xref: /openbmc/qemu/target/i386/helper.c (revision f682abc83b720a7da47554d1e02f5b135341fae9)
1 /*
2  *  i386 helpers (without register variable usage)
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qapi/qapi-events-run-state.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "sysemu/runstate.h"
25 #include "kvm/kvm_i386.h"
26 #ifndef CONFIG_USER_ONLY
27 #include "sysemu/hw_accel.h"
28 #include "monitor/monitor.h"
29 #endif
30 #include "qemu/log.h"
31 
32 void cpu_sync_bndcs_hflags(CPUX86State *env)
33 {
34     uint32_t hflags = env->hflags;
35     uint32_t hflags2 = env->hflags2;
36     uint32_t bndcsr;
37 
38     if ((hflags & HF_CPL_MASK) == 3) {
39         bndcsr = env->bndcs_regs.cfgu;
40     } else {
41         bndcsr = env->msr_bndcfgs;
42     }
43 
44     if ((env->cr[4] & CR4_OSXSAVE_MASK)
45         && (env->xcr0 & XSTATE_BNDCSR_MASK)
46         && (bndcsr & BNDCFG_ENABLE)) {
47         hflags |= HF_MPX_EN_MASK;
48     } else {
49         hflags &= ~HF_MPX_EN_MASK;
50     }
51 
52     if (bndcsr & BNDCFG_BNDPRESERVE) {
53         hflags2 |= HF2_MPX_PR_MASK;
54     } else {
55         hflags2 &= ~HF2_MPX_PR_MASK;
56     }
57 
58     env->hflags = hflags;
59     env->hflags2 = hflags2;
60 }
61 
62 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
63 {
64     int cpuver = env->cpuid_version;
65 
66     if (family == NULL || model == NULL) {
67         return;
68     }
69 
70     *family = (cpuver >> 8) & 0x0f;
71     *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
72 }
73 
74 /* Broadcast MCA signal for processor version 06H_EH and above */
75 int cpu_x86_support_mca_broadcast(CPUX86State *env)
76 {
77     int family = 0;
78     int model = 0;
79 
80     cpu_x86_version(env, &family, &model);
81     if ((family == 6 && model >= 14) || family > 6) {
82         return 1;
83     }
84 
85     return 0;
86 }
87 
88 /***********************************************************/
89 /* x86 mmu */
90 /* XXX: add PGE support */
91 
92 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
93 {
94     CPUX86State *env = &cpu->env;
95 
96     a20_state = (a20_state != 0);
97     if (a20_state != ((env->a20_mask >> 20) & 1)) {
98         CPUState *cs = CPU(cpu);
99 
100         qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
101         /* if the cpu is currently executing code, we must unlink it and
102            all the potentially executing TB */
103         cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
104 
105         /* when a20 is changed, all the MMU mappings are invalid, so
106            we must flush everything */
107         tlb_flush(cs);
108         env->a20_mask = ~(1 << 20) | (a20_state << 20);
109     }
110 }
111 
112 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
113 {
114     X86CPU *cpu = env_archcpu(env);
115     int pe_state;
116 
117     qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
118     if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
119         (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
120         tlb_flush(CPU(cpu));
121     }
122 
123 #ifdef TARGET_X86_64
124     if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
125         (env->efer & MSR_EFER_LME)) {
126         /* enter in long mode */
127         /* XXX: generate an exception */
128         if (!(env->cr[4] & CR4_PAE_MASK))
129             return;
130         env->efer |= MSR_EFER_LMA;
131         env->hflags |= HF_LMA_MASK;
132     } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
133                (env->efer & MSR_EFER_LMA)) {
134         /* exit long mode */
135         env->efer &= ~MSR_EFER_LMA;
136         env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
137         env->eip &= 0xffffffff;
138     }
139 #endif
140     env->cr[0] = new_cr0 | CR0_ET_MASK;
141 
142     /* update PE flag in hidden flags */
143     pe_state = (env->cr[0] & CR0_PE_MASK);
144     env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
145     /* ensure that ADDSEG is always set in real mode */
146     env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
147     /* update FPU flags */
148     env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
149         ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
150 }
151 
152 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
153    the PDPT */
154 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
155 {
