xref: /openbmc/qemu/target/hexagon/translate.c (revision d53106c997e5c8e61e37ae9ff9f0e1f243b03968)
1 /*
2  *  Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #define QEMU_GENERATE
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "tcg/tcg-op.h"
22 #include "tcg/tcg-op-gvec.h"
23 #include "exec/helper-gen.h"
24 #include "exec/cpu_ldst.h"
25 #include "exec/log.h"
26 #include "internal.h"
27 #include "attribs.h"
28 #include "insn.h"
29 #include "decode.h"
30 #include "translate.h"
31 #include "genptr.h"
32 #include "printinsn.h"
33 
34 #define HELPER_H "helper.h"
35 #include "exec/helper-info.c.inc"
36 #undef  HELPER_H
37 
38 #include "analyze_funcs_generated.c.inc"
39 
40 typedef void (*AnalyzeInsn)(DisasContext *ctx);
41 static const AnalyzeInsn opcode_analyze[XX_LAST_OPCODE] = {
42 #define OPCODE(X)    [X] = analyze_##X
43 #include "opcodes_def_generated.h.inc"
44 #undef OPCODE
45 };
46 
47 TCGv hex_gpr[TOTAL_PER_THREAD_REGS];
48 TCGv hex_pred[NUM_PREGS];
49 TCGv hex_slot_cancelled;
50 TCGv hex_new_value_usr;
51 TCGv hex_reg_written[TOTAL_PER_THREAD_REGS];
52 TCGv hex_store_addr[STORES_MAX];
53 TCGv hex_store_width[STORES_MAX];
54 TCGv hex_store_val32[STORES_MAX];
55 TCGv_i64 hex_store_val64[STORES_MAX];
56 TCGv hex_llsc_addr;
57 TCGv hex_llsc_val;
58 TCGv_i64 hex_llsc_val_i64;
59 TCGv hex_vstore_addr[VSTORES_MAX];
60 TCGv hex_vstore_size[VSTORES_MAX];
61 TCGv hex_vstore_pending[VSTORES_MAX];
62 
63 static const char * const hexagon_prednames[] = {
64   "p0", "p1", "p2", "p3"
65 };
66 
67 intptr_t ctx_future_vreg_off(DisasContext *ctx, int regnum,
68                           int num, bool alloc_ok)
69 {
70     intptr_t offset;
71 
72     if (!ctx->need_commit) {
73         return offsetof(CPUHexagonState, VRegs[regnum]);
74     }
75 
76     /* See if it is already allocated */
77     for (int i = 0; i < ctx->future_vregs_idx; i++) {
78         if (ctx->future_vregs_num[i] == regnum) {
79             return offsetof(CPUHexagonState, future_VRegs[i]);
80         }
81     }
82 
83     g_assert(alloc_ok);
84     offset = offsetof(CPUHexagonState, future_VRegs[ctx->future_vregs_idx]);
85     for (int i = 0; i < num; i++) {
86         ctx->future_vregs_num[ctx->future_vregs_idx + i] = regnum++;
87     }
88     ctx->future_vregs_idx += num;
89     g_assert(ctx->future_vregs_idx <= VECTOR_TEMPS_MAX);
90     return offset;
91 }
92 
93 intptr_t ctx_tmp_vreg_off(DisasContext *ctx, int regnum,
94                           int num, bool alloc_ok)
95 {
96     intptr_t offset;
97 
98     /* See if it is already allocated */
99     for (int i = 0; i < ctx->tmp_vregs_idx; i++) {
100         if (ctx->tmp_vregs_num[i] == regnum) {
101             return offsetof(CPUHexagonState, tmp_VRegs[i]);
102         }
103     }
104 
105     g_assert(alloc_ok);
106     offset = offsetof(CPUHexagonState, tmp_VRegs[ctx->tmp_vregs_idx]);
107     for (int i = 0; i < num; i++) {
108         ctx->tmp_vregs_num[ctx->tmp_vregs_idx + i] = regnum++;
109     }
110     ctx->tmp_vregs_idx += num;
111     g_assert(ctx->tmp_vregs_idx <= VECTOR_TEMPS_MAX);
112     return offset;
113 }
114 
115 static void gen_exception_raw(int excp)
116 {
117     gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp));
118 }
119 
120 static void gen_exec_counters(DisasContext *ctx)
121 {
122     tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_PKT_CNT],
123                     hex_gpr[HEX_REG_QEMU_PKT_CNT], ctx->num_packets);
124     tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_INSN_CNT],
125                     hex_gpr[HEX_REG_QEMU_INSN_CNT], ctx->num_insns);
126     tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_HVX_CNT],
127                     hex_gpr[HEX_REG_QEMU_HVX_CNT], ctx->num_hvx_insns);
128 }
129 
130 static bool use_goto_tb(DisasContext *ctx, target_ulong dest)
131 {
132     return translator_use_goto_tb(&ctx->base, dest);
133 }
134 
135 static void gen_goto_tb(DisasContext *ctx, int idx, target_ulong dest, bool
136                         move_to_pc)
137 {
138     if (use_goto_tb(ctx, dest)) {
139         tcg_gen_goto_tb(idx);
140         if (move_to_pc) {
141             tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest);
142         }
143         tcg_gen_exit_tb(ctx->base.tb, idx);
144     } else {
145         if (move_to_pc) {
146             tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest);
147         }
148         tcg_gen_lookup_and_goto_ptr();
149     }
150 }
151 
152 static void gen_end_tb(DisasContext *ctx)
153 {
154     Packet *pkt = ctx->pkt;
155 
156     gen_exec_counters(ctx);
157 
158     if (ctx->branch_cond != TCG_COND_NEVER) {
