xref: /openbmc/qemu/target/i386/helper.c (revision 9d779187b86eee59899111978c6c1bd56076b1ed)
1 /*
2  *  i386 helpers (without register variable usage)
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qapi/qapi-events-run-state.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "sysemu/runstate.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "sysemu/hw_accel.h"
27 #include "monitor/monitor.h"
28 #include "kvm/kvm_i386.h"
29 #endif
30 #include "qemu/log.h"
31 #ifdef CONFIG_TCG
32 #include "tcg/insn-start-words.h"
33 #endif
34 
35 void cpu_sync_avx_hflag(CPUX86State *env)
36 {
37     if ((env->cr[4] & CR4_OSXSAVE_MASK)
38         && (env->xcr0 & (XSTATE_SSE_MASK | XSTATE_YMM_MASK))
39             == (XSTATE_SSE_MASK | XSTATE_YMM_MASK)) {
40         env->hflags |= HF_AVX_EN_MASK;
41     } else{
42         env->hflags &= ~HF_AVX_EN_MASK;
43     }
44 }
45 
46 void cpu_sync_bndcs_hflags(CPUX86State *env)
47 {
48     uint32_t hflags = env->hflags;
49     uint32_t hflags2 = env->hflags2;
50     uint32_t bndcsr;
51 
52     if ((hflags & HF_CPL_MASK) == 3) {
53         bndcsr = env->bndcs_regs.cfgu;
54     } else {
55         bndcsr = env->msr_bndcfgs;
56     }
57 
58     if ((env->cr[4] & CR4_OSXSAVE_MASK)
59         && (env->xcr0 & XSTATE_BNDCSR_MASK)
60         && (bndcsr & BNDCFG_ENABLE)) {
61         hflags |= HF_MPX_EN_MASK;
62     } else {
63         hflags &= ~HF_MPX_EN_MASK;
64     }
65 
66     if (bndcsr & BNDCFG_BNDPRESERVE) {
67         hflags2 |= HF2_MPX_PR_MASK;
68     } else {
69         hflags2 &= ~HF2_MPX_PR_MASK;
70     }
71 
72     env->hflags = hflags;
73     env->hflags2 = hflags2;
74 }
75 
76 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
77 {
78     int cpuver = env->cpuid_version;
79 
80     if (family == NULL || model == NULL) {
81         return;
82     }
83 
84     *family = (cpuver >> 8) & 0x0f;
85     *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
86 }
87 
88 /* Broadcast MCA signal for processor version 06H_EH and above */
89 int cpu_x86_support_mca_broadcast(CPUX86State *env)
90 {
91     int family = 0;
92     int model = 0;
93 
94     if (IS_AMD_CPU(env)) {
95         return 0;
96     }
97 
98     cpu_x86_version(env, &family, &model);
99     if ((family == 6 && model >= 14) || family > 6) {
100         return 1;
101     }
102 
103     return 0;
104 }
105 
106 /***********************************************************/
107 /* x86 mmu */
108 /* XXX: add PGE support */
109 
110 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
111 {
112     CPUX86State *env = &cpu->env;
113 
114     a20_state = (a20_state != 0);
115     if (a20_state != ((env->a20_mask >> 20) & 1)) {
116         CPUState *cs = CPU(cpu);
117 
118         qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
119         /* if the cpu is currently executing code, we must unlink it and
120            all the potentially executing TB */
121         cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
122 
123         /* when a20 is changed, all the MMU mappings are invalid, so
124            we must flush everything */
125         tlb_flush(cs);
126         env->a20_mask = ~(1 << 20) | (a20_state << 20);
127     }
128 }
129 
130 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
131 {
132     X86CPU *cpu = env_archcpu(env);
133     int pe_state;
134 
135     qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
136     if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
137         (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
138         tlb_flush(CPU(cpu));
139     }
140 
141 #ifdef TARGET_X86_64
142     if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
143         (env->efer & MSR_EFER_LME)) {
144         /* enter in long mode */
145         /* XXX: generate an exception */
146         if (!(env->cr[4] & CR4_PAE_MASK))
147             return;
148         env->efer |= MSR_EFER_LMA;
149         env->hflags |= HF_LMA_MASK;
150     } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
151                (env->efer & MSR_EFER_LMA)) {
152         /* exit long mode */
153         env->efer &= ~MSR_EFER_LMA;
154         env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
155         env->eip &= 0xffffffff;
156     }
157 #endif
158     env->cr[0] = new_cr0 | CR0_ET_MASK;
159 
160     /* update PE flag in hidden flags */
161     pe_state = (env->cr[0] & CR0_PE_MASK);
162     env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
163     /* ensure that ADDSEG is always set in real mode */
164     env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
165     /* update FPU flags */
166     env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
