xref: /openbmc/qemu/target/i386/hvf/x86_emu.c (revision 8e6fe6b8bab4716b4adf99a9ab52eaa82464b37e)
1 /*
2  * Copyright (C) 2016 Veertu Inc,
3  * Copyright (C) 2017 Google Inc,
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2 of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /////////////////////////////////////////////////////////////////////////
20 //
21 //  Copyright (C) 2001-2012  The Bochs Project
22 //
23 //  This library is free software; you can redistribute it and/or
24 //  modify it under the terms of the GNU Lesser General Public
25 //  License as published by the Free Software Foundation; either
26 //  version 2 of the License, or (at your option) any later version.
27 //
28 //  This library is distributed in the hope that it will be useful,
29 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
30 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
31 //  Lesser General Public License for more details.
32 //
33 //  You should have received a copy of the GNU Lesser General Public
34 //  License along with this library; if not, write to the Free Software
35 //  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
36 /////////////////////////////////////////////////////////////////////////
37 
38 #include "qemu/osdep.h"
39 #include "panic.h"
40 #include "qemu-common.h"
41 #include "x86_decode.h"
42 #include "x86.h"
43 #include "x86_emu.h"
44 #include "x86_mmu.h"
45 #include "x86_flags.h"
46 #include "vmcs.h"
47 #include "vmx.h"
48 
49 void hvf_handle_io(struct CPUState *cpu, uint16_t port, void *data,
50                    int direction, int size, uint32_t count);
51 
52 #define EXEC_2OP_FLAGS_CMD(env, decode, cmd, FLAGS_FUNC, save_res) \
53 {                                                       \
54     fetch_operands(env, decode, 2, true, true, false);  \
55     switch (decode->operand_size) {                     \
56     case 1:                                         \
57     {                                               \
58         uint8_t v1 = (uint8_t)decode->op[0].val;    \
59         uint8_t v2 = (uint8_t)decode->op[1].val;    \
60         uint8_t diff = v1 cmd v2;                   \
61         if (save_res) {                              \
62             write_val_ext(env, decode->op[0].ptr, diff, 1);  \
63         } \
64         FLAGS_FUNC##8(env, v1, v2, diff);           \
65         break;                                      \
66     }                                               \
67     case 2:                                        \
68     {                                               \
69         uint16_t v1 = (uint16_t)decode->op[0].val;  \
70         uint16_t v2 = (uint16_t)decode->op[1].val;  \
71         uint16_t diff = v1 cmd v2;                  \
72         if (save_res) {                              \
73             write_val_ext(env, decode->op[0].ptr, diff, 2); \
74         } \
75         FLAGS_FUNC##16(env, v1, v2, diff);          \
76         break;                                      \
77     }                                               \
78     case 4:                                        \
79     {                                               \
80         uint32_t v1 = (uint32_t)decode->op[0].val;  \
81         uint32_t v2 = (uint32_t)decode->op[1].val;  \
82         uint32_t diff = v1 cmd v2;                  \
83         if (save_res) {                              \
84             write_val_ext(env, decode->op[0].ptr, diff, 4); \
85         } \
86         FLAGS_FUNC##32(env, v1, v2, diff);          \
87         break;                                      \
88     }                                               \
89     default:                                        \
90         VM_PANIC("bad size\n");                    \
91     }                                                   \
92 }                                                       \
93 
94 target_ulong read_reg(CPUX86State *env, int reg, int size)
95 {
96     switch (size) {
97     case 1:
98         return env->hvf_emul->regs[reg].lx;
99     case 2:
100         return env->hvf_emul->regs[reg].rx;
101     case 4:
102         return env->hvf_emul->regs[reg].erx;
103     case 8:
104         return env->hvf_emul->regs[reg].rrx;
105     default:
106         abort();
107     }
108     return 0;
109 }
110 
111 void write_reg(CPUX86State *env, int reg, target_ulong val, int size)
112 {
113     switch (size) {
114     case 1:
115         env->hvf_emul->regs[reg].lx = val;
116         break;
117     case 2:
118         env->hvf_emul->regs[reg].rx = val;
119         break;
120     case 4:
121         env->hvf_emul->regs[reg].rrx = (uint32_t)val;
122         break;
123     case 8:
124         env->hvf_emul->regs[reg].rrx = val;
125         break;
126     default:
127         abort();
128     }
129 }
130 
131 target_ulong read_val_from_reg(target_ulong reg_ptr, int size)
132 {
133     target_ulong val;
134 
135     switch (size) {
136     case 1:
137         val = *(uint8_t *)reg_ptr;
138         break;
139     case 2:
140         val = *(uint16_t *)reg_ptr;
141         break;
142     case 4:
143         val = *(uint32_t *)reg_ptr;
144         break;
145     case 8:
146         val = *(uint64_t *)reg_ptr;
147         break;
148     default:
149         abort();
150     }
151     return val;
152 }
153 
154 void write_val_to_reg(target_ulong reg_ptr, target_ulong val, int size)
155 {
156     switch (size) {
157     case 1:
158         *(uint8_t *)reg_ptr = val;
159         break;
160     case 2:
161         *(uint16_t *)reg_ptr = val;
162         break;
163     case 4:
164         *(uint64_t *)reg_ptr = (uint32_t)val;
165         break;
166     case 8:
167         *(uint64_t *)reg_ptr = val;
168         break;
169     default:
170         abort();
171     }
172 }
173 
174 static bool is_host_reg(struct CPUX86State *env, target_ulong ptr)
175 {
176     return (ptr - (target_ulong)&env->hvf_emul->regs[0]) < sizeof(env->hvf_emul->regs);
177 }
178 
179 void write_val_ext(struct CPUX86State *env, target_ulong ptr, target_ulong val, int size)
180 {
181     if (is_host_reg(env, ptr)) {
182         write_val_to_reg(ptr, val, size);
183         return;
184     }
