xref: /openbmc/qemu/target/i386/hvf/hvf.c (revision 05a248715cef192336a594afed812871a52efc1f)
1 /* Copyright 2008 IBM Corporation
2  *           2008 Red Hat, Inc.
3  * Copyright 2011 Intel Corporation
4  * Copyright 2016 Veertu, Inc.
5  * Copyright 2017 The Android Open Source Project
6  *
7  * QEMU Hypervisor.framework support
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of version 2 of the GNU General Public
11  * License as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, see <http://www.gnu.org/licenses/>.
20  *
21  * This file contain code under public domain from the hvdos project:
22  * https://github.com/mist64/hvdos
23  *
24  * Parts Copyright (c) 2011 NetApp, Inc.
25  * All rights reserved.
26  *
27  * Redistribution and use in source and binary forms, with or without
28  * modification, are permitted provided that the following conditions
29  * are met:
30  * 1. Redistributions of source code must retain the above copyright
31  *    notice, this list of conditions and the following disclaimer.
32  * 2. Redistributions in binary form must reproduce the above copyright
33  *    notice, this list of conditions and the following disclaimer in the
34  *    documentation and/or other materials provided with the distribution.
35  *
36  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  */
48 
49 #include "qemu/osdep.h"
50 #include "qemu-common.h"
51 #include "qemu/error-report.h"
52 
53 #include "sysemu/hvf.h"
54 #include "sysemu/hvf_int.h"
55 #include "sysemu/runstate.h"
56 #include "sysemu/cpus.h"
57 #include "hvf-i386.h"
58 #include "vmcs.h"
59 #include "vmx.h"
60 #include "x86.h"
61 #include "x86_descr.h"
62 #include "x86_mmu.h"
63 #include "x86_decode.h"
64 #include "x86_emu.h"
65 #include "x86_task.h"
66 #include "x86hvf.h"
67 
68 #include <Hypervisor/hv.h>
69 #include <Hypervisor/hv_vmx.h>
70 #include <sys/sysctl.h>
71 
72 #include "hw/i386/apic_internal.h"
73 #include "qemu/main-loop.h"
74 #include "qemu/accel.h"
75 #include "target/i386/cpu.h"
76 
77 void vmx_update_tpr(CPUState *cpu)
78 {
79     /* TODO: need integrate APIC handling */
80     X86CPU *x86_cpu = X86_CPU(cpu);
81     int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
82     int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
83 
84     wreg(cpu->hvf->fd, HV_X86_TPR, tpr);
85     if (irr == -1) {
86         wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0);
87     } else {
88         wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
89               irr >> 4);
90     }
91 }
92 
93 static void update_apic_tpr(CPUState *cpu)
94 {
95     X86CPU *x86_cpu = X86_CPU(cpu);
96     int tpr = rreg(cpu->hvf->fd, HV_X86_TPR) >> 4;
97     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
98 }
99 
100 #define VECTORING_INFO_VECTOR_MASK     0xff
101 
102 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
103                   int direction, int size, int count)
104 {
105     int i;
106     uint8_t *ptr = buffer;
107 
108     for (i = 0; i < count; i++) {
109         address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
110                          ptr, size,
111                          direction);
112         ptr += size;
113     }
114 }
115 
116 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
117 {
118     int read, write;
119 
120     /* EPT fault on an instruction fetch doesn't make sense here */
121     if (ept_qual & EPT_VIOLATION_INST_FETCH) {
122         return false;
123     }
124 
125     /* EPT fault must be a read fault or a write fault */
126     read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
127     write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
128     if ((read | write) == 0) {
129         return false;
130     }
131 
132     if (write && slot) {
133         if (slot->flags & HVF_SLOT_LOG) {
134             memory_region_set_dirty(slot->region, gpa - slot->start, 1);
135             hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
136                           HV_MEMORY_READ | HV_MEMORY_WRITE);
137         }
138     }
139 
140     /*
141      * The EPT violation must have been caused by accessing a
142      * guest-physical address that is a translation of a guest-linear
143      * address.