156     env->cr[3] = new_cr3;
157     if (env->cr[0] & CR0_PG_MASK) {
158         qemu_log_mask(CPU_LOG_MMU,
159                         "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
160         tlb_flush(env_cpu(env));
161     }
162 }
163 
164 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
165 {
166     uint32_t hflags;
167 
168 #if defined(DEBUG_MMU)
169     printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
170 #endif
171     if ((new_cr4 ^ env->cr[4]) &
172         (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
173          CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
174         tlb_flush(env_cpu(env));
175     }
176 
177     /* Clear bits we're going to recompute.  */
178     hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK);
179 
180     /* SSE handling */
181     if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
182         new_cr4 &= ~CR4_OSFXSR_MASK;
183     }
184     if (new_cr4 & CR4_OSFXSR_MASK) {
185         hflags |= HF_OSFXSR_MASK;
186     }
187 
188     if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
189         new_cr4 &= ~CR4_SMAP_MASK;
190     }
191     if (new_cr4 & CR4_SMAP_MASK) {
192         hflags |= HF_SMAP_MASK;
193     }
194     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) {
195         new_cr4 &= ~CR4_UMIP_MASK;
196     }
197     if (new_cr4 & CR4_UMIP_MASK) {
198         hflags |= HF_UMIP_MASK;
199     }
200 
201     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
202         new_cr4 &= ~CR4_PKE_MASK;
203     }
204     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) {
205         new_cr4 &= ~CR4_PKS_MASK;
206     }
207 
208     env->cr[4] = new_cr4;
209     env->hflags = hflags;
210 
211     cpu_sync_bndcs_hflags(env);
212 }
213 
214 #if !defined(CONFIG_USER_ONLY)
215 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
216                                          MemTxAttrs *attrs)
217 {
218     X86CPU *cpu = X86_CPU(cs);
219     CPUX86State *env = &cpu->env;
220     target_ulong pde_addr, pte_addr;
221     uint64_t pte;
222     int32_t a20_mask;
223     uint32_t page_offset;
224     int page_size;
225 
226     *attrs = cpu_get_mem_attrs(env);
227 
228     a20_mask = x86_get_a20_mask(env);
229     if (!(env->cr[0] & CR0_PG_MASK)) {
230         pte = addr & a20_mask;
231         page_size = 4096;
232     } else if (env->cr[4] & CR4_PAE_MASK) {
233         target_ulong pdpe_addr;
234         uint64_t pde, pdpe;
235 
236 #ifdef TARGET_X86_64
237         if (env->hflags & HF_LMA_MASK) {
238             bool la57 = env->cr[4] & CR4_LA57_MASK;
239             uint64_t pml5e_addr, pml5e;
240             uint64_t pml4e_addr, pml4e;
241             int32_t sext;
242 
243             /* test virtual address sign extension */
244             sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
245             if (sext != 0 && sext != -1) {
246                 return -1;
247             }
248 
249             if (la57) {
250                 pml5e_addr = ((env->cr[3] & ~0xfff) +
251                         (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
252                 pml5e = x86_ldq_phys(cs, pml5e_addr);
253                 if (!(pml5e & PG_PRESENT_MASK)) {
254                     return -1;
255                 }
256             } else {
257                 pml5e = env->cr[3];
258             }
259 
260             pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
261                     (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
262             pml4e = x86_ldq_phys(cs, pml4e_addr);
263             if (!(pml4e & PG_PRESENT_MASK)) {
264                 return -1;
265             }
266             pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
267                          (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
268             pdpe = x86_ldq_phys(cs, pdpe_addr);
269             if (!(pdpe & PG_PRESENT_MASK)) {
270                 return -1;
271             }
272             if (pdpe & PG_PSE_MASK) {
273                 page_size = 1024 * 1024 * 1024;
274                 pte = pdpe;
275                 goto out;
276             }
277 
278         } else
279 #endif
280         {
281             pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
282                 a20_mask;
283             pdpe = x86_ldq_phys(cs, pdpe_addr);
284             if (!(pdpe & PG_PRESENT_MASK))
