xref: /openbmc/qemu/target/avr/helper.c (revision aa34554a99971b2b95d48e8144c5bfc70927c09f)
1 /*
2  * QEMU AVR CPU helpers
3  *
4  * Copyright (c) 2016-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "cpu.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "exec/exec-all.h"
26 #include "exec/address-spaces.h"
27 #include "exec/helper-proto.h"
28 
29 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
30 {
31     AVRCPU *cpu = AVR_CPU(cs);
32     CPUAVRState *env = &cpu->env;
33 
34     /*
35      * We cannot separate a skip from the next instruction,
36      * as the skip would not be preserved across the interrupt.
37      * Separating the two insn normally only happens at page boundaries.
38      */
39     if (env->skip) {
40         return false;
41     }
42 
43     if (interrupt_request & CPU_INTERRUPT_RESET) {
44         if (cpu_interrupts_enabled(env)) {
45             cs->exception_index = EXCP_RESET;
46             avr_cpu_do_interrupt(cs);
47 
48             cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
49             return true;
50         }
51     }
52     if (interrupt_request & CPU_INTERRUPT_HARD) {
53         if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
54             int index = ctz32(env->intsrc);
55             cs->exception_index = EXCP_INT(index);
56             avr_cpu_do_interrupt(cs);
57 
58             env->intsrc &= env->intsrc - 1; /* clear the interrupt */
59             if (!env->intsrc) {
60                 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
61             }
62             return true;
63         }
64     }
65     return false;
66 }
67 
68 void avr_cpu_do_interrupt(CPUState *cs)
69 {
70     AVRCPU *cpu = AVR_CPU(cs);
71     CPUAVRState *env = &cpu->env;
72 
73     uint32_t ret = env->pc_w;
74     int vector = 0;
75     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
76     int base = 0;
77 
78     if (cs->exception_index == EXCP_RESET) {
79         vector = 0;
80     } else if (env->intsrc != 0) {
81         vector = ctz32(env->intsrc) + 1;
82     }
83 
84     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
85         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
86         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
87         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
88     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
89         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
90         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
91     } else {
92         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
93     }
94 
95     env->pc_w = base + vector * size;
96     env->sregI = 0; /* clear Global Interrupt Flag */
97 
98     cs->exception_index = -1;
99 }
100 
101 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
102 {
103     return addr; /* I assume 1:1 address correspondence */
104 }
105 
106 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
107                       MMUAccessType access_type, int mmu_idx,
108                       bool probe, uintptr_t retaddr)
109 {
110     int prot, page_size = TARGET_PAGE_SIZE;
111     uint32_t paddr;
112 
113     address &= TARGET_PAGE_MASK;
114 
115     if (mmu_idx == MMU_CODE_IDX) {
116         /* Access to code in flash. */
117         paddr = OFFSET_CODE + address;
118         prot = PAGE_READ | PAGE_EXEC;
119         if (paddr >= OFFSET_DATA) {
120             /*
121              * This should not be possible via any architectural operations.
122              * There is certainly not an exception that we can deliver.
123              * Accept probing that might come from generic code.
124              */
125             if (probe) {
126                 return false;
127             }
128             error_report("execution left flash memory");
129             abort();
130         }
131     } else {
132         /* Access to memory. */
133         paddr = OFFSET_DATA + address;
134         prot = PAGE_READ | PAGE_WRITE;
135         if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
136             /*
137              * Access to CPU registers, exit and rebuilt this TB to use
138              * full access in case it touches specially handled registers
139              * like SREG or SP.  For probing, set page_size = 1, in order
140              * to force tlb_fill to be called for the next access.
141              */
142             if (probe) {
143                 page_size = 1;
144             } else {
145                 AVRCPU *cpu = AVR_CPU(cs);
146                 CPUAVRState *env = &cpu->env;
147                 env->fullacc = 1;
148                 cpu_loop_exit_restore(cs, retaddr);
149             }
150         }
151     }
152 
153     tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
154     return true;
155 }
156 
157 /*
158  *  helpers
159  */
160 
161 void helper_sleep(CPUAVRState *env)
162 {
163     CPUState *cs = env_cpu(env);
164 
165     cs->exception_index = EXCP_HLT;
166     cpu_loop_exit(cs);
167 }
168 
169 void helper_unsupported(CPUAVRState *env)
170 {
171     CPUState *cs = env_cpu(env);
172 
173     /*
174      *  I count not find what happens on the real platform, so
175      *  it's EXCP_DEBUG for meanwhile
176      */
177     cs->exception_index = EXCP_DEBUG;
178     if (qemu_loglevel_mask(LOG_UNIMP)) {
179         qemu_log("UNSUPPORTED\n");
180         cpu_dump_state(cs, stderr, 0);
181     }
182     cpu_loop_exit(cs);
183 }
184 
185 void helper_debug(CPUAVRState *env)
186 {
187     CPUState *cs = env_cpu(env);
188 
189     cs->exception_index = EXCP_DEBUG;
190     cpu_loop_exit(cs);
191 }
192 
193 void helper_break(CPUAVRState *env)
194 {
195     CPUState *cs = env_cpu(env);
196 
197     cs->exception_index = EXCP_DEBUG;
198     cpu_loop_exit(cs);
199 }
200 
201 void helper_wdr(CPUAVRState *env)
202 {
203     qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
204 }
205 
206 /*
207  * This function implements IN instruction
208  *
209  * It does the following
210  * a.  if an IO register belongs to CPU, its value is read and returned
211  * b.  otherwise io address is translated to mem address and physical memory
212  *     is read.
