xref: /openbmc/qemu/target/i386/hvf/hvf.c (revision 0b8f74488e50f98b04e63157f85fde8a13f8d6aa)
1 /* Copyright 2008 IBM Corporation
2  *           2008 Red Hat, Inc.
3  * Copyright 2011 Intel Corporation
4  * Copyright 2016 Veertu, Inc.
5  * Copyright 2017 The Android Open Source Project
6  *
7  * QEMU Hypervisor.framework support
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of version 2 of the GNU General Public
11  * License as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
20  *
21  * This file contain code under public domain from the hvdos project:
22  * https://github.com/mist64/hvdos
23  *
24  * Parts Copyright (c) 2011 NetApp, Inc.
25  * All rights reserved.
26  *
27  * Redistribution and use in source and binary forms, with or without
28  * modification, are permitted provided that the following conditions
29  * are met:
30  * 1. Redistributions of source code must retain the above copyright
31  *    notice, this list of conditions and the following disclaimer.
32  * 2. Redistributions in binary form must reproduce the above copyright
33  *    notice, this list of conditions and the following disclaimer in the
34  *    documentation and/or other materials provided with the distribution.
35  *
36  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  */
48 #include "qemu/osdep.h"
49 #include "qemu-common.h"
50 #include "qemu/error-report.h"
51 
52 #include "sysemu/hvf.h"
53 #include "hvf-i386.h"
54 #include "vmcs.h"
55 #include "vmx.h"
56 #include "x86.h"
57 #include "x86_descr.h"
58 #include "x86_mmu.h"
59 #include "x86_decode.h"
60 #include "x86_emu.h"
61 #include "x86_task.h"
62 #include "x86hvf.h"
63 
64 #include <Hypervisor/hv.h>
65 #include <Hypervisor/hv_vmx.h>
66 
67 #include "exec/address-spaces.h"
68 #include "hw/i386/apic_internal.h"
69 #include "hw/boards.h"
70 #include "qemu/main-loop.h"
71 #include "sysemu/accel.h"
72 #include "sysemu/sysemu.h"
73 #include "target/i386/cpu.h"
74 
75 HVFState *hvf_state;
76 
77 static void assert_hvf_ok(hv_return_t ret)
78 {
79     if (ret == HV_SUCCESS) {
80         return;
81     }
82 
83     switch (ret) {
84     case HV_ERROR:
85         error_report("Error: HV_ERROR");
86         break;
87     case HV_BUSY:
88         error_report("Error: HV_BUSY");
89         break;
90     case HV_BAD_ARGUMENT:
91         error_report("Error: HV_BAD_ARGUMENT");
92         break;
93     case HV_NO_RESOURCES:
94         error_report("Error: HV_NO_RESOURCES");
95         break;
96     case HV_NO_DEVICE:
97         error_report("Error: HV_NO_DEVICE");
98         break;
99     case HV_UNSUPPORTED:
100         error_report("Error: HV_UNSUPPORTED");
101         break;
102     default:
103         error_report("Unknown Error");
104     }
105 
106     abort();
107 }
108 
109 /* Memory slots */
110 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t end)
111 {
112     hvf_slot *slot;
113     int x;
114     for (x = 0; x < hvf_state->num_slots; ++x) {
115         slot = &hvf_state->slots[x];
116         if (slot->size && start < (slot->start + slot->size) &&
117             end > slot->start) {
118             return slot;
119         }
120     }
121     return NULL;
122 }
123 
124 struct mac_slot {
125     int present;
126     uint64_t size;
127     uint64_t gpa_start;
128     uint64_t gva;
129 };
130 
131 struct mac_slot mac_slots[32];
132 #define ALIGN(x, y)  (((x) + (y) - 1) & ~((y) - 1))
133 
134 static int do_hvf_set_memory(hvf_slot *slot)
135 {
136     struct mac_slot *macslot;
137     hv_memory_flags_t flags;
138     hv_return_t ret;
139 
140     macslot = &mac_slots[slot->slot_id];
141 
142     if (macslot->present) {
143         if (macslot->size != slot->size) {
144             macslot->present = 0;
145             ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