285                 return -1;
286         }
287 
288         pde_addr = ((pdpe & PG_ADDRESS_MASK) +
289                     (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
290         pde = x86_ldq_phys(cs, pde_addr);
291         if (!(pde & PG_PRESENT_MASK)) {
292             return -1;
293         }
294         if (pde & PG_PSE_MASK) {
295             /* 2 MB page */
296             page_size = 2048 * 1024;
297             pte = pde;
298         } else {
299             /* 4 KB page */
300             pte_addr = ((pde & PG_ADDRESS_MASK) +
301                         (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
302             page_size = 4096;
303             pte = x86_ldq_phys(cs, pte_addr);
304         }
305         if (!(pte & PG_PRESENT_MASK)) {
306             return -1;
307         }
308     } else {
309         uint32_t pde;
310 
311         /* page directory entry */
312         pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
313         pde = x86_ldl_phys(cs, pde_addr);
314         if (!(pde & PG_PRESENT_MASK))
315             return -1;
316         if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
317             pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
318             page_size = 4096 * 1024;
319         } else {
320             /* page directory entry */
321             pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
322             pte = x86_ldl_phys(cs, pte_addr);
323             if (!(pte & PG_PRESENT_MASK)) {
324                 return -1;
325             }
326             page_size = 4096;
327         }
328         pte = pte & a20_mask;
329     }
330 
331 #ifdef TARGET_X86_64
332 out:
333 #endif
334     pte &= PG_ADDRESS_MASK & ~(page_size - 1);
335     page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
336     return pte | page_offset;
337 }
338 
339 typedef struct MCEInjectionParams {
340     Monitor *mon;
341     int bank;
342     uint64_t status;
343     uint64_t mcg_status;
344     uint64_t addr;
345     uint64_t misc;
346     int flags;
347 } MCEInjectionParams;
348 
349 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar,
350                                       bool recursive)
351 {
352     MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive};
353 
354     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action,
355                                    &mff);
356 }
357 
358 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
359 {
360     MCEInjectionParams *params = data.host_ptr;
361     X86CPU *cpu = X86_CPU(cs);
362     CPUX86State *cenv = &cpu->env;
363     uint64_t *banks = cenv->mce_banks + 4 * params->bank;
364     g_autofree char *msg = NULL;
365     bool need_reset = false;
366     bool recursive;
367     bool ar = !!(params->status & MCI_STATUS_AR);
368 
369     cpu_synchronize_state(cs);
370     recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP);
371 
372     /*
373      * If there is an MCE exception being processed, ignore this SRAO MCE
374      * unless unconditional injection was requested.
375      */
376     if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) {
377         emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive);
378         return;
379     }
380 
381     if (params->status & MCI_STATUS_UC) {
382         /*
383          * if MSR_MCG_CTL is not all 1s, the uncorrected error
384          * reporting is disabled
385          */
386         if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
387             monitor_printf(params->mon,
388                            "CPU %d: Uncorrected error reporting disabled\n",
389                            cs->cpu_index);
390             return;
391         }
392 
393         /*
394          * if MSR_MCi_CTL is not all 1s, the uncorrected error
395          * reporting is disabled for the bank
396          */
397         if (banks[0] != ~(uint64_t)0) {
398             monitor_printf(params->mon,
399                            "CPU %d: Uncorrected error reporting disabled for"
400                            " bank %d\n",
401                            cs->cpu_index, params->bank);
402             return;
403         }
404 
405         if (!(cenv->cr[4] & CR4_MCE_MASK)) {
406             need_reset = true;
407             msg = g_strdup_printf("CPU %d: MCE capability is not enabled, "
408                                   "raising triple fault", cs->cpu_index);
