xref: /openbmc/qemu/target/i386/nvmm/nvmm-all.c (revision ab1b2ba9c9e9871bb622b0f14a1b2e3f4adaa68f)
1 /*
2  * Copyright (c) 2018-2019 Maxime Villard, All rights reserved.
3  *
4  * NetBSD Virtual Machine Monitor (NVMM) accelerator for QEMU.
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "cpu.h"
12 #include "exec/address-spaces.h"
13 #include "exec/ioport.h"
14 #include "qemu/accel.h"
15 #include "sysemu/nvmm.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/runstate.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/error-report.h"
20 #include "qapi/error.h"
21 #include "qemu/queue.h"
22 #include "migration/blocker.h"
23 #include "strings.h"
24 
25 #include "nvmm-accel-ops.h"
26 
27 #include <nvmm.h>
28 
29 struct qemu_vcpu {
30     struct nvmm_vcpu vcpu;
31     uint8_t tpr;
32     bool stop;
33 
34     /* Window-exiting for INTs/NMIs. */
35     bool int_window_exit;
36     bool nmi_window_exit;
37 
38     /* The guest is in an interrupt shadow (POP SS, etc). */
39     bool int_shadow;
40 };
41 
42 struct qemu_machine {
43     struct nvmm_capability cap;
44     struct nvmm_machine mach;
45 };
46 
47 /* -------------------------------------------------------------------------- */
48 
49 static bool nvmm_allowed;
50 static struct qemu_machine qemu_mach;
51 
52 static struct qemu_vcpu *
53 get_qemu_vcpu(CPUState *cpu)
54 {
55     return (struct qemu_vcpu *)cpu->hax_vcpu;
56 }
57 
58 static struct nvmm_machine *
59 get_nvmm_mach(void)
60 {
61     return &qemu_mach.mach;
62 }
63 
64 /* -------------------------------------------------------------------------- */
65 
66 static void
67 nvmm_set_segment(struct nvmm_x64_state_seg *nseg, const SegmentCache *qseg)
68 {
69     uint32_t attrib = qseg->flags;
70 
71     nseg->selector = qseg->selector;
72     nseg->limit = qseg->limit;
73     nseg->base = qseg->base;
74     nseg->attrib.type = __SHIFTOUT(attrib, DESC_TYPE_MASK);
75     nseg->attrib.s = __SHIFTOUT(attrib, DESC_S_MASK);
76     nseg->attrib.dpl = __SHIFTOUT(attrib, DESC_DPL_MASK);
77     nseg->attrib.p = __SHIFTOUT(attrib, DESC_P_MASK);
78     nseg->attrib.avl = __SHIFTOUT(attrib, DESC_AVL_MASK);
79     nseg->attrib.l = __SHIFTOUT(attrib, DESC_L_MASK);
80     nseg->attrib.def = __SHIFTOUT(attrib, DESC_B_MASK);
81     nseg->attrib.g = __SHIFTOUT(attrib, DESC_G_MASK);
82 }
83 
84 static void
85 nvmm_set_registers(CPUState *cpu)
86 {
87     CPUX86State *env = cpu->env_ptr;
88     struct nvmm_machine *mach = get_nvmm_mach();
89     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
90     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
91     struct nvmm_x64_state *state = vcpu->state;
92     uint64_t bitmap;
93     size_t i;
94     int ret;
95 
96     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
97 
98     /* GPRs. */
99     state->gprs[NVMM_X64_GPR_RAX] = env->regs[R_EAX];
100     state->gprs[NVMM_X64_GPR_RCX] = env->regs[R_ECX];
101     state->gprs[NVMM_X64_GPR_RDX] = env->regs[R_EDX];
102     state->gprs[NVMM_X64_GPR_RBX] = env->regs[R_EBX];
103     state->gprs[NVMM_X64_GPR_RSP] = env->regs[R_ESP];
104     state->gprs[NVMM_X64_GPR_RBP] = env->regs[R_EBP];
105     state->gprs[NVMM_X64_GPR_RSI] = env->regs[R_ESI];
106     state->gprs[NVMM_X64_GPR_RDI] = env->regs[R_EDI];
107 #ifdef TARGET_X86_64
108     state->gprs[NVMM_X64_GPR_R8]  = env->regs[R_R8];
109     state->gprs[NVMM_X64_GPR_R9]  = env->regs[R_R9];
110     state->gprs[NVMM_X64_GPR_R10] = env->regs[R_R10];
111     state->gprs[NVMM_X64_GPR_R11] = env->regs[R_R11];
112     state->gprs[NVMM_X64_GPR_R12] = env->regs[R_R12];
113     state->gprs[NVMM_X64_GPR_R13] = env->regs[R_R13];
114     state->gprs[NVMM_X64_GPR_R14] = env->regs[R_R14];
115     state->gprs[NVMM_X64_GPR_R15] = env->regs[R_R15];
116 #endif
117 
118     /* RIP and RFLAGS. */
119     state->gprs[NVMM_X64_GPR_RIP] = env->eip;
120     state->gprs[NVMM_X64_GPR_RFLAGS] = env->eflags;
121 
122     /* Segments. */
123     nvmm_set_segment(&state->segs[NVMM_X64_SEG_CS], &env->segs[R_CS]);
124     nvmm_set_segment(&state->segs[NVMM_X64_SEG_DS], &env->segs[R_DS]);
125     nvmm_set_segment(&state->segs[NVMM_X64_SEG_ES], &env->segs[R_ES]);
126     nvmm_set_segment(&state->segs[NVMM_X64_SEG_FS], &env->segs[R_FS]);
127     nvmm_set_segment(&state->segs[NVMM_X64_SEG_GS], &env->segs[R_GS]);
128     nvmm_set_segment(&state->segs[NVMM_X64_SEG_SS], &env->segs[R_SS]);
129 
130     /* Special segments. */
131     nvmm_set_segment(&state->segs[NVMM_X64_SEG_GDT], &env->gdt);
132     nvmm_set_segment(&state->segs[NVMM_X64_SEG_LDT], &env->ldt);
133     nvmm_set_segment(&state->segs[NVMM_X64_SEG_TR], &env->tr);
134     nvmm_set_segment(&state->segs[NVMM_X64_SEG_IDT], &env->idt);
135 
136     /* Control registers. */
137     state->crs[NVMM_X64_CR_CR0] = env->cr[0];
138     state->crs[NVMM_X64_CR_CR2] = env->cr[2];