159         if (ctx->branch_cond != TCG_COND_ALWAYS) {
160             TCGLabel *skip = gen_new_label();
161             tcg_gen_brcondi_tl(ctx->branch_cond, ctx->branch_taken, 0, skip);
162             gen_goto_tb(ctx, 0, ctx->branch_dest, true);
163             gen_set_label(skip);
164             gen_goto_tb(ctx, 1, ctx->next_PC, false);
165         } else {
166             gen_goto_tb(ctx, 0, ctx->branch_dest, true);
167         }
168     } else if (ctx->is_tight_loop &&
169                pkt->insn[pkt->num_insns - 1].opcode == J2_endloop0) {
170         /*
171          * When we're in a tight loop, we defer the endloop0 processing
172          * to take advantage of direct block chaining
173          */
174         TCGLabel *skip = gen_new_label();
175         tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC0], 1, skip);
176         tcg_gen_subi_tl(hex_gpr[HEX_REG_LC0], hex_gpr[HEX_REG_LC0], 1);
177         gen_goto_tb(ctx, 0, ctx->base.tb->pc, true);
178         gen_set_label(skip);
179         gen_goto_tb(ctx, 1, ctx->next_PC, false);
180     } else {
181         tcg_gen_lookup_and_goto_ptr();
182     }
183 
184     ctx->base.is_jmp = DISAS_NORETURN;
185 }
186 
187 static void gen_exception_end_tb(DisasContext *ctx, int excp)
188 {
189     gen_exec_counters(ctx);
190     tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->next_PC);
191     gen_exception_raw(excp);
192     ctx->base.is_jmp = DISAS_NORETURN;
193 
194 }
195 
196 #define PACKET_BUFFER_LEN              1028
197 static void print_pkt(Packet *pkt)
198 {
199     GString *buf = g_string_sized_new(PACKET_BUFFER_LEN);
200     snprint_a_pkt_debug(buf, pkt);
201     HEX_DEBUG_LOG("%s", buf->str);
202     g_string_free(buf, true);
203 }
204 #define HEX_DEBUG_PRINT_PKT(pkt) \
205     do { \
206         if (HEX_DEBUG) { \
207             print_pkt(pkt); \
208         } \
209     } while (0)
210 
211 static int read_packet_words(CPUHexagonState *env, DisasContext *ctx,
212                              uint32_t words[])
213 {
214     bool found_end = false;
215     int nwords, max_words;
216 
217     memset(words, 0, PACKET_WORDS_MAX * sizeof(uint32_t));
218     for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
219         words[nwords] =
220             translator_ldl(env, &ctx->base,
221                            ctx->base.pc_next + nwords * sizeof(uint32_t));
222         found_end = is_packet_end(words[nwords]);
223     }
224     if (!found_end) {
225         /* Read too many words without finding the end */
226         return 0;
227     }
228 
229     /* Check for page boundary crossing */
230     max_words = -(ctx->base.pc_next | TARGET_PAGE_MASK) / sizeof(uint32_t);
231     if (nwords > max_words) {
232         /* We can only cross a page boundary at the beginning of a TB */
233         g_assert(ctx->base.num_insns == 1);
234     }
235 
236     HEX_DEBUG_LOG("decode_packet: pc = 0x%x\n", ctx->base.pc_next);
237     HEX_DEBUG_LOG("    words = { ");
238     for (int i = 0; i < nwords; i++) {
239         HEX_DEBUG_LOG("0x%x, ", words[i]);
240     }
241     HEX_DEBUG_LOG("}\n");
242 
243     return nwords;
244 }
245 
246 static bool check_for_attrib(Packet *pkt, int attrib)
247 {
248     for (int i = 0; i < pkt->num_insns; i++) {
249         if (GET_ATTRIB(pkt->insn[i].opcode, attrib)) {
250             return true;
251         }
252     }
253     return false;
254 }
255 
256 static bool need_slot_cancelled(Packet *pkt)
257 {
258     /* We only need slot_cancelled for conditional store instructions */
259     for (int i = 0; i < pkt->num_insns; i++) {
260         uint16_t opcode = pkt->insn[i].opcode;
261         if (GET_ATTRIB(opcode, A_CONDEXEC) &&
262             GET_ATTRIB(opcode, A_SCALAR_STORE)) {
263             return true;
264         }
265     }
266     return false;
267 }
268 
269 static bool need_next_PC(DisasContext *ctx)
270 {
271     Packet *pkt = ctx->pkt;
272 
273     /* Check for conditional control flow or HW loop end */
274     for (int i = 0; i < pkt->num_insns; i++) {
275         uint16_t opcode = pkt->insn[i].opcode;
276         if (GET_ATTRIB(opcode, A_CONDEXEC) && GET_ATTRIB(opcode, A_COF)) {
277             return true;
278         }
279         if (GET_ATTRIB(opcode, A_HWLOOP0_END) ||
280             GET_ATTRIB(opcode, A_HWLOOP1_END)) {
281             return true;
282         }
283     }
284     return false;
285 }
286 
287 /*
288  * The opcode_analyze functions mark most of the writes in a packet
289  * However, there are some implicit writes marked as attributes
290  * of the applicable instructions.