185     vmx_write_mem(env_cpu(env), ptr, &val, size);
186 }
187 
188 uint8_t *read_mmio(struct CPUX86State *env, target_ulong ptr, int bytes)
189 {
190     vmx_read_mem(env_cpu(env), env->hvf_emul->mmio_buf, ptr, bytes);
191     return env->hvf_emul->mmio_buf;
192 }
193 
194 
195 target_ulong read_val_ext(struct CPUX86State *env, target_ulong ptr, int size)
196 {
197     target_ulong val;
198     uint8_t *mmio_ptr;
199 
200     if (is_host_reg(env, ptr)) {
201         return read_val_from_reg(ptr, size);
202     }
203 
204     mmio_ptr = read_mmio(env, ptr, size);
205     switch (size) {
206     case 1:
207         val = *(uint8_t *)mmio_ptr;
208         break;
209     case 2:
210         val = *(uint16_t *)mmio_ptr;
211         break;
212     case 4:
213         val = *(uint32_t *)mmio_ptr;
214         break;
215     case 8:
216         val = *(uint64_t *)mmio_ptr;
217         break;
218     default:
219         VM_PANIC("bad size\n");
220         break;
221     }
222     return val;
223 }
224 
225 static void fetch_operands(struct CPUX86State *env, struct x86_decode *decode,
226                            int n, bool val_op0, bool val_op1, bool val_op2)
227 {
228     int i;
229     bool calc_val[3] = {val_op0, val_op1, val_op2};
230 
231     for (i = 0; i < n; i++) {
232         switch (decode->op[i].type) {
233         case X86_VAR_IMMEDIATE:
234             break;
235         case X86_VAR_REG:
236             VM_PANIC_ON(!decode->op[i].ptr);
237             if (calc_val[i]) {
238                 decode->op[i].val = read_val_from_reg(decode->op[i].ptr,
239                                                       decode->operand_size);
240             }
241             break;
242         case X86_VAR_RM:
243             calc_modrm_operand(env, decode, &decode->op[i]);
244             if (calc_val[i]) {
245                 decode->op[i].val = read_val_ext(env, decode->op[i].ptr,
246                                                  decode->operand_size);
247             }
248             break;
249         case X86_VAR_OFFSET:
250             decode->op[i].ptr = decode_linear_addr(env, decode,
251                                                    decode->op[i].ptr,
252                                                    R_DS);
253             if (calc_val[i]) {
254                 decode->op[i].val = read_val_ext(env, decode->op[i].ptr,
255                                                  decode->operand_size);
256             }
257             break;
258         default:
259             break;
260         }
261     }
262 }
263 
264 static void exec_mov(struct CPUX86State *env, struct x86_decode *decode)
265 {
266     fetch_operands(env, decode, 2, false, true, false);
267     write_val_ext(env, decode->op[0].ptr, decode->op[1].val,
268                   decode->operand_size);
269 
270     RIP(env) += decode->len;
271 }
272 
273 static void exec_add(struct CPUX86State *env, struct x86_decode *decode)
274 {
275     EXEC_2OP_FLAGS_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true);
276     RIP(env) += decode->len;
277 }
278 
279 static void exec_or(struct CPUX86State *env, struct x86_decode *decode)
280 {
281     EXEC_2OP_FLAGS_CMD(env, decode, |, SET_FLAGS_OSZAPC_LOGIC, true);
282     RIP(env) += decode->len;
283 }
284 
285 static void exec_adc(struct CPUX86State *env, struct x86_decode *decode)
286 {
287     EXEC_2OP_FLAGS_CMD(env, decode, +get_CF(env)+, SET_FLAGS_OSZAPC_ADD, true);
288     RIP(env) += decode->len;
289 }
290 
291 static void exec_sbb(struct CPUX86State *env, struct x86_decode *decode)
292 {
293     EXEC_2OP_FLAGS_CMD(env, decode, -get_CF(env)-, SET_FLAGS_OSZAPC_SUB, true);
294     RIP(env) += decode->len;
295 }
296 
297 static void exec_and(struct CPUX86State *env, struct x86_decode *decode)
298 {
299     EXEC_2OP_FLAGS_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, true);
300     RIP(env) += decode->len;
301 }
302 
303 static void exec_sub(struct CPUX86State *env, struct x86_decode *decode)
304 {
305     EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, true);
306     RIP(env) += decode->len;
307 }
308 
309 static void exec_xor(struct CPUX86State *env, struct x86_decode *decode)
310 {
311     EXEC_2OP_FLAGS_CMD(env, decode, ^, SET_FLAGS_OSZAPC_LOGIC, true);
312     RIP(env) += decode->len;
313 }
314 
315 static void exec_neg(struct CPUX86State *env, struct x86_decode *decode)
316 {
317     /*EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);*/
318     int32_t val;
319     fetch_operands(env, decode, 2, true, true, false);
320 
321     val = 0 - sign(decode->op[1].val, decode->operand_size);
322     write_val_ext(env, decode->op[1].ptr, val, decode->operand_size);
323 
324     if (4 == decode->operand_size) {
325         SET_FLAGS_OSZAPC_SUB32(env, 0, 0 - val, val);
326     } else if (2 == decode->operand_size) {
327         SET_FLAGS_OSZAPC_SUB16(env, 0, 0 - val, val);
328     } else if (1 == decode->operand_size) {
329         SET_FLAGS_OSZAPC_SUB8(env, 0, 0 - val, val);
330     } else {
331         VM_PANIC("bad op size\n");
332     }
333 
334     /*lflags_to_rflags(env);*/
335     RIP(env) += decode->len;
336 }
337 
338 static void exec_cmp(struct CPUX86State *env, struct x86_decode *decode)
339 {
340     EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
341     RIP(env) += decode->len;
342 }
343 
344 static void exec_inc(struct CPUX86State *env, struct x86_decode *decode)
345 {
346     decode->op[1].type = X86_VAR_IMMEDIATE;
347     decode->op[1].val = 0;
348 
349     EXEC_2OP_FLAGS_CMD(env, decode, +1+, SET_FLAGS_OSZAP_ADD, true);
350 
351     RIP(env) += decode->len;
352 }
353 
354 static void exec_dec(struct CPUX86State *env, struct x86_decode *decode)
355 {
356     decode->op[1].type = X86_VAR_IMMEDIATE;
357     decode->op[1].val = 0;
358 
359     EXEC_2OP_FLAGS_CMD(env, decode, -1-, SET_FLAGS_OSZAP_SUB, true);
360     RIP(env) += decode->len;
361 }
362 
363 static void exec_tst(struct CPUX86State *env, struct x86_decode *decode)
364 {
365     EXEC_2OP_FLAGS_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, false);
366     RIP(env) += decode->len;
367 }
368 
369 static void exec_not(struct CPUX86State *env, struct x86_decode *decode)