144      */
145     if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
146         (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
147         return false;
148     }
149 
150     if (!slot) {
151         return true;
152     }
153     if (!memory_region_is_ram(slot->region) &&
154         !(read && memory_region_is_romd(slot->region))) {
155         return true;
156     }
157     return false;
158 }
159 
160 void hvf_arch_vcpu_destroy(CPUState *cpu)
161 {
162     X86CPU *x86_cpu = X86_CPU(cpu);
163     CPUX86State *env = &x86_cpu->env;
164 
165     g_free(env->hvf_mmio_buf);
166 }
167 
168 static void init_tsc_freq(CPUX86State *env)
169 {
170     size_t length;
171     uint64_t tsc_freq;
172 
173     if (env->tsc_khz != 0) {
174         return;
175     }
176 
177     length = sizeof(uint64_t);
178     if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
179         return;
180     }
181     env->tsc_khz = tsc_freq / 1000;  /* Hz to KHz */
182 }
183 
184 static void init_apic_bus_freq(CPUX86State *env)
185 {
186     size_t length;
187     uint64_t bus_freq;
188 
189     if (env->apic_bus_freq != 0) {
190         return;
191     }
192 
193     length = sizeof(uint64_t);
194     if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
195         return;
196     }
197     env->apic_bus_freq = bus_freq;
198 }
199 
200 static inline bool tsc_is_known(CPUX86State *env)
201 {
202     return env->tsc_khz != 0;
203 }
204 
205 static inline bool apic_bus_freq_is_known(CPUX86State *env)
206 {
207     return env->apic_bus_freq != 0;
208 }
209 
210 void hvf_kick_vcpu_thread(CPUState *cpu)
211 {
212     cpus_kick_thread(cpu);
213 }
214 
215 int hvf_arch_init(void)
216 {
217     return 0;
218 }
219 
220 int hvf_arch_init_vcpu(CPUState *cpu)
221 {
222     X86CPU *x86cpu = X86_CPU(cpu);
223     CPUX86State *env = &x86cpu->env;
224 
225     init_emu();
226     init_decoder();
227 
228     hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
229     env->hvf_mmio_buf = g_new(char, 4096);
230 
231     if (x86cpu->vmware_cpuid_freq) {
232         init_tsc_freq(env);
233         init_apic_bus_freq(env);
234 
235         if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
236             error_report("vmware-cpuid-freq: feature couldn't be enabled");
237         }
238     }
239 
240     if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
241         &hvf_state->hvf_caps->vmx_cap_pinbased)) {
242         abort();
243     }
244     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
245         &hvf_state->hvf_caps->vmx_cap_procbased)) {
246         abort();
247     }
248     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
249         &hvf_state->hvf_caps->vmx_cap_procbased2)) {
250         abort();
251     }
252     if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
253         &hvf_state->hvf_caps->vmx_cap_entry)) {
254         abort();
255     }
256 
257     /* set VMCS control fields */
258     wvmcs(cpu->hvf->fd, VMCS_PIN_BASED_CTLS,
259           cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
260           VMCS_PIN_BASED_CTLS_EXTINT |
261           VMCS_PIN_BASED_CTLS_NMI |
262           VMCS_PIN_BASED_CTLS_VNMI));
263     wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS,
264           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
265           VMCS_PRI_PROC_BASED_CTLS_HLT |
266           VMCS_PRI_PROC_BASED_CTLS_MWAIT |
267           VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
268           VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
269           VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
270     wvmcs(cpu->hvf->fd, VMCS_SEC_PROC_BASED_CTLS,
271           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
272                    VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
273 
274     wvmcs(cpu->hvf->fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
275           0));
276     wvmcs(cpu->hvf->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
277 
278     wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0);
279 
280     x86cpu = X86_CPU(cpu);
281     x86cpu->env.xsave_buf_len = 4096;
282     x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len);
283 
284     /*
285      * The allocated storage must be large enough for all of the
286      * possible XSAVE state components.