291  */
292 static void mark_implicit_reg_write(DisasContext *ctx, int attrib, int rnum)
293 {
294     uint16_t opcode = ctx->insn->opcode;
295     if (GET_ATTRIB(opcode, attrib)) {
296         /*
297          * USR is used to set overflow and FP exceptions,
298          * so treat it as conditional
299          */
300         bool is_predicated = GET_ATTRIB(opcode, A_CONDEXEC) ||
301                              rnum == HEX_REG_USR;
302 
303         /* LC0/LC1 is conditionally written by endloop instructions */
304         if ((rnum == HEX_REG_LC0 || rnum == HEX_REG_LC1) &&
305             (opcode == J2_endloop0 ||
306              opcode == J2_endloop1 ||
307              opcode == J2_endloop01)) {
308             is_predicated = true;
309         }
310 
311         ctx_log_reg_write(ctx, rnum, is_predicated);
312     }
313 }
314 
315 static void mark_implicit_reg_writes(DisasContext *ctx)
316 {
317     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_FP,  HEX_REG_FP);
318     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SP,  HEX_REG_SP);
319     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LR,  HEX_REG_LR);
320     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0);
321     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0);
322     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1);
323     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1);
324     mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_USR, HEX_REG_USR);
325     mark_implicit_reg_write(ctx, A_FPOP, HEX_REG_USR);
326 }
327 
328 static void mark_implicit_pred_write(DisasContext *ctx, int attrib, int pnum)
329 {
330     if (GET_ATTRIB(ctx->insn->opcode, attrib)) {
331         ctx_log_pred_write(ctx, pnum);
332     }
333 }
334 
335 static void mark_implicit_pred_writes(DisasContext *ctx)
336 {
337     mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P0, 0);
338     mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P1, 1);
339     mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P2, 2);
340     mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P3, 3);
341 }
342 
343 static bool pkt_raises_exception(Packet *pkt)
344 {
345     if (check_for_attrib(pkt, A_LOAD) ||
346         check_for_attrib(pkt, A_STORE)) {
347         return true;
348     }
349     return false;
350 }
351 
352 static bool need_commit(DisasContext *ctx)
353 {
354     Packet *pkt = ctx->pkt;
355 
356     /*
357      * If the short-circuit property is set to false, we'll always do the commit
358      */
359     if (!ctx->short_circuit) {
360         return true;
361     }
362 
363     if (pkt_raises_exception(pkt)) {
364         return true;
365     }
366 
367     /* Registers with immutability flags require new_value */
368     for (int i = 0; i < ctx->reg_log_idx; i++) {
369         int rnum = ctx->reg_log[i];
370         if (reg_immut_masks[rnum]) {
371             return true;
372         }
373     }
374 
375     /* Floating point instructions are hard-coded to use new_value */
376     if (check_for_attrib(pkt, A_FPOP)) {
377         return true;
378     }
379 
380     if (pkt->num_insns == 1) {
381         if (pkt->pkt_has_hvx) {
382             /*
383              * The HVX instructions with generated helpers use
384              * pass-by-reference, so they need the read/write overlap
385              * check below.
386              * The HVX instructions with overrides are OK.
387              */
388             if (!ctx->has_hvx_helper) {
389                 return false;
390             }
391         } else {
392             return false;
393         }
394     }
395 
396     /* Check for overlap between register reads and writes */
397     for (int i = 0; i < ctx->reg_log_idx; i++) {
398         int rnum = ctx->reg_log[i];
399         if (test_bit(rnum, ctx->regs_read)) {
400             return true;
401         }
402     }
403 
404     /* Check for overlap between predicate reads and writes */
405     for (int i = 0; i < ctx->preg_log_idx; i++) {
406         int pnum = ctx->preg_log[i];
407         if (test_bit(pnum, ctx->pregs_read)) {
408             return true;
409         }
410     }
411 
412     /* Check for overlap between HVX reads and writes */
413     for (int i = 0; i < ctx->vreg_log_idx; i++) {
414         int vnum = ctx->vreg_log[i];
415         if (test_bit(vnum, ctx->vregs_read)) {
416             return true;
417         }
418     }
419     if (!bitmap_empty(ctx->vregs_updated_tmp, NUM_VREGS)) {
420         int i = find_first_bit(ctx->vregs_updated_tmp, NUM_VREGS);
421         while (i < NUM_VREGS) {
422             if (test_bit(i, ctx->vregs_read)) {
423                 return true;
424             }
425             i = find_next_bit(ctx->vregs_updated_tmp, NUM_VREGS, i + 1);
426         }
427     }
428     if (!bitmap_empty(ctx->vregs_select, NUM_VREGS)) {
429         int i = find_first_bit(ctx->vregs_select, NUM_VREGS);
430         while (i < NUM_VREGS) {
431             if (test_bit(i, ctx->vregs_read)) {
432                 return true;
433             }
434             i = find_next_bit(ctx->vregs_select, NUM_VREGS, i + 1);
435         }
436     }
437 
438     /* Check for overlap between HVX predicate reads and writes */
439     for (int i = 0; i < ctx->qreg_log_idx; i++) {
440         int qnum = ctx->qreg_log[i];
441         if (test_bit(qnum, ctx->qregs_read)) {
442             return true;
443         }
444     }
445 
446     return false;
447 }
448 
449 static void mark_implicit_pred_read(DisasContext *ctx, int attrib, int pnum)
450 {
451     if (GET_ATTRIB(ctx->insn->opcode, attrib)) {
452         ctx_log_pred_read(ctx, pnum);
453     }
454 }
455 
456 static void mark_implicit_pred_reads(DisasContext *ctx)
457 {
458     mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P0, 0);
459     mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P1, 1);
460     mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 2);
461     mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 3);
462 }
463 
464 static void analyze_packet(DisasContext *ctx)
465 {
466     Packet *pkt = ctx->pkt;
467     ctx->has_hvx_helper = false;
468     for (int i = 0; i < pkt->num_insns; i++) {
469         Insn *insn = &pkt->insn[i];
470         ctx->insn = insn;
471         if (opcode_analyze[insn->opcode]) {
472             opcode_analyze[insn->opcode](ctx);
473         }
474         mark_implicit_reg_writes(ctx);
475         mark_implicit_pred_writes(ctx);
476         mark_implicit_pred_reads(ctx);
477     }
478 
479     ctx->need_commit = need_commit(ctx);
480 }
481 
482 static void gen_start_packet(DisasContext *ctx)
483 {
484     Packet *pkt = ctx->pkt;
485     target_ulong next_PC = ctx->base.pc_next + pkt->encod_pkt_size_in_bytes;
486     int i;
487 
488     /* Clear out the disassembly context */
489     ctx->next_PC = next_PC;
490     ctx->reg_log_idx = 0;
491     bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS);
492     bitmap_zero(ctx->regs_read, TOTAL_PER_THREAD_REGS);
493     bitmap_zero(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
494     ctx->preg_log_idx = 0;
495     bitmap_zero(ctx->pregs_written, NUM_PREGS);
496     bitmap_zero(ctx->pregs_read, NUM_PREGS);
497     ctx->future_vregs_idx = 0;
498     ctx->tmp_vregs_idx = 0;
499     ctx->vreg_log_idx = 0;
500     bitmap_zero(ctx->vregs_updated_tmp, NUM_VREGS);
501     bitmap_zero(ctx->vregs_updated, NUM_VREGS);
502     bitmap_zero(ctx->vregs_select, NUM_VREGS);
503     bitmap_zero(ctx->predicated_future_vregs, NUM_VREGS);
504     bitmap_zero(ctx->predicated_tmp_vregs, NUM_VREGS);
505     bitmap_zero(ctx->vregs_read, NUM_VREGS);
506     bitmap_zero(ctx->qregs_read, NUM_QREGS);
507     ctx->qreg_log_idx = 0;
508     for (i = 0; i < STORES_MAX; i++) {
509         ctx->store_width[i] = 0;
510     }
511     ctx->s1_store_processed = false;
512     ctx->pre_commit = true;
513     for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
514         ctx->new_value[i] = NULL;
515     }
516     for (i = 0; i < NUM_PREGS; i++) {
517         ctx->new_pred_value[i] = NULL;
518     }
519 
520     analyze_packet(ctx);
521 
522     /*
523      * pregs_written is used both in the analyze phase as well as the code
524      * gen phase, so clear it again.