139     state->crs[NVMM_X64_CR_CR3] = env->cr[3];
140     state->crs[NVMM_X64_CR_CR4] = env->cr[4];
141     state->crs[NVMM_X64_CR_CR8] = qcpu->tpr;
142     state->crs[NVMM_X64_CR_XCR0] = env->xcr0;
143 
144     /* Debug registers. */
145     state->drs[NVMM_X64_DR_DR0] = env->dr[0];
146     state->drs[NVMM_X64_DR_DR1] = env->dr[1];
147     state->drs[NVMM_X64_DR_DR2] = env->dr[2];
148     state->drs[NVMM_X64_DR_DR3] = env->dr[3];
149     state->drs[NVMM_X64_DR_DR6] = env->dr[6];
150     state->drs[NVMM_X64_DR_DR7] = env->dr[7];
151 
152     /* FPU. */
153     state->fpu.fx_cw = env->fpuc;
154     state->fpu.fx_sw = (env->fpus & ~0x3800) | ((env->fpstt & 0x7) << 11);
155     state->fpu.fx_tw = 0;
156     for (i = 0; i < 8; i++) {
157         state->fpu.fx_tw |= (!env->fptags[i]) << i;
158     }
159     state->fpu.fx_opcode = env->fpop;
160     state->fpu.fx_ip.fa_64 = env->fpip;
161     state->fpu.fx_dp.fa_64 = env->fpdp;
162     state->fpu.fx_mxcsr = env->mxcsr;
163     state->fpu.fx_mxcsr_mask = 0x0000FFFF;
164     assert(sizeof(state->fpu.fx_87_ac) == sizeof(env->fpregs));
165     memcpy(state->fpu.fx_87_ac, env->fpregs, sizeof(env->fpregs));
166     for (i = 0; i < CPU_NB_REGS; i++) {
167         memcpy(&state->fpu.fx_xmm[i].xmm_bytes[0],
168             &env->xmm_regs[i].ZMM_Q(0), 8);
169         memcpy(&state->fpu.fx_xmm[i].xmm_bytes[8],
170             &env->xmm_regs[i].ZMM_Q(1), 8);
171     }
172 
173     /* MSRs. */
174     state->msrs[NVMM_X64_MSR_EFER] = env->efer;
175     state->msrs[NVMM_X64_MSR_STAR] = env->star;
176 #ifdef TARGET_X86_64
177     state->msrs[NVMM_X64_MSR_LSTAR] = env->lstar;
178     state->msrs[NVMM_X64_MSR_CSTAR] = env->cstar;
179     state->msrs[NVMM_X64_MSR_SFMASK] = env->fmask;
180     state->msrs[NVMM_X64_MSR_KERNELGSBASE] = env->kernelgsbase;
181 #endif
182     state->msrs[NVMM_X64_MSR_SYSENTER_CS]  = env->sysenter_cs;
183     state->msrs[NVMM_X64_MSR_SYSENTER_ESP] = env->sysenter_esp;
184     state->msrs[NVMM_X64_MSR_SYSENTER_EIP] = env->sysenter_eip;
185     state->msrs[NVMM_X64_MSR_PAT] = env->pat;
186     state->msrs[NVMM_X64_MSR_TSC] = env->tsc;
187 
188     bitmap =
189         NVMM_X64_STATE_SEGS |
190         NVMM_X64_STATE_GPRS |
191         NVMM_X64_STATE_CRS  |
192         NVMM_X64_STATE_DRS  |
193         NVMM_X64_STATE_MSRS |
194         NVMM_X64_STATE_FPU;
195 
196     ret = nvmm_vcpu_setstate(mach, vcpu, bitmap);
197     if (ret == -1) {
198         error_report("NVMM: Failed to set virtual processor context,"
199             " error=%d", errno);
200     }
201 }
202 
203 static void
204 nvmm_get_segment(SegmentCache *qseg, const struct nvmm_x64_state_seg *nseg)
205 {
206     qseg->selector = nseg->selector;
207     qseg->limit = nseg->limit;
208     qseg->base = nseg->base;
209 
210     qseg->flags =
211         __SHIFTIN((uint32_t)nseg->attrib.type, DESC_TYPE_MASK) |
212         __SHIFTIN((uint32_t)nseg->attrib.s, DESC_S_MASK) |
213         __SHIFTIN((uint32_t)nseg->attrib.dpl, DESC_DPL_MASK) |
214         __SHIFTIN((uint32_t)nseg->attrib.p, DESC_P_MASK) |
215         __SHIFTIN((uint32_t)nseg->attrib.avl, DESC_AVL_MASK) |
216         __SHIFTIN((uint32_t)nseg->attrib.l, DESC_L_MASK) |
217         __SHIFTIN((uint32_t)nseg->attrib.def, DESC_B_MASK) |
218         __SHIFTIN((uint32_t)nseg->attrib.g, DESC_G_MASK);
219 }
220 
221 static void
222 nvmm_get_registers(CPUState *cpu)
223 {
224     CPUX86State *env = cpu->env_ptr;
225     struct nvmm_machine *mach = get_nvmm_mach();
226     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
227     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
228     X86CPU *x86_cpu = X86_CPU(cpu);
229     struct nvmm_x64_state *state = vcpu->state;
230     uint64_t bitmap, tpr;
231     size_t i;
232     int ret;
233 
234     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
235 
236     bitmap =
237         NVMM_X64_STATE_SEGS |
238         NVMM_X64_STATE_GPRS |
239         NVMM_X64_STATE_CRS  |
240         NVMM_X64_STATE_DRS  |
241         NVMM_X64_STATE_MSRS |
242         NVMM_X64_STATE_FPU;
243 
244     ret = nvmm_vcpu_getstate(mach, vcpu, bitmap);
245     if (ret == -1) {
246         error_report("NVMM: Failed to get virtual processor context,"
247             " error=%d", errno);
248     }
249 
250     /* GPRs. */
251     env->regs[R_EAX] = state->gprs[NVMM_X64_GPR_RAX];
252     env->regs[R_ECX] = state->gprs[NVMM_X64_GPR_RCX];
253     env->regs[R_EDX] = state->gprs[NVMM_X64_GPR_RDX];
254     env->regs[R_EBX] = state->gprs[NVMM_X64_GPR_RBX];
255     env->regs[R_ESP] = state->gprs[NVMM_X64_GPR_RSP];
256     env->regs[R_EBP] = state->gprs[NVMM_X64_GPR_RBP];
257     env->regs[R_ESI] = state->gprs[NVMM_X64_GPR_RSI];
258     env->regs[R_EDI] = state->gprs[NVMM_X64_GPR_RDI];
259 #ifdef TARGET_X86_64
260     env->regs[R_R8]  = state->gprs[NVMM_X64_GPR_R8];
261     env->regs[R_R9]  = state->gprs[NVMM_X64_GPR_R9];