287      */
288     assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);
289 
290     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_STAR, 1);
291     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_LSTAR, 1);
292     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_CSTAR, 1);
293     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FMASK, 1);
294     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FSBASE, 1);
295     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_GSBASE, 1);
296     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_KERNELGSBASE, 1);
297     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_TSC_AUX, 1);
298     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_TSC, 1);
299     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_CS, 1);
300     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_EIP, 1);
301     hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_ESP, 1);
302 
303     return 0;
304 }
305 
306 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
307 {
308     X86CPU *x86_cpu = X86_CPU(cpu);
309     CPUX86State *env = &x86_cpu->env;
310 
311     env->exception_nr = -1;
312     env->exception_pending = 0;
313     env->exception_injected = 0;
314     env->interrupt_injected = -1;
315     env->nmi_injected = false;
316     env->ins_len = 0;
317     env->has_error_code = false;
318     if (idtvec_info & VMCS_IDT_VEC_VALID) {
319         switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
320         case VMCS_IDT_VEC_HWINTR:
321         case VMCS_IDT_VEC_SWINTR:
322             env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
323             break;
324         case VMCS_IDT_VEC_NMI:
325             env->nmi_injected = true;
326             break;
327         case VMCS_IDT_VEC_HWEXCEPTION:
328         case VMCS_IDT_VEC_SWEXCEPTION:
329             env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
330             env->exception_injected = 1;
331             break;
332         case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
333         default:
334             abort();
335         }
336         if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
337             (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
338             env->ins_len = ins_len;
339         }
340         if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
341             env->has_error_code = true;
342             env->error_code = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_ERROR);
343         }
344     }
345     if ((rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) &
346         VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
347         env->hflags2 |= HF2_NMI_MASK;
348     } else {
349         env->hflags2 &= ~HF2_NMI_MASK;
350     }
351     if (rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) &
352          (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
353          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
354         env->hflags |= HF_INHIBIT_IRQ_MASK;
355     } else {
356         env->hflags &= ~HF_INHIBIT_IRQ_MASK;
357     }
358 }
359 
360 static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
361                               uint32_t *eax, uint32_t *ebx,
362                               uint32_t *ecx, uint32_t *edx)
363 {
364     /*
365      * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
366      * leafs 0x40000001-0x4000000F are filled with zeros
367      * Provides vmware-cpuid-freq support to hvf
368      *
369      * Note: leaf 0x40000000 not exposes HVF,
370      * leaving hypervisor signature empty
371      */
372 
373     if (index < 0x40000000 || index > 0x40000010 ||
374         !tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
375 
376         cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
377         return;
378     }
379 
380     switch (index) {
381     case 0x40000000:
382         *eax = 0x40000010;    /* Max available cpuid leaf */
383         *ebx = 0;             /* Leave signature empty */
384         *ecx = 0;
385         *edx = 0;
386         break;
387     case 0x40000010:
388         *eax = env->tsc_khz;
389         *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
390         *ecx = 0;
391         *edx = 0;
392         break;
393     default:
394         *eax = 0;
395         *ebx = 0;
396         *ecx = 0;
397         *edx = 0;
398         break;
399     }
400 }
401 
402 int hvf_vcpu_exec(CPUState *cpu)
403 {
404     X86CPU *x86_cpu = X86_CPU(cpu);
405     CPUX86State *env = &x86_cpu->env;
406     int ret = 0;
407     uint64_t rip = 0;
408 
409     if (hvf_process_events(cpu)) {
410         return EXCP_HLT;
411     }
412 
413     do {
414         if (cpu->vcpu_dirty) {
415             hvf_put_registers(cpu);
416             cpu->vcpu_dirty = false;
417         }
418 
