xref: /openbmc/qemu/target/avr/helper.c (revision 1f42e246995a99890f6af4e42329f184ee14b0e7)
1 /*
2  * QEMU AVR CPU helpers
3  *
4  * Copyright (c) 2016-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/address-spaces.h"
25 #include "exec/helper-proto.h"
26 
27 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
28 {
29     bool ret = false;
30     CPUClass *cc = CPU_GET_CLASS(cs);
31     AVRCPU *cpu = AVR_CPU(cs);
32     CPUAVRState *env = &cpu->env;
33 
34     if (interrupt_request & CPU_INTERRUPT_RESET) {
35         if (cpu_interrupts_enabled(env)) {
36             cs->exception_index = EXCP_RESET;
37             cc->do_interrupt(cs);
38 
39             cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
40 
41             ret = true;
42         }
43     }
44     if (interrupt_request & CPU_INTERRUPT_HARD) {
45         if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
46             int index = ctz32(env->intsrc);
47             cs->exception_index = EXCP_INT(index);
48             cc->do_interrupt(cs);
49 
50             env->intsrc &= env->intsrc - 1; /* clear the interrupt */
51             cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
52 
53             ret = true;
54         }
55     }
56     return ret;
57 }
58 
59 void avr_cpu_do_interrupt(CPUState *cs)
60 {
61     AVRCPU *cpu = AVR_CPU(cs);
62     CPUAVRState *env = &cpu->env;
63 
64     uint32_t ret = env->pc_w;
65     int vector = 0;
66     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
67     int base = 0;
68 
69     if (cs->exception_index == EXCP_RESET) {
70         vector = 0;
71     } else if (env->intsrc != 0) {
72         vector = ctz32(env->intsrc) + 1;
73     }
74 
75     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
76         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
77         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
78         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
79     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
80         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
81         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
82     } else {
83         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
84     }
85 
86     env->pc_w = base + vector * size;
87     env->sregI = 0; /* clear Global Interrupt Flag */
88 
89     cs->exception_index = -1;
90 }
91 
92 int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf,
93                             int len, bool is_write)
94 {
95     return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
96 }
97 
98 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
99 {
100     return addr; /* I assume 1:1 address correspondance */
101 }
102 
103 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
104                       MMUAccessType access_type, int mmu_idx,
105                       bool probe, uintptr_t retaddr)
106 {
107     int prot = 0;
108     MemTxAttrs attrs = {};
109     uint32_t paddr;
110 
111     address &= TARGET_PAGE_MASK;
112 
113     if (mmu_idx == MMU_CODE_IDX) {
114         /* access to code in flash */
115         paddr = OFFSET_CODE + address;
116         prot = PAGE_READ | PAGE_EXEC;
117         if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
118             error_report("execution left flash memory");
119             abort();
120         }
121     } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
122         /*
123          * access to CPU registers, exit and rebuilt this TB to use full access
124          * incase it touches specially handled registers like SREG or SP
125          */
126         AVRCPU *cpu = AVR_CPU(cs);
127         CPUAVRState *env = &cpu->env;
128         env->fullacc = 1;
129         cpu_loop_exit_restore(cs, retaddr);
130     } else {
131         /* access to memory. nothing special */
132         paddr = OFFSET_DATA + address;
133         prot = PAGE_READ | PAGE_WRITE;
134     }
135 
136     tlb_set_page_with_attrs(cs, address, paddr, attrs, prot,
137                             mmu_idx, TARGET_PAGE_SIZE);
138 
139     return true;
140 }
141 
142 /*
143  *  helpers
144  */
145 
146 void helper_sleep(CPUAVRState *env)
147 {
148     CPUState *cs = env_cpu(env);
149 
150     cs->exception_index = EXCP_HLT;
151     cpu_loop_exit(cs);
152 }
153 
154 void helper_unsupported(CPUAVRState *env)
155 {
156     CPUState *cs = env_cpu(env);
157 
158     /*
159      *  I count not find what happens on the real platform, so
160      *  it's EXCP_DEBUG for meanwhile
161      */
162     cs->exception_index = EXCP_DEBUG;
163     if (qemu_loglevel_mask(LOG_UNIMP)) {
164         qemu_log("UNSUPPORTED\n");
165         cpu_dump_state(cs, stderr, 0);
166     }
167     cpu_loop_exit(cs);
168 }
169 
170 void helper_debug(CPUAVRState *env)
171 {
172     CPUState *cs = env_cpu(env);
173 
174     cs->exception_index = EXCP_DEBUG;
175     cpu_loop_exit(cs);
176 }
177 
178 void helper_break(CPUAVRState *env)
179 {
180     CPUState *cs = env_cpu(env);
181 
182     cs->exception_index = EXCP_DEBUG;
183     cpu_loop_exit(cs);
184 }
185 
186 void helper_wdr(CPUAVRState *env)
187 {
188     CPUState *cs = env_cpu(env);
189 
190     /* WD is not implemented yet, placeholder */
191     cs->exception_index = EXCP_DEBUG;
192     cpu_loop_exit(cs);
193 }
194 
195 /*
196  * This function implements IN instruction
197  *
198  * It does the following
199  * a.  if an IO register belongs to CPU, its value is read and returned
200  * b.  otherwise io address is translated to mem address and physical memory
201  *     is read.