525      */
526     bitmap_zero(ctx->pregs_written, NUM_PREGS);
527 
528     if (HEX_DEBUG) {
529         /* Handy place to set a breakpoint before the packet executes */
530         gen_helper_debug_start_packet(cpu_env);
531     }
532 
533     /* Initialize the runtime state for packet semantics */
534     if (need_slot_cancelled(pkt)) {
535         tcg_gen_movi_tl(hex_slot_cancelled, 0);
536     }
537     ctx->branch_taken = NULL;
538     if (pkt->pkt_has_cof) {
539         ctx->branch_taken = tcg_temp_new();
540         if (pkt->pkt_has_multi_cof) {
541             tcg_gen_movi_tl(ctx->branch_taken, 0);
542         }
543         if (need_next_PC(ctx)) {
544             tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], next_PC);
545         }
546     }
547     if (HEX_DEBUG) {
548         ctx->pred_written = tcg_temp_new();
549         tcg_gen_movi_tl(ctx->pred_written, 0);
550     }
551 
552     /* Preload the predicated registers into get_result_gpr(ctx, i) */
553     if (ctx->need_commit &&
554         !bitmap_empty(ctx->predicated_regs, TOTAL_PER_THREAD_REGS)) {
555         int i = find_first_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
556         while (i < TOTAL_PER_THREAD_REGS) {
557             tcg_gen_mov_tl(get_result_gpr(ctx, i), hex_gpr[i]);
558             i = find_next_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS,
559                               i + 1);
560         }
561     }
562 
563     /*
564      * Preload the predicated pred registers into ctx->new_pred_value[pred_num]
565      * Only endloop instructions conditionally write to pred registers
566      */
567     if (ctx->need_commit && pkt->pkt_has_endloop) {
568         for (int i = 0; i < ctx->preg_log_idx; i++) {
569             int pred_num = ctx->preg_log[i];
570             ctx->new_pred_value[pred_num] = tcg_temp_new();
571             tcg_gen_mov_tl(ctx->new_pred_value[pred_num], hex_pred[pred_num]);
572         }
573     }
574 
575     /* Preload the predicated HVX registers into future_VRegs and tmp_VRegs */
576     if (!bitmap_empty(ctx->predicated_future_vregs, NUM_VREGS)) {
577         int i = find_first_bit(ctx->predicated_future_vregs, NUM_VREGS);
578         while (i < NUM_VREGS) {
579             const intptr_t VdV_off =
580                 ctx_future_vreg_off(ctx, i, 1, true);
581             intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]);
582             tcg_gen_gvec_mov(MO_64, VdV_off,
583                              src_off,
584                              sizeof(MMVector),
585                              sizeof(MMVector));
586             i = find_next_bit(ctx->predicated_future_vregs, NUM_VREGS, i + 1);
587         }
588     }
589     if (!bitmap_empty(ctx->predicated_tmp_vregs, NUM_VREGS)) {
590         int i = find_first_bit(ctx->predicated_tmp_vregs, NUM_VREGS);
591         while (i < NUM_VREGS) {
592             const intptr_t VdV_off =
593                 ctx_tmp_vreg_off(ctx, i, 1, true);
594             intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]);
595             tcg_gen_gvec_mov(MO_64, VdV_off,
596                              src_off,
597                              sizeof(MMVector),
598                              sizeof(MMVector));
599             i = find_next_bit(ctx->predicated_tmp_vregs, NUM_VREGS, i + 1);
600         }
601     }
602 }
603 
604 bool is_gather_store_insn(DisasContext *ctx)
605 {
606     Packet *pkt = ctx->pkt;
607     Insn *insn = ctx->insn;
608     if (GET_ATTRIB(insn->opcode, A_CVI_NEW) &&
609         insn->new_value_producer_slot == 1) {
610         /* Look for gather instruction */
611         for (int i = 0; i < pkt->num_insns; i++) {
612             Insn *in = &pkt->insn[i];
613             if (GET_ATTRIB(in->opcode, A_CVI_GATHER) && in->slot == 1) {
614                 return true;
615             }
616         }
617     }
618     return false;
619 }
620 
621 static void mark_store_width(DisasContext *ctx)
622 {
623     uint16_t opcode = ctx->insn->opcode;
624     uint32_t slot = ctx->insn->slot;
625     uint8_t width = 0;
626 
627     if (GET_ATTRIB(opcode, A_SCALAR_STORE)) {
628         if (GET_ATTRIB(opcode, A_MEMSIZE_0B)) {
629             return;
630         }
631         if (GET_ATTRIB(opcode, A_MEMSIZE_1B)) {
632             width |= 1;
633         }
634         if (GET_ATTRIB(opcode, A_MEMSIZE_2B)) {
635             width |= 2;
636         }
637         if (GET_ATTRIB(opcode, A_MEMSIZE_4B)) {
638             width |= 4;
639         }
640         if (GET_ATTRIB(opcode, A_MEMSIZE_8B)) {
641             width |= 8;
642         }
643         tcg_debug_assert(is_power_of_2(width));
644         ctx->store_width[slot] = width;
645     }
646 }
647 
648 static void gen_insn(DisasContext *ctx)
649 {
650     if (ctx->insn->generate) {
651         ctx->insn->generate(ctx);
652         mark_store_width(ctx);
653     } else {
654         gen_exception_end_tb(ctx, HEX_EXCP_INVALID_OPCODE);
655     }
656 }
657 
658 /*
659  * Helpers for generating the packet commit
660  */
661 static void gen_reg_writes(DisasContext *ctx)
662 {
663     int i;
664 
665     /* Early exit if not needed */
666     if (!ctx->need_commit) {
667         return;
668     }
669 
670     for (i = 0; i < ctx->reg_log_idx; i++) {
671         int reg_num = ctx->reg_log[i];
672 
673         tcg_gen_mov_tl(hex_gpr[reg_num], get_result_gpr(ctx, reg_num));
674 
675         /*
676          * ctx->is_tight_loop is set when SA0 points to the beginning of the TB.
