xref: /openbmc/qemu/target/avr/helper.c (revision d30b5bc95a9406b4125a35defba3a953358215cb)
1 /*
2  * QEMU AVR CPU helpers
3  *
4  * Copyright (c) 2016-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu/error-report.h"
24 #include "cpu.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "exec/exec-all.h"
27 #include "exec/cpu_ldst.h"
28 #include "exec/address-spaces.h"
29 #include "exec/helper-proto.h"
30 
31 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
32 {
33     AVRCPU *cpu = AVR_CPU(cs);
34     CPUAVRState *env = &cpu->env;
35 
36     /*
37      * We cannot separate a skip from the next instruction,
38      * as the skip would not be preserved across the interrupt.
39      * Separating the two insn normally only happens at page boundaries.
40      */
41     if (env->skip) {
42         return false;
43     }
44 
45     if (interrupt_request & CPU_INTERRUPT_RESET) {
46         if (cpu_interrupts_enabled(env)) {
47             cs->exception_index = EXCP_RESET;
48             avr_cpu_do_interrupt(cs);
49 
50             cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
51             return true;
52         }
53     }
54     if (interrupt_request & CPU_INTERRUPT_HARD) {
55         if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
56             int index = ctz64(env->intsrc);
57             cs->exception_index = EXCP_INT(index);
58             avr_cpu_do_interrupt(cs);
59 
60             env->intsrc &= env->intsrc - 1; /* clear the interrupt */
61             if (!env->intsrc) {
62                 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
63             }
64             return true;
65         }
66     }
67     return false;
68 }
69 
70 void avr_cpu_do_interrupt(CPUState *cs)
71 {
72     AVRCPU *cpu = AVR_CPU(cs);
73     CPUAVRState *env = &cpu->env;
74 
75     uint32_t ret = env->pc_w;
76     int vector = 0;
77     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
78     int base = 0;
79 
80     if (cs->exception_index == EXCP_RESET) {
81         vector = 0;
82     } else if (env->intsrc != 0) {
83         vector = ctz64(env->intsrc) + 1;
84     }
85 
86     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
87         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
88         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
89         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
90     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
91         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
92         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
93     } else {
94         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
95     }
96 
97     env->pc_w = base + vector * size;
98     env->sregI = 0; /* clear Global Interrupt Flag */
99 
100     cs->exception_index = -1;
101 }
102 
103 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
104 {
105     return addr; /* I assume 1:1 address correspondence */
106 }
107 
108 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
109                       MMUAccessType access_type, int mmu_idx,
110                       bool probe, uintptr_t retaddr)
111 {
112     int prot, page_size = TARGET_PAGE_SIZE;
113     uint32_t paddr;
114 
115     address &= TARGET_PAGE_MASK;
116 
117     if (mmu_idx == MMU_CODE_IDX) {
118         /* Access to code in flash. */
119         paddr = OFFSET_CODE + address;
120         prot = PAGE_READ | PAGE_EXEC;
121         if (paddr >= OFFSET_DATA) {
122             /*
123              * This should not be possible via any architectural operations.
124              * There is certainly not an exception that we can deliver.
125              * Accept probing that might come from generic code.
126              */
127             if (probe) {
128                 return false;
129             }
130             error_report("execution left flash memory");
131             abort();
132         }
133     } else {
134         /* Access to memory. */
135         paddr = OFFSET_DATA + address;
136         prot = PAGE_READ | PAGE_WRITE;
137         if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
138             /*
139              * Access to CPU registers, exit and rebuilt this TB to use
140              * full access in case it touches specially handled registers
141              * like SREG or SP.  For probing, set page_size = 1, in order
142              * to force tlb_fill to be called for the next access.
143              */
144             if (probe) {
145                 page_size = 1;
146             } else {
147                 AVRCPU *cpu = AVR_CPU(cs);
148                 CPUAVRState *env = &cpu->env;
149                 env->fullacc = 1;
150                 cpu_loop_exit_restore(cs, retaddr);
151             }
152         }
153     }
154 
155     tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
156     return true;
157 }
158 
159 /*
160  *  helpers
161  */
162 
163 void helper_sleep(CPUAVRState *env)
164 {
165     CPUState *cs = env_cpu(env);
166 
167     cs->exception_index = EXCP_HLT;
168     cpu_loop_exit(cs);
169 }
170 
171 void helper_unsupported(CPUAVRState *env)
172 {
173     CPUState *cs = env_cpu(env);
174 
175     /*
176      *  I count not find what happens on the real platform, so
177      *  it's EXCP_DEBUG for meanwhile
178      */
179     cs->exception_index = EXCP_DEBUG;
180     if (qemu_loglevel_mask(LOG_UNIMP)) {
181         qemu_log("UNSUPPORTED\n");
182         cpu_dump_state(cs, stderr, 0);
183     }
184     cpu_loop_exit(cs);
185 }
186 
187 void helper_debug(CPUAVRState *env)
188 {
189     CPUState *cs = env_cpu(env);
190 
191     cs->exception_index = EXCP_DEBUG;
192     cpu_loop_exit(cs);
193 }
194 
195 void helper_break(CPUAVRState *env)
196 {
197     CPUState *cs = env_cpu(env);
198 
199     cs->exception_index = EXCP_DEBUG;
200     cpu_loop_exit(cs);
201 }
202 
203 void helper_wdr(CPUAVRState *env)
204 {
205     qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
206 }
207 
208 /*
209  * This function implements IN instruction
210  *
211  * It does the following
212  * a.  if an IO register belongs to CPU, its value is read and returned
213  * b.  otherwise io address is translated to mem address and physical memory
214  *     is read.
