xref: /openbmc/qemu/target/hexagon/macros.h (revision 812b31d3f91507160c367440c17715b62d5e0869)
1 /*
2  *  Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef HEXAGON_MACROS_H
19 #define HEXAGON_MACROS_H
20 
21 #include "cpu.h"
22 #include "hex_regs.h"
23 #include "reg_fields.h"
24 
25 #ifdef QEMU_GENERATE
26 #define READ_REG(dest, NUM)              gen_read_reg(dest, NUM)
27 #else
28 #define READ_REG(NUM)                    (env->gpr[(NUM)])
29 #define READ_PREG(NUM)                   (env->pred[NUM])
30 
31 #define WRITE_RREG(NUM, VAL)             log_reg_write(env, NUM, VAL, slot)
32 #define WRITE_PREG(NUM, VAL)             log_pred_write(env, NUM, VAL)
33 #endif
34 
35 #define PCALIGN 4
36 #define PCALIGN_MASK (PCALIGN - 1)
37 
38 #define GET_FIELD(FIELD, REGIN) \
39     fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
40                    reg_field_info[FIELD].offset)
41 
42 #ifdef QEMU_GENERATE
43 #define GET_USR_FIELD(FIELD, DST) \
44     tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
45                        reg_field_info[FIELD].offset, \
46                        reg_field_info[FIELD].width)
47 
48 #define TYPE_INT(X)          __builtin_types_compatible_p(typeof(X), int)
49 #define TYPE_TCGV(X)         __builtin_types_compatible_p(typeof(X), TCGv)
50 #define TYPE_TCGV_I64(X)     __builtin_types_compatible_p(typeof(X), TCGv_i64)
51 
52 #define SET_USR_FIELD_FUNC(X) \
53     __builtin_choose_expr(TYPE_INT(X), \
54         gen_set_usr_fieldi, \
55         __builtin_choose_expr(TYPE_TCGV(X), \
56             gen_set_usr_field, (void)0))
57 #define SET_USR_FIELD(FIELD, VAL) \
58     SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
59 #else
60 #define GET_USR_FIELD(FIELD) \
61     fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
62                    reg_field_info[FIELD].offset)
63 
64 #define SET_USR_FIELD(FIELD, VAL) \
65     fINSERT_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
66                  reg_field_info[FIELD].offset, (VAL))
67 #endif
68 
69 #ifdef QEMU_GENERATE
70 /*
71  * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
72  *
73  * Slot 1 store with slot 0 load
74  * A slot 1 store operation with a slot 0 load operation can appear in a packet.
75  * The packet attribute :mem_noshuf inhibits the instruction reordering that
76  * would otherwise be done by the assembler. For example:
77  *     {
78  *         memw(R5) = R2 // slot 1 store
79  *         R3 = memh(R6) // slot 0 load
80  *     }:mem_noshuf
81  * Unlike most packetized operations, these memory operations are not executed
82  * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
83  * effectively executes first, followed by the load instruction in Slot 0. If
84  * the addresses of the two operations are overlapping, the load will receive
85  * the newly stored data. This feature is supported in processor versions
86  * V65 or greater.
87  *
88  *
89  * For qemu, we look for a load in slot 0 when there is  a store in slot 1
90  * in the same packet.  When we see this, we call a helper that merges the
91  * bytes from the store buffer with the value loaded from memory.