370 {
371     fetch_operands(env, decode, 1, true, false, false);
372 
373     write_val_ext(env, decode->op[0].ptr, ~decode->op[0].val,
374                   decode->operand_size);
375     RIP(env) += decode->len;
376 }
377 
378 void exec_movzx(struct CPUX86State *env, struct x86_decode *decode)
379 {
380     int src_op_size;
381     int op_size = decode->operand_size;
382 
383     fetch_operands(env, decode, 1, false, false, false);
384 
385     if (0xb6 == decode->opcode[1]) {
386         src_op_size = 1;
387     } else {
388         src_op_size = 2;
389     }
390     decode->operand_size = src_op_size;
391     calc_modrm_operand(env, decode, &decode->op[1]);
392     decode->op[1].val = read_val_ext(env, decode->op[1].ptr, src_op_size);
393     write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size);
394 
395     RIP(env) += decode->len;
396 }
397 
398 static void exec_out(struct CPUX86State *env, struct x86_decode *decode)
399 {
400     switch (decode->opcode[0]) {
401     case 0xe6:
402         hvf_handle_io(env_cpu(env), decode->op[0].val, &AL(env), 1, 1, 1);
403         break;
404     case 0xe7:
405         hvf_handle_io(env_cpu(env), decode->op[0].val, &RAX(env), 1,
406                       decode->operand_size, 1);
407         break;
408     case 0xee:
409         hvf_handle_io(env_cpu(env), DX(env), &AL(env), 1, 1, 1);
410         break;
411     case 0xef:
412         hvf_handle_io(env_cpu(env), DX(env), &RAX(env), 1,
413                       decode->operand_size, 1);
414         break;
415     default:
416         VM_PANIC("Bad out opcode\n");
417         break;
418     }
419     RIP(env) += decode->len;
420 }
421 
422 static void exec_in(struct CPUX86State *env, struct x86_decode *decode)
423 {
424     target_ulong val = 0;
425     switch (decode->opcode[0]) {
426     case 0xe4:
427         hvf_handle_io(env_cpu(env), decode->op[0].val, &AL(env), 0, 1, 1);
428         break;
429     case 0xe5:
430         hvf_handle_io(env_cpu(env), decode->op[0].val, &val, 0,
431                       decode->operand_size, 1);
432         if (decode->operand_size == 2) {
433             AX(env) = val;
434         } else {
435             RAX(env) = (uint32_t)val;
436         }
437         break;
438     case 0xec:
439         hvf_handle_io(env_cpu(env), DX(env), &AL(env), 0, 1, 1);
440         break;
441     case 0xed:
442         hvf_handle_io(env_cpu(env), DX(env), &val, 0, decode->operand_size, 1);
443         if (decode->operand_size == 2) {
444             AX(env) = val;
445         } else {
446             RAX(env) = (uint32_t)val;
447         }
448 
449         break;
450     default:
451         VM_PANIC("Bad in opcode\n");
452         break;
453     }
454 
455     RIP(env) += decode->len;
456 }
457 
458 static inline void string_increment_reg(struct CPUX86State *env, int reg,
459                                         struct x86_decode *decode)
460 {
461     target_ulong val = read_reg(env, reg, decode->addressing_size);
462     if (env->hvf_emul->rflags.df) {
463         val -= decode->operand_size;
464     } else {
465         val += decode->operand_size;
466     }
467     write_reg(env, reg, val, decode->addressing_size);
468 }
469 
470 static inline void string_rep(struct CPUX86State *env, struct x86_decode *decode,
471                               void (*func)(struct CPUX86State *env,
472                                            struct x86_decode *ins), int rep)
473 {
474     target_ulong rcx = read_reg(env, R_ECX, decode->addressing_size);
475     while (rcx--) {
476         func(env, decode);
477         write_reg(env, R_ECX, rcx, decode->addressing_size);
478         if ((PREFIX_REP == rep) && !get_ZF(env)) {
479             break;
480         }
481         if ((PREFIX_REPN == rep) && get_ZF(env)) {
482             break;
483         }
484     }
485 }
486 
487 static void exec_ins_single(struct CPUX86State *env, struct x86_decode *decode)
488 {
489     target_ulong addr = linear_addr_size(env_cpu(env), RDI(env),
490                                          decode->addressing_size, R_ES);
491 
492     hvf_handle_io(env_cpu(env), DX(env), env->hvf_emul->mmio_buf, 0,
493                   decode->operand_size, 1);
494     vmx_write_mem(env_cpu(env), addr, env->hvf_emul->mmio_buf,
495                   decode->operand_size);
496 
497     string_increment_reg(env, R_EDI, decode);
498 }
499 
500 static void exec_ins(struct CPUX86State *env, struct x86_decode *decode)
501 {
502     if (decode->rep) {
503         string_rep(env, decode, exec_ins_single, 0);
504     } else {
505         exec_ins_single(env, decode);
506     }
507 
508     RIP(env) += decode->len;
509 }
510 
511 static void exec_outs_single(struct CPUX86State *env, struct x86_decode *decode)
512 {
513     target_ulong addr = decode_linear_addr(env, decode, RSI(env), R_DS);
514 
515     vmx_read_mem(env_cpu(env), env->hvf_emul->mmio_buf, addr,
516                  decode->operand_size);
517     hvf_handle_io(env_cpu(env), DX(env), env->hvf_emul->mmio_buf, 1,
518                   decode->operand_size, 1);
519 
520     string_increment_reg(env, R_ESI, decode);
521 }
522 
523 static void exec_outs(struct CPUX86State *env, struct x86_decode *decode)
524 {
525     if (decode->rep) {
526         string_rep(env, decode, exec_outs_single, 0);
527     } else {
528         exec_outs_single(env, decode);
529     }
530 
531     RIP(env) += decode->len;
532 }
533 
534 static void exec_movs_single(struct CPUX86State *env, struct x86_decode *decode)
535 {
536     target_ulong src_addr;
537     target_ulong dst_addr;
538     target_ulong val;
539 
540     src_addr = decode_linear_addr(env, decode, RSI(env), R_DS);
541     dst_addr = linear_addr_size(env_cpu(env), RDI(env),
542                                 decode->addressing_size, R_ES);
543 
544     val = read_val_ext(env, src_addr, decode->operand_size);
545     write_val_ext(env, dst_addr, val, decode->operand_size);
546 
547     string_increment_reg(env, R_ESI, decode);
548     string_increment_reg(env, R_EDI, decode);
549 }
550 
551 static void exec_movs(struct CPUX86State *env, struct x86_decode *decode)
552 {
553     if (decode->rep) {