146             assert_hvf_ok(ret);
147         }
148     }
149 
150     if (!slot->size) {
151         return 0;
152     }
153 
154     flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
155 
156     macslot->present = 1;
157     macslot->gpa_start = slot->start;
158     macslot->size = slot->size;
159     ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
160     assert_hvf_ok(ret);
161     return 0;
162 }
163 
164 void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
165 {
166     hvf_slot *mem;
167     MemoryRegion *area = section->mr;
168 
169     if (!memory_region_is_ram(area)) {
170         return;
171     }
172 
173     mem = hvf_find_overlap_slot(
174             section->offset_within_address_space,
175             section->offset_within_address_space + int128_get64(section->size));
176 
177     if (mem && add) {
178         if (mem->size == int128_get64(section->size) &&
179             mem->start == section->offset_within_address_space &&
180             mem->mem == (memory_region_get_ram_ptr(area) +
181             section->offset_within_region)) {
182             return; /* Same region was attempted to register, go away. */
183         }
184     }
185 
186     /* Region needs to be reset. set the size to 0 and remap it. */
187     if (mem) {
188         mem->size = 0;
189         if (do_hvf_set_memory(mem)) {
190             error_report("Failed to reset overlapping slot");
191             abort();
192         }
193     }
194 
195     if (!add) {
196         return;
197     }
198 
199     /* Now make a new slot. */
200     int x;
201 
202     for (x = 0; x < hvf_state->num_slots; ++x) {
203         mem = &hvf_state->slots[x];
204         if (!mem->size) {
205             break;
206         }
207     }
208 
209     if (x == hvf_state->num_slots) {
210         error_report("No free slots");
211         abort();
212     }
213 
214     mem->size = int128_get64(section->size);
215     mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
216     mem->start = section->offset_within_address_space;
217     mem->region = area;
218 
219     if (do_hvf_set_memory(mem)) {
220         error_report("Error registering new memory slot");
221         abort();
222     }
223 }
224 
225 void vmx_update_tpr(CPUState *cpu)
226 {
227     /* TODO: need integrate APIC handling */
228     X86CPU *x86_cpu = X86_CPU(cpu);
229     int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
230     int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
231 
232     wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
233     if (irr == -1) {
234         wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
235     } else {
236         wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
237               irr >> 4);
238     }
239 }
240 
241 void update_apic_tpr(CPUState *cpu)
242 {
243     X86CPU *x86_cpu = X86_CPU(cpu);
244     int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
245     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
246 }
247 
248 #define VECTORING_INFO_VECTOR_MASK     0xff
249 
250 static void hvf_handle_interrupt(CPUState * cpu, int mask)
251 {
252     cpu->interrupt_request |= mask;
253     if (!qemu_cpu_is_self(cpu)) {
254         qemu_cpu_kick(cpu);
255     }
256 }
257 
258 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
259                   int direction, int size, int count)
260 {
261     int i;
262     uint8_t *ptr = buffer;
263 
264     for (i = 0; i < count; i++) {
265         address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
266                          ptr, size,
267                          direction);
268         ptr += size;
269     }
270 }
271 
272 /* TODO: synchronize vcpu state */
273 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
274 {