92  */
93 #define CHECK_NOSHUF \
94     do { \
95         if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
96             process_store(ctx, pkt, 1); \
97         } \
98     } while (0)
99 
100 #define MEM_LOAD1s(DST, VA) \
101     do { \
102         CHECK_NOSHUF; \
103         tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
104     } while (0)
105 #define MEM_LOAD1u(DST, VA) \
106     do { \
107         CHECK_NOSHUF; \
108         tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
109     } while (0)
110 #define MEM_LOAD2s(DST, VA) \
111     do { \
112         CHECK_NOSHUF; \
113         tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
114     } while (0)
115 #define MEM_LOAD2u(DST, VA) \
116     do { \
117         CHECK_NOSHUF; \
118         tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
119     } while (0)
120 #define MEM_LOAD4s(DST, VA) \
121     do { \
122         CHECK_NOSHUF; \
123         tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
124     } while (0)
125 #define MEM_LOAD4u(DST, VA) \
126     do { \
127         CHECK_NOSHUF; \
128         tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
129     } while (0)
130 #define MEM_LOAD8u(DST, VA) \
131     do { \
132         CHECK_NOSHUF; \
133         tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
134     } while (0)
135 
136 #define MEM_STORE1_FUNC(X) \
137     __builtin_choose_expr(TYPE_INT(X), \
138         gen_store1i, \
139         __builtin_choose_expr(TYPE_TCGV(X), \
140             gen_store1, (void)0))
141 #define MEM_STORE1(VA, DATA, SLOT) \
142     MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
143 
144 #define MEM_STORE2_FUNC(X) \
145     __builtin_choose_expr(TYPE_INT(X), \
146         gen_store2i, \
147         __builtin_choose_expr(TYPE_TCGV(X), \
148             gen_store2, (void)0))
149 #define MEM_STORE2(VA, DATA, SLOT) \
150     MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
151 
152 #define MEM_STORE4_FUNC(X) \
153     __builtin_choose_expr(TYPE_INT(X), \
154         gen_store4i, \
155         __builtin_choose_expr(TYPE_TCGV(X), \
156             gen_store4, (void)0))
157 #define MEM_STORE4(VA, DATA, SLOT) \
158     MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
159 
160 #define MEM_STORE8_FUNC(X) \
161     __builtin_choose_expr(TYPE_INT(X), \
162         gen_store8i, \
163         __builtin_choose_expr(TYPE_TCGV_I64(X), \
164             gen_store8, (void)0))
165 #define MEM_STORE8(VA, DATA, SLOT) \
166     MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
167 #else
168 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
169 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
170 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
171 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
172 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
173 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
174 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
175 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
176 
177 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
178 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
179 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
180 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
181 #endif
182 
183 #define CANCEL cancel_slot(env, slot)
184 
185 #define LOAD_CANCEL(EA) do { CANCEL; } while (0)
186 
187 #ifdef QEMU_GENERATE
188 static inline void gen_pred_cancel(TCGv pred, int slot_num)
189  {
190     TCGv slot_mask = tcg_const_tl(1 << slot_num);
191     TCGv tmp = tcg_temp_new();
192     TCGv zero = tcg_const_tl(0);
193     TCGv one = tcg_const_tl(1);
194     tcg_gen_or_tl(slot_mask, hex_slot_cancelled, slot_mask);
195     tcg_gen_andi_tl(tmp, pred, 1);
196     tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
197                        slot_mask, hex_slot_cancelled);
198     tcg_temp_free(slot_mask);
199     tcg_temp_free(tmp);
200     tcg_temp_free(zero);
201     tcg_temp_free(one);
202 }
203 #define PRED_LOAD_CANCEL(PRED, EA) \
204     gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
205 #endif
206 
207 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
208 
209 #define fMAX(A, B) (((A) > (B)) ? (A) : (B))
210 
211 #define fMIN(A, B) (((A) < (B)) ? (A) : (B))
212 
213 #define fABS(A) (((A) < 0) ? (-(A)) : (A))
214 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
215     REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
216 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
217     ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
218 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
219     (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