409         } else if (recursive) {
410             need_reset = true;
411             msg = g_strdup_printf("CPU %d: Previous MCE still in progress, "
412                                   "raising triple fault", cs->cpu_index);
413         }
414 
415         if (need_reset) {
416             emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar,
417                                       recursive);
418             monitor_printf(params->mon, "%s", msg);
419             qemu_log_mask(CPU_LOG_RESET, "%s\n", msg);
420             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
421             return;
422         }
423 
424         if (banks[1] & MCI_STATUS_VAL) {
425             params->status |= MCI_STATUS_OVER;
426         }
427         banks[2] = params->addr;
428         banks[3] = params->misc;
429         cenv->mcg_status = params->mcg_status;
430         banks[1] = params->status;
431         cpu_interrupt(cs, CPU_INTERRUPT_MCE);
432     } else if (!(banks[1] & MCI_STATUS_VAL)
433                || !(banks[1] & MCI_STATUS_UC)) {
434         if (banks[1] & MCI_STATUS_VAL) {
435             params->status |= MCI_STATUS_OVER;
436         }
437         banks[2] = params->addr;
438         banks[3] = params->misc;
439         banks[1] = params->status;
440     } else {
441         banks[1] |= MCI_STATUS_OVER;
442     }
443 
444     emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive);
445 }
446 
447 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
448                         uint64_t status, uint64_t mcg_status, uint64_t addr,
449                         uint64_t misc, int flags)
450 {
451     CPUState *cs = CPU(cpu);
452     CPUX86State *cenv = &cpu->env;
453     MCEInjectionParams params = {
454         .mon = mon,
455         .bank = bank,
456         .status = status,
457         .mcg_status = mcg_status,
458         .addr = addr,
459         .misc = misc,
460         .flags = flags,
461     };
462     unsigned bank_num = cenv->mcg_cap & 0xff;
463 
464     if (!cenv->mcg_cap) {
465         monitor_printf(mon, "MCE injection not supported\n");
466         return;
467     }
468     if (bank >= bank_num) {
469         monitor_printf(mon, "Invalid MCE bank number\n");
470         return;
471     }
472     if (!(status & MCI_STATUS_VAL)) {
473         monitor_printf(mon, "Invalid MCE status code\n");
474         return;
475     }
476     if ((flags & MCE_INJECT_BROADCAST)
477         && !cpu_x86_support_mca_broadcast(cenv)) {
478         monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
479         return;
480     }
481 
482     run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
483     if (flags & MCE_INJECT_BROADCAST) {
484         CPUState *other_cs;
485 
486         params.bank = 1;
487         params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
488         params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
489         params.addr = 0;
490         params.misc = 0;
491         CPU_FOREACH(other_cs) {
492             if (other_cs == cs) {
493                 continue;
494             }
495             run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
496         }
497     }
498 }
499 
500 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
501 {
502     X86CPU *cpu = env_archcpu(env);
503     CPUState *cs = env_cpu(env);
504 
505     if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) {
506         env->tpr_access_type = access;
507 
508         cpu_interrupt(cs, CPU_INTERRUPT_TPR);
509     } else if (tcg_enabled()) {
510         cpu_restore_state(cs, cs->mem_io_pc, false);
511 
512         apic_handle_tpr_access_report(cpu->apic_state, env->eip, access);
513     }
514 }
515 #endif /* !CONFIG_USER_ONLY */
516 
517 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
518                             target_ulong *base, unsigned int *limit,
519                             unsigned int *flags)
520 {
521     CPUState *cs = env_cpu(env);
522     SegmentCache *dt;
523     target_ulong ptr;
524     uint32_t e1, e2;
525     int index;
526 
527     if (selector & 0x4)
528         dt = &env->ldt;
529     else
530         dt = &env->gdt;
531     index = selector & ~7;
532     ptr = dt->base + index;
533     if ((index + 7) > dt->limit
534         || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
535         || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