167         ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
168 }
169 
170 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
171    the PDPT */
172 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
173 {
174     env->cr[3] = new_cr3;
175     if (env->cr[0] & CR0_PG_MASK) {
176         qemu_log_mask(CPU_LOG_MMU,
177                         "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
178         tlb_flush(env_cpu(env));
179     }
180 }
181 
182 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
183 {
184     uint32_t hflags;
185 
186 #if defined(DEBUG_MMU)
187     printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
188 #endif
189     if ((new_cr4 ^ env->cr[4]) &
190         (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
191          CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
192         tlb_flush(env_cpu(env));
193     }
194 
195     /* Clear bits we're going to recompute.  */
196     hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK);
197 
198     /* SSE handling */
199     if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
200         new_cr4 &= ~CR4_OSFXSR_MASK;
201     }
202     if (new_cr4 & CR4_OSFXSR_MASK) {
203         hflags |= HF_OSFXSR_MASK;
204     }
205 
206     if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
207         new_cr4 &= ~CR4_SMAP_MASK;
208     }
209     if (new_cr4 & CR4_SMAP_MASK) {
210         hflags |= HF_SMAP_MASK;
211     }
212     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) {
213         new_cr4 &= ~CR4_UMIP_MASK;
214     }
215     if (new_cr4 & CR4_UMIP_MASK) {
216         hflags |= HF_UMIP_MASK;
217     }
218 
219     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
220         new_cr4 &= ~CR4_PKE_MASK;
221     }
222     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) {
223         new_cr4 &= ~CR4_PKS_MASK;
224     }
225 
226     if (!(env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_LAM)) {
227         new_cr4 &= ~CR4_LAM_SUP_MASK;
228     }
229 
230     env->cr[4] = new_cr4;
231     env->hflags = hflags;
232 
233     cpu_sync_bndcs_hflags(env);
234     cpu_sync_avx_hflag(env);
235 }
236 
237 #if !defined(CONFIG_USER_ONLY)
238 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
239                                          MemTxAttrs *attrs)
240 {
241     X86CPU *cpu = X86_CPU(cs);
242     CPUX86State *env = &cpu->env;
243     target_ulong pde_addr, pte_addr;
244     uint64_t pte;
245     int32_t a20_mask;
246     uint32_t page_offset;
247     int page_size;
248 
249     *attrs = cpu_get_mem_attrs(env);
250 
251     a20_mask = x86_get_a20_mask(env);
252     if (!(env->cr[0] & CR0_PG_MASK)) {
253         pte = addr & a20_mask;
254         page_size = 4096;
255     } else if (env->cr[4] & CR4_PAE_MASK) {
256         target_ulong pdpe_addr;
257         uint64_t pde, pdpe;
258 
259 #ifdef TARGET_X86_64
260         if (env->hflags & HF_LMA_MASK) {
261             bool la57 = env->cr[4] & CR4_LA57_MASK;
262             uint64_t pml5e_addr, pml5e;
263             uint64_t pml4e_addr, pml4e;
264             int32_t sext;
265 
266             /* test virtual address sign extension */
267             sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
268             if (sext != 0 && sext != -1) {
269                 return -1;
270             }
271 
272             if (la57) {
273                 pml5e_addr = ((env->cr[3] & ~0xfff) +
274                         (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
275                 pml5e = x86_ldq_phys(cs, pml5e_addr);
276                 if (!(pml5e & PG_PRESENT_MASK)) {
277                     return -1;
278                 }
279             } else {
280                 pml5e = env->cr[3];
281             }
282 
283             pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
284                     (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
285             pml4e = x86_ldq_phys(cs, pml4e_addr);
286             if (!(pml4e & PG_PRESENT_MASK)) {
287                 return -1;
288             }
289             pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
290                          (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
291             pdpe = x86_ldq_phys(cs, pdpe_addr);
292             if (!(pdpe & PG_PRESENT_MASK)) {
293                 return -1;
294             }
295             if (pdpe & PG_PSE_MASK) {
296                 page_size = 1024 * 1024 * 1024;
297                 pte = pdpe;
298                 goto out;
299             }
300 
301         } else
302 #endif
303         {