275     CPUState *cpu_state = cpu;
276     if (cpu_state->vcpu_dirty == 0) {
277         hvf_get_registers(cpu_state);
278     }
279 
280     cpu_state->vcpu_dirty = 1;
281 }
282 
283 void hvf_cpu_synchronize_state(CPUState *cpu_state)
284 {
285     if (cpu_state->vcpu_dirty == 0) {
286         run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
287     }
288 }
289 
290 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
291 {
292     CPUState *cpu_state = cpu;
293     hvf_put_registers(cpu_state);
294     cpu_state->vcpu_dirty = false;
295 }
296 
297 void hvf_cpu_synchronize_post_reset(CPUState *cpu_state)
298 {
299     run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
300 }
301 
302 void _hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
303 {
304     CPUState *cpu_state = cpu;
305     hvf_put_registers(cpu_state);
306     cpu_state->vcpu_dirty = false;
307 }
308 
309 void hvf_cpu_synchronize_post_init(CPUState *cpu_state)
310 {
311     run_on_cpu(cpu_state, _hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
312 }
313 
314 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
315 {
316     int read, write;
317 
318     /* EPT fault on an instruction fetch doesn't make sense here */
319     if (ept_qual & EPT_VIOLATION_INST_FETCH) {
320         return false;
321     }
322 
323     /* EPT fault must be a read fault or a write fault */
324     read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
325     write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
326     if ((read | write) == 0) {
327         return false;
328     }
329 
330     if (write && slot) {
331         if (slot->flags & HVF_SLOT_LOG) {
332             memory_region_set_dirty(slot->region, gpa - slot->start, 1);
333             hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
334                           HV_MEMORY_READ | HV_MEMORY_WRITE);
335         }
336     }
337 
338     /*
339      * The EPT violation must have been caused by accessing a
340      * guest-physical address that is a translation of a guest-linear
341      * address.
342      */
343     if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
344         (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
345         return false;
346     }
347 
348     return !slot;
349 }
350 
351 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
352 {
353     hvf_slot *slot;
354 
355     slot = hvf_find_overlap_slot(
356             section->offset_within_address_space,
357             section->offset_within_address_space + int128_get64(section->size));
358 
359     /* protect region against writes; begin tracking it */
360     if (on) {
361         slot->flags |= HVF_SLOT_LOG;
362         hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
363                       HV_MEMORY_READ);
364     /* stop tracking region*/
365     } else {
366         slot->flags &= ~HVF_SLOT_LOG;
367         hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
368                       HV_MEMORY_READ | HV_MEMORY_WRITE);
369     }
370 }
371 
372 static void hvf_log_start(MemoryListener *listener,
373                           MemoryRegionSection *section, int old, int new)
374 {
375     if (old != 0) {
376         return;
377     }
378 
379     hvf_set_dirty_tracking(section, 1);
380 }
381 
382 static void hvf_log_stop(MemoryListener *listener,
383                          MemoryRegionSection *section, int old, int new)
384 {
385     if (new != 0) {
386         return;
387     }
388 
389     hvf_set_dirty_tracking(section, 0);
390 }
391 
392 static void hvf_log_sync(MemoryListener *listener,
393                          MemoryRegionSection *section)
394 {
395     /*
396      * sync of dirty pages is handled elsewhere; just make sure we keep
397      * tracking the region.
