86_FEAT_F16C:
2036        return (s->cpuid_ext_features & CPUID_EXT_F16C);
2037    case X86_FEAT_FMA:
2038        return (s->cpuid_ext_features & CPUID_EXT_FMA);
2039    case X86_FEAT_MOVBE:
2040        return (s->cpuid_ext_features & CPUID_EXT_MOVBE);
2041    case X86_FEAT_PCLMULQDQ:
2042        return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ);
2043    case X86_FEAT_SSE:
2044        return (s->cpuid_ext_features & CPUID_SSE);
2045    case X86_FEAT_SSE2:
2046        return (s->cpuid_ext_features & CPUID_SSE2);
2047    case X86_FEAT_SSE3:
2048        return (s->cpuid_ext_features & CPUID_EXT_SSE3);
2049    case X86_FEAT_SSSE3:
2050        return (s->cpuid_ext_features & CPUID_EXT_SSSE3);
2051    case X86_FEAT_SSE41:
2052        return (s->cpuid_ext_features & CPUID_EXT_SSE41);
2053    case X86_FEAT_SSE42:
2054        return (s->cpuid_ext_features & CPUID_EXT_SSE42);
2055    case X86_FEAT_AES:
2056        if (!(s->cpuid_ext_features & CPUID_EXT_AES)) {
2057            return false;
2058        } else if (!(s->prefix & PREFIX_VEX)) {
2059            return true;
2060        } else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) {
2061            return false;
2062        } else {
2063            return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES);
2064        }
2065
2066    case X86_FEAT_AVX:
2067        return (s->cpuid_ext_features & CPUID_EXT_AVX);
2068
2069    case X86_FEAT_3DNOW:
2070        return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW);
2071    case X86_FEAT_SSE4A:
2072        return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A);
2073
2074    case X86_FEAT_ADX:
2075        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX);
2076    case X86_FEAT_BMI1:
2077        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1);
2078    case X86_FEAT_BMI2:
2079        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2);
2080    case X86_FEAT_AVX2:
2081        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2);
2082    case X86_FEAT_SHA_NI:
2083        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_SHA_NI);
2084
2085    case X86_FEAT_CMPCCXADD:
2086        return (s->cpuid_7_1_eax_features & CPUID_7_1_EAX_CMPCCXADD);
2087    }
2088    g_assert_not_reached();
2089}
2090
2091static bool validate_vex(DisasContext *s, X86DecodedInsn *decode)
2092{
2093    X86OpEntry *e = &decode->e;
2094
2095    switch (e->vex_special) {
2096    case X86_VEX_REPScalar:
2097        /*
2098         * Instructions which differ between 00/66 and F2/F3 in the
2099         * exception classification and the size of the memory operand.
2100         */
2101        assert(e->vex_class == 1 || e->vex_class == 2 || e->vex_class == 4);
2102        if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
2103            e->vex_class = e->vex_class < 4 ? 3 : 5;
2104            if (s->vex_l) {
2105                goto illegal;
2106            }
2107            assert(decode->e.s2 == X86_SIZE_x);
2108            if (decode->op[2].has_ea) {
2109                decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64;
2110            }
2111        }
2112        break;
2113
2114    case X86_VEX_SSEUnaligned:
2115        /* handled in sse_needs_alignment.  */
2116        break;
2117
2118    case X86_VEX_AVX2_256:
2119        if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) {
2120            goto illegal;
2121        }
2122    }
2123
2124    switch (e->vex_class) {
2125    case 0:
2126        if (s->prefix & PREFIX_VEX) {
2127            goto illegal;
2128        }
2129        return true;
2130    case 1:
2131    case 2:
2132    case 3:
2133    case 4:
2134    case 5:
2135    case 7:
2136        if (s->prefix & PREFIX_VEX) {
2137            if (!(s->flags & HF_AVX_EN_MASK)) {
2138                goto illegal;
2139            }
2140        } else if (e->special != X86_SPECIAL_MMX ||
2141                   (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
2142            if (!(s->flags & HF_OSFXSR_MASK)) {
2143                goto illegal;
2144            }
2145        }
2146        break;
2147    case 12:
2148        /* Must have a VSIB byte and no address prefix.  */
2149        assert(s->has_modrm);
2150        if ((s->modrm & 7) != 4 || s->aflag == MO_16) {
2151            goto illegal;
2152        }
2153
2154        /* Check no overlap between registers.  */
2155        if (!decode->op[0].has_ea &&
2156            (decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) {
2157            goto illegal;