213  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
214  *
215  */
216 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
217 {
218     target_ulong data = 0;
219 
220     switch (port) {
221     case 0x38: /* RAMPD */
222         data = 0xff & (env->rampD >> 16);
223         break;
224     case 0x39: /* RAMPX */
225         data = 0xff & (env->rampX >> 16);
226         break;
227     case 0x3a: /* RAMPY */
228         data = 0xff & (env->rampY >> 16);
229         break;
230     case 0x3b: /* RAMPZ */
231         data = 0xff & (env->rampZ >> 16);
232         break;
233     case 0x3c: /* EIND */
234         data = 0xff & (env->eind >> 16);
235         break;
236     case 0x3d: /* SPL */
237         data = env->sp & 0x00ff;
238         break;
239     case 0x3e: /* SPH */
240         data = env->sp >> 8;
241         break;
242     case 0x3f: /* SREG */
243         data = cpu_get_sreg(env);
244         break;
245     default:
246         /* not a special register, pass to normal memory access */
247         data = address_space_ldub(&address_space_memory,
248                                   OFFSET_IO_REGISTERS + port,
249                                   MEMTXATTRS_UNSPECIFIED, NULL);
250     }
251 
252     return data;
253 }
254 
255 /*
256  *  This function implements OUT instruction
257  *
258  *  It does the following
259  *  a.  if an IO register belongs to CPU, its value is written into the register
260  *  b.  otherwise io address is translated to mem address and physical memory
261  *      is written.
262  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
263  *
264  */
265 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
266 {
267     data &= 0x000000ff;
268 
269     switch (port) {
270     case 0x38: /* RAMPD */
271         if (avr_feature(env, AVR_FEATURE_RAMPD)) {
272             env->rampD = (data & 0xff) << 16;
273         }
274         break;
275     case 0x39: /* RAMPX */
276         if (avr_feature(env, AVR_FEATURE_RAMPX)) {
277             env->rampX = (data & 0xff) << 16;
278         }
279         break;
280     case 0x3a: /* RAMPY */
281         if (avr_feature(env, AVR_FEATURE_RAMPY)) {
282             env->rampY = (data & 0xff) << 16;
283         }
284         break;
285     case 0x3b: /* RAMPZ */
286         if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
287             env->rampZ = (data & 0xff) << 16;
288         }
289         break;
290     case 0x3c: /* EIDN */
291         env->eind = (data & 0xff) << 16;
292         break;
293     case 0x3d: /* SPL */
294         env->sp = (env->sp & 0xff00) | (data);
295         break;
296     case 0x3e: /* SPH */
297         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
298             env->sp = (env->sp & 0x00ff) | (data << 8);
299         }
300         break;
301     case 0x3f: /* SREG */
302         cpu_set_sreg(env, data);
303         break;
304     default:
305         /* not a special register, pass to normal memory access */
306         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
307                           data, MEMTXATTRS_UNSPECIFIED, NULL);
308     }
309 }
310 
311 /*
312  *  this function implements LD instruction when there is a possibility to read
313  *  from a CPU register
314  */
315 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
316 {
317     uint8_t data;
318 
319     env->fullacc = false;
320 
321     if (addr < NUMBER_OF_CPU_REGISTERS) {
322         /* CPU registers */
323         data = env->r[addr];
324     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
325         /* IO registers */
326         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
327     } else {
328         /* memory */
329         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
330                                   MEMTXATTRS_UNSPECIFIED, NULL);
331     }
332     return data;
333 }
334 
335 /*
336  *  this function implements ST instruction when there is a possibility to write
337  *  into a CPU register
338  */
339 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
340 {
341     env->fullacc = false;
342 
343     /* Following logic assumes this: */
344     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
345     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
346                                   NUMBER_OF_CPU_REGISTERS);
347 
348     if (addr < NUMBER_OF_CPU_REGISTERS) {
349         /* CPU registers */
350         env->r[addr] = data;
351     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
352         /* IO registers */
353         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
354     } else {
355         /* memory */
356         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
357                           MEMTXATTRS_UNSPECIFIED, NULL);
358     }
359 }
360