677          * If we write to SA0, we have to turn off tight loop handling.
678          */
679         if (reg_num == HEX_REG_SA0) {
680             ctx->is_tight_loop = false;
681         }
682     }
683 }
684 
685 static void gen_pred_writes(DisasContext *ctx)
686 {
687     /* Early exit if not needed or the log is empty */
688     if (!ctx->need_commit || !ctx->preg_log_idx) {
689         return;
690     }
691 
692     for (int i = 0; i < ctx->preg_log_idx; i++) {
693         int pred_num = ctx->preg_log[i];
694         tcg_gen_mov_tl(hex_pred[pred_num], ctx->new_pred_value[pred_num]);
695     }
696 }
697 
698 static void gen_check_store_width(DisasContext *ctx, int slot_num)
699 {
700     if (HEX_DEBUG) {
701         TCGv slot = tcg_constant_tl(slot_num);
702         TCGv check = tcg_constant_tl(ctx->store_width[slot_num]);
703         gen_helper_debug_check_store_width(cpu_env, slot, check);
704     }
705 }
706 
707 static bool slot_is_predicated(Packet *pkt, int slot_num)
708 {
709     for (int i = 0; i < pkt->num_insns; i++) {
710         if (pkt->insn[i].slot == slot_num) {
711             return GET_ATTRIB(pkt->insn[i].opcode, A_CONDEXEC);
712         }
713     }
714     /* If we get to here, we didn't find an instruction in the requested slot */
715     g_assert_not_reached();
716 }
717 
718 void process_store(DisasContext *ctx, int slot_num)
719 {
720     bool is_predicated = slot_is_predicated(ctx->pkt, slot_num);
721     TCGLabel *label_end = NULL;
722 
723     /*
724      * We may have already processed this store
725      * See CHECK_NOSHUF in macros.h
726      */
727     if (slot_num == 1 && ctx->s1_store_processed) {
728         return;
729     }
730     ctx->s1_store_processed = true;
731 
732     if (is_predicated) {
733         TCGv cancelled = tcg_temp_new();
734         label_end = gen_new_label();
735 
736         /* Don't do anything if the slot was cancelled */
737         tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1);
738         tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end);
739     }
740     {
741         TCGv address = tcg_temp_new();
742         tcg_gen_mov_tl(address, hex_store_addr[slot_num]);
743 
744         /*
745          * If we know the width from the DisasContext, we can
746          * generate much cleaner code.
747          * Unfortunately, not all instructions execute the fSTORE
748          * macro during code generation.  Anything that uses the
749          * generic helper will have this problem.  Instructions
750          * that use fWRAP to generate proper TCG code will be OK.
751          */
752         switch (ctx->store_width[slot_num]) {
753         case 1:
754             gen_check_store_width(ctx, slot_num);
755             tcg_gen_qemu_st_tl(hex_store_val32[slot_num],
756                                hex_store_addr[slot_num],
757                                ctx->mem_idx, MO_UB);
758             break;
759         case 2:
760             gen_check_store_width(ctx, slot_num);
761             tcg_gen_qemu_st_tl(hex_store_val32[slot_num],
762                                hex_store_addr[slot_num],
763                                ctx->mem_idx, MO_TEUW);
764             break;
765         case 4:
766             gen_check_store_width(ctx, slot_num);
767             tcg_gen_qemu_st_tl(hex_store_val32[slot_num],
768                                hex_store_addr[slot_num],
769                                ctx->mem_idx, MO_TEUL);
770             break;
771         case 8:
772             gen_check_store_width(ctx, slot_num);
773             tcg_gen_qemu_st_i64(hex_store_val64[slot_num],
774                                 hex_store_addr[slot_num],
775                                 ctx->mem_idx, MO_TEUQ);
776             break;
777         default:
778             {
779                 /*
780                  * If we get to here, we don't know the width at
781                  * TCG generation time, we'll use a helper to
782                  * avoid branching based on the width at runtime.
783                  */
784                 TCGv slot = tcg_constant_tl(slot_num);
785                 gen_helper_commit_store(cpu_env, slot);
786             }
787         }
788     }
789     if (is_predicated) {
790         gen_set_label(label_end);
791     }
792 }
793 
794 static void process_store_log(DisasContext *ctx)
795 {
796     /*
797      *  When a packet has two stores, the hardware processes
798      *  slot 1 and then slot 0.  This will be important when
799      *  the memory accesses overlap.