262     env->regs[R_R10] = state->gprs[NVMM_X64_GPR_R10];
263     env->regs[R_R11] = state->gprs[NVMM_X64_GPR_R11];
264     env->regs[R_R12] = state->gprs[NVMM_X64_GPR_R12];
265     env->regs[R_R13] = state->gprs[NVMM_X64_GPR_R13];
266     env->regs[R_R14] = state->gprs[NVMM_X64_GPR_R14];
267     env->regs[R_R15] = state->gprs[NVMM_X64_GPR_R15];
268 #endif
269 
270     /* RIP and RFLAGS. */
271     env->eip = state->gprs[NVMM_X64_GPR_RIP];
272     env->eflags = state->gprs[NVMM_X64_GPR_RFLAGS];
273 
274     /* Segments. */
275     nvmm_get_segment(&env->segs[R_ES], &state->segs[NVMM_X64_SEG_ES]);
276     nvmm_get_segment(&env->segs[R_CS], &state->segs[NVMM_X64_SEG_CS]);
277     nvmm_get_segment(&env->segs[R_SS], &state->segs[NVMM_X64_SEG_SS]);
278     nvmm_get_segment(&env->segs[R_DS], &state->segs[NVMM_X64_SEG_DS]);
279     nvmm_get_segment(&env->segs[R_FS], &state->segs[NVMM_X64_SEG_FS]);
280     nvmm_get_segment(&env->segs[R_GS], &state->segs[NVMM_X64_SEG_GS]);
281 
282     /* Special segments. */
283     nvmm_get_segment(&env->gdt, &state->segs[NVMM_X64_SEG_GDT]);
284     nvmm_get_segment(&env->ldt, &state->segs[NVMM_X64_SEG_LDT]);
285     nvmm_get_segment(&env->tr, &state->segs[NVMM_X64_SEG_TR]);
286     nvmm_get_segment(&env->idt, &state->segs[NVMM_X64_SEG_IDT]);
287 
288     /* Control registers. */
289     env->cr[0] = state->crs[NVMM_X64_CR_CR0];
290     env->cr[2] = state->crs[NVMM_X64_CR_CR2];
291     env->cr[3] = state->crs[NVMM_X64_CR_CR3];
292     env->cr[4] = state->crs[NVMM_X64_CR_CR4];
293     tpr = state->crs[NVMM_X64_CR_CR8];
294     if (tpr != qcpu->tpr) {
295         qcpu->tpr = tpr;
296         cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
297     }
298     env->xcr0 = state->crs[NVMM_X64_CR_XCR0];
299 
300     /* Debug registers. */
301     env->dr[0] = state->drs[NVMM_X64_DR_DR0];
302     env->dr[1] = state->drs[NVMM_X64_DR_DR1];
303     env->dr[2] = state->drs[NVMM_X64_DR_DR2];
304     env->dr[3] = state->drs[NVMM_X64_DR_DR3];
305     env->dr[6] = state->drs[NVMM_X64_DR_DR6];
306     env->dr[7] = state->drs[NVMM_X64_DR_DR7];
307 
308     /* FPU. */
309     env->fpuc = state->fpu.fx_cw;
310     env->fpstt = (state->fpu.fx_sw >> 11) & 0x7;
311     env->fpus = state->fpu.fx_sw & ~0x3800;
312     for (i = 0; i < 8; i++) {
313         env->fptags[i] = !((state->fpu.fx_tw >> i) & 1);
314     }
315     env->fpop = state->fpu.fx_opcode;
316     env->fpip = state->fpu.fx_ip.fa_64;
317     env->fpdp = state->fpu.fx_dp.fa_64;
318     env->mxcsr = state->fpu.fx_mxcsr;
319     assert(sizeof(state->fpu.fx_87_ac) == sizeof(env->fpregs));
320     memcpy(env->fpregs, state->fpu.fx_87_ac, sizeof(env->fpregs));
321     for (i = 0; i < CPU_NB_REGS; i++) {
322         memcpy(&env->xmm_regs[i].ZMM_Q(0),
323             &state->fpu.fx_xmm[i].xmm_bytes[0], 8);
324         memcpy(&env->xmm_regs[i].ZMM_Q(1),
325             &state->fpu.fx_xmm[i].xmm_bytes[8], 8);
326     }
327 
328     /* MSRs. */
329     env->efer = state->msrs[NVMM_X64_MSR_EFER];
330     env->star = state->msrs[NVMM_X64_MSR_STAR];
331 #ifdef TARGET_X86_64
332     env->lstar = state->msrs[NVMM_X64_MSR_LSTAR];
333     env->cstar = state->msrs[NVMM_X64_MSR_CSTAR];
334     env->fmask = state->msrs[NVMM_X64_MSR_SFMASK];
335     env->kernelgsbase = state->msrs[NVMM_X64_MSR_KERNELGSBASE];
336 #endif
337     env->sysenter_cs  = state->msrs[NVMM_X64_MSR_SYSENTER_CS];
338     env->sysenter_esp = state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
339     env->sysenter_eip = state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
340     env->pat = state->msrs[NVMM_X64_MSR_PAT];
341     env->tsc = state->msrs[NVMM_X64_MSR_TSC];
342 
343     x86_update_hflags(env);
344 }
345 
346 static bool
347 nvmm_can_take_int(CPUState *cpu)
348 {
349     CPUX86State *env = cpu->env_ptr;
350     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
351     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
352     struct nvmm_machine *mach = get_nvmm_mach();
353 
354     if (qcpu->int_window_exit) {
355         return false;
356     }
357 
358     if (qcpu->int_shadow || !(env->eflags & IF_MASK)) {
359         struct nvmm_x64_state *state = vcpu->state;
360 
361         /* Exit on interrupt window. */
362         nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_INTR);
363         state->intr.int_window_exiting = 1;
364         nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_INTR);
365 
366         return false;
367     }
368 
369     return true;
370 }
371 
372 static bool
373 nvmm_can_take_nmi(CPUState *cpu)
374 {
375     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
376 
377     /*
378      * Contrary to INTs, NMIs always schedule an exit when they are
379      * completed. Therefore, if window-exiting is enabled, it means
380      * NMIs are blocked.