220 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
221     (((HIBIT) - (LOWBIT) + 1) ? \
222         extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
223         0LL)
224 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
225     do { \
226         int width = ((HIBIT) - (LOWBIT) + 1); \
227         INREG = (width >= 0 ? \
228             deposit64((INREG), (LOWBIT), width, (INVAL)) : \
229             INREG); \
230     } while (0)
231 
232 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
233 
234 #ifdef QEMU_GENERATE
235 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
236 #else
237 #define fLSBOLD(VAL)  ((VAL) & 1)
238 #endif
239 
240 #ifdef QEMU_GENERATE
241 #define fLSBNEW(PVAL)   tcg_gen_andi_tl(LSB, (PVAL), 1)
242 #define fLSBNEW0        tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
243 #define fLSBNEW1        tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
244 #else
245 #define fLSBNEW(PVAL)   ((PVAL) & 1)
246 #define fLSBNEW0        (env->new_pred_value[0] & 1)
247 #define fLSBNEW1        (env->new_pred_value[1] & 1)
248 #endif
249 
250 #ifdef QEMU_GENERATE
251 #define fLSBOLDNOT(VAL) \
252     do { \
253         tcg_gen_andi_tl(LSB, (VAL), 1); \
254         tcg_gen_xori_tl(LSB, LSB, 1); \
255     } while (0)
256 #define fLSBNEWNOT(PNUM) \
257     do { \
258         tcg_gen_andi_tl(LSB, (PNUM), 1); \
259         tcg_gen_xori_tl(LSB, LSB, 1); \
260     } while (0)
261 #else
262 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
263 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
264 #define fLSBNEW0NOT (!fLSBNEW0)
265 #define fLSBNEW1NOT (!fLSBNEW1)
266 #endif
267 
268 #define fNEWREG(VAL) ((int32_t)(VAL))
269 
270 #define fNEWREG_ST(VAL) (VAL)
271 
272 #define fSATUVALN(N, VAL) \
273     ({ \
274         fSET_OVERFLOW(); \
275         ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
276     })
277 #define fSATVALN(N, VAL) \
278     ({ \
279         fSET_OVERFLOW(); \
280         ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
281     })
282 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
283 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
284 #define fSATN(N, VAL) \
285     ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
286 #define fADDSAT64(DST, A, B) \
287     do { \
288         uint64_t __a = fCAST8u(A); \
289         uint64_t __b = fCAST8u(B); \
290         uint64_t __sum = __a + __b; \
291         uint64_t __xor = __a ^ __b; \
292         const uint64_t __mask = 0x8000000000000000ULL; \
293         if (__xor & __mask) { \
294             DST = __sum; \
295         } \
296         else if ((__a ^ __sum) & __mask) { \
297             if (__sum & __mask) { \
298                 DST = 0x7FFFFFFFFFFFFFFFLL; \
299                 fSET_OVERFLOW(); \
300             } else { \
301                 DST = 0x8000000000000000LL; \
302                 fSET_OVERFLOW(); \
303             } \
304         } else { \
305             DST = __sum; \
306         } \
307     } while (0)
308 #define fSATUN(N, VAL) \
309     ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
310 #define fSATH(VAL) (fSATN(16, VAL))
311 #define fSATUH(VAL) (fSATUN(16, VAL))
312 #define fSATUB(VAL) (fSATUN(8, VAL))
313 #define fSATB(VAL) (fSATN(8, VAL))
314 #define fIMMEXT(IMM) (IMM = IMM)
315 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
316 
317 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
318 
319 #ifdef QEMU_GENERATE
320 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
321 {
322     /*
323      * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
324      *
325      *  The "I" value from a modifier register is divided into two pieces
326      *      LSB         bits 23:17
327      *      MSB         bits 31:28
328      * The value is signed
329      *
330      * At the end we shift the result according to the shift argument
331      */
332     TCGv msb = tcg_temp_new();
333     TCGv lsb = tcg_temp_new();
334 
335     tcg_gen_extract_tl(lsb, val, 17, 7);
336     tcg_gen_sari_tl(msb, val, 21);
337     tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
338 
339     tcg_gen_shli_tl(result, result, shift);
340 
341     tcg_temp_free(msb);
342     tcg_temp_free(lsb);
343 
344     return result;
345 }
346 #define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
347 #else
348 #define fREAD_IREG(VAL) \
349     (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
350 #endif
351 
352 #define fREAD_LR() (READ_REG(HEX_REG_LR))
353 
354 #define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
355 #define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
356 #define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