215  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
216  *
217  */
218 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
219 {
220     target_ulong data = 0;
221 
222     switch (port) {
223     case 0x38: /* RAMPD */
224         data = 0xff & (env->rampD >> 16);
225         break;
226     case 0x39: /* RAMPX */
227         data = 0xff & (env->rampX >> 16);
228         break;
229     case 0x3a: /* RAMPY */
230         data = 0xff & (env->rampY >> 16);
231         break;
232     case 0x3b: /* RAMPZ */
233         data = 0xff & (env->rampZ >> 16);
234         break;
235     case 0x3c: /* EIND */
236         data = 0xff & (env->eind >> 16);
237         break;
238     case 0x3d: /* SPL */
239         data = env->sp & 0x00ff;
240         break;
241     case 0x3e: /* SPH */
242         data = env->sp >> 8;
243         break;
244     case 0x3f: /* SREG */
245         data = cpu_get_sreg(env);
246         break;
247     default:
248         /* not a special register, pass to normal memory access */
249         data = address_space_ldub(&address_space_memory,
250                                   OFFSET_IO_REGISTERS + port,
251                                   MEMTXATTRS_UNSPECIFIED, NULL);
252     }
253 
254     return data;
255 }
256 
257 /*
258  *  This function implements OUT instruction
259  *
260  *  It does the following
261  *  a.  if an IO register belongs to CPU, its value is written into the register
262  *  b.  otherwise io address is translated to mem address and physical memory
263  *      is written.
264  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
265  *
266  */
267 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
268 {
269     data &= 0x000000ff;
270 
271     switch (port) {
272     case 0x38: /* RAMPD */
273         if (avr_feature(env, AVR_FEATURE_RAMPD)) {
274             env->rampD = (data & 0xff) << 16;
275         }
276         break;
277     case 0x39: /* RAMPX */
278         if (avr_feature(env, AVR_FEATURE_RAMPX)) {
279             env->rampX = (data & 0xff) << 16;
280         }
281         break;
282     case 0x3a: /* RAMPY */
283         if (avr_feature(env, AVR_FEATURE_RAMPY)) {
284             env->rampY = (data & 0xff) << 16;
285         }
286         break;
287     case 0x3b: /* RAMPZ */
288         if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
289             env->rampZ = (data & 0xff) << 16;
290         }
291         break;
292     case 0x3c: /* EIDN */
293         env->eind = (data & 0xff) << 16;
294         break;
295     case 0x3d: /* SPL */
296         env->sp = (env->sp & 0xff00) | (data);
297         break;
298     case 0x3e: /* SPH */
299         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
300             env->sp = (env->sp & 0x00ff) | (data << 8);
301         }
302         break;
303     case 0x3f: /* SREG */
304         cpu_set_sreg(env, data);
305         break;
306     default:
307         /* not a special register, pass to normal memory access */
308         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
309                           data, MEMTXATTRS_UNSPECIFIED, NULL);
310     }
311 }
312 
313 /*
314  *  this function implements LD instruction when there is a possibility to read
315  *  from a CPU register
316  */
317 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
318 {
319     uint8_t data;
320 
321     env->fullacc = false;
322 
323     if (addr < NUMBER_OF_CPU_REGISTERS) {
324         /* CPU registers */
325         data = env->r[addr];
326     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
327         /* IO registers */
328         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
329     } else {
330         /* memory */
331         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
332                                   MEMTXATTRS_UNSPECIFIED, NULL);
333     }
334     return data;
335 }
336 
337 /*
338  *  this function implements ST instruction when there is a possibility to write
339  *  into a CPU register
340  */
341 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
342 {
343     env->fullacc = false;
344 
345     /* Following logic assumes this: */
346     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
347     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
348                                   NUMBER_OF_CPU_REGISTERS);
349 
350     if (addr < NUMBER_OF_CPU_REGISTERS) {
351         /* CPU registers */
352         env->r[addr] = data;
353     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
354         /* IO registers */
355         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
356     } else {
357         /* memory */
358         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
359                           MEMTXATTRS_UNSPECIFIED, NULL);
360     }
361 }
362