398      */
399     hvf_set_dirty_tracking(section, 1);
400 }
401 
402 static void hvf_region_add(MemoryListener *listener,
403                            MemoryRegionSection *section)
404 {
405     hvf_set_phys_mem(section, true);
406 }
407 
408 static void hvf_region_del(MemoryListener *listener,
409                            MemoryRegionSection *section)
410 {
411     hvf_set_phys_mem(section, false);
412 }
413 
414 static MemoryListener hvf_memory_listener = {
415     .priority = 10,
416     .region_add = hvf_region_add,
417     .region_del = hvf_region_del,
418     .log_start = hvf_log_start,
419     .log_stop = hvf_log_stop,
420     .log_sync = hvf_log_sync,
421 };
422 
423 void hvf_reset_vcpu(CPUState *cpu) {
424 
425     /* TODO: this shouldn't be needed; there is already a call to
426      * cpu_synchronize_all_post_reset in vl.c
427      */
428     wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0);
429     wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0);
430     macvm_set_cr0(cpu->hvf_fd, 0x60000010);
431 
432     wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK);
433     wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0);
434     wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK);
435 
436     /* set VMCS guest state fields */
437     wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000);
438     wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff);
439     wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b);
440     wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000);
441 
442     wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0);
443     wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff);
444     wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93);
445     wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0);
446 
447     wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0);
448     wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff);
449     wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93);
450     wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0);
451 
452     wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0);
453     wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff);
454     wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93);
455     wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0);
456 
457     wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0);
458     wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff);
459     wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93);
460     wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0);
461 
462     wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0);
463     wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff);
464     wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93);
465     wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0);
466 
467     wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0);
468     wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0);
469     wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000);
470     wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0);
471 
472     wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0);
473     wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0);
474     wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83);
475     wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0);
476 
477     wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0);
478     wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0);
479 
480     wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0);
481     wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0);
482 
483     /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/
484     wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0);
485 
486     wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0);
487     wreg(cpu->hvf_fd, HV_X86_RDX, 0x623);
488     wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2);
489     wreg(cpu->hvf_fd, HV_X86_RSP, 0x0);
490     wreg(cpu->hvf_fd, HV_X86_RAX, 0x0);
491     wreg(cpu->hvf_fd, HV_X86_RBX, 0x0);
492     wreg(cpu->hvf_fd, HV_X86_RCX, 0x0);
493     wreg(cpu->hvf_fd, HV_X86_RSI, 0x0);
494     wreg(cpu->hvf_fd, HV_X86_RDI, 0x0);
495     wreg(cpu->hvf_fd, HV_X86_RBP, 0x0);
496 
497     for (int i = 0; i < 8; i++) {
498         wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0);
499     }
500 
501     hv_vm_sync_tsc(0);
502     cpu->halted = 0;
503     hv_vcpu_invalidate_tlb(cpu->hvf_fd);
504     hv_vcpu_flush(cpu->hvf_fd);
505 }
506 
507 void hvf_vcpu_destroy(CPUState *cpu)
508 {
509     hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
510     assert_hvf_ok(ret);
511 }
512 
513 static void dummy_signal(int sig)
514 {
515 }
516 
517 int hvf_init_vcpu(CPUState *cpu)
518 {
519 
520     X86CPU *x86cpu = X86_CPU(cpu);
521     CPUX86State *env = &x86cpu->env;
522     int r;
523 
524     /* init cpu signals */
525     sigset_t set;
526     struct sigaction sigact;
527 
528     memset(&sigact, 0, sizeof(sigact));
529     sigact.sa_handler = dummy_signal;
530     sigaction(SIG_IPI, &sigact, NULL);
531 
532     pthread_sigmask(SIG_BLOCK, NULL, &set);
533     sigdelset(&set, SIG_IPI);
534 
535     init_emu();
536     init_decoder();
537 