554         string_rep(env, decode, exec_movs_single, 0);
555     } else {
556         exec_movs_single(env, decode);
557     }
558 
559     RIP(env) += decode->len;
560 }
561 
562 static void exec_cmps_single(struct CPUX86State *env, struct x86_decode *decode)
563 {
564     target_ulong src_addr;
565     target_ulong dst_addr;
566 
567     src_addr = decode_linear_addr(env, decode, RSI(env), R_DS);
568     dst_addr = linear_addr_size(env_cpu(env), RDI(env),
569                                 decode->addressing_size, R_ES);
570 
571     decode->op[0].type = X86_VAR_IMMEDIATE;
572     decode->op[0].val = read_val_ext(env, src_addr, decode->operand_size);
573     decode->op[1].type = X86_VAR_IMMEDIATE;
574     decode->op[1].val = read_val_ext(env, dst_addr, decode->operand_size);
575 
576     EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
577 
578     string_increment_reg(env, R_ESI, decode);
579     string_increment_reg(env, R_EDI, decode);
580 }
581 
582 static void exec_cmps(struct CPUX86State *env, struct x86_decode *decode)
583 {
584     if (decode->rep) {
585         string_rep(env, decode, exec_cmps_single, decode->rep);
586     } else {
587         exec_cmps_single(env, decode);
588     }
589     RIP(env) += decode->len;
590 }
591 
592 
593 static void exec_stos_single(struct CPUX86State *env, struct x86_decode *decode)
594 {
595     target_ulong addr;
596     target_ulong val;
597 
598     addr = linear_addr_size(env_cpu(env), RDI(env),
599                             decode->addressing_size, R_ES);
600     val = read_reg(env, R_EAX, decode->operand_size);
601     vmx_write_mem(env_cpu(env), addr, &val, decode->operand_size);
602 
603     string_increment_reg(env, R_EDI, decode);
604 }
605 
606 
607 static void exec_stos(struct CPUX86State *env, struct x86_decode *decode)
608 {
609     if (decode->rep) {
610         string_rep(env, decode, exec_stos_single, 0);
611     } else {
612         exec_stos_single(env, decode);
613     }
614 
615     RIP(env) += decode->len;
616 }
617 
618 static void exec_scas_single(struct CPUX86State *env, struct x86_decode *decode)
619 {
620     target_ulong addr;
621 
622     addr = linear_addr_size(env_cpu(env), RDI(env),
623                             decode->addressing_size, R_ES);
624     decode->op[1].type = X86_VAR_IMMEDIATE;
625     vmx_read_mem(env_cpu(env), &decode->op[1].val, addr, decode->operand_size);
626 
627     EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
628     string_increment_reg(env, R_EDI, decode);
629 }
630 
631 static void exec_scas(struct CPUX86State *env, struct x86_decode *decode)
632 {
633     decode->op[0].type = X86_VAR_REG;
634     decode->op[0].reg = R_EAX;
635     if (decode->rep) {
636         string_rep(env, decode, exec_scas_single, decode->rep);
637     } else {
638         exec_scas_single(env, decode);
639     }
640 
641     RIP(env) += decode->len;
642 }
643 
644 static void exec_lods_single(struct CPUX86State *env, struct x86_decode *decode)
645 {
646     target_ulong addr;
647     target_ulong val = 0;
648 
649     addr = decode_linear_addr(env, decode, RSI(env), R_DS);
650     vmx_read_mem(env_cpu(env), &val, addr,  decode->operand_size);
651     write_reg(env, R_EAX, val, decode->operand_size);
652 
653     string_increment_reg(env, R_ESI, decode);
654 }
655 
656 static void exec_lods(struct CPUX86State *env, struct x86_decode *decode)
657 {
658     if (decode->rep) {
659         string_rep(env, decode, exec_lods_single, 0);
660     } else {
661         exec_lods_single(env, decode);
662     }
663 
664     RIP(env) += decode->len;
665 }
666 
667 #define MSR_IA32_UCODE_REV 0x00000017
668 
669 void simulate_rdmsr(struct CPUState *cpu)
670 {
671     X86CPU *x86_cpu = X86_CPU(cpu);
672     CPUX86State *env = &x86_cpu->env;
673     uint32_t msr = ECX(env);
674     uint64_t val = 0;
675 
676     switch (msr) {
677     case MSR_IA32_TSC:
678         val = rdtscp() + rvmcs(cpu->hvf_fd, VMCS_TSC_OFFSET);
679         break;
680     case MSR_IA32_APICBASE:
681         val = cpu_get_apic_base(X86_CPU(cpu)->apic_state);
682         break;
683     case MSR_IA32_UCODE_REV:
684         val = (0x100000000ULL << 32) | 0x100000000ULL;
685         break;
686     case MSR_EFER:
687         val = rvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER);
688         break;
689     case MSR_FSBASE:
690         val = rvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE);
691         break;
692     case MSR_GSBASE:
693         val = rvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE);
694         break;
695     case MSR_KERNELGSBASE:
696         val = rvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE);
697         break;
698     case MSR_STAR:
699         abort();
700         break;
701     case MSR_LSTAR:
702         abort();
703         break;
704     case MSR_CSTAR:
705         abort();
706         break;
707     case MSR_IA32_MISC_ENABLE:
708         val = env->msr_ia32_misc_enable;
709         break;
710     case MSR_MTRRphysBase(0):
711     case MSR_MTRRphysBase(1):
712     case MSR_MTRRphysBase(2):
713     case MSR_MTRRphysBase(3):
714     case MSR_MTRRphysBase(4):
715     case MSR_MTRRphysBase(5):
716     case MSR_MTRRphysBase(6):
717     case MSR_MTRRphysBase(7):
718         val = env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base;
719         break;
720     case MSR_MTRRphysMask(0):
721     case MSR_MTRRphysMask(1):
722     case MSR_MTRRphysMask(2):
723     case MSR_MTRRphysMask(3):
724     case MSR_MTRRphysMask(4):
725     case MSR_MTRRphysMask(5):
726     case MSR_MTRRphysMask(6):
727     case MSR_MTRRphysMask(7):
728         val = env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask;
729         break;
730     case MSR_MTRRfix64K_00000:
731         val = env->mtrr_fixed[0];
732         break;
733     case MSR_MTRRfix16K_80000:
734     case MSR_MTRRfix16K_A0000:
735         val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1];
736         break;
737     case MSR_MTRRfix4K_C0000:
738     case MSR_MTRRfix4K_C8000:
739     case MSR_MTRRfix4K_D0000:
740     case MSR_MTRRfix4K_D8000:
741     case MSR_MTRRfix4K_E0000:
742     case MSR_MTRRfix4K_E8000:
743     case MSR_MTRRfix4K_F0000:
744     case MSR_MTRRfix4K_F8000:
745         val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3];
746         break;
747     case MSR_MTRRdefType:
748         val = env->mtrr_deftype;
749         break;
750     default:
751         /* fprintf(stderr, "%s: unknown msr 0x%x\n", __func__, msr); */
752         val = 0;
753         break;
754     }
755 
756     RAX(env) = (uint32_t)val;
757     RDX(env) = (uint32_t)(val >> 32);
758 }
759 
760 static void exec_rdmsr(struct CPUX86State *env, struct x86_decode *decode)
761 {
762     simulate_rdmsr(env_cpu(env));
763     RIP(env) += decode->len;
764 }
765 
766 void simulate_wrmsr(struct CPUState *cpu)
767 {
768     X86CPU *x86_cpu = X86_CPU(cpu);
769     CPUX86State *env = &x86_cpu->env;
770     uint32_t msr = ECX(env);
771     uint64_t data = ((uint64_t)EDX(env) << 32) | EAX(env);
772 
773     switch (msr) {
774     case MSR_IA32_TSC:
775         /* if (!osx_is_sierra())
776              wvmcs(cpu->hvf_fd, VMCS_TSC_OFFSET, data - rdtscp());
777         hv_vm_sync_tsc(data);*/
778         break;
779     case MSR_IA32_APICBASE:
780         cpu_set_apic_base(X86_CPU(cpu)->apic_state, data);
781         break;
782     case MSR_FSBASE:
783         wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, data);
784         break;
785     case MSR_GSBASE:
786         wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, data);
787         break;
788     case MSR_KERNELGSBASE:
789         wvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE, data);
790         break;
791     case MSR_STAR:
792         abort();
793         break;
794     case MSR_LSTAR:
795         abort();
796         break;
797     case MSR_CSTAR:
798         abort();
799         break;
800     case MSR_EFER:
801         /*printf("new efer %llx\n", EFER(cpu));*/
802         wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, data);
803         if (data & MSR_EFER_NXE) {
804             hv_vcpu_invalidate_tlb(cpu->hvf_fd);
805         }
806         break;
807     case MSR_MTRRphysBase(0):
808     case MSR_MTRRphysBase(1):
809     case MSR_MTRRphysBase(2):
810     case MSR_MTRRphysBase(3):
811     case MSR_MTRRphysBase(4):
812     case MSR_MTRRphysBase(5):
813     case MSR_MTRRphysBase(6):
814     case MSR_MTRRphysBase(7):
815         env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base = data;
816         break;
817     case MSR_MTRRphysMask(0):
818     case MSR_MTRRphysMask(1):
819     case MSR_MTRRphysMask(2):
820     case MSR_MTRRphysMask(3):
821     case MSR_MTRRphysMask(4):
822     case MSR_MTRRphysMask(5):
823     case MSR_MTRRphysMask(6):
824     case MSR_MTRRphysMask(7):
825         env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask = data;
826         break;
827     case MSR_MTRRfix64K_00000:
828         env->mtrr_fixed[ECX(env) - MSR_MTRRfix64K_00000] = data;
829         break;
830     case MSR_MTRRfix16K_80000:
831     case MSR_MTRRfix16K_A0000:
832         env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1] = data;
833         break;
834     case MSR_MTRRfix4K_C0000:
835     case MSR_MTRRfix4K_C8000:
836     case MSR_MTRRfix4K_D0000:
837     case MSR_MTRRfix4K_D8000:
838     case MSR_MTRRfix4K_E0000:
839     case MSR_MTRRfix4K_E8000:
840     case MSR_MTRRfix4K_F0000:
841     case MSR_MTRRfix4K_F8000:
842         env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3] = data;
843         break;
844     case MSR_MTRRdefType:
845         env->mtrr_deftype = data;
846         break;
847     default:
848         break;
849     }
850 
851     /* Related to support known hypervisor interface */
852     /* if (g_hypervisor_iface)
853          g_hypervisor_iface->wrmsr_handler(cpu, msr, data);
854 
855     printf("write msr %llx\n", RCX(cpu));*/
856 }
857 
858 static void exec_wrmsr(struct CPUX86State *env, struct x86_decode *decode)
859 {
860     simulate_wrmsr(env_cpu(env));
861     RIP(env) += decode->len;
862 }
863 
864 /*
865  * flag:
866  * 0 - bt, 1 - btc, 2 - bts, 3 - btr
867  */
868 static void do_bt(struct CPUX86State *env, struct x86_decode *decode, int flag)
869 {
870     int32_t displacement;
871     uint8_t index;
872     bool cf;
873     int mask = (4 == decode->operand_size) ? 0x1f : 0xf;
874 
875     VM_PANIC_ON(decode->rex.rex);
876 
877     fetch_operands(env, decode, 2, false, true, false);
878     index = decode->op[1].val & mask;
879 
880     if (decode->op[0].type != X86_VAR_REG) {
881         if (4 == decode->operand_size) {
882             displacement = ((int32_t) (decode->op[1].val & 0xffffffe0)) / 32;
883             decode->op[0].ptr += 4 * displacement;
884         } else if (2 == decode->operand_size) {
885             displacement = ((int16_t) (decode->op[1].val & 0xfff0)) / 16;
886             decode->op[0].ptr += 2 * displacement;
887         } else {
888             VM_PANIC("bt 64bit\n");
889         }
890     }
891     decode->op[0].val = read_val_ext(env, decode->op[0].ptr,
892                                      decode->operand_size);
893     cf = (decode->op[0].val >> index) & 0x01;
894 
895     switch (flag) {
896     case 0:
897         set_CF(env, cf);
898         return;
899     case 1:
900         decode->op[0].val ^= (1u << index);
901         break;
902     case 2:
903         decode->op[0].val |= (1u << index);
904         break;
905     case 3:
906         decode->op[0].val &= ~(1u << index);
907         break;
908     }
909     write_val_ext(env, decode->op[0].ptr, decode->op[0].val,
910                   decode->operand_size);
911     set_CF(env, cf);
912 }
913 
914 static void exec_bt(struct CPUX86State *env, struct x86_decode *decode)
915 {
916     do_bt(env, decode, 0);
917     RIP(env) += decode->len;
918 }
919 
920 static void exec_btc(struct CPUX86State *env, struct x86_decode *decode)
921 {
922     do_bt(env, decode, 1);
923     RIP(env) += decode->len;
924 }
925 
926 static void exec_btr(struct CPUX86State *env, struct x86_decode *decode)
927 {
928     do_bt(env, decode, 3);
929     RIP(env) += decode->len;
930 }
931 
932 static void exec_bts(struct CPUX86State *env, struct x86_decode *decode)
933 {
934     do_bt(env, decode, 2);