2158        }
2159        assert(!decode->op[1].has_ea);
2160        if (decode->op[1].n == decode->mem.index) {
2161            goto illegal;
2162        }
2163        if (!decode->op[2].has_ea &&
2164            (decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) {
2165            goto illegal;
2166        }
2167        /* fall through */
2168    case 6:
2169    case 11:
2170        if (!(s->prefix & PREFIX_VEX)) {
2171            goto illegal;
2172        }
2173        if (!(s->flags & HF_AVX_EN_MASK)) {
2174            goto illegal;
2175        }
2176        break;
2177    case 8:
2178        /* Non-VEX case handled in decode_0F77.  */
2179        assert(s->prefix & PREFIX_VEX);
2180        if (!(s->flags & HF_AVX_EN_MASK)) {
2181            goto illegal;
2182        }
2183        break;
2184    case 13:
2185        if (!(s->prefix & PREFIX_VEX)) {
2186            goto illegal;
2187        }
2188        if (s->vex_l) {
2189            goto illegal;
2190        }
2191        /* All integer instructions use VEX.vvvv, so exit.  */
2192        return true;
2193    }
2194
2195    if (s->vex_v != 0 &&
2196        e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B &&
2197        e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B &&
2198        e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) {
2199        goto illegal;
2200    }
2201
2202    if (s->flags & HF_TS_MASK) {
2203        goto nm_exception;
2204    }
2205    if (s->flags & HF_EM_MASK) {
2206        goto illegal;
2207    }
2208
2209    if (e->check) {
2210        if (e->check & X86_CHECK_VEX128) {
2211            if (s->vex_l) {
2212                goto illegal;
2213            }
2214        }
2215        if (e->check & X86_CHECK_W0) {
2216            if (s->vex_w) {
2217                goto illegal;
2218            }
2219        }
2220        if (e->check & X86_CHECK_W1) {
2221            if (!s->vex_w) {
2222                goto illegal;
2223            }
2224        }
2225    }
2226    return true;
2227
2228nm_exception:
2229    gen_NM_exception(s);
2230    return false;
2231illegal:
2232    gen_illegal_opcode(s);
2233    return false;
2234}
2235
2236/*
2237 * Convert one instruction. s->base.is_jmp is set if the translation must
2238 * be stopped.
2239 */
2240static void disas_insn(DisasContext *s, CPUState *cpu)
2241{
2242    CPUX86State *env = cpu_env(cpu);
2243    X86DecodedInsn decode;
2244    X86DecodeFunc decode_func = decode_root;
2245    uint8_t cc_live, b;
2246
2247    s->pc = s->base.pc_next;
2248    s->override = -1;
2249    s->popl_esp_hack = 0;
2250#ifdef TARGET_X86_64
2251    s->rex_r = 0;
2252    s->rex_x = 0;
2253    s->rex_b = 0;
2254#endif
2255    s->rip_offset = 0; /* for relative ip address */
2256    s->vex_l = 0;
2257    s->vex_v = 0;
2258    s->vex_w = false;
2259    s->has_modrm = false;
2260    s->prefix = 0;
2261
2262 next_byte:
2263    b = x86_ldub_code(env, s);
2264
2265    /* Collect prefixes.  */
2266    switch (b) {
2267    case 0xf3:
2268        s->prefix |= PREFIX_REPZ;
2269        s->prefix &= ~PREFIX_REPNZ;
2270        goto next_byte;
2271    case 0xf2:
2272        s->prefix |= PREFIX_REPNZ;
2273        s->prefix &= ~PREFIX_REPZ;
2274        goto next_byte;
2275    case 0xf0:
2276        s->prefix |= PREFIX_LOCK;
2277        goto next_byte;
2278    case 0x2e:
2279        s->override = R_CS;
2280        goto next_byte;
2281    case 0x36:
2282        s->override = R_SS;
2283        goto next_byte;
2284    case 0x3e:
2285        s->override = R_DS;
2286        goto next_byte;
2287    case 0x26:
2288        s->override = R_ES;
2289        goto next_byte;
2290    case 0x64:
2291        s->override = R_FS;
2292        goto next_byte;
2293    case 0x65:
2294        s->override = R_GS;
2295        goto next_byte;
2296    case 0x66:
2297        s->prefix |= PREFIX_DATA;
2298        goto next_byte;
2299    case 0x67:
2300        s->prefix |= PREFIX_ADR;
2301        goto next_byte;
2302#ifdef TARGET_X86_64
2303    case 0x40 ... 0x4f:
2304        if (CODE64(s)) {
2305            /* REX prefix */
2306            s->prefix |= PREFIX_REX;
2307            s->vex_w = (b >> 3) & 1;
2308            s->rex_r = (b & 0x4) << 1;
2309            s->rex_x = (b & 0x2) << 2;
2310            s->rex_b = (b & 0x1) << 3;
2311            goto next_byte;
2312        }
2313        break;
2314#endif
2315    case 0xc5: /* 2-byte VEX */
2316    case 0xc4: /* 3-byte VEX */
2317        /*
2318         * VEX prefixes cannot be used except in 32-bit mode.