538     hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
539     env->hvf_emul = g_new0(HVFX86EmulatorState, 1);
540 
541     r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
542     cpu->vcpu_dirty = 1;
543     assert_hvf_ok(r);
544 
545     if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
546         &hvf_state->hvf_caps->vmx_cap_pinbased)) {
547         abort();
548     }
549     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
550         &hvf_state->hvf_caps->vmx_cap_procbased)) {
551         abort();
552     }
553     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
554         &hvf_state->hvf_caps->vmx_cap_procbased2)) {
555         abort();
556     }
557     if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
558         &hvf_state->hvf_caps->vmx_cap_entry)) {
559         abort();
560     }
561 
562     /* set VMCS control fields */
563     wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
564           cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
565           VMCS_PIN_BASED_CTLS_EXTINT |
566           VMCS_PIN_BASED_CTLS_NMI |
567           VMCS_PIN_BASED_CTLS_VNMI));
568     wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
569           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
570           VMCS_PRI_PROC_BASED_CTLS_HLT |
571           VMCS_PRI_PROC_BASED_CTLS_MWAIT |
572           VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
573           VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
574           VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
575     wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
576           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
577                    VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
578 
579     wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
580           0));
581     wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
582 
583     wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
584 
585     hvf_reset_vcpu(cpu);
586 
587     x86cpu = X86_CPU(cpu);
588     x86cpu->env.xsave_buf = qemu_memalign(4096, 4096);
589 
590     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
591     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
592     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
593     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
594     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
595     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
596     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
597     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
598     /*hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);*/
599     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
600     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
601     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
602 
603     return 0;
604 }
605 
606 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
607 {
608     X86CPU *x86_cpu = X86_CPU(cpu);
609     CPUX86State *env = &x86_cpu->env;
610 
611     env->exception_injected = -1;
612     env->interrupt_injected = -1;
613     env->nmi_injected = false;
614     if (idtvec_info & VMCS_IDT_VEC_VALID) {
615         switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
616         case VMCS_IDT_VEC_HWINTR:
617         case VMCS_IDT_VEC_SWINTR:
618             env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
619             break;
620         case VMCS_IDT_VEC_NMI:
621             env->nmi_injected = true;
622             break;
623         case VMCS_IDT_VEC_HWEXCEPTION:
624         case VMCS_IDT_VEC_SWEXCEPTION:
625             env->exception_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
626             break;
627         case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
628         default:
629             abort();
630         }
631         if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
632             (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
633             env->ins_len = ins_len;
634         }
635         if (idtvec_info & VMCS_INTR_DEL_ERRCODE) {
636             env->has_error_code = true;
637             env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
638         }
639     }
640     if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
641         VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
642         env->hflags2 |= HF2_NMI_MASK;
643     } else {
644         env->hflags2 &= ~HF2_NMI_MASK;
645     }
646     if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
647          (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
648          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
649         env->hflags |= HF_INHIBIT_IRQ_MASK;
650     } else {
651         env->hflags &= ~HF_INHIBIT_IRQ_MASK;
652     }
653 }
654 
655 int hvf_vcpu_exec(CPUState *cpu)
656 {
657     X86CPU *x86_cpu = X86_CPU(cpu);
658     CPUX86State *env = &x86_cpu->env;
659     int ret = 0;
660     uint64_t rip = 0;
661 
662     cpu->halted = 0;
663 
664     if (hvf_process_events(cpu)) {
665         return EXCP_HLT;
666     }
667 
668     do {
669         if (cpu->vcpu_dirty) {
670             hvf_put_registers(cpu);
671             cpu->vcpu_dirty = false;
672         }
673 
674         if (hvf_inject_interrupts(cpu)) {
675             return EXCP_INTERRUPT;