304             pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
305                 a20_mask;
306             pdpe = x86_ldq_phys(cs, pdpe_addr);
307             if (!(pdpe & PG_PRESENT_MASK))
308                 return -1;
309         }
310 
311         pde_addr = ((pdpe & PG_ADDRESS_MASK) +
312                     (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
313         pde = x86_ldq_phys(cs, pde_addr);
314         if (!(pde & PG_PRESENT_MASK)) {
315             return -1;
316         }
317         if (pde & PG_PSE_MASK) {
318             /* 2 MB page */
319             page_size = 2048 * 1024;
320             pte = pde;
321         } else {
322             /* 4 KB page */
323             pte_addr = ((pde & PG_ADDRESS_MASK) +
324                         (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
325             page_size = 4096;
326             pte = x86_ldq_phys(cs, pte_addr);
327         }
328         if (!(pte & PG_PRESENT_MASK)) {
329             return -1;
330         }
331     } else {
332         uint32_t pde;
333 
334         /* page directory entry */
335         pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
336         pde = x86_ldl_phys(cs, pde_addr);
337         if (!(pde & PG_PRESENT_MASK))
338             return -1;
339         if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
340             pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
341             page_size = 4096 * 1024;
342         } else {
343             /* page directory entry */
344             pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
345             pte = x86_ldl_phys(cs, pte_addr);
346             if (!(pte & PG_PRESENT_MASK)) {
347                 return -1;
348             }
349             page_size = 4096;
350         }
351         pte = pte & a20_mask;
352     }
353 
354 #ifdef TARGET_X86_64
355 out:
356 #endif
357     pte &= PG_ADDRESS_MASK & ~(page_size - 1);
358     page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
359     return pte | page_offset;
360 }
361 
362 typedef struct MCEInjectionParams {
363     Monitor *mon;
364     int bank;
365     uint64_t status;
366     uint64_t mcg_status;
367     uint64_t addr;
368     uint64_t misc;
369     int flags;
370 } MCEInjectionParams;
371 
372 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar,
373                                       bool recursive)
374 {
375     MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive};
376 
377     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action,
378                                    &mff);
379 }
380 
381 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
382 {
383     MCEInjectionParams *params = data.host_ptr;
384     X86CPU *cpu = X86_CPU(cs);
385     CPUX86State *cenv = &cpu->env;
386     uint64_t *banks = cenv->mce_banks + 4 * params->bank;
387     g_autofree char *msg = NULL;
388     bool need_reset = false;
389     bool recursive;
390     bool ar = !!(params->status & MCI_STATUS_AR);
391 
392     cpu_synchronize_state(cs);
393     recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP);
394 
395     /*
396      * If there is an MCE exception being processed, ignore this SRAO MCE
397      * unless unconditional injection was requested.
398      */
399     if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) {
400         emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive);
401         return;
402     }
403 
404     if (params->status & MCI_STATUS_UC) {
405         /*
406          * if MSR_MCG_CTL is not all 1s, the uncorrected error
407          * reporting is disabled
408          */
409         if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
410             monitor_printf(params->mon,
411                            "CPU %d: Uncorrected error reporting disabled\n",
412                            cs->cpu_index);
413             return;
414         }
415 
416         /*
417          * if MSR_MCi_CTL is not all 1s, the uncorrected error
418          * reporting is disabled for the bank
419          */
420         if (banks[0] != ~(uint64_t)0) {
421             monitor_printf(params->mon,
422                            "CPU %d: Uncorrected error reporting disabled for"
423                            " bank %d\n",
424                            cs->cpu_index, params->bank);
425             return;
426         }
427 
428         if (!(cenv->cr[4] & CR4_MCE_MASK)) {
429             need_reset = true;
430             msg = g_strdup_printf("CPU %d: MCE capability is not enabled, "
431                                   "raising triple fault", cs->cpu_index);
432         } else if (recursive) {