381      */
382     if (qcpu->nmi_window_exit) {
383         return false;
384     }
385 
386     return true;
387 }
388 
389 /*
390  * Called before the VCPU is run. We inject events generated by the I/O
391  * thread, and synchronize the guest TPR.
392  */
393 static void
394 nvmm_vcpu_pre_run(CPUState *cpu)
395 {
396     CPUX86State *env = cpu->env_ptr;
397     struct nvmm_machine *mach = get_nvmm_mach();
398     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
399     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
400     X86CPU *x86_cpu = X86_CPU(cpu);
401     struct nvmm_x64_state *state = vcpu->state;
402     struct nvmm_vcpu_event *event = vcpu->event;
403     bool has_event = false;
404     bool sync_tpr = false;
405     uint8_t tpr;
406     int ret;
407 
408     qemu_mutex_lock_iothread();
409 
410     tpr = cpu_get_apic_tpr(x86_cpu->apic_state);
411     if (tpr != qcpu->tpr) {
412         qcpu->tpr = tpr;
413         sync_tpr = true;
414     }
415 
416     /*
417      * Force the VCPU out of its inner loop to process any INIT requests
418      * or commit pending TPR access.
419      */
420     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
421         cpu->exit_request = 1;
422     }
423 
424     if (!has_event && (cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
425         if (nvmm_can_take_nmi(cpu)) {
426             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
427             event->type = NVMM_VCPU_EVENT_INTR;
428             event->vector = 2;
429             has_event = true;
430         }
431     }
432 
433     if (!has_event && (cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
434         if (nvmm_can_take_int(cpu)) {
435             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
436             event->type = NVMM_VCPU_EVENT_INTR;
437             event->vector = cpu_get_pic_interrupt(env);
438             has_event = true;
439         }
440     }
441 
442     /* Don't want SMIs. */
443     if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
444         cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
445     }
446 
447     if (sync_tpr) {
448         ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_CRS);
449         if (ret == -1) {
450             error_report("NVMM: Failed to get CPU state,"
451                 " error=%d", errno);
452         }
453 
454         state->crs[NVMM_X64_CR_CR8] = qcpu->tpr;
455 
456         ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_CRS);
457         if (ret == -1) {
458             error_report("NVMM: Failed to set CPU state,"
459                 " error=%d", errno);
460         }
461     }
462 
463     if (has_event) {
464         ret = nvmm_vcpu_inject(mach, vcpu);
465         if (ret == -1) {
466             error_report("NVMM: Failed to inject event,"
467                 " error=%d", errno);
468         }
469     }
470 
471     qemu_mutex_unlock_iothread();
472 }
473 
474 /*
475  * Called after the VCPU ran. We synchronize the host view of the TPR and
476  * RFLAGS.