2319         * Otherwise the instruction is LES or LDS.
2320         */
2321        if (CODE32(s) && !VM86(s)) {
2322            static const int pp_prefix[4] = {
2323                0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ
2324            };
2325            int vex3, vex2 = x86_ldub_code(env, s);
2326
2327            if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) {
2328                /*
2329                 * 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b,
2330                 * otherwise the instruction is LES or LDS.
2331                 */
2332                s->pc--; /* rewind the advance_pc() x86_ldub_code() did */
2333                break;
2334            }
2335
2336            /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */
2337            if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ
2338                             | PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) {
2339                goto illegal_op;
2340            }
2341#ifdef TARGET_X86_64
2342            s->rex_r = (~vex2 >> 4) & 8;
2343#endif
2344            if (b == 0xc5) {
2345                /* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */
2346                vex3 = vex2;
2347                decode_func = decode_0F;
2348            } else {
2349                /* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */
2350                vex3 = x86_ldub_code(env, s);
2351#ifdef TARGET_X86_64
2352                s->rex_x = (~vex2 >> 3) & 8;
2353                s->rex_b = (~vex2 >> 2) & 8;
2354#endif
2355                s->vex_w = (vex3 >> 7) & 1;
2356                switch (vex2 & 0x1f) {
2357                case 0x01: /* Implied 0f leading opcode bytes.  */
2358                    decode_func = decode_0F;
2359                    break;
2360                case 0x02: /* Implied 0f 38 leading opcode bytes.  */
2361                    decode_func = decode_0F38;
2362                    break;
2363                case 0x03: /* Implied 0f 3a leading opcode bytes.  */
2364                    decode_func = decode_0F3A;
2365                    break;
2366                default:   /* Reserved for future use.  */
2367                    goto unknown_op;
2368                }
2369            }
2370            s->vex_v = (~vex3 >> 3) & 0xf;
2371            s->vex_l = (vex3 >> 2) & 1;
2372            s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX;
2373        }
2374        break;
2375    default:
2376        break;
2377    }
2378
2379    /* Post-process prefixes.  */
2380    if (CODE64(s)) {
2381        /*
2382         * In 64-bit mode, the default data size is 32-bit.  Select 64-bit
2383         * data with rex_w, and 16-bit data with 0x66; rex_w takes precedence
2384         * over 0x66 if both are present.
