xref: /openbmc/qemu/target/avr/helper.c (revision 9d1401b79463e74adbfac69d836789d4e103fb61)
1 /*
2  * QEMU AVR CPU helpers
3  *
4  * Copyright (c) 2016-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "cpu.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "exec/exec-all.h"
26 #include "exec/address-spaces.h"
27 #include "exec/helper-proto.h"
28 
29 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
30 {
31     bool ret = false;
32     CPUClass *cc = CPU_GET_CLASS(cs);
33     AVRCPU *cpu = AVR_CPU(cs);
34     CPUAVRState *env = &cpu->env;
35 
36     if (interrupt_request & CPU_INTERRUPT_RESET) {
37         if (cpu_interrupts_enabled(env)) {
38             cs->exception_index = EXCP_RESET;
39             cc->tcg_ops->do_interrupt(cs);
40 
41             cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
42 
43             ret = true;
44         }
45     }
46     if (interrupt_request & CPU_INTERRUPT_HARD) {
47         if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
48             int index = ctz32(env->intsrc);
49             cs->exception_index = EXCP_INT(index);
50             cc->tcg_ops->do_interrupt(cs);
51 
52             env->intsrc &= env->intsrc - 1; /* clear the interrupt */
53             if (!env->intsrc) {
54                 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
55             }
56 
57             ret = true;
58         }
59     }
60     return ret;
61 }
62 
63 void avr_cpu_do_interrupt(CPUState *cs)
64 {
65     AVRCPU *cpu = AVR_CPU(cs);
66     CPUAVRState *env = &cpu->env;
67 
68     uint32_t ret = env->pc_w;
69     int vector = 0;
70     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
71     int base = 0;
72 
73     if (cs->exception_index == EXCP_RESET) {
74         vector = 0;
75     } else if (env->intsrc != 0) {
76         vector = ctz32(env->intsrc) + 1;
77     }
78 
79     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
80         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
81         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
82         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
83     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
84         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
85         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
86     } else {
87         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
88     }
89 
90     env->pc_w = base + vector * size;
91     env->sregI = 0; /* clear Global Interrupt Flag */
92 
93     cs->exception_index = -1;
94 }
95 
96 int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf,
97                             int len, bool is_write)
98 {
99     return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
100 }
101 
102 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
103 {
104     return addr; /* I assume 1:1 address correspondence */
105 }
106 
107 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
108                       MMUAccessType access_type, int mmu_idx,
109                       bool probe, uintptr_t retaddr)
110 {
111     int prot = 0;
112     MemTxAttrs attrs = {};
113     uint32_t paddr;
114 
115     address &= TARGET_PAGE_MASK;
116 
117     if (mmu_idx == MMU_CODE_IDX) {
118         /* access to code in flash */
119         paddr = OFFSET_CODE + address;
120         prot = PAGE_READ | PAGE_EXEC;
121         if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
122             error_report("execution left flash memory");
123             abort();
124         }
125     } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
126         /*
127          * access to CPU registers, exit and rebuilt this TB to use full access
128          * incase it touches specially handled registers like SREG or SP
129          */
130         AVRCPU *cpu = AVR_CPU(cs);
131         CPUAVRState *env = &cpu->env;
132         env->fullacc = 1;
133         cpu_loop_exit_restore(cs, retaddr);
134     } else {
135         /* access to memory. nothing special */
136         paddr = OFFSET_DATA + address;
137         prot = PAGE_READ | PAGE_WRITE;
138     }
139 
140     tlb_set_page_with_attrs(cs, address, paddr, attrs, prot,
141                             mmu_idx, TARGET_PAGE_SIZE);
142 
143     return true;
144 }
145 
146 /*
147  *  helpers
148  */
149 
150 void helper_sleep(CPUAVRState *env)
151 {
152     CPUState *cs = env_cpu(env);
153 
154     cs->exception_index = EXCP_HLT;
155     cpu_loop_exit(cs);
156 }
157 
158 void helper_unsupported(CPUAVRState *env)
159 {
160     CPUState *cs = env_cpu(env);
161 
162     /*
163      *  I count not find what happens on the real platform, so
164      *  it's EXCP_DEBUG for meanwhile
165      */
166     cs->exception_index = EXCP_DEBUG;
167     if (qemu_loglevel_mask(LOG_UNIMP)) {
168         qemu_log("UNSUPPORTED\n");
169         cpu_dump_state(cs, stderr, 0);
170     }
171     cpu_loop_exit(cs);
172 }
173 
174 void helper_debug(CPUAVRState *env)
175 {
176     CPUState *cs = env_cpu(env);
177 
178     cs->exception_index = EXCP_DEBUG;
179     cpu_loop_exit(cs);
180 }
181 
182 void helper_break(CPUAVRState *env)
183 {
184     CPUState *cs = env_cpu(env);
185 
186     cs->exception_index = EXCP_DEBUG;
187     cpu_loop_exit(cs);
188 }
189 
190 void helper_wdr(CPUAVRState *env)
191 {
192     qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
193 }
194 
195 /*
196  * This function implements IN instruction
197  *
198  * It does the following
199  * a.  if an IO register belongs to CPU, its value is read and returned
200  * b.  otherwise io address is translated to mem address and physical memory
201  *     is read.