935     RIP(env) += decode->len;
936 }
937 
938 void exec_shl(struct CPUX86State *env, struct x86_decode *decode)
939 {
940     uint8_t count;
941     int of = 0, cf = 0;
942 
943     fetch_operands(env, decode, 2, true, true, false);
944 
945     count = decode->op[1].val;
946     count &= 0x1f;      /* count is masked to 5 bits*/
947     if (!count) {
948         goto exit;
949     }
950 
951     switch (decode->operand_size) {
952     case 1:
953     {
954         uint8_t res = 0;
955         if (count <= 8) {
956             res = (decode->op[0].val << count);
957             cf = (decode->op[0].val >> (8 - count)) & 0x1;
958             of = cf ^ (res >> 7);
959         }
960 
961         write_val_ext(env, decode->op[0].ptr, res, 1);
962         SET_FLAGS_OSZAPC_LOGIC8(env, 0, 0, res);
963         SET_FLAGS_OxxxxC(env, of, cf);
964         break;
965     }
966     case 2:
967     {
968         uint16_t res = 0;
969 
970         /* from bochs */
971         if (count <= 16) {
972             res = (decode->op[0].val << count);
973             cf = (decode->op[0].val >> (16 - count)) & 0x1;
974             of = cf ^ (res >> 15); /* of = cf ^ result15 */
975         }
976 
977         write_val_ext(env, decode->op[0].ptr, res, 2);
978         SET_FLAGS_OSZAPC_LOGIC16(env, 0, 0, res);
979         SET_FLAGS_OxxxxC(env, of, cf);
980         break;
981     }
982     case 4:
983     {
984         uint32_t res = decode->op[0].val << count;
985 
986         write_val_ext(env, decode->op[0].ptr, res, 4);
987         SET_FLAGS_OSZAPC_LOGIC32(env, 0, 0, res);
988         cf = (decode->op[0].val >> (32 - count)) & 0x1;
989         of = cf ^ (res >> 31); /* of = cf ^ result31 */
990         SET_FLAGS_OxxxxC(env, of, cf);
991         break;
992     }
993     default:
994         abort();
995     }
996 
997 exit:
998     /* lflags_to_rflags(env); */
999     RIP(env) += decode->len;
1000 }
1001 
1002 void exec_movsx(CPUX86State *env, struct x86_decode *decode)
1003 {
1004     int src_op_size;
1005     int op_size = decode->operand_size;
1006 
1007     fetch_operands(env, decode, 2, false, false, false);
1008 
1009     if (0xbe == decode->opcode[1]) {
1010         src_op_size = 1;
1011     } else {
1012         src_op_size = 2;
1013     }
1014 
1015     decode->operand_size = src_op_size;
1016     calc_modrm_operand(env, decode, &decode->op[1]);
1017     decode->op[1].val = sign(read_val_ext(env, decode->op[1].ptr, src_op_size),
1018                              src_op_size);
1019 
1020     write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size);
1021 
1022     RIP(env) += decode->len;
1023 }
1024 
1025 void exec_ror(struct CPUX86State *env, struct x86_decode *decode)
1026 {
1027     uint8_t count;
1028 
1029     fetch_operands(env, decode, 2, true, true, false);
1030     count = decode->op[1].val;
1031 
1032     switch (decode->operand_size) {
1033     case 1:
1034     {
1035         uint32_t bit6, bit7;
1036         uint8_t res;
1037 
1038         if ((count & 0x07) == 0) {
1039             if (count & 0x18) {
1040                 bit6 = ((uint8_t)decode->op[0].val >> 6) & 1;
1041                 bit7 = ((uint8_t)decode->op[0].val >> 7) & 1;
1042                 SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7);
1043              }
1044         } else {
1045             count &= 0x7; /* use only bottom 3 bits */
1046             res = ((uint8_t)decode->op[0].val >> count) |
1047                    ((uint8_t)decode->op[0].val << (8 - count));
1048             write_val_ext(env, decode->op[0].ptr, res, 1);
1049             bit6 = (res >> 6) & 1;
1050             bit7 = (res >> 7) & 1;
1051             /* set eflags: ROR count affects the following flags: C, O */
1052             SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7);
1053         }
1054         break;
1055     }
1056     case 2:
1057     {
1058         uint32_t bit14, bit15;
1059         uint16_t res;
1060 
1061         if ((count & 0x0f) == 0) {
1062             if (count & 0x10) {
1063                 bit14 = ((uint16_t)decode->op[0].val >> 14) & 1;
1064                 bit15 = ((uint16_t)decode->op[0].val >> 15) & 1;
1065                 /* of = result14 ^ result15 */
1066                 SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15);
1067             }
1068         } else {
1069             count &= 0x0f;  /* use only 4 LSB's */
1070             res = ((uint16_t)decode->op[0].val >> count) |
1071                    ((uint16_t)decode->op[0].val << (16 - count));
1072             write_val_ext(env, decode->op[0].ptr, res, 2);
1073 
1074             bit14 = (res >> 14) & 1;
1075             bit15 = (res >> 15) & 1;
1076             /* of = result14 ^ result15 */
1077             SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15);
1078         }
1079         break;
1080     }
1081     case 4:
1082     {
1083         uint32_t bit31, bit30;
1084         uint32_t res;
1085 
1086         count &= 0x1f;
1087         if (count) {
1088             res = ((uint32_t)decode->op[0].val >> count) |
1089                    ((uint32_t)decode->op[0].val << (32 - count));
1090             write_val_ext(env, decode->op[0].ptr, res, 4);
1091 
1092             bit31 = (res >> 31) & 1;
1093             bit30 = (res >> 30) & 1;
1094             /* of = result30 ^ result31 */
1095             SET_FLAGS_OxxxxC(env, bit30 ^ bit31, bit31);
1096         }
1097         break;
1098         }
1099     }
1100     RIP(env) += decode->len;
1101 }
1102 
1103 void exec_rol(struct CPUX86State *env, struct x86_decode *decode)
1104 {
1105     uint8_t count;
1106 
1107     fetch_operands(env, decode, 2, true, true, false);
1108     count = decode->op[1].val;
1109 
1110     switch (decode->operand_size) {
1111     case 1:
1112     {
1113         uint32_t bit0, bit7;
1114         uint8_t res;
1115 
1116         if ((count & 0x07) == 0) {
1117             if (count & 0x18) {
1118                 bit0 = ((uint8_t)decode->op[0].val & 1);
1119                 bit7 = ((uint8_t)decode->op[0].val >> 7);
1120                 SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0);
1121             }
1122         }  else {