800      */
801     Packet *pkt = ctx->pkt;
802     if (pkt->pkt_has_store_s1) {
803         g_assert(!pkt->pkt_has_dczeroa);
804         process_store(ctx, 1);
805     }
806     if (pkt->pkt_has_store_s0) {
807         g_assert(!pkt->pkt_has_dczeroa);
808         process_store(ctx, 0);
809     }
810 }
811 
812 /* Zero out a 32-bit cache line */
813 static void process_dczeroa(DisasContext *ctx)
814 {
815     if (ctx->pkt->pkt_has_dczeroa) {
816         /* Store 32 bytes of zero starting at (addr & ~0x1f) */
817         TCGv addr = tcg_temp_new();
818         TCGv_i64 zero = tcg_constant_i64(0);
819 
820         tcg_gen_andi_tl(addr, ctx->dczero_addr, ~0x1f);
821         tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
822         tcg_gen_addi_tl(addr, addr, 8);
823         tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
824         tcg_gen_addi_tl(addr, addr, 8);
825         tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
826         tcg_gen_addi_tl(addr, addr, 8);
827         tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
828     }
829 }
830 
831 static bool pkt_has_hvx_store(Packet *pkt)
832 {
833     int i;
834     for (i = 0; i < pkt->num_insns; i++) {
835         int opcode = pkt->insn[i].opcode;
836         if (GET_ATTRIB(opcode, A_CVI) && GET_ATTRIB(opcode, A_STORE)) {
837             return true;
838         }
839     }
840     return false;
841 }
842 
843 static void gen_commit_hvx(DisasContext *ctx)
844 {
845     int i;
846 
847     /* Early exit if not needed */
848     if (!ctx->need_commit) {
849         g_assert(!pkt_has_hvx_store(ctx->pkt));
850         return;
851     }
852 
853     /*
854      *    for (i = 0; i < ctx->vreg_log_idx; i++) {
855      *        int rnum = ctx->vreg_log[i];
856      *        env->VRegs[rnum] = env->future_VRegs[rnum];
857      *    }
858      */
859     for (i = 0; i < ctx->vreg_log_idx; i++) {
860         int rnum = ctx->vreg_log[i];
861         intptr_t dstoff = offsetof(CPUHexagonState, VRegs[rnum]);
862         intptr_t srcoff = ctx_future_vreg_off(ctx, rnum, 1, false);
863         size_t size = sizeof(MMVector);
864 
865         tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
866     }
867 
868     /*
869      *    for (i = 0; i < ctx->qreg_log_idx; i++) {
870      *        int rnum = ctx->qreg_log[i];
871      *        env->QRegs[rnum] = env->future_QRegs[rnum];
872      *    }
873      */
874     for (i = 0; i < ctx->qreg_log_idx; i++) {
875         int rnum = ctx->qreg_log[i];
876         intptr_t dstoff = offsetof(CPUHexagonState, QRegs[rnum]);
877         intptr_t srcoff = offsetof(CPUHexagonState, future_QRegs[rnum]);
878         size_t size = sizeof(MMQReg);
879 
880         tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
881     }
882 
883     if (pkt_has_hvx_store(ctx->pkt)) {
884         gen_helper_commit_hvx_stores(cpu_env);
885     }
886 }
887 
888 static void update_exec_counters(DisasContext *ctx)
889 {
890     Packet *pkt = ctx->pkt;
891     int num_insns = pkt->num_insns;
892     int num_real_insns = 0;
893     int num_hvx_insns = 0;
894 
895     for (int i = 0; i < num_insns; i++) {
896         if (!pkt->insn[i].is_endloop &&
897             !pkt->insn[i].part1 &&
898             !GET_ATTRIB(pkt->insn[i].opcode, A_IT_NOP)) {
899             num_real_insns++;
900         }
901         if (GET_ATTRIB(pkt->insn[i].opcode, A_CVI)) {
902             num_hvx_insns++;
903         }
904     }
905 
906     ctx->num_packets++;
907     ctx->num_insns += num_real_insns;
908     ctx->num_hvx_insns += num_hvx_insns;
909 }
910 
911 static void gen_commit_packet(DisasContext *ctx)
912 {
913     /*
914      * If there is more than one store in a packet, make sure they are all OK
915      * before proceeding with the rest of the packet commit.
916      *
917      * dczeroa has to be the only store operation in the packet, so we go
918      * ahead and process that first.
919      *
920      * When there is an HVX store, there can also be a scalar store in either
921      * slot 0 or slot1, so we create a mask for the helper to indicate what
922      * work to do.
923      *
924      * When there are two scalar stores, we probe the one in slot 0.
925      *
926      * Note that we don't call the probe helper for packets with only one
927      * store.  Therefore, we call process_store_log before anything else
928      * involved in committing the packet.
929      */
930     Packet *pkt = ctx->pkt;
931     bool has_store_s0 = pkt->pkt_has_store_s0;
932     bool has_store_s1 = (pkt->pkt_has_store_s1 && !ctx->s1_store_processed);
933     bool has_hvx_store = pkt_has_hvx_store(pkt);
934     if (pkt->pkt_has_dczeroa) {
935         /*
936          * The dczeroa will be the store in slot 0, check that we don't have
937          * a store in slot 1 or an HVX store.