357 
358 #define fREAD_SP() (READ_REG(HEX_REG_SP))
359 #define fREAD_LC0 (READ_REG(HEX_REG_LC0))
360 #define fREAD_LC1 (READ_REG(HEX_REG_LC1))
361 #define fREAD_SA0 (READ_REG(HEX_REG_SA0))
362 #define fREAD_SA1 (READ_REG(HEX_REG_SA1))
363 #define fREAD_FP() (READ_REG(HEX_REG_FP))
364 #ifdef FIXME
365 /* Figure out how to get insn->extension_valid to helper */
366 #define fREAD_GP() \
367     (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
368 #else
369 #define fREAD_GP() READ_REG(HEX_REG_GP)
370 #endif
371 #define fREAD_PC() (READ_REG(HEX_REG_PC))
372 
373 #define fREAD_NPC() (env->next_PC & (0xfffffffe))
374 
375 #define fREAD_P0() (READ_PREG(0))
376 #define fREAD_P3() (READ_PREG(3))
377 
378 #define fCHECK_PCALIGN(A)
379 
380 #define fWRITE_NPC(A) write_new_pc(env, A)
381 
382 #define fBRANCH(LOC, TYPE)          fWRITE_NPC(LOC)
383 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
384 #define fHINTJR(TARGET) { /* Not modelled in qemu */}
385 #define fCALL(A) \
386     do { \
387         fWRITE_LR(fREAD_NPC()); \
388         fBRANCH(A, COF_TYPE_CALL); \
389     } while (0)
390 #define fCALLR(A) \
391     do { \
392         fWRITE_LR(fREAD_NPC()); \
393         fBRANCH(A, COF_TYPE_CALLR); \
394     } while (0)
395 #define fWRITE_LOOP_REGS0(START, COUNT) \
396     do { \
397         WRITE_RREG(HEX_REG_LC0, COUNT);  \
398         WRITE_RREG(HEX_REG_SA0, START); \
399     } while (0)
400 #define fWRITE_LOOP_REGS1(START, COUNT) \
401     do { \
402         WRITE_RREG(HEX_REG_LC1, COUNT);  \
403         WRITE_RREG(HEX_REG_SA1, START);\
404     } while (0)
405 #define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
406 #define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
407 
408 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
409 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
410 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
411 #define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
412 #define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
413 #define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
414 #define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
415 #define fPART1(WORK) if (part1) { WORK; return; }
416 #define fCAST4u(A) ((uint32_t)(A))
417 #define fCAST4s(A) ((int32_t)(A))
418 #define fCAST8u(A) ((uint64_t)(A))
419 #define fCAST8s(A) ((int64_t)(A))
420 #define fCAST4_4s(A) ((int32_t)(A))
421 #define fCAST4_4u(A) ((uint32_t)(A))
422 #define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
423 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
424 #define fCAST8_8s(A) ((int64_t)(A))
425 #define fCAST8_8u(A) ((uint64_t)(A))
426 #define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
427 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
428 #define fZE8_16(A) ((int16_t)((uint8_t)(A)))
429 #define fSE8_16(A) ((int16_t)((int8_t)(A)))
430 #define fSE16_32(A) ((int32_t)((int16_t)(A)))
431 #define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
432 #define fSE32_64(A) ((int64_t)((int32_t)(A)))
433 #define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
434 #define fSE8_32(A) ((int32_t)((int8_t)(A)))
435 #define fZE8_32(A) ((int32_t)((uint8_t)(A)))
436 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
437 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
438 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
439 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
440 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
441 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
442 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
443 #define fMPY16US(A, B) fMPY16SU(B, A)
444 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
445 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
446 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
447 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
448 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
449 #define fROUND(A) (A + 0x8000)
450 #define fCLIP(DST, SRC, U) \
451     do { \
452         int32_t maxv = (1 << U) - 1; \
453         int32_t minv = -(1 << U); \
454         DST = fMIN(maxv, fMAX(SRC, minv)); \
455     } while (0)
456 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
457 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
458 #define fCRNDN(A, N) (conv_round(A, N))
459 #define fADD128(A, B) (int128_add(A, B))
460 #define fSUB128(A, B) (int128_sub(A, B))
461 #define fSHIFTR128(A, B) (int128_rshift(A, B))
462 #define fSHIFTL128(A, B) (int128_lshift(A, B))
463 #define fAND128(A, B) (int128_and(A, B))
464 #define fCAST8S_16S(A) (int128_exts64(A))
465 #define fCAST16S_8S(A) (int128_getlo(A))