419         if (hvf_inject_interrupts(cpu)) {
420             return EXCP_INTERRUPT;
421         }
422         vmx_update_tpr(cpu);
423 
424         qemu_mutex_unlock_iothread();
425         if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
426             qemu_mutex_lock_iothread();
427             return EXCP_HLT;
428         }
429 
430         hv_return_t r  = hv_vcpu_run(cpu->hvf->fd);
431         assert_hvf_ok(r);
432 
433         /* handle VMEXIT */
434         uint64_t exit_reason = rvmcs(cpu->hvf->fd, VMCS_EXIT_REASON);
435         uint64_t exit_qual = rvmcs(cpu->hvf->fd, VMCS_EXIT_QUALIFICATION);
436         uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf->fd,
437                                            VMCS_EXIT_INSTRUCTION_LENGTH);
438 
439         uint64_t idtvec_info = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO);
440 
441         hvf_store_events(cpu, ins_len, idtvec_info);
442         rip = rreg(cpu->hvf->fd, HV_X86_RIP);
443         env->eflags = rreg(cpu->hvf->fd, HV_X86_RFLAGS);
444 
445         qemu_mutex_lock_iothread();
446 
447         update_apic_tpr(cpu);
448         current_cpu = cpu;
449 
450         ret = 0;
451         switch (exit_reason) {
452         case EXIT_REASON_HLT: {
453             macvm_set_rip(cpu, rip + ins_len);
454             if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
455                 (env->eflags & IF_MASK))
456                 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
457                 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
458                 cpu->halted = 1;
459                 ret = EXCP_HLT;
460                 break;
461             }
462             ret = EXCP_INTERRUPT;
463             break;
464         }
465         case EXIT_REASON_MWAIT: {
466             ret = EXCP_INTERRUPT;
467             break;
468         }
469         /* Need to check if MMIO or unmapped fault */
470         case EXIT_REASON_EPT_FAULT:
471         {
472             hvf_slot *slot;
473             uint64_t gpa = rvmcs(cpu->hvf->fd, VMCS_GUEST_PHYSICAL_ADDRESS);
474 
475             if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
476                 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
477                 vmx_set_nmi_blocking(cpu);
478             }
479 
480             slot = hvf_find_overlap_slot(gpa, 1);
481             /* mmio */
482             if (ept_emulation_fault(slot, gpa, exit_qual)) {
483                 struct x86_decode decode;
484 
485                 load_regs(cpu);
486                 decode_instruction(env, &decode);
487                 exec_instruction(env, &decode);
488                 store_regs(cpu);
489                 break;
490             }
491             break;
492         }
493         case EXIT_REASON_INOUT:
494         {
495             uint32_t in = (exit_qual & 8) != 0;
496             uint32_t size =  (exit_qual & 7) + 1;
497             uint32_t string =  (exit_qual & 16) != 0;
498             uint32_t port =  exit_qual >> 16;
499             /*uint32_t rep = (exit_qual & 0x20) != 0;*/
500 
501             if (!string && in) {
502                 uint64_t val = 0;
503                 load_regs(cpu);
504                 hvf_handle_io(env, port, &val, 0, size, 1);
505                 if (size == 1) {
506                     AL(env) = val;
507                 } else if (size == 2) {
508                     AX(env) = val;
509                 } else if (size == 4) {
510                     RAX(env) = (uint32_t)val;
511                 } else {
512                     RAX(env) = (uint64_t)val;
513                 }
514                 env->eip += ins_len;
515                 store_regs(cpu);
516                 break;
517             } else if (!string && !in) {
518                 RAX(env) = rreg(cpu->hvf->fd, HV_X86_RAX);
519                 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
520                 macvm_set_rip(cpu, rip + ins_len);
521                 break;
522             }
523             struct x86_decode decode;
524 
525             load_regs(cpu);
526             decode_instruction(env, &decode);
527             assert(ins_len == decode.len);
528             exec_instruction(env, &decode);
529             store_regs(cpu);
530 
531             break;
532         }
533         case EXIT_REASON_CPUID: {
534             uint32_t rax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX);
535             uint32_t rbx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RBX);
536             uint32_t rcx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX);
537             uint32_t rdx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX);
538 
539             if (rax == 1) {
540                 /* CPUID1.ecx.OSXSAVE needs to know CR4 */
541                 env->cr[4] = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR4);