938          */
939         g_assert(!has_store_s1 && !has_hvx_store);
940         process_dczeroa(ctx);
941     } else if (has_hvx_store) {
942         if (!has_store_s0 && !has_store_s1) {
943             TCGv mem_idx = tcg_constant_tl(ctx->mem_idx);
944             gen_helper_probe_hvx_stores(cpu_env, mem_idx);
945         } else {
946             int mask = 0;
947 
948             if (has_store_s0) {
949                 mask =
950                     FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0, 1);
951             }
952             if (has_store_s1) {
953                 mask =
954                     FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1, 1);
955             }
956             if (has_hvx_store) {
957                 mask =
958                     FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
959                                HAS_HVX_STORES, 1);
960             }
961             if (has_store_s0 && slot_is_predicated(pkt, 0)) {
962                 mask =
963                     FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
964                                S0_IS_PRED, 1);
965             }
966             if (has_store_s1 && slot_is_predicated(pkt, 1)) {
967                 mask =
968                     FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
969                                S1_IS_PRED, 1);
970             }
971             mask = FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, MMU_IDX,
972                               ctx->mem_idx);
973             gen_helper_probe_pkt_scalar_hvx_stores(cpu_env,
974                                                    tcg_constant_tl(mask));
975         }
976     } else if (has_store_s0 && has_store_s1) {
977         /*
978          * process_store_log will execute the slot 1 store first,
979          * so we only have to probe the store in slot 0
980          */
981         int args = 0;
982         args =
983             FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, MMU_IDX, ctx->mem_idx);
984         if (slot_is_predicated(pkt, 0)) {
985             args =
986                 FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED, 1);
987         }
988         TCGv args_tcgv = tcg_constant_tl(args);
989         gen_helper_probe_pkt_scalar_store_s0(cpu_env, args_tcgv);
990     }
991 
992     process_store_log(ctx);
993 
994     gen_reg_writes(ctx);
995     gen_pred_writes(ctx);
996     if (pkt->pkt_has_hvx) {
997         gen_commit_hvx(ctx);
998     }
999     update_exec_counters(ctx);
1000     if (HEX_DEBUG) {
1001         TCGv has_st0 =
1002             tcg_constant_tl(pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa);
1003         TCGv has_st1 =
1004             tcg_constant_tl(pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa);
1005 
1006         /* Handy place to set a breakpoint at the end of execution */
1007         gen_helper_debug_commit_end(cpu_env, tcg_constant_tl(ctx->pkt->pc),
1008                                     ctx->pred_written, has_st0, has_st1);
1009     }
1010 
1011     if (pkt->vhist_insn != NULL) {
1012         ctx->pre_commit = false;
1013         ctx->insn = pkt->vhist_insn;
1014         pkt->vhist_insn->generate(ctx);
1015     }
1016 
1017     if (pkt->pkt_has_cof) {
1018         gen_end_tb(ctx);
1019     }
1020 }
1021 
1022 static void decode_and_translate_packet(CPUHexagonState *env, DisasContext *ctx)
1023 {
1024     uint32_t words[PACKET_WORDS_MAX];
1025     int nwords;
1026     Packet pkt;
1027     int i;
1028 
1029     nwords = read_packet_words(env, ctx, words);
1030     if (!nwords) {
1031         gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
1032         return;
1033     }
1034 
1035     if (decode_packet(nwords, words, &pkt, false) > 0) {
1036         pkt.pc = ctx->base.pc_next;
1037         HEX_DEBUG_PRINT_PKT(&pkt);
1038         ctx->pkt = &pkt;
1039         gen_start_packet(ctx);
1040         for (i = 0; i < pkt.num_insns; i++) {
1041             ctx->insn = &pkt.insn[i];
1042             gen_insn(ctx);
1043         }
1044         gen_commit_packet(ctx);
1045         ctx->base.pc_next += pkt.encod_pkt_size_in_bytes;
1046     } else {
1047         gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
1048     }
1049 }
1050 
1051 static void hexagon_tr_init_disas_context(DisasContextBase *dcbase,
1052                                           CPUState *cs)
1053 {
1054     DisasContext *ctx = container_of(dcbase, DisasContext, base);
1055     HexagonCPU *hex_cpu = env_archcpu(cs->env_ptr);
1056     uint32_t hex_flags = dcbase->tb->flags;
1057 
1058     ctx->mem_idx = MMU_USER_IDX;
1059     ctx->num_packets = 0;
1060     ctx->num_insns = 0;
1061     ctx->num_hvx_insns = 0;
1062     ctx->branch_cond = TCG_COND_NEVER;
1063     ctx->is_tight_loop = FIELD_EX32(hex_flags, TB_FLAGS, IS_TIGHT_LOOP);
1064     ctx->short_circuit = hex_cpu->short_circuit;
1065 }
1066 
1067 static void hexagon_tr_tb_start(DisasContextBase *db, CPUState *cpu)
1068 {
1069 }
1070 
1071 static void hexagon_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
1072 {
1073     DisasContext *ctx = container_of(dcbase, DisasContext, base);
1074 
1075     tcg_gen_insn_start(ctx->base.pc_next);
1076 }
1077 
1078 static bool pkt_crosses_page(CPUHexagonState *env, DisasContext *ctx)
1079 {
1080     target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
1081     bool found_end = false;
1082     int nwords;
1083 
1084     for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
1085         uint32_t word = cpu_ldl_code(env,
1086                             ctx->base.pc_next + nwords * sizeof(uint32_t));
1087         found_end = is_packet_end(word);
1088     }
1089     uint32_t next_ptr =  ctx->base.pc_next + nwords * sizeof(uint32_t);
1090     return found_end && next_ptr - page_start >= TARGET_PAGE_SIZE;
1091 }
1092 
1093 static void hexagon_tr_translate_packet(DisasContextBase *dcbase, CPUState *cpu)
1094 {
1095     DisasContext *ctx = container_of(dcbase, DisasContext, base);
1096     CPUHexagonState *env = cpu->env_ptr;
1097 
1098     decode_and_translate_packet(env, ctx);
1099 
1100     if (ctx->base.is_jmp == DISAS_NEXT) {
1101         target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
1102         target_ulong bytes_max = PACKET_WORDS_MAX * sizeof(target_ulong);
1103 
1104         if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE ||
1105             (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE - bytes_max &&
1106              pkt_crosses_page(env, ctx))) {
1107             ctx->base.is_jmp = DISAS_TOO_MANY;
1108         }
1109 
1110         /*
1111          * The CPU log is used to compare against LLDB single stepping,
1112          * so end the TLB after every packet.