1123             count &= 0x7; /* use only lowest 3 bits */
1124             res = ((uint8_t)decode->op[0].val << count) |
1125                    ((uint8_t)decode->op[0].val >> (8 - count));
1126 
1127             write_val_ext(env, decode->op[0].ptr, res, 1);
1128             /* set eflags:
1129              * ROL count affects the following flags: C, O
1130              */
1131             bit0 = (res &  1);
1132             bit7 = (res >> 7);
1133             SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0);
1134         }
1135         break;
1136     }
1137     case 2:
1138     {
1139         uint32_t bit0, bit15;
1140         uint16_t res;
1141 
1142         if ((count & 0x0f) == 0) {
1143             if (count & 0x10) {
1144                 bit0  = ((uint16_t)decode->op[0].val & 0x1);
1145                 bit15 = ((uint16_t)decode->op[0].val >> 15);
1146                 /* of = cf ^ result15 */
1147                 SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0);
1148             }
1149         } else {
1150             count &= 0x0f; /* only use bottom 4 bits */
1151             res = ((uint16_t)decode->op[0].val << count) |
1152                    ((uint16_t)decode->op[0].val >> (16 - count));
1153 
1154             write_val_ext(env, decode->op[0].ptr, res, 2);
1155             bit0  = (res & 0x1);
1156             bit15 = (res >> 15);
1157             /* of = cf ^ result15 */
1158             SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0);
1159         }
1160         break;
1161     }
1162     case 4:
1163     {
1164         uint32_t bit0, bit31;
1165         uint32_t res;
1166 
1167         count &= 0x1f;
1168         if (count) {
1169             res = ((uint32_t)decode->op[0].val << count) |
1170                    ((uint32_t)decode->op[0].val >> (32 - count));
1171 
1172             write_val_ext(env, decode->op[0].ptr, res, 4);
1173             bit0  = (res & 0x1);
1174             bit31 = (res >> 31);
1175             /* of = cf ^ result31 */
1176             SET_FLAGS_OxxxxC(env, bit0 ^ bit31, bit0);
1177         }
1178         break;
1179         }
1180     }
1181     RIP(env) += decode->len;
1182 }
1183 
1184 
1185 void exec_rcl(struct CPUX86State *env, struct x86_decode *decode)
1186 {
1187     uint8_t count;
1188     int of = 0, cf = 0;
1189 
1190     fetch_operands(env, decode, 2, true, true, false);
1191     count = decode->op[1].val & 0x1f;
1192 
1193     switch (decode->operand_size) {
1194     case 1:
1195     {
1196         uint8_t op1_8 = decode->op[0].val;
1197         uint8_t res;
1198         count %= 9;
1199         if (!count) {
1200             break;
1201         }
1202 
1203         if (1 == count) {
1204             res = (op1_8 << 1) | get_CF(env);
1205         } else {
1206             res = (op1_8 << count) | (get_CF(env) << (count - 1)) |
1207                    (op1_8 >> (9 - count));
1208         }
1209 
1210         write_val_ext(env, decode->op[0].ptr, res, 1);
1211 
1212         cf = (op1_8 >> (8 - count)) & 0x01;
1213         of = cf ^ (res >> 7); /* of = cf ^ result7 */
1214         SET_FLAGS_OxxxxC(env, of, cf);
1215         break;
1216     }
1217     case 2:
1218     {
1219         uint16_t res;
1220         uint16_t op1_16 = decode->op[0].val;
1221 
1222         count %= 17;
1223         if (!count) {
1224             break;
1225         }
1226 
1227         if (1 == count) {
1228             res = (op1_16 << 1) | get_CF(env);
1229         } else if (count == 16) {
1230             res = (get_CF(env) << 15) | (op1_16 >> 1);
1231         } else { /* 2..15 */
1232             res = (op1_16 << count) | (get_CF(env) << (count - 1)) |
1233                    (op1_16 >> (17 - count));
1234         }
1235 
1236         write_val_ext(env, decode->op[0].ptr, res, 2);
1237 
1238         cf = (op1_16 >> (16 - count)) & 0x1;
1239         of = cf ^ (res >> 15); /* of = cf ^ result15 */
1240         SET_FLAGS_OxxxxC(env, of, cf);
1241         break;
1242     }
1243     case 4:
1244     {
1245         uint32_t res;
1246         uint32_t op1_32 = decode->op[0].val;
1247 
1248         if (!count) {
1249             break;
1250         }
1251 
1252         if (1 == count) {
1253             res = (op1_32 << 1) | get_CF(env);
1254         } else {
1255             res = (op1_32 << count) | (get_CF(env) << (count - 1)) |
1256                    (op1_32 >> (33 - count));
1257         }
1258 
1259         write_val_ext(env, decode->op[0].ptr, res, 4);
1260 
1261         cf = (op1_32 >> (32 - count)) & 0x1;
1262         of = cf ^ (res >> 31); /* of = cf ^ result31 */
1263         SET_FLAGS_OxxxxC(env, of, cf);
1264         break;
1265         }
1266     }
1267     RIP(env) += decode->len;
1268 }
1269 
1270 void exec_rcr(struct CPUX86State *env, struct x86_decode *decode)
1271 {
1272     uint8_t count;
1273     int of = 0, cf = 0;
1274 
1275     fetch_operands(env, decode, 2, true, true, false);
1276     count = decode->op[1].val & 0x1f;
1277 
1278     switch (decode->operand_size) {
1279     case 1:
1280     {
1281         uint8_t op1_8 = decode->op[0].val;
1282         uint8_t res;
1283 
1284         count %= 9;
1285         if (!count) {
1286             break;
1287         }
1288         res = (op1_8 >> count) | (get_CF(env) << (8 - count)) |
1289                (op1_8 << (9 - count));
1290 
1291         write_val_ext(env, decode->op[0].ptr, res, 1);
1292 
1293         cf = (op1_8 >> (count - 1)) & 0x1;
1294         of = (((res << 1) ^ res) >> 7) & 0x1; /* of = result6 ^ result7 */
1295         SET_FLAGS_OxxxxC(env, of, cf);
1296         break;
1297     }
1298     case 2:
1299     {
1300         uint16_t op1_16 = decode->op[0].val;
1301         uint16_t res;
1302 
1303         count %= 17;
1304         if (!count) {
1305             break;
1306         }
1307         res = (op1_16 >> count) | (get_CF(env) << (16 - count)) |
1308                (op1_16 << (17 - count));
1309 
1310         write_val_ext(env, decode->op[0].ptr, res, 2);
1311 
1312         cf = (op1_16 >> (count - 1)) & 0x1;
1313         of = ((uint16_t)((res << 1) ^ res) >> 15) & 0x1; /* of = result15 ^
1314                                                             result14 */