466 
467 #ifdef QEMU_GENERATE
468 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
469 #define fEA_RRs(REG, REG2, SCALE) \
470     do { \
471         TCGv tmp = tcg_temp_new(); \
472         tcg_gen_shli_tl(tmp, REG2, SCALE); \
473         tcg_gen_add_tl(EA, REG, tmp); \
474         tcg_temp_free(tmp); \
475     } while (0)
476 #define fEA_IRs(IMM, REG, SCALE) \
477     do { \
478         tcg_gen_shli_tl(EA, REG, SCALE); \
479         tcg_gen_addi_tl(EA, EA, IMM); \
480     } while (0)
481 #else
482 #define fEA_RI(REG, IMM) \
483     do { \
484         EA = REG + IMM; \
485     } while (0)
486 #define fEA_RRs(REG, REG2, SCALE) \
487     do { \
488         EA = REG + (REG2 << SCALE); \
489     } while (0)
490 #define fEA_IRs(IMM, REG, SCALE) \
491     do { \
492         EA = IMM + (REG << SCALE); \
493     } while (0)
494 #endif
495 
496 #ifdef QEMU_GENERATE
497 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
498 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
499 #define fEA_BREVR(REG)      gen_helper_fbrev(EA, REG)
500 #define fPM_I(REG, IMM)     tcg_gen_addi_tl(REG, REG, IMM)
501 #define fPM_M(REG, MVAL)    tcg_gen_add_tl(REG, REG, MVAL)
502 #define fPM_CIRI(REG, IMM, MVAL) \
503     do { \
504         TCGv tcgv_siV = tcg_const_tl(siV); \
505         gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
506                             hex_gpr[HEX_REG_CS0 + MuN]); \
507         tcg_temp_free(tcgv_siV); \
508     } while (0)
509 #else
510 #define fEA_IMM(IMM)        do { EA = (IMM); } while (0)
511 #define fEA_REG(REG)        do { EA = (REG); } while (0)
512 #define fEA_GPI(IMM)        do { EA = (fREAD_GP() + (IMM)); } while (0)
513 #define fPM_I(REG, IMM)     do { REG = REG + (IMM); } while (0)
514 #define fPM_M(REG, MVAL)    do { REG = REG + (MVAL); } while (0)
515 #endif
516 #define fSCALE(N, A) (((int64_t)(A)) << N)
517 #define fSATW(A) fSATN(32, ((long long)A))
518 #define fSAT(A) fSATN(32, (A))
519 #define fSAT_ORIG_SHL(A, ORIG_REG) \
520     ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
521         ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
522         : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
523                                             : fSAT(A)))
524 #define fPASS(A) A
525 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
526     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
527                    : (fCAST##REGSTYPE(SRC) << (SHAMT)))
528 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
529     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
530 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
531     fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
532 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
533     (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
534                    : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
535 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
536     (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
537                    : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
538 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
539     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
540 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
541     fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
542 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
543     (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
544                         << ((-(SHAMT)) - 1)) << 1, (SRC)) \
545                    : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
546 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
547 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
548     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
549 #define fROTL(SRC, SHAMT, REGSTYPE) \
550     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
551                               ((fCAST##REGSTYPE##u(SRC) >> \
552                                  ((sizeof(SRC) * 8) - (SHAMT))))))
553 #define fROTR(SRC, SHAMT, REGSTYPE) \
554     (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
555                               ((fCAST##REGSTYPE##u(SRC) << \
556                                  ((sizeof(SRC) * 8) - (SHAMT))))))
557 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \
558     (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
559 
560 #ifdef QEMU_GENERATE
561 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
562 #else
563 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \
564     DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
565 #endif
566 
567 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