1113          */
1114         HexagonCPU *hex_cpu = env_archcpu(env);
1115         if (hex_cpu->lldb_compat && qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
1116             ctx->base.is_jmp = DISAS_TOO_MANY;
1117         }
1118     }
1119 }
1120 
1121 static void hexagon_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
1122 {
1123     DisasContext *ctx = container_of(dcbase, DisasContext, base);
1124 
1125     switch (ctx->base.is_jmp) {
1126     case DISAS_TOO_MANY:
1127         gen_exec_counters(ctx);
1128         tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next);
1129         tcg_gen_exit_tb(NULL, 0);
1130         break;
1131     case DISAS_NORETURN:
1132         break;
1133     default:
1134         g_assert_not_reached();
1135     }
1136 }
1137 
1138 static void hexagon_tr_disas_log(const DisasContextBase *dcbase,
1139                                  CPUState *cpu, FILE *logfile)
1140 {
1141     fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
1142     target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size);
1143 }
1144 
1145 
1146 static const TranslatorOps hexagon_tr_ops = {
1147     .init_disas_context = hexagon_tr_init_disas_context,
1148     .tb_start           = hexagon_tr_tb_start,
1149     .insn_start         = hexagon_tr_insn_start,
1150     .translate_insn     = hexagon_tr_translate_packet,
1151     .tb_stop            = hexagon_tr_tb_stop,
1152     .disas_log          = hexagon_tr_disas_log,
1153 };
1154 
1155 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
1156                            target_ulong pc, void *host_pc)
1157 {
1158     DisasContext ctx;
1159 
1160     translator_loop(cs, tb, max_insns, pc, host_pc,
1161                     &hexagon_tr_ops, &ctx.base);
1162 }
1163 
1164 #define NAME_LEN               64
1165 static char reg_written_names[TOTAL_PER_THREAD_REGS][NAME_LEN];
1166 static char store_addr_names[STORES_MAX][NAME_LEN];
1167 static char store_width_names[STORES_MAX][NAME_LEN];
1168 static char store_val32_names[STORES_MAX][NAME_LEN];
1169 static char store_val64_names[STORES_MAX][NAME_LEN];
1170 static char vstore_addr_names[VSTORES_MAX][NAME_LEN];
1171 static char vstore_size_names[VSTORES_MAX][NAME_LEN];
1172 static char vstore_pending_names[VSTORES_MAX][NAME_LEN];
1173 
1174 void hexagon_translate_init(void)
1175 {
1176     int i;
1177 
1178     opcode_init();
1179 
1180     for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
1181         hex_gpr[i] = tcg_global_mem_new(cpu_env,
1182             offsetof(CPUHexagonState, gpr[i]),
1183             hexagon_regnames[i]);
1184 
1185         if (HEX_DEBUG) {
1186             snprintf(reg_written_names[i], NAME_LEN, "reg_written_%s",
1187                      hexagon_regnames[i]);
1188             hex_reg_written[i] = tcg_global_mem_new(cpu_env,
1189                 offsetof(CPUHexagonState, reg_written[i]),
1190                 reg_written_names[i]);
1191         }
1192     }
1193     hex_new_value_usr = tcg_global_mem_new(cpu_env,
1194         offsetof(CPUHexagonState, new_value_usr), "new_value_usr");
1195 
1196     for (i = 0; i < NUM_PREGS; i++) {
1197         hex_pred[i] = tcg_global_mem_new(cpu_env,
1198             offsetof(CPUHexagonState, pred[i]),
1199             hexagon_prednames[i]);
1200     }
1201     hex_slot_cancelled = tcg_global_mem_new(cpu_env,
1202         offsetof(CPUHexagonState, slot_cancelled), "slot_cancelled");
1203     hex_llsc_addr = tcg_global_mem_new(cpu_env,
1204         offsetof(CPUHexagonState, llsc_addr), "llsc_addr");
1205     hex_llsc_val = tcg_global_mem_new(cpu_env,
1206         offsetof(CPUHexagonState, llsc_val), "llsc_val");
1207     hex_llsc_val_i64 = tcg_global_mem_new_i64(cpu_env,
1208         offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64");
1209     for (i = 0; i < STORES_MAX; i++) {
1210         snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i);
1211         hex_store_addr[i] = tcg_global_mem_new(cpu_env,
1212             offsetof(CPUHexagonState, mem_log_stores[i].va),
1213             store_addr_names[i]);
1214 
1215         snprintf(store_width_names[i], NAME_LEN, "store_width_%d", i);
1216         hex_store_width[i] = tcg_global_mem_new(cpu_env,
1217             offsetof(CPUHexagonState, mem_log_stores[i].width),
1218             store_width_names[i]);
1219 
1220         snprintf(store_val32_names[i], NAME_LEN, "store_val32_%d", i);
1221         hex_store_val32[i] = tcg_global_mem_new(cpu_env,
1222             offsetof(CPUHexagonState, mem_log_stores[i].data32),
1223             store_val32_names[i]);
1224 
1225         snprintf(store_val64_names[i], NAME_LEN, "store_val64_%d", i);
1226         hex_store_val64[i] = tcg_global_mem_new_i64(cpu_env,
1227             offsetof(CPUHexagonState, mem_log_stores[i].data64),
1228             store_val64_names[i]);
1229     }
1230     for (int i = 0; i < VSTORES_MAX; i++) {
1231         snprintf(vstore_addr_names[i], NAME_LEN, "vstore_addr_%d", i);
1232         hex_vstore_addr[i] = tcg_global_mem_new(cpu_env,
1233             offsetof(CPUHexagonState, vstore[i].va),
1234             vstore_addr_names[i]);
1235 
1236         snprintf(vstore_size_names[i], NAME_LEN, "vstore_size_%d", i);
1237         hex_vstore_size[i] = tcg_global_mem_new(cpu_env,
1238             offsetof(CPUHexagonState, vstore[i].size),
1239             vstore_size_names[i]);
1240 
1241         snprintf(vstore_pending_names[i], NAME_LEN, "vstore_pending_%d", i);
1242         hex_vstore_pending[i] = tcg_global_mem_new(cpu_env,
1243             offsetof(CPUHexagonState, vstore_pending[i]),
1244             vstore_pending_names[i]);
1245     }
1246 }
1247