433             need_reset = true;
434             msg = g_strdup_printf("CPU %d: Previous MCE still in progress, "
435                                   "raising triple fault", cs->cpu_index);
436         }
437 
438         if (need_reset) {
439             emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar,
440                                       recursive);
441             monitor_printf(params->mon, "%s", msg);
442             qemu_log_mask(CPU_LOG_RESET, "%s\n", msg);
443             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
444             return;
445         }
446 
447         if (banks[1] & MCI_STATUS_VAL) {
448             params->status |= MCI_STATUS_OVER;
449         }
450         banks[2] = params->addr;
451         banks[3] = params->misc;
452         cenv->mcg_status = params->mcg_status;
453         banks[1] = params->status;
454         cpu_interrupt(cs, CPU_INTERRUPT_MCE);
455     } else if (!(banks[1] & MCI_STATUS_VAL)
456                || !(banks[1] & MCI_STATUS_UC)) {
457         if (banks[1] & MCI_STATUS_VAL) {
458             params->status |= MCI_STATUS_OVER;
459         }
460         banks[2] = params->addr;
461         banks[3] = params->misc;
462         banks[1] = params->status;
463     } else {
464         banks[1] |= MCI_STATUS_OVER;
465     }
466 
467     emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive);
468 }
469 
470 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
471                         uint64_t status, uint64_t mcg_status, uint64_t addr,
472                         uint64_t misc, int flags)
473 {
474     CPUState *cs = CPU(cpu);
475     CPUX86State *cenv = &cpu->env;
476     MCEInjectionParams params = {
477         .mon = mon,
478         .bank = bank,
479         .status = status,
480         .mcg_status = mcg_status,
481         .addr = addr,
482         .misc = misc,
483         .flags = flags,
484     };
485     unsigned bank_num = cenv->mcg_cap & 0xff;
486 
487     if (!cenv->mcg_cap) {
488         monitor_printf(mon, "MCE injection not supported\n");
489         return;
490     }
491     if (bank >= bank_num) {
492         monitor_printf(mon, "Invalid MCE bank number\n");
493         return;
494     }
495     if (!(status & MCI_STATUS_VAL)) {
496         monitor_printf(mon, "Invalid MCE status code\n");
497         return;
498     }
499     if ((flags & MCE_INJECT_BROADCAST)
500         && !cpu_x86_support_mca_broadcast(cenv)) {
501         monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
502         return;
503     }
504 
505     run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
506     if (flags & MCE_INJECT_BROADCAST) {
507         CPUState *other_cs;
508 
509         params.bank = 1;
510         params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
511         params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
512         params.addr = 0;
513         params.misc = 0;
514         CPU_FOREACH(other_cs) {
515             if (other_cs == cs) {
516                 continue;
517             }
518             run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
519         }
520     }
521 }
522 
523 static inline target_ulong get_memio_eip(CPUX86State *env)
524 {
525 #ifdef CONFIG_TCG
526     uint64_t data[TARGET_INSN_START_WORDS];
527     CPUState *cs = env_cpu(env);
528 
529     if (!cpu_unwind_state_data(cs, cs->mem_io_pc, data)) {
530         return env->eip;
531     }
532 
533     /* Per x86_restore_state_to_opc. */
534     if (tcg_cflags_has(cs, CF_PCREL)) {
535         return (env->eip & TARGET_PAGE_MASK) | data[0];
536     } else {
537         return data[0] - env->segs[R_CS].base;
538     }
539 #else
540     qemu_build_not_reached();
541 #endif
542 }
543 
544 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
545 {
546     X86CPU *cpu = env_archcpu(env);
547     CPUState *cs = env_cpu(env);
548 
549     if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) {
550         env->tpr_access_type = access;
551 
552         cpu_interrupt(cs, CPU_INTERRUPT_TPR);
553     } else if (tcg_enabled()) {
554         target_ulong eip = get_memio_eip(env);
555 
556         apic_handle_tpr_access_report(cpu->apic_state, eip, access);
557     }
558 }
559 #endif /* !CONFIG_USER_ONLY */
560 
561 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
562                             target_ulong *base, unsigned int *limit,
563                             unsigned int *flags)
564 {
565     CPUState *cs = env_cpu(env);
566     SegmentCache *dt;
567     target_ulong ptr;
568     uint32_t e1, e2;
569     int index;
570 
571     if (selector & 0x4)