2385         */
2386        s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32);
2387        /* In 64-bit mode, 0x67 selects 32-bit addressing.  */
2388        s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64);
2389    } else {
2390        /* In 16/32-bit mode, 0x66 selects the opposite data size.  */
2391        if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) {
2392            s->dflag = MO_32;
2393        } else {
2394            s->dflag = MO_16;
2395        }
2396        /* In 16/32-bit mode, 0x67 selects the opposite addressing.  */
2397        if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) {
2398            s->aflag = MO_32;
2399        }  else {
2400            s->aflag = MO_16;
2401        }
2402    }
2403
2404    /* Go back to old decoder for unconverted opcodes.  */
2405    if (!(s->prefix & PREFIX_VEX)) {
2406        if ((b & ~7) == 0xd8) {
2407            if (!disas_insn_x87(s, cpu, b)) {
2408                goto unknown_op;
2409            }
2410            return;
2411        }
2412
2413        if (b == 0x0f) {
2414            b = x86_ldub_code(env, s);
2415            switch (b) {
2416            case 0x00 ... 0x03: /* mostly privileged instructions */
2417            case 0x05 ... 0x09:
2418            case 0x1a ... 0x1b: /* MPX */
2419            case 0x20 ... 0x23: /* mov from/to CR and DR */
2420            case 0x30 ... 0x35: /* more privileged instructions */
2421            case 0xa2 ... 0xa5: /* CPUID, BT, SHLD */
2422            case 0xaa ... 0xae: /* RSM, SHRD, grp15 */
2423            case 0xb0 ... 0xb1: /* cmpxchg */
2424            case 0xb3:          /* btr */
2425            case 0xb8:          /* integer ops */
2426            case 0xba ... 0xbd: /* integer ops */
2427            case 0xc0 ... 0xc1: /* xadd */
2428            case 0xc7:          /* grp9 */
2429                disas_insn_old(s, cpu, b + 0x100);
2430                return;
2431            default:
2432                decode_func = do_decode_0F;
2433                break;
2434            }
2435        }
2436    }
2437
2438    memset(&decode, 0, sizeof(decode));
2439    decode.cc_op = -1;
2440    decode.b = b;
2441    if (!decode_insn(s, env, decode_func, &decode)) {
2442        goto illegal_op;
2443    }
2444    if (!decode.e.gen) {
2445        goto unknown_op;
2446    }
2447
2448    if (!has_cpuid_feature(s, decode.e.cpuid)) {
2449        goto illegal_op;
2450    }
2451
2452    /* Checks that result in #UD come first.  */
2453    if (decode.e.check) {
2454        if (decode.e.check & X86_CHECK_i64) {
2455            if (CODE64(s)) {
2456                goto illegal_op;
2457            }
2458        }
2459        if (decode.e.check & X86_CHECK_o64) {
2460            if (!CODE64(s)) {
2461                goto illegal_op;
2462            }
2463        }
2464        if (decode.e.check & X86_CHECK_prot) {
2465            if (!PE(s) || VM86(s)) {
2466                goto illegal_op;
2467            }
2468        }
2469    }
2470
2471    switch (decode.e.special) {
2472    case X86_SPECIAL_None:
2473        break;
2474
2475    case X86_SPECIAL_Locked:
2476        if (decode.op[0].has_ea) {
2477            s->prefix |= PREFIX_LOCK;
2478        }
2479        decode.e.special = X86_SPECIAL_HasLock;
2480        /* fallthrough */
2481    case X86_SPECIAL_HasLock:
2482        break;
2483
2484    case X86_SPECIAL_Op0_Rd:
2485        assert(decode.op[0].unit == X86_OP_INT);
2486        if (!decode.op[0].has_ea) {
2487            decode.op[0].ot = MO_32;
2488        }
2489        break;
2490
2491    case X86_SPECIAL_Op2_Ry:
2492        assert(decode.op[2].unit == X86_OP_INT);
2493        if (!decode.op[2].has_ea) {
2494            decode.op[2].ot = s->dflag == MO_16 ? MO_32 : s->dflag;
2495        }
2496        break;
2497
2498    case X86_SPECIAL_AVXExtMov:
2499        if (!decode.op[2].has_ea) {
2500            decode.op[2].ot = s->vex_l ? MO_256 : MO_128;
2501        } else if (s->vex_l) {
2502            decode.op[2].ot++;
2503        }
2504        break;
2505
2506    case X86_SPECIAL_SExtT0:
2507    case X86_SPECIAL_ZExtT0:
2508        /* Handled in gen_load.  */
2509        assert(decode.op[1].unit == X86_OP_INT);
2510        break;
2511
2512    case X86_SPECIAL_NoSeg:
2513        decode.mem.def_seg = -1;
2514        s->override = -1;
2515        break;
2516
2517    default:
2518        break;
2519    }
2520
2521    if (s->prefix & PREFIX_LOCK) {
2522        if (decode.e.special != X86_SPECIAL_HasLock || !decode.op[0].has_ea) {
2523            goto illegal_op;
2524        }
2525    }
2526
2527    if (!validate_vex(s, &decode)) {
2528        return;
2529    }
2530
2531    /*
2532     * Checks that result in #GP or VMEXIT come second.  Intercepts are
2533     * generally checked after non-memory exceptions (i.e. before all
2534     * exceptions if there is no memory operand).  Exceptions are
2535     * vm86 checks (INTn, IRET, PUSHF/POPF), RSM and XSETBV (!).