536         return 0;
537 
538     *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
539     *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
540     if (e2 & DESC_G_MASK)
541         *limit = (*limit << 12) | 0xfff;
542     *flags = e2;
543 
544     return 1;
545 }
546 
547 #if !defined(CONFIG_USER_ONLY)
548 void do_cpu_init(X86CPU *cpu)
549 {
550     CPUState *cs = CPU(cpu);
551     CPUX86State *env = &cpu->env;
552     CPUX86State *save = g_new(CPUX86State, 1);
553     int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
554 
555     *save = *env;
556 
557     cpu_reset(cs);
558     cs->interrupt_request = sipi;
559     memcpy(&env->start_init_save, &save->start_init_save,
560            offsetof(CPUX86State, end_init_save) -
561            offsetof(CPUX86State, start_init_save));
562     g_free(save);
563 
564     if (kvm_enabled()) {
565         kvm_arch_do_init_vcpu(cpu);
566     }
567     apic_init_reset(cpu->apic_state);
568 }
569 
570 void do_cpu_sipi(X86CPU *cpu)
571 {
572     apic_sipi(cpu->apic_state);
573 }
574 #else
575 void do_cpu_init(X86CPU *cpu)
576 {
577 }
578 void do_cpu_sipi(X86CPU *cpu)
579 {
580 }
581 #endif
582 
583 #ifndef CONFIG_USER_ONLY
584 
585 void cpu_load_efer(CPUX86State *env, uint64_t val)
586 {
587     env->efer = val;
588     env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
589     if (env->efer & MSR_EFER_LMA) {
590         env->hflags |= HF_LMA_MASK;
591     }
592     if (env->efer & MSR_EFER_SVME) {
593         env->hflags |= HF_SVME_MASK;
594     }
595 }
596 
597 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
598 {
599     X86CPU *cpu = X86_CPU(cs);
600     CPUX86State *env = &cpu->env;
601     MemTxAttrs attrs = cpu_get_mem_attrs(env);
602     AddressSpace *as = cpu_addressspace(cs, attrs);
603 
604     return address_space_ldub(as, addr, attrs, NULL);
605 }
606 
607 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
608 {
609     X86CPU *cpu = X86_CPU(cs);
610     CPUX86State *env = &cpu->env;
611     MemTxAttrs attrs = cpu_get_mem_attrs(env);
612     AddressSpace *as = cpu_addressspace(cs, attrs);
613 
614     return address_space_lduw(as, addr, attrs, NULL);
615 }
616 
617 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
618 {
619     X86CPU *cpu = X86_CPU(cs);
620     CPUX86State *env = &cpu->env;
621     MemTxAttrs attrs = cpu_get_mem_attrs(env);
622     AddressSpace *as = cpu_addressspace(cs, attrs);
623 
624     return address_space_ldl(as, addr, attrs, NULL);
625 }
626 
627 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
628 {
629     X86CPU *cpu = X86_CPU(cs);
630     CPUX86State *env = &cpu->env;
631     MemTxAttrs attrs = cpu_get_mem_attrs(env);
632     AddressSpace *as = cpu_addressspace(cs, attrs);
633 
634     return address_space_ldq(as, addr, attrs, NULL);
635 }
636 
637 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
638 {
639     X86CPU *cpu = X86_CPU(cs);
640     CPUX86State *env = &cpu->env;
641     MemTxAttrs attrs = cpu_get_mem_attrs(env);
642     AddressSpace *as = cpu_addressspace(cs, attrs);
643 
644     address_space_stb(as, addr, val, attrs, NULL);
645 }
646 
647 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
648 {
649     X86CPU *cpu = X86_CPU(cs);
650     CPUX86State *env = &cpu->env;
651     MemTxAttrs attrs = cpu_get_mem_attrs(env);
652     AddressSpace *as = cpu_addressspace(cs, attrs);
653 
654     address_space_stl_notdirty(as, addr, val, attrs, NULL);
655 }
656 
657 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
658 {
659     X86CPU *cpu = X86_CPU(cs);
660     CPUX86State *env = &cpu->env;
661     MemTxAttrs attrs = cpu_get_mem_attrs(env);
662     AddressSpace *as = cpu_addressspace(cs, attrs);
663 
664     address_space_stw(as, addr, val, attrs, NULL);
665 }
666 
667 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
668 {
669     X86CPU *cpu = X86_CPU(cs);
670     CPUX86State *env = &cpu->env;
671     MemTxAttrs attrs = cpu_get_mem_attrs(env);
672     AddressSpace *as = cpu_addressspace(cs, attrs);
673 
674     address_space_stl(as, addr, val, attrs, NULL);
675 }
676 
677 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
678 {
679     X86CPU *cpu = X86_CPU(cs);
680     CPUX86State *env = &cpu->env;
681     MemTxAttrs attrs = cpu_get_mem_attrs(env);
682     AddressSpace *as = cpu_addressspace(cs, attrs);
683 
684     address_space_stq(as, addr, val, attrs, NULL);
685 }
686 #endif
687