676         }
677         vmx_update_tpr(cpu);
678 
679         qemu_mutex_unlock_iothread();
680         if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
681             qemu_mutex_lock_iothread();
682             return EXCP_HLT;
683         }
684 
685         hv_return_t r  = hv_vcpu_run(cpu->hvf_fd);
686         assert_hvf_ok(r);
687 
688         /* handle VMEXIT */
689         uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
690         uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
691         uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
692                                            VMCS_EXIT_INSTRUCTION_LENGTH);
693 
694         uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
695 
696         hvf_store_events(cpu, ins_len, idtvec_info);
697         rip = rreg(cpu->hvf_fd, HV_X86_RIP);
698         RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
699         env->eflags = RFLAGS(env);
700 
701         qemu_mutex_lock_iothread();
702 
703         update_apic_tpr(cpu);
704         current_cpu = cpu;
705 
706         ret = 0;
707         switch (exit_reason) {
708         case EXIT_REASON_HLT: {
709             macvm_set_rip(cpu, rip + ins_len);
710             if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
711                 (EFLAGS(env) & IF_MASK))
712                 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
713                 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
714                 cpu->halted = 1;
715                 ret = EXCP_HLT;
716             }
717             ret = EXCP_INTERRUPT;
718             break;
719         }
720         case EXIT_REASON_MWAIT: {
721             ret = EXCP_INTERRUPT;
722             break;
723         }
724             /* Need to check if MMIO or unmmaped fault */
725         case EXIT_REASON_EPT_FAULT:
726         {
727             hvf_slot *slot;
728             uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
729 
730             if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
731                 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
732                 vmx_set_nmi_blocking(cpu);
733             }
734 
735             slot = hvf_find_overlap_slot(gpa, gpa);
736             /* mmio */
737             if (ept_emulation_fault(slot, gpa, exit_qual)) {
738                 struct x86_decode decode;
739 
740                 load_regs(cpu);
741                 env->hvf_emul->fetch_rip = rip;
742 
743                 decode_instruction(env, &decode);
744                 exec_instruction(env, &decode);
745                 store_regs(cpu);
746                 break;
747             }
748             break;
749         }
750         case EXIT_REASON_INOUT:
751         {
752             uint32_t in = (exit_qual & 8) != 0;
753             uint32_t size =  (exit_qual & 7) + 1;
754             uint32_t string =  (exit_qual & 16) != 0;
755             uint32_t port =  exit_qual >> 16;
756             /*uint32_t rep = (exit_qual & 0x20) != 0;*/
757 
758             if (!string && in) {
759                 uint64_t val = 0;
760                 load_regs(cpu);
761                 hvf_handle_io(env, port, &val, 0, size, 1);
762                 if (size == 1) {
763                     AL(env) = val;
764                 } else if (size == 2) {
765                     AX(env) = val;
766                 } else if (size == 4) {
767                     RAX(env) = (uint32_t)val;
768                 } else {
769                     RAX(env) = (uint64_t)val;
770                 }
771                 RIP(env) += ins_len;
772                 store_regs(cpu);
773                 break;
774             } else if (!string && !in) {
775                 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
776                 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
777                 macvm_set_rip(cpu, rip + ins_len);
778                 break;
779             }
780             struct x86_decode decode;
781 
782             load_regs(cpu);
783             env->hvf_emul->fetch_rip = rip;
784 
785             decode_instruction(env, &decode);
786             assert(ins_len == decode.len);
787             exec_instruction(env, &decode);
788             store_regs(cpu);
789 
790             break;
791         }
792         case EXIT_REASON_CPUID: {
793             uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
794             uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
795             uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
796             uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
797 
798             cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
799 
800             wreg(cpu->hvf_fd, HV_X86_RAX, rax);
801             wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
802             wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
803             wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
804 
805             macvm_set_rip(cpu, rip + ins_len);
806             break;
807         }
808         case EXIT_REASON_XSETBV: {
809             X86CPU *x86_cpu = X86_CPU(cpu);
810             CPUX86State *env = &x86_cpu->env;
811             uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
812             uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