477  */
478 static void
479 nvmm_vcpu_post_run(CPUState *cpu, struct nvmm_vcpu_exit *exit)
480 {
481     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
482     CPUX86State *env = cpu->env_ptr;
483     X86CPU *x86_cpu = X86_CPU(cpu);
484     uint64_t tpr;
485 
486     env->eflags = exit->exitstate.rflags;
487     qcpu->int_shadow = exit->exitstate.int_shadow;
488     qcpu->int_window_exit = exit->exitstate.int_window_exiting;
489     qcpu->nmi_window_exit = exit->exitstate.nmi_window_exiting;
490 
491     tpr = exit->exitstate.cr8;
492     if (qcpu->tpr != tpr) {
493         qcpu->tpr = tpr;
494         qemu_mutex_lock_iothread();
495         cpu_set_apic_tpr(x86_cpu->apic_state, qcpu->tpr);
496         qemu_mutex_unlock_iothread();
497     }
498 }
499 
500 /* -------------------------------------------------------------------------- */
501 
502 static void
503 nvmm_io_callback(struct nvmm_io *io)
504 {
505     MemTxAttrs attrs = { 0 };
506     int ret;
507 
508     ret = address_space_rw(&address_space_io, io->port, attrs, io->data,
509         io->size, !io->in);
510     if (ret != MEMTX_OK) {
511         error_report("NVMM: I/O Transaction Failed "
512             "[%s, port=%u, size=%zu]", (io->in ? "in" : "out"),
513             io->port, io->size);
514     }
515 
516     /* Needed, otherwise infinite loop. */
517     current_cpu->vcpu_dirty = false;
518 }
519 
520 static void
521 nvmm_mem_callback(struct nvmm_mem *mem)
522 {
523     cpu_physical_memory_rw(mem->gpa, mem->data, mem->size, mem->write);
524 
525     /* Needed, otherwise infinite loop. */
526     current_cpu->vcpu_dirty = false;
527 }
528 
529 static struct nvmm_assist_callbacks nvmm_callbacks = {
530     .io = nvmm_io_callback,
531     .mem = nvmm_mem_callback
532 };
533 
534 /* -------------------------------------------------------------------------- */
535 
536 static int
537 nvmm_handle_mem(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
538 {
539     int ret;
540 
541     ret = nvmm_assist_mem(mach, vcpu);
542     if (ret == -1) {
543         error_report("NVMM: Mem Assist Failed [gpa=%p]",
544             (void *)vcpu->exit->u.mem.gpa);
545     }
546 
547     return ret;
548 }
549 
550 static int
551 nvmm_handle_io(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
552 {
553     int ret;
554 
555     ret = nvmm_assist_io(mach, vcpu);
556     if (ret == -1) {
557         error_report("NVMM: I/O Assist Failed [port=%d]",
558             (int)vcpu->exit->u.io.port);
559     }
560 
561     return ret;
562 }
563 
564 static int
565 nvmm_handle_rdmsr(struct nvmm_machine *mach, CPUState *cpu,
566     struct nvmm_vcpu_exit *exit)
567 {
568     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
569     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
570     X86CPU *x86_cpu = X86_CPU(cpu);
571     struct nvmm_x64_state *state = vcpu->state;
572     uint64_t val;
573     int ret;
574 
575     switch (exit->u.rdmsr.msr) {
576     case MSR_IA32_APICBASE:
577         val = cpu_get_apic_base(x86_cpu->apic_state);
578         break;
579     case MSR_MTRRcap:
580     case MSR_MTRRdefType:
581     case MSR_MCG_CAP:
582     case MSR_MCG_STATUS:
583         val = 0;
584         break;
585     default: /* More MSRs to add? */
586         val = 0;
587         error_report("NVMM: Unexpected RDMSR 0x%x, ignored",
588             exit->u.rdmsr.msr);
589         break;
590     }
591 
592     ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_GPRS);
593     if (ret == -1) {
594         return -1;
595     }
596 
597     state->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
598     state->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
599     state->gprs[NVMM_X64_GPR_RIP] = exit->u.rdmsr.npc;
600 
601     ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
602     if (ret == -1) {
603         return -1;
604     }
605 
606     return 0;
607 }
608 
609 static int
610 nvmm_handle_wrmsr(struct nvmm_machine *mach, CPUState *cpu,
611     struct nvmm_vcpu_exit *exit)
612 {
613     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
614     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
615     X86CPU *x86_cpu = X86_CPU(cpu);
616     struct nvmm_x64_state *state = vcpu->state;
617     uint64_t val;
618     int ret;
619 
620     val = exit->u.wrmsr.val;
621 
622     switch (exit->u.wrmsr.msr) {
623     case MSR_IA32_APICBASE:
624         cpu_set_apic_base(x86_cpu->apic_state, val);
625         break;
626     case MSR_MTRRdefType:
627     case MSR_MCG_STATUS:
628         break;
629     default: /* More MSRs to add? */
630         error_report("NVMM: Unexpected WRMSR 0x%x [val=0x%lx], ignored",
631             exit->u.wrmsr.msr, val);
632         break;
633     }
634 
635     ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_GPRS);
636     if (ret == -1) {
637         return -1;
638     }
639 
640     state->gprs[NVMM_X64_GPR_RIP] = exit->u.wrmsr.npc;
641 
642     ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
643     if (ret == -1) {
644         return -1;
645     }
646 
647     return 0;
648 }
649 
650 static int
651 nvmm_handle_halted(struct nvmm_machine *mach, CPUState *cpu,
652     struct nvmm_vcpu_exit *exit)
653 {
654     CPUX86State *env = cpu->env_ptr;
655     int ret = 0;
656 
657     qemu_mutex_lock_iothread();
658 
659     if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
660           (env->eflags & IF_MASK)) &&
661         !(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
662         cpu->exception_index = EXCP_HLT;
663         cpu->halted = true;
664         ret = 1;
665     }
666 
667     qemu_mutex_unlock_iothread();
668 
669     return ret;
670 }
671 
672 static int
673 nvmm_inject_ud(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
674 {
675     struct nvmm_vcpu_event *event = vcpu->event;
676 
677     event->type = NVMM_VCPU_EVENT_EXCP;
678     event->vector = 6;
679     event->u.excp.error = 0;
680 
681     return nvmm_vcpu_inject(mach, vcpu);
682 }
683 
684 static int
685 nvmm_vcpu_loop(CPUState *cpu)
686 {
687     CPUX86State *env = cpu->env_ptr;
688     struct nvmm_machine *mach = get_nvmm_mach();
689     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
690     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
691     X86CPU *x86_cpu = X86_CPU(cpu);
692     struct nvmm_vcpu_exit *exit = vcpu->exit;
693     int ret;
694 
695     /*
696      * Some asynchronous events must be handled outside of the inner
697      * VCPU loop. They are handled here.
698      */
699     if (cpu->interrupt_request & CPU_INTERRUPT_INIT) {
700         nvmm_cpu_synchronize_state(cpu);
701         do_cpu_init(x86_cpu);
702         /* set int/nmi windows back to the reset state */
703     }
704     if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
705         cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
706         apic_poll_irq(x86_cpu->apic_state);
707     }
708     if (((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
709          (env->eflags & IF_MASK)) ||
710         (cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
711         cpu->halted = false;
712     }
713     if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) {
714         nvmm_cpu_synchronize_state(cpu);
715         do_cpu_sipi(x86_cpu);
716     }
717     if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
718         cpu->interrupt_request &= ~CPU_INTERRUPT_TPR;
719         nvmm_cpu_synchronize_state(cpu);
720         apic_handle_tpr_access_report(x86_cpu->apic_state, env->eip,
721             env->tpr_access_type);
722     }
723 
724     if (cpu->halted) {
725         cpu->exception_index = EXCP_HLT;
726         qatomic_set(&cpu->exit_request, false);
727         return 0;
728     }
729 
730     qemu_mutex_unlock_iothread();
731     cpu_exec_start(cpu);
732 
733     /*
734      * Inner VCPU loop.