1315         SET_FLAGS_OxxxxC(env, of, cf);
1316         break;
1317     }
1318     case 4:
1319     {
1320         uint32_t res;
1321         uint32_t op1_32 = decode->op[0].val;
1322 
1323         if (!count) {
1324             break;
1325         }
1326 
1327         if (1 == count) {
1328             res = (op1_32 >> 1) | (get_CF(env) << 31);
1329         } else {
1330             res = (op1_32 >> count) | (get_CF(env) << (32 - count)) |
1331                    (op1_32 << (33 - count));
1332         }
1333 
1334         write_val_ext(env, decode->op[0].ptr, res, 4);
1335 
1336         cf = (op1_32 >> (count - 1)) & 0x1;
1337         of = ((res << 1) ^ res) >> 31; /* of = result30 ^ result31 */
1338         SET_FLAGS_OxxxxC(env, of, cf);
1339         break;
1340         }
1341     }
1342     RIP(env) += decode->len;
1343 }
1344 
1345 static void exec_xchg(struct CPUX86State *env, struct x86_decode *decode)
1346 {
1347     fetch_operands(env, decode, 2, true, true, false);
1348 
1349     write_val_ext(env, decode->op[0].ptr, decode->op[1].val,
1350                   decode->operand_size);
1351     write_val_ext(env, decode->op[1].ptr, decode->op[0].val,
1352                   decode->operand_size);
1353 
1354     RIP(env) += decode->len;
1355 }
1356 
1357 static void exec_xadd(struct CPUX86State *env, struct x86_decode *decode)
1358 {
1359     EXEC_2OP_FLAGS_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true);
1360     write_val_ext(env, decode->op[1].ptr, decode->op[0].val,
1361                   decode->operand_size);
1362 
1363     RIP(env) += decode->len;
1364 }
1365 
1366 static struct cmd_handler {
1367     enum x86_decode_cmd cmd;
1368     void (*handler)(struct CPUX86State *env, struct x86_decode *ins);
1369 } handlers[] = {
1370     {X86_DECODE_CMD_INVL, NULL,},
1371     {X86_DECODE_CMD_MOV, exec_mov},
1372     {X86_DECODE_CMD_ADD, exec_add},
1373     {X86_DECODE_CMD_OR, exec_or},
1374     {X86_DECODE_CMD_ADC, exec_adc},
1375     {X86_DECODE_CMD_SBB, exec_sbb},
1376     {X86_DECODE_CMD_AND, exec_and},
1377     {X86_DECODE_CMD_SUB, exec_sub},
1378     {X86_DECODE_CMD_NEG, exec_neg},
1379     {X86_DECODE_CMD_XOR, exec_xor},
1380     {X86_DECODE_CMD_CMP, exec_cmp},
1381     {X86_DECODE_CMD_INC, exec_inc},
1382     {X86_DECODE_CMD_DEC, exec_dec},
1383     {X86_DECODE_CMD_TST, exec_tst},
1384     {X86_DECODE_CMD_NOT, exec_not},
1385     {X86_DECODE_CMD_MOVZX, exec_movzx},
1386     {X86_DECODE_CMD_OUT, exec_out},
1387     {X86_DECODE_CMD_IN, exec_in},
1388     {X86_DECODE_CMD_INS, exec_ins},
1389     {X86_DECODE_CMD_OUTS, exec_outs},
1390     {X86_DECODE_CMD_RDMSR, exec_rdmsr},
1391     {X86_DECODE_CMD_WRMSR, exec_wrmsr},
1392     {X86_DECODE_CMD_BT, exec_bt},
1393     {X86_DECODE_CMD_BTR, exec_btr},
1394     {X86_DECODE_CMD_BTC, exec_btc},
1395     {X86_DECODE_CMD_BTS, exec_bts},
1396     {X86_DECODE_CMD_SHL, exec_shl},
1397     {X86_DECODE_CMD_ROL, exec_rol},
1398     {X86_DECODE_CMD_ROR, exec_ror},
1399     {X86_DECODE_CMD_RCR, exec_rcr},
1400     {X86_DECODE_CMD_RCL, exec_rcl},
1401     /*{X86_DECODE_CMD_CPUID, exec_cpuid},*/
1402     {X86_DECODE_CMD_MOVS, exec_movs},
1403     {X86_DECODE_CMD_CMPS, exec_cmps},
1404     {X86_DECODE_CMD_STOS, exec_stos},
1405     {X86_DECODE_CMD_SCAS, exec_scas},
1406     {X86_DECODE_CMD_LODS, exec_lods},
1407     {X86_DECODE_CMD_MOVSX, exec_movsx},
1408     {X86_DECODE_CMD_XCHG, exec_xchg},
1409     {X86_DECODE_CMD_XADD, exec_xadd},
1410 };
1411 
1412 static struct cmd_handler _cmd_handler[X86_DECODE_CMD_LAST];
1413 
1414 static void init_cmd_handler()
1415 {
1416     int i;
1417     for (i = 0; i < ARRAY_SIZE(handlers); i++) {
1418         _cmd_handler[handlers[i].cmd] = handlers[i];
1419     }
1420 }
1421 
1422 void load_regs(struct CPUState *cpu)
1423 {
1424     X86CPU *x86_cpu = X86_CPU(cpu);
1425     CPUX86State *env = &x86_cpu->env;
1426 
1427     int i = 0;
1428     RRX(env, R_EAX) = rreg(cpu->hvf_fd, HV_X86_RAX);
1429     RRX(env, R_EBX) = rreg(cpu->hvf_fd, HV_X86_RBX);
1430     RRX(env, R_ECX) = rreg(cpu->hvf_fd, HV_X86_RCX);
1431     RRX(env, R_EDX) = rreg(cpu->hvf_fd, HV_X86_RDX);
1432     RRX(env, R_ESI) = rreg(cpu->hvf_fd, HV_X86_RSI);
1433     RRX(env, R_EDI) = rreg(cpu->hvf_fd, HV_X86_RDI);
1434     RRX(env, R_ESP) = rreg(cpu->hvf_fd, HV_X86_RSP);
1435     RRX(env, R_EBP) = rreg(cpu->hvf_fd, HV_X86_RBP);
1436     for (i = 8; i < 16; i++) {
1437         RRX(env, i) = rreg(cpu->hvf_fd, HV_X86_RAX + i);
1438     }
1439 
1440     RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
1441     rflags_to_lflags(env);
1442     RIP(env) = rreg(cpu->hvf_fd, HV_X86_RIP);
1443 }
1444 
1445 void store_regs(struct CPUState *cpu)
1446 {
1447     X86CPU *x86_cpu = X86_CPU(cpu);
1448     CPUX86State *env = &x86_cpu->env;
1449 
1450     int i = 0;
1451     wreg(cpu->hvf_fd, HV_X86_RAX, RAX(env));
1452     wreg(cpu->hvf_fd, HV_X86_RBX, RBX(env));
1453     wreg(cpu->hvf_fd, HV_X86_RCX, RCX(env));
1454     wreg(cpu->hvf_fd, HV_X86_RDX, RDX(env));
1455     wreg(cpu->hvf_fd, HV_X86_RSI, RSI(env));
1456     wreg(cpu->hvf_fd, HV_X86_RDI, RDI(env));
1457     wreg(cpu->hvf_fd, HV_X86_RBP, RBP(env));
1458     wreg(cpu->hvf_fd, HV_X86_RSP, RSP(env));
1459     for (i = 8; i < 16; i++) {
1460         wreg(cpu->hvf_fd, HV_X86_RAX + i, RRX(env, i));
1461     }
1462 
1463     lflags_to_rflags(env);
1464     wreg(cpu->hvf_fd, HV_X86_RFLAGS, RFLAGS(env));
1465     macvm_set_rip(cpu, RIP(env));
1466 }
1467 
1468 bool exec_instruction(struct CPUX86State *env, struct x86_decode *ins)
1469 {
1470     /*if (hvf_vcpu_id(cpu))
1471     printf("%d, %llx: exec_instruction %s\n", hvf_vcpu_id(cpu),  RIP(cpu),
1472           decode_cmd_to_string(ins->cmd));*/
1473 
1474     if (!_cmd_handler[ins->cmd].handler) {
1475         printf("Unimplemented handler (%llx) for %d (%x %x) \n", RIP(env),
1476                 ins->cmd, ins->opcode[0],
1477                 ins->opcode_len > 1 ? ins->opcode[1] : 0);
1478         RIP(env) += ins->len;
1479         return true;
1480     }
1481 
1482     _cmd_handler[ins->cmd].handler(env, ins);
1483     return true;
1484 }
1485 
1486 void init_emu()
1487 {
1488     init_cmd_handler();
1489 }
1490