542             }
543             hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
544 
545             wreg(cpu->hvf->fd, HV_X86_RAX, rax);
546             wreg(cpu->hvf->fd, HV_X86_RBX, rbx);
547             wreg(cpu->hvf->fd, HV_X86_RCX, rcx);
548             wreg(cpu->hvf->fd, HV_X86_RDX, rdx);
549 
550             macvm_set_rip(cpu, rip + ins_len);
551             break;
552         }
553         case EXIT_REASON_XSETBV: {
554             X86CPU *x86_cpu = X86_CPU(cpu);
555             CPUX86State *env = &x86_cpu->env;
556             uint32_t eax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX);
557             uint32_t ecx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX);
558             uint32_t edx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX);
559 
560             if (ecx) {
561                 macvm_set_rip(cpu, rip + ins_len);
562                 break;
563             }
564             env->xcr0 = ((uint64_t)edx << 32) | eax;
565             wreg(cpu->hvf->fd, HV_X86_XCR0, env->xcr0 | 1);
566             macvm_set_rip(cpu, rip + ins_len);
567             break;
568         }
569         case EXIT_REASON_INTR_WINDOW:
570             vmx_clear_int_window_exiting(cpu);
571             ret = EXCP_INTERRUPT;
572             break;
573         case EXIT_REASON_NMI_WINDOW:
574             vmx_clear_nmi_window_exiting(cpu);
575             ret = EXCP_INTERRUPT;
576             break;
577         case EXIT_REASON_EXT_INTR:
578             /* force exit and allow io handling */
579             ret = EXCP_INTERRUPT;
580             break;
581         case EXIT_REASON_RDMSR:
582         case EXIT_REASON_WRMSR:
583         {
584             load_regs(cpu);
585             if (exit_reason == EXIT_REASON_RDMSR) {
586                 simulate_rdmsr(cpu);
587             } else {
588                 simulate_wrmsr(cpu);
589             }
590             env->eip += ins_len;
591             store_regs(cpu);
592             break;
593         }
594         case EXIT_REASON_CR_ACCESS: {
595             int cr;
596             int reg;
597 
598             load_regs(cpu);
599             cr = exit_qual & 15;
600             reg = (exit_qual >> 8) & 15;
601 
602             switch (cr) {
603             case 0x0: {
604                 macvm_set_cr0(cpu->hvf->fd, RRX(env, reg));
605                 break;
606             }
607             case 4: {
608                 macvm_set_cr4(cpu->hvf->fd, RRX(env, reg));
609                 break;
610             }
611             case 8: {
612                 X86CPU *x86_cpu = X86_CPU(cpu);
613                 if (exit_qual & 0x10) {
614                     RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
615                 } else {
616                     int tpr = RRX(env, reg);
617                     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
618                     ret = EXCP_INTERRUPT;
619                 }
620                 break;
621             }
622             default:
623                 error_report("Unrecognized CR %d", cr);
624                 abort();
625             }
626             env->eip += ins_len;
627             store_regs(cpu);
628             break;
629         }
630         case EXIT_REASON_APIC_ACCESS: { /* TODO */
631             struct x86_decode decode;
632 
633             load_regs(cpu);
634             decode_instruction(env, &decode);
635             exec_instruction(env, &decode);
636             store_regs(cpu);
637             break;
638         }
639         case EXIT_REASON_TPR: {
640             ret = 1;
641             break;
642         }
643         case EXIT_REASON_TASK_SWITCH: {
644             uint64_t vinfo = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO);
645             x68_segment_selector sel = {.sel = exit_qual & 0xffff};
646             vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
647              vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
648              & VMCS_INTR_T_MASK);
649             break;
650         }
651         case EXIT_REASON_TRIPLE_FAULT: {
652             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
653             ret = EXCP_INTERRUPT;
654             break;
655         }
656         case EXIT_REASON_RDPMC:
657             wreg(cpu->hvf->fd, HV_X86_RAX, 0);
658             wreg(cpu->hvf->fd, HV_X86_RDX, 0);
659             macvm_set_rip(cpu, rip + ins_len);
660             break;
661         case VMX_REASON_VMCALL:
662             env->exception_nr = EXCP0D_GPF;
663             env->exception_injected = 1;
664             env->has_error_code = true;
665             env->error_code = 0;
666             break;
667         default:
668             error_report("%llx: unhandled exit %llx", rip, exit_reason);
669         }
670     } while (ret == 0);
671 
672     return ret;
673 }
674