735      */
736     do {
737         if (cpu->vcpu_dirty) {
738             nvmm_set_registers(cpu);
739             cpu->vcpu_dirty = false;
740         }
741 
742         if (qcpu->stop) {
743             cpu->exception_index = EXCP_INTERRUPT;
744             qcpu->stop = false;
745             ret = 1;
746             break;
747         }
748 
749         nvmm_vcpu_pre_run(cpu);
750 
751         if (qatomic_read(&cpu->exit_request)) {
752 #if NVMM_USER_VERSION >= 2
753             nvmm_vcpu_stop(vcpu);
754 #else
755             qemu_cpu_kick_self();
756 #endif
757         }
758 
759         /* Read exit_request before the kernel reads the immediate exit flag */
760         smp_rmb();
761         ret = nvmm_vcpu_run(mach, vcpu);
762         if (ret == -1) {
763             error_report("NVMM: Failed to exec a virtual processor,"
764                 " error=%d", errno);
765             break;
766         }
767 
768         nvmm_vcpu_post_run(cpu, exit);
769 
770         switch (exit->reason) {
771         case NVMM_VCPU_EXIT_NONE:
772             break;
773 #if NVMM_USER_VERSION >= 2
774         case NVMM_VCPU_EXIT_STOPPED:
775             /*
776              * The kernel cleared the immediate exit flag; cpu->exit_request
777              * must be cleared after
778              */
779             smp_wmb();
780             qcpu->stop = true;
781             break;
782 #endif
783         case NVMM_VCPU_EXIT_MEMORY:
784             ret = nvmm_handle_mem(mach, vcpu);
785             break;
786         case NVMM_VCPU_EXIT_IO:
787             ret = nvmm_handle_io(mach, vcpu);
788             break;
789         case NVMM_VCPU_EXIT_INT_READY:
790         case NVMM_VCPU_EXIT_NMI_READY:
791         case NVMM_VCPU_EXIT_TPR_CHANGED:
792             break;
793         case NVMM_VCPU_EXIT_HALTED:
794             ret = nvmm_handle_halted(mach, cpu, exit);
795             break;
796         case NVMM_VCPU_EXIT_SHUTDOWN:
797             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
798             cpu->exception_index = EXCP_INTERRUPT;
799             ret = 1;
800             break;
801         case NVMM_VCPU_EXIT_RDMSR:
802             ret = nvmm_handle_rdmsr(mach, cpu, exit);
803             break;
804         case NVMM_VCPU_EXIT_WRMSR:
805             ret = nvmm_handle_wrmsr(mach, cpu, exit);
806             break;
807         case NVMM_VCPU_EXIT_MONITOR:
808         case NVMM_VCPU_EXIT_MWAIT:
809             ret = nvmm_inject_ud(mach, vcpu);
810             break;
811         default:
812             error_report("NVMM: Unexpected VM exit code 0x%lx [hw=0x%lx]",
813                 exit->reason, exit->u.inv.hwcode);
814             nvmm_get_registers(cpu);
815             qemu_mutex_lock_iothread();
816             qemu_system_guest_panicked(cpu_get_crash_info(cpu));
817             qemu_mutex_unlock_iothread();
818             ret = -1;
819             break;
820         }
821     } while (ret == 0);
822 
823     cpu_exec_end(cpu);
824     qemu_mutex_lock_iothread();
825 
826     qatomic_set(&cpu->exit_request, false);
827 
828     return ret < 0;
829 }
830 
831 /* -------------------------------------------------------------------------- */
832 
833 static void
834 do_nvmm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
835 {
836     nvmm_get_registers(cpu);
837     cpu->vcpu_dirty = true;
838 }
839 
840 static void
841 do_nvmm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
842 {
843     nvmm_set_registers(cpu);
844     cpu->vcpu_dirty = false;
845 }
846 
847 static void
848 do_nvmm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
849 {
850     nvmm_set_registers(cpu);
851     cpu->vcpu_dirty = false;
852 }
853 
854 static void
855 do_nvmm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
856 {
857     cpu->vcpu_dirty = true;
858 }
859 
860 void nvmm_cpu_synchronize_state(CPUState *cpu)
861 {
862     if (!cpu->vcpu_dirty) {
863         run_on_cpu(cpu, do_nvmm_cpu_synchronize_state, RUN_ON_CPU_NULL);
864     }
865 }
866 
867 void nvmm_cpu_synchronize_post_reset(CPUState *cpu)
868 {
869     run_on_cpu(cpu, do_nvmm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
870 }
871 
872 void nvmm_cpu_synchronize_post_init(CPUState *cpu)
873 {
874     run_on_cpu(cpu, do_nvmm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
875 }
876 
877 void nvmm_cpu_synchronize_pre_loadvm(CPUState *cpu)
878 {
879     run_on_cpu(cpu, do_nvmm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
880 }
881 
882 /* -------------------------------------------------------------------------- */
883 
884 static Error *nvmm_migration_blocker;
885 
886 /*
887  * The nvmm_vcpu_stop() mechanism breaks races between entering the VMM
888  * and another thread signaling the vCPU thread to exit.