202  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
203  *
204  */
205 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
206 {
207     target_ulong data = 0;
208 
209     switch (port) {
210     case 0x38: /* RAMPD */
211         data = 0xff & (env->rampD >> 16);
212         break;
213     case 0x39: /* RAMPX */
214         data = 0xff & (env->rampX >> 16);
215         break;
216     case 0x3a: /* RAMPY */
217         data = 0xff & (env->rampY >> 16);
218         break;
219     case 0x3b: /* RAMPZ */
220         data = 0xff & (env->rampZ >> 16);
221         break;
222     case 0x3c: /* EIND */
223         data = 0xff & (env->eind >> 16);
224         break;
225     case 0x3d: /* SPL */
226         data = env->sp & 0x00ff;
227         break;
228     case 0x3e: /* SPH */
229         data = env->sp >> 8;
230         break;
231     case 0x3f: /* SREG */
232         data = cpu_get_sreg(env);
233         break;
234     default:
235         /* not a special register, pass to normal memory access */
236         data = address_space_ldub(&address_space_memory,
237                                   OFFSET_IO_REGISTERS + port,
238                                   MEMTXATTRS_UNSPECIFIED, NULL);
239     }
240 
241     return data;
242 }
243 
244 /*
245  *  This function implements OUT instruction
246  *
247  *  It does the following
248  *  a.  if an IO register belongs to CPU, its value is written into the register
249  *  b.  otherwise io address is translated to mem address and physical memory
250  *      is written.
251  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
252  *
253  */
254 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
255 {
256     data &= 0x000000ff;
257 
258     switch (port) {
259     case 0x38: /* RAMPD */
260         if (avr_feature(env, AVR_FEATURE_RAMPD)) {
261             env->rampD = (data & 0xff) << 16;
262         }
263         break;
264     case 0x39: /* RAMPX */
265         if (avr_feature(env, AVR_FEATURE_RAMPX)) {
266             env->rampX = (data & 0xff) << 16;
267         }
268         break;
269     case 0x3a: /* RAMPY */
270         if (avr_feature(env, AVR_FEATURE_RAMPY)) {
271             env->rampY = (data & 0xff) << 16;
272         }
273         break;
274     case 0x3b: /* RAMPZ */
275         if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
276             env->rampZ = (data & 0xff) << 16;
277         }
278         break;
279     case 0x3c: /* EIDN */
280         env->eind = (data & 0xff) << 16;
281         break;
282     case 0x3d: /* SPL */
283         env->sp = (env->sp & 0xff00) | (data);
284         break;
285     case 0x3e: /* SPH */
286         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
287             env->sp = (env->sp & 0x00ff) | (data << 8);
288         }
289         break;
290     case 0x3f: /* SREG */
291         cpu_set_sreg(env, data);
292         break;
293     default:
294         /* not a special register, pass to normal memory access */
295         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
296                           data, MEMTXATTRS_UNSPECIFIED, NULL);
297     }
298 }
299 
300 /*
301  *  this function implements LD instruction when there is a possibility to read
302  *  from a CPU register
303  */
304 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
305 {
306     uint8_t data;
307 
308     env->fullacc = false;
309 
310     if (addr < NUMBER_OF_CPU_REGISTERS) {
311         /* CPU registers */
312         data = env->r[addr];
313     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
314         /* IO registers */
315         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
316     } else {
317         /* memory */
318         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
319                                   MEMTXATTRS_UNSPECIFIED, NULL);
320     }
321     return data;
322 }
323 
324 /*
325  *  this function implements ST instruction when there is a possibility to write
326  *  into a CPU register
327  */
328 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
329 {
330     env->fullacc = false;
331 
332     /* Following logic assumes this: */
333     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
334     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
335                                   NUMBER_OF_CPU_REGISTERS);
336 
337     if (addr < NUMBER_OF_CPU_REGISTERS) {
338         /* CPU registers */
339         env->r[addr] = data;
340     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
341         /* IO registers */
342         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
343     } else {
344         /* memory */
345         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
346                           MEMTXATTRS_UNSPECIFIED, NULL);
347     }
348 }
349