568 
569 #define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
570 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
571 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
572 
573 #ifdef CONFIG_USER_ONLY
574 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
575 #else
576 /* System mode not implemented yet */
577 #define fFRAMECHECK(ADDR, EA)  g_assert_not_reached();
578 #endif
579 
580 #ifdef QEMU_GENERATE
581 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
582     gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
583 #endif
584 
585 #ifdef QEMU_GENERATE
586 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
587 #else
588 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
589 #endif
590 
591 #ifdef QEMU_GENERATE
592 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
593     gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
594 #endif
595 
596 #ifdef QEMU_GENERATE
597 #define GETBYTE_FUNC(X) \
598     __builtin_choose_expr(TYPE_TCGV(X), \
599         gen_get_byte, \
600         __builtin_choose_expr(TYPE_TCGV_I64(X), \
601             gen_get_byte_i64, (void)0))
602 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
603 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
604 #else
605 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
606 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
607 #endif
608 
609 #define fSETBYTE(N, DST, VAL) \
610     do { \
611         DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
612         (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
613     } while (0)
614 
615 #ifdef QEMU_GENERATE
616 #define fGETHALF(N, SRC)  gen_get_half(HALF, N, SRC, true)
617 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
618 #else
619 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
620 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
621 #endif
622 #define fSETHALF(N, DST, VAL) \
623     do { \
624         DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
625         (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
626     } while (0)
627 #define fSETHALFw fSETHALF
628 #define fSETHALFd fSETHALF
629 
630 #define fGETWORD(N, SRC) \
631     ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
632 #define fGETUWORD(N, SRC) \
633     ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
634 
635 #define fSETWORD(N, DST, VAL) \
636     do { \
637         DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
638               (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
639     } while (0)
640 
641 #define fSETBIT(N, DST, VAL) \
642     do { \
643         DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
644     } while (0)
645 
646 #define fGETBIT(N, SRC) (((SRC) >> N) & 1)
647 #define fSETBITS(HI, LO, DST, VAL) \
648     do { \
649         int j; \
650         for (j = LO; j <= HI; j++) { \
651             fSETBIT(j, DST, VAL); \
652         } \
653     } while (0)
654 #define fCOUNTONES_4(VAL) ctpop32(VAL)
655 #define fCOUNTONES_8(VAL) ctpop64(VAL)
656 #define fBREV_8(VAL) revbit64(VAL)
657 #define fBREV_4(VAL) revbit32(VAL)
658 #define fCL1_8(VAL) clo64(VAL)
659 #define fCL1_4(VAL) clo32(VAL)
660 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
661 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
662 #define fHIDE(A) A
663 #define fCONSTLL(A) A##LL
664 #define fECHO(A) (A)
665 
666 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
667 #define fPAUSE(IMM)
668 
669 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
670     ((VAL) << reg_field_info[FIELD].offset)
671 #define fGET_REG_FIELD_MASK(FIELD) \
672     (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
673 #define fREAD_REG_FIELD(REG, FIELD) \
674     fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
675                    reg_field_info[FIELD].width, \
676                    reg_field_info[FIELD].offset)
677 #define fGET_FIELD(VAL, FIELD)
678 #define fSET_FIELD(VAL, FIELD, NEWVAL)
679 #define fBARRIER()
680 #define fSYNCH()
681 #define fISYNC()
682 #define fDCFETCH(REG) \
683     do { (void)REG; } while (0) /* Nothing to do in qemu */
684 #define fICINVA(REG) \
685     do { (void)REG; } while (0) /* Nothing to do in qemu */
686 #define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
687 #define fDCCLEANA(REG) \
688     do { (void)REG; } while (0) /* Nothing to do in qemu */
689 #define fDCCLEANINVA(REG) \
690     do { (void)REG; } while (0) /* Nothing to do in qemu */
691 
692 #define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
693 
694 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
695                                 STRBITNUM) /* Nothing */
696 
697 
698 #endif
699