889  */
890 
891 static void
892 nvmm_ipi_signal(int sigcpu)
893 {
894     if (current_cpu) {
895         struct qemu_vcpu *qcpu = get_qemu_vcpu(current_cpu);
896 #if NVMM_USER_VERSION >= 2
897         struct nvmm_vcpu *vcpu = &qcpu->vcpu;
898         nvmm_vcpu_stop(vcpu);
899 #else
900         qcpu->stop = true;
901 #endif
902     }
903 }
904 
905 static void
906 nvmm_init_cpu_signals(void)
907 {
908     struct sigaction sigact;
909     sigset_t set;
910 
911     /* Install the IPI handler. */
912     memset(&sigact, 0, sizeof(sigact));
913     sigact.sa_handler = nvmm_ipi_signal;
914     sigaction(SIG_IPI, &sigact, NULL);
915 
916     /* Allow IPIs on the current thread. */
917     sigprocmask(SIG_BLOCK, NULL, &set);
918     sigdelset(&set, SIG_IPI);
919     pthread_sigmask(SIG_SETMASK, &set, NULL);
920 }
921 
922 int
923 nvmm_init_vcpu(CPUState *cpu)
924 {
925     struct nvmm_machine *mach = get_nvmm_mach();
926     struct nvmm_vcpu_conf_cpuid cpuid;
927     struct nvmm_vcpu_conf_tpr tpr;
928     Error *local_error = NULL;
929     struct qemu_vcpu *qcpu;
930     int ret, err;
931 
932     nvmm_init_cpu_signals();
933 
934     if (nvmm_migration_blocker == NULL) {
935         error_setg(&nvmm_migration_blocker,
936             "NVMM: Migration not supported");
937 
938         if (migrate_add_blocker(nvmm_migration_blocker, &local_error) < 0) {
939             error_report_err(local_error);
940             error_free(nvmm_migration_blocker);
941             return -EINVAL;
942         }
943     }
944 
945     qcpu = g_malloc0(sizeof(*qcpu));
946     if (qcpu == NULL) {
947         error_report("NVMM: Failed to allocate VCPU context.");
948         return -ENOMEM;
949     }
950 
951     ret = nvmm_vcpu_create(mach, cpu->cpu_index, &qcpu->vcpu);
952     if (ret == -1) {
953         err = errno;
954         error_report("NVMM: Failed to create a virtual processor,"
955             " error=%d", err);
956         g_free(qcpu);
957         return -err;
958     }
959 
960     memset(&cpuid, 0, sizeof(cpuid));
961     cpuid.mask = 1;
962     cpuid.leaf = 0x00000001;
963     cpuid.u.mask.set.edx = CPUID_MCE | CPUID_MCA | CPUID_MTRR;
964     ret = nvmm_vcpu_configure(mach, &qcpu->vcpu, NVMM_VCPU_CONF_CPUID,
965         &cpuid);
966     if (ret == -1) {
967         err = errno;
968         error_report("NVMM: Failed to configure a virtual processor,"
969             " error=%d", err);
970         g_free(qcpu);
971         return -err;
972     }
973 
974     ret = nvmm_vcpu_configure(mach, &qcpu->vcpu, NVMM_VCPU_CONF_CALLBACKS,
975         &nvmm_callbacks);
976     if (ret == -1) {
977         err = errno;
978         error_report("NVMM: Failed to configure a virtual processor,"
979             " error=%d", err);
980         g_free(qcpu);
981         return -err;
982     }
983 
984     if (qemu_mach.cap.arch.vcpu_conf_support & NVMM_CAP_ARCH_VCPU_CONF_TPR) {
985         memset(&tpr, 0, sizeof(tpr));
986         tpr.exit_changed = 1;
987         ret = nvmm_vcpu_configure(mach, &qcpu->vcpu, NVMM_VCPU_CONF_TPR, &tpr);
988         if (ret == -1) {
989             err = errno;
990             error_report("NVMM: Failed to configure a virtual processor,"
991                 " error=%d", err);
992             g_free(qcpu);
993             return -err;
994         }
995     }
996 
997     cpu->vcpu_dirty = true;
998     cpu->hax_vcpu = (struct hax_vcpu_state *)qcpu;
999 
1000     return 0;
1001 }
1002 
1003 int
1004 nvmm_vcpu_exec(CPUState *cpu)
1005 {
1006     int ret, fatal;
1007 
1008     while (1) {
1009         if (cpu->exception_index >= EXCP_INTERRUPT) {
1010             ret = cpu->exception_index;
1011             cpu->exception_index = -1;
1012             break;
1013         }
1014 
1015         fatal = nvmm_vcpu_loop(cpu);
1016 
1017         if (fatal) {
1018             error_report("NVMM: Failed to execute a VCPU.");
1019             abort();
1020         }
1021     }
1022 
1023     return ret;
1024 }
1025 
1026 void
1027 nvmm_destroy_vcpu(CPUState *cpu)
1028 {
1029     struct nvmm_machine *mach = get_nvmm_mach();
1030     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
1031 
1032     nvmm_vcpu_destroy(mach, &qcpu->vcpu);
1033     g_free(cpu->hax_vcpu);
1034 }
1035 
1036 /* -------------------------------------------------------------------------- */
1037 
1038 static void
1039 nvmm_update_mapping(hwaddr start_pa, ram_addr_t size, uintptr_t hva,
1040     bool add, bool rom, const char *name)
1041 {
1042     struct nvmm_machine *mach = get_nvmm_mach();
1043     int ret, prot;
1044 
1045     if (add) {
1046         prot = PROT_READ | PROT_EXEC;
1047         if (!rom) {
1048             prot |= PROT_WRITE;
1049         }
1050         ret = nvmm_gpa_map(mach, hva, start_pa, size, prot);
1051     } else {
1052         ret = nvmm_gpa_unmap(mach, hva, start_pa, size);
1053     }
1054 
1055     if (ret == -1) {
1056         error_report("NVMM: Failed to %s GPA range '%s' PA:%p, "
1057             "Size:%p bytes, HostVA:%p, error=%d",
1058             (add ? "map" : "unmap"), name, (void *)(uintptr_t)start_pa,
1059             (void *)size, (void *)hva, errno);