813             uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
814 
815             if (ecx) {
816                 macvm_set_rip(cpu, rip + ins_len);
817                 break;
818             }
819             env->xcr0 = ((uint64_t)edx << 32) | eax;
820             wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
821             macvm_set_rip(cpu, rip + ins_len);
822             break;
823         }
824         case EXIT_REASON_INTR_WINDOW:
825             vmx_clear_int_window_exiting(cpu);
826             ret = EXCP_INTERRUPT;
827             break;
828         case EXIT_REASON_NMI_WINDOW:
829             vmx_clear_nmi_window_exiting(cpu);
830             ret = EXCP_INTERRUPT;
831             break;
832         case EXIT_REASON_EXT_INTR:
833             /* force exit and allow io handling */
834             ret = EXCP_INTERRUPT;
835             break;
836         case EXIT_REASON_RDMSR:
837         case EXIT_REASON_WRMSR:
838         {
839             load_regs(cpu);
840             if (exit_reason == EXIT_REASON_RDMSR) {
841                 simulate_rdmsr(cpu);
842             } else {
843                 simulate_wrmsr(cpu);
844             }
845             RIP(env) += rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH);
846             store_regs(cpu);
847             break;
848         }
849         case EXIT_REASON_CR_ACCESS: {
850             int cr;
851             int reg;
852 
853             load_regs(cpu);
854             cr = exit_qual & 15;
855             reg = (exit_qual >> 8) & 15;
856 
857             switch (cr) {
858             case 0x0: {
859                 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
860                 break;
861             }
862             case 4: {
863                 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
864                 break;
865             }
866             case 8: {
867                 X86CPU *x86_cpu = X86_CPU(cpu);
868                 if (exit_qual & 0x10) {
869                     RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
870                 } else {
871                     int tpr = RRX(env, reg);
872                     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
873                     ret = EXCP_INTERRUPT;
874                 }
875                 break;
876             }
877             default:
878                 error_report("Unrecognized CR %d", cr);
879                 abort();
880             }
881             RIP(env) += ins_len;
882             store_regs(cpu);
883             break;
884         }
885         case EXIT_REASON_APIC_ACCESS: { /* TODO */
886             struct x86_decode decode;
887 
888             load_regs(cpu);
889             env->hvf_emul->fetch_rip = rip;
890 
891             decode_instruction(env, &decode);
892             exec_instruction(env, &decode);
893             store_regs(cpu);
894             break;
895         }
896         case EXIT_REASON_TPR: {
897             ret = 1;
898             break;
899         }
900         case EXIT_REASON_TASK_SWITCH: {
901             uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
902             x68_segment_selector sel = {.sel = exit_qual & 0xffff};
903             vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
904              vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
905              & VMCS_INTR_T_MASK);
906             break;
907         }
908         case EXIT_REASON_TRIPLE_FAULT: {
909             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
910             ret = EXCP_INTERRUPT;
911             break;
912         }
913         case EXIT_REASON_RDPMC:
914             wreg(cpu->hvf_fd, HV_X86_RAX, 0);
915             wreg(cpu->hvf_fd, HV_X86_RDX, 0);
916             macvm_set_rip(cpu, rip + ins_len);
917             break;
918         case VMX_REASON_VMCALL:
919             env->exception_injected = EXCP0D_GPF;
920             env->has_error_code = true;
921             env->error_code = 0;
922             break;
923         default:
924             error_report("%llx: unhandled exit %llx", rip, exit_reason);
925         }
926     } while (ret == 0);
927 
928     return ret;
929 }
930 
931 bool hvf_allowed;
932 
933 static int hvf_accel_init(MachineState *ms)
934 {
935     int x;
936     hv_return_t ret;
937     HVFState *s;
938 
939     ret = hv_vm_create(HV_VM_DEFAULT);
940     assert_hvf_ok(ret);
941 
942     s = g_new0(HVFState, 1);
943 
944     s->num_slots = 32;
945     for (x = 0; x < s->num_slots; ++x) {
946         s->slots[x].size = 0;
947         s->slots[x].slot_id = x;
948     }
949 
950     hvf_state = s;
951     cpu_interrupt_handler = hvf_handle_interrupt;
952     memory_listener_register(&hvf_memory_listener, &address_space_memory);
953     return 0;
954 }
955 
956 static void hvf_accel_class_init(ObjectClass *oc, void *data)
957 {
958     AccelClass *ac = ACCEL_CLASS(oc);
959     ac->name = "HVF";
960     ac->init_machine = hvf_accel_init;
961     ac->allowed = &hvf_allowed;
962 }
963 
964 static const TypeInfo hvf_accel_type = {
965     .name = TYPE_HVF_ACCEL,
966     .parent = TYPE_ACCEL,
967     .class_init = hvf_accel_class_init,
968 };
969 
970 static void hvf_type_init(void)
971 {
972     type_register_static(&hvf_accel_type);
973 }
974 
975 type_init(hvf_type_init);
976