2536     *
2537     * RSM and XSETBV will be handled in the gen_* functions
2538     * instead of using chk().
2539     */
2540    if (decode.e.check & X86_CHECK_cpl0) {
2541        if (CPL(s) != 0) {
2542            goto gp_fault;
2543        }
2544    }
2545    if (decode.e.intercept && unlikely(GUEST(s))) {
2546        gen_helper_svm_check_intercept(tcg_env,
2547                                       tcg_constant_i32(decode.e.intercept));
2548    }
2549    if (decode.e.check) {
2550        if ((decode.e.check & X86_CHECK_vm86_iopl) && VM86(s)) {
2551            if (IOPL(s) < 3) {
2552                goto gp_fault;
2553            }
2554        } else if (decode.e.check & X86_CHECK_cpl_iopl) {
2555            if (IOPL(s) < CPL(s)) {
2556                goto gp_fault;
2557            }
2558        }
2559    }
2560
2561    if (decode.e.special == X86_SPECIAL_MMX &&
2562        !(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
2563        gen_helper_enter_mmx(tcg_env);
2564    }
2565
2566    if (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea) {
2567        gen_load_ea(s, &decode.mem, decode.e.vex_class == 12);
2568    }
2569    if (s->prefix & PREFIX_LOCK) {
2570        gen_load(s, &decode, 2, s->T1);
2571        decode.e.gen(s, env, &decode);
2572    } else {
2573        if (decode.op[0].unit == X86_OP_MMX) {
2574            compute_mmx_offset(&decode.op[0]);
2575        } else if (decode.op[0].unit == X86_OP_SSE) {
2576            compute_xmm_offset(&decode.op[0]);
2577        }
2578        gen_load(s, &decode, 1, s->T0);
2579        gen_load(s, &decode, 2, s->T1);
2580        decode.e.gen(s, env, &decode);
2581        gen_writeback(s, &decode, 0, s->T0);
2582    }
2583
2584    /*
2585     * Write back flags after last memory access.  Some newer ALU instructions, as
2586     * well as SSE instructions, write flags in the gen_* function, but that can
2587     * cause incorrect tracking of CC_OP for instructions that write to both memory
2588     * and flags.
2589     */
2590    if (decode.cc_op != -1) {
2591        if (decode.cc_dst) {
2592            tcg_gen_mov_tl(cpu_cc_dst, decode.cc_dst);
2593        }
2594        if (decode.cc_src) {
2595            tcg_gen_mov_tl(cpu_cc_src, decode.cc_src);
2596        }
2597        if (decode.cc_src2) {
2598            tcg_gen_mov_tl(cpu_cc_src2, decode.cc_src2);
2599        }
2600        if (decode.cc_op == CC_OP_DYNAMIC) {
2601            tcg_gen_mov_i32(cpu_cc_op, decode.cc_op_dynamic);
2602        }
2603        set_cc_op(s, decode.cc_op);
2604        cc_live = cc_op_live[decode.cc_op];
2605    } else {
2606        cc_live = 0;
2607    }
2608    if (decode.cc_op != CC_OP_DYNAMIC) {
2609        assert(!decode.cc_op_dynamic);
2610        assert(!!decode.cc_dst == !!(cc_live & USES_CC_DST));
2611        assert(!!decode.cc_src == !!(cc_live & USES_CC_SRC));
2612        assert(!!decode.cc_src2 == !!(cc_live & USES_CC_SRC2));
2613    }
2614
2615    return;
2616 gp_fault:
2617    gen_exception_gpf(s);
2618    return;
2619 illegal_op:
2620    gen_illegal_opcode(s);
2621    return;
2622 unknown_op:
2623    gen_unknown_opcode(env, s);
2624}
2625