1060     }
1061 }
1062 
1063 static void
1064 nvmm_process_section(MemoryRegionSection *section, int add)
1065 {
1066     MemoryRegion *mr = section->mr;
1067     hwaddr start_pa = section->offset_within_address_space;
1068     ram_addr_t size = int128_get64(section->size);
1069     unsigned int delta;
1070     uintptr_t hva;
1071 
1072     if (!memory_region_is_ram(mr)) {
1073         return;
1074     }
1075 
1076     /* Adjust start_pa and size so that they are page-aligned. */
1077     delta = qemu_real_host_page_size() - (start_pa & ~qemu_real_host_page_mask());
1078     delta &= ~qemu_real_host_page_mask();
1079     if (delta > size) {
1080         return;
1081     }
1082     start_pa += delta;
1083     size -= delta;
1084     size &= qemu_real_host_page_mask();
1085     if (!size || (start_pa & ~qemu_real_host_page_mask())) {
1086         return;
1087     }
1088 
1089     hva = (uintptr_t)memory_region_get_ram_ptr(mr) +
1090         section->offset_within_region + delta;
1091 
1092     nvmm_update_mapping(start_pa, size, hva, add,
1093         memory_region_is_rom(mr), mr->name);
1094 }
1095 
1096 static void
1097 nvmm_region_add(MemoryListener *listener, MemoryRegionSection *section)
1098 {
1099     memory_region_ref(section->mr);
1100     nvmm_process_section(section, 1);
1101 }
1102 
1103 static void
1104 nvmm_region_del(MemoryListener *listener, MemoryRegionSection *section)
1105 {
1106     nvmm_process_section(section, 0);
1107     memory_region_unref(section->mr);
1108 }
1109 
1110 static void
1111 nvmm_transaction_begin(MemoryListener *listener)
1112 {
1113     /* nothing */
1114 }
1115 
1116 static void
1117 nvmm_transaction_commit(MemoryListener *listener)
1118 {
1119     /* nothing */
1120 }
1121 
1122 static void
1123 nvmm_log_sync(MemoryListener *listener, MemoryRegionSection *section)
1124 {
1125     MemoryRegion *mr = section->mr;
1126 
1127     if (!memory_region_is_ram(mr)) {
1128         return;
1129     }
1130 
1131     memory_region_set_dirty(mr, 0, int128_get64(section->size));
1132 }
1133 
1134 static MemoryListener nvmm_memory_listener = {
1135     .name = "nvmm",
1136     .begin = nvmm_transaction_begin,
1137     .commit = nvmm_transaction_commit,
1138     .region_add = nvmm_region_add,
1139     .region_del = nvmm_region_del,
1140     .log_sync = nvmm_log_sync,
1141     .priority = 10,
1142 };
1143 
1144 static void
1145 nvmm_ram_block_added(RAMBlockNotifier *n, void *host, size_t size,
1146                      size_t max_size)
1147 {
1148     struct nvmm_machine *mach = get_nvmm_mach();
1149     uintptr_t hva = (uintptr_t)host;
1150     int ret;
1151 
1152     ret = nvmm_hva_map(mach, hva, max_size);
1153 
1154     if (ret == -1) {
1155         error_report("NVMM: Failed to map HVA, HostVA:%p "
1156             "Size:%p bytes, error=%d",
1157             (void *)hva, (void *)size, errno);
1158     }
1159 }
1160 
1161 static struct RAMBlockNotifier nvmm_ram_notifier = {
1162     .ram_block_added = nvmm_ram_block_added
1163 };
1164 
1165 /* -------------------------------------------------------------------------- */
1166 
1167 static int
1168 nvmm_accel_init(MachineState *ms)
1169 {
1170     int ret, err;
1171 
1172     ret = nvmm_init();
1173     if (ret == -1) {
1174         err = errno;
1175         error_report("NVMM: Initialization failed, error=%d", errno);
1176         return -err;
1177     }
1178 
1179     ret = nvmm_capability(&qemu_mach.cap);
1180     if (ret == -1) {
1181         err = errno;
1182         error_report("NVMM: Unable to fetch capability, error=%d", errno);
1183         return -err;
1184     }
1185     if (qemu_mach.cap.version < NVMM_KERN_VERSION) {
1186         error_report("NVMM: Unsupported version %u", qemu_mach.cap.version);
1187         return -EPROGMISMATCH;
1188     }
1189     if (qemu_mach.cap.state_size != sizeof(struct nvmm_x64_state)) {
1190         error_report("NVMM: Wrong state size %u", qemu_mach.cap.state_size);
1191         return -EPROGMISMATCH;
1192     }
1193 
1194     ret = nvmm_machine_create(&qemu_mach.mach);
1195     if (ret == -1) {
1196         err = errno;
1197         error_report("NVMM: Machine creation failed, error=%d", errno);
1198         return -err;
1199     }
1200 
1201     memory_listener_register(&nvmm_memory_listener, &address_space_memory);
1202     ram_block_notifier_add(&nvmm_ram_notifier);
1203 
1204     printf("NetBSD Virtual Machine Monitor accelerator is operational\n");
1205     return 0;
1206 }
1207 
1208 int
1209 nvmm_enabled(void)
1210 {
1211     return nvmm_allowed;
1212 }
1213 
1214 static void
1215 nvmm_accel_class_init(ObjectClass *oc, void *data)
1216 {
1217     AccelClass *ac = ACCEL_CLASS(oc);
1218     ac->name = "NVMM";
1219     ac->init_machine = nvmm_accel_init;
1220     ac->allowed = &nvmm_allowed;
1221 }
1222 
1223 static const TypeInfo nvmm_accel_type = {
1224     .name = ACCEL_CLASS_NAME("nvmm"),
1225     .parent = TYPE_ACCEL,
1226     .class_init = nvmm_accel_class_init,
1227 };
1228 
1229 static void
1230 nvmm_type_init(void)
1231 {
1232     type_register_static(&nvmm_accel_type);
1233 }
1234 
1235 type_init(nvmm_type_init);
1236