572         dt = &env->ldt;
573     else
574         dt = &env->gdt;
575     index = selector & ~7;
576     ptr = dt->base + index;
577     if ((index + 7) > dt->limit
578         || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
579         || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
580         return 0;
581 
582     *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
583     *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
584     if (e2 & DESC_G_MASK)
585         *limit = (*limit << 12) | 0xfff;
586     *flags = e2;
587 
588     return 1;
589 }
590 
591 void do_cpu_init(X86CPU *cpu)
592 {
593 #if !defined(CONFIG_USER_ONLY)
594     CPUState *cs = CPU(cpu);
595     CPUX86State *env = &cpu->env;
596     CPUX86State *save = g_new(CPUX86State, 1);
597     int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
598 
599     *save = *env;
600 
601     cpu_reset(cs);
602     cs->interrupt_request = sipi;
603     memcpy(&env->start_init_save, &save->start_init_save,
604            offsetof(CPUX86State, end_init_save) -
605            offsetof(CPUX86State, start_init_save));
606     g_free(save);
607 
608     if (kvm_enabled()) {
609         kvm_arch_do_init_vcpu(cpu);
610     }
611     apic_init_reset(cpu->apic_state);
612 #endif /* CONFIG_USER_ONLY */
613 }
614 
615 #ifndef CONFIG_USER_ONLY
616 
617 void do_cpu_sipi(X86CPU *cpu)
618 {
619     apic_sipi(cpu->apic_state);
620 }
621 
622 void cpu_load_efer(CPUX86State *env, uint64_t val)
623 {
624     env->efer = val;
625     env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
626     if (env->efer & MSR_EFER_LMA) {
627         env->hflags |= HF_LMA_MASK;
628     }
629     if (env->efer & MSR_EFER_SVME) {
630         env->hflags |= HF_SVME_MASK;
631     }
632 }
633 
634 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
635 {
636     X86CPU *cpu = X86_CPU(cs);
637     CPUX86State *env = &cpu->env;
638     MemTxAttrs attrs = cpu_get_mem_attrs(env);
639     AddressSpace *as = cpu_addressspace(cs, attrs);
640 
641     return address_space_ldub(as, addr, attrs, NULL);
642 }
643 
644 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
645 {
646     X86CPU *cpu = X86_CPU(cs);
647     CPUX86State *env = &cpu->env;
648     MemTxAttrs attrs = cpu_get_mem_attrs(env);
649     AddressSpace *as = cpu_addressspace(cs, attrs);
650 
651     return address_space_lduw(as, addr, attrs, NULL);
652 }
653 
654 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
655 {
656     X86CPU *cpu = X86_CPU(cs);
657     CPUX86State *env = &cpu->env;
658     MemTxAttrs attrs = cpu_get_mem_attrs(env);
659     AddressSpace *as = cpu_addressspace(cs, attrs);
660 
661     return address_space_ldl(as, addr, attrs, NULL);
662 }
663 
664 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
665 {
666     X86CPU *cpu = X86_CPU(cs);
667     CPUX86State *env = &cpu->env;
668     MemTxAttrs attrs = cpu_get_mem_attrs(env);
669     AddressSpace *as = cpu_addressspace(cs, attrs);
670 
671     return address_space_ldq(as, addr, attrs, NULL);
672 }
673 
674 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
675 {
676     X86CPU *cpu = X86_CPU(cs);
677     CPUX86State *env = &cpu->env;
678     MemTxAttrs attrs = cpu_get_mem_attrs(env);
679     AddressSpace *as = cpu_addressspace(cs, attrs);
680 
681     address_space_stb(as, addr, val, attrs, NULL);
682 }
683 
684 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
685 {
686     X86CPU *cpu = X86_CPU(cs);
687     CPUX86State *env = &cpu->env;
688     MemTxAttrs attrs = cpu_get_mem_attrs(env);
689     AddressSpace *as = cpu_addressspace(cs, attrs);
690 
691     address_space_stl_notdirty(as, addr, val, attrs, NULL);
692 }
693 
694 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
695 {
696     X86CPU *cpu = X86_CPU(cs);
697     CPUX86State *env = &cpu->env;
698     MemTxAttrs attrs = cpu_get_mem_attrs(env);
699     AddressSpace *as = cpu_addressspace(cs, attrs);
700 
701     address_space_stw(as, addr, val, attrs, NULL);
702 }
703 
704 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
705 {
706     X86CPU *cpu = X86_CPU(cs);
707     CPUX86State *env = &cpu->env;
708     MemTxAttrs attrs = cpu_get_mem_attrs(env);
709     AddressSpace *as = cpu_addressspace(cs, attrs);
710 
711     address_space_stl(as, addr, val, attrs, NULL);
712 }
713 
714 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
715 {
716     X86CPU *cpu = X86_CPU(cs);
717     CPUX86State *env = &cpu->env;
718     MemTxAttrs attrs = cpu_get_mem_attrs(env);
719     AddressSpace *as = cpu_addressspace(cs, attrs);
720 
721     address_space_stq(as, addr, val, attrs, NULL);
722 }
723 #endif
724