202  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
203  *
204  */
205 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
206 {
207     target_ulong data = 0;
208 
209     switch (port) {
210     case 0x38: /* RAMPD */
211         data = 0xff & (env->rampD >> 16);
212         break;
213     case 0x39: /* RAMPX */
214         data = 0xff & (env->rampX >> 16);
215         break;
216     case 0x3a: /* RAMPY */
217         data = 0xff & (env->rampY >> 16);
218         break;
219     case 0x3b: /* RAMPZ */
220         data = 0xff & (env->rampZ >> 16);
221         break;
222     case 0x3c: /* EIND */
223         data = 0xff & (env->eind >> 16);
224         break;
225     case 0x3d: /* SPL */
226         data = env->sp & 0x00ff;
227         break;
228     case 0x3e: /* SPH */
229         data = env->sp >> 8;
230         break;
231     case 0x3f: /* SREG */
232         data = cpu_get_sreg(env);
233         break;
234     default:
235         /* not a special register, pass to normal memory access */
236         data = address_space_ldub(&address_space_memory,
237                                   OFFSET_IO_REGISTERS + port,
238                                   MEMTXATTRS_UNSPECIFIED, NULL);
239     }
240 
241     return data;
242 }
243 
244 /*
245  *  This function implements OUT instruction
246  *
247  *  It does the following
248  *  a.  if an IO register belongs to CPU, its value is written into the register
249  *  b.  otherwise io address is translated to mem address and physical memory
250  *      is written.
251  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
252  *
253  */
254 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
255 {
256     data &= 0x000000ff;
257 
258     switch (port) {
259     case 0x38: /* RAMPD */
260         if (avr_feature(env, AVR_FEATURE_RAMPD)) {
261             env->rampD = (data & 0xff) << 16;
262         }
263         break;
264     case 0x39: /* RAMPX */
265         if (avr_feature(env, AVR_FEATURE_RAMPX)) {
266             env->rampX = (data & 0xff) << 16;
267         }
268         break;
269     case 0x3a: /* RAMPY */
270         if (avr_feature(env, AVR_FEATURE_RAMPY)) {
271             env->rampY = (data & 0xff) << 16;
272         }
273         break;
274     case 0x3b: /* RAMPZ */
275         if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
276             env->rampZ = (data & 0xff) << 16;
277         }
278         break;
279     case 0x3c: /* EIDN */
280         env->eind = (data & 0xff) << 16;
281         break;
282     case 0x3d: /* SPL */
283         env->sp = (env->sp & 0xff00) | (data);
284         break;
285     case 0x3e: /* SPH */
286         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
287             env->sp = (env->sp & 0x00ff) | (data << 8);
288         }
289         break;
290     case 0x3f: /* SREG */
291         cpu_set_sreg(env, data);
292         break;
293     default:
294         /* not a special register, pass to normal memory access */
295         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
296                           data, MEMTXATTRS_UNSPECIFIED, NULL);
297     }
298 }
299 
300 /*
301  *  this function implements LD instruction when there is a posibility to read
302  *  from a CPU register
303  */
304 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
305 {
306     uint8_t data;
307 
308     env->fullacc = false;
309 
310     if (addr < NUMBER_OF_CPU_REGISTERS) {
311         /* CPU registers */
312         data = env->r[addr];
313     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
314         /* IO registers */
315         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
316     } else {
317         /* memory */
318         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
319                                   MEMTXATTRS_UNSPECIFIED, NULL);
320     }
321     return data;
322 }
323 
324 /*
325  *  this function implements ST instruction when there is a posibility to write
326  *  into a CPU register
327  */
328 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
329 {
330     env->fullacc = false;
331 
332     /* Following logic assumes this: */
333     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
334     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
335                                   NUMBER_OF_CPU_REGISTERS);
336 
337     if (addr < NUMBER_OF_CPU_REGISTERS) {
338         /* CPU registers */
339         env->r[addr] = data;
340     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
341         /* IO registers */
342         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
343     } else {
344         /* memory */
345         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
346                           MEMTXATTRS_UNSPECIFIED, NULL);
347     }
348 }
349