xref: /openbmc/qemu/target/arm/vfp_helper.c (revision b86c6ba689662256ea32f3e27927524ccb13f81d)
1 /*
2  * ARM VFP floating-point operations
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "cpu-features.h"
25 #ifdef CONFIG_TCG
26 #include "qemu/log.h"
27 #include "fpu/softfloat.h"
28 #endif
29 
30 /* VFP support.  We follow the convention used for VFP instructions:
31    Single precision routines have a "s" suffix, double precision a
32    "d" suffix.  */
33 
34 #ifdef CONFIG_TCG
35 
36 /* Convert host exception flags to vfp form.  */
37 static inline int vfp_exceptbits_from_host(int host_bits)
38 {
39     int target_bits = 0;
40 
41     if (host_bits & float_flag_invalid) {
42         target_bits |= 1;
43     }
44     if (host_bits & float_flag_divbyzero) {
45         target_bits |= 2;
46     }
47     if (host_bits & float_flag_overflow) {
48         target_bits |= 4;
49     }
50     if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
51         target_bits |= 8;
52     }
53     if (host_bits & float_flag_inexact) {
54         target_bits |= 0x10;
55     }
56     if (host_bits & float_flag_input_denormal) {
57         target_bits |= 0x80;
58     }
59     return target_bits;
60 }
61 
62 /* Convert vfp exception flags to target form.  */
63 static inline int vfp_exceptbits_to_host(int target_bits)
64 {
65     int host_bits = 0;
66 
67     if (target_bits & 1) {
68         host_bits |= float_flag_invalid;
69     }
70     if (target_bits & 2) {
71         host_bits |= float_flag_divbyzero;
72     }
73     if (target_bits & 4) {
74         host_bits |= float_flag_overflow;
75     }
76     if (target_bits & 8) {
77         host_bits |= float_flag_underflow;
78     }
79     if (target_bits & 0x10) {
80         host_bits |= float_flag_inexact;
81     }
82     if (target_bits & 0x80) {
83         host_bits |= float_flag_input_denormal;
84     }
85     return host_bits;
86 }
87 
88 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
89 {
90     uint32_t i;
91 
92     i = get_float_exception_flags(&env->vfp.fp_status);
93     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
94     /* FZ16 does not generate an input denormal exception.  */
95     i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
96           & ~float_flag_input_denormal);
97     i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
98           & ~float_flag_input_denormal);
99     return vfp_exceptbits_from_host(i);
100 }
101 
102 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
103 {
104     int i;
105     uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
106 
107     changed ^= val;
108     if (changed & (3 << 22)) {
109         i = (val >> 22) & 3;
110         switch (i) {
111         case FPROUNDING_TIEEVEN:
112             i = float_round_nearest_even;
113             break;
114         case FPROUNDING_POSINF:
115             i = float_round_up;
116             break;
117         case FPROUNDING_NEGINF:
118             i = float_round_down;
119             break;
120         case FPROUNDING_ZERO:
121             i = float_round_to_zero;
122             break;
123         }
124         set_float_rounding_mode(i, &env->vfp.fp_status);
125         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
126     }
127     if (changed & FPCR_FZ16) {
128         bool ftz_enabled = val & FPCR_FZ16;
129         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
130         set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
131         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
132         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
133     }
134     if (changed & FPCR_FZ) {
135         bool ftz_enabled = val & FPCR_FZ;
136         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
137         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
138     }
139     if (changed & FPCR_DN) {
140         bool dnan_enabled = val & FPCR_DN;
141         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
142         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
143     }
144 
145     /*
146      * The exception flags are ORed together when we read fpscr so we
147      * only need to preserve the current state in one of our
148      * float_status values.
149      */
150     i = vfp_exceptbits_to_host(val);
151     set_float_exception_flags(i, &env->vfp.fp_status);
152     set_float_exception_flags(0, &env->vfp.fp_status_f16);
153     set_float_exception_flags(0, &env->vfp.standard_fp_status);
154     set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
155 }
156 
157 #else
158 
159 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
160 {
161     return 0;
162 }
163 
164 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
165 {
166 }
167 
168 #endif
169 
170 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
171 {
172     uint32_t i, fpscr;
173 
174     fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
175             | (env->vfp.vec_len << 16)
176             | (env->vfp.vec_stride << 20);
177 
178     /*
179      * M-profile LTPSIZE overlaps A-profile Stride; whichever of the
180      * two is not applicable to this CPU will always be zero.
181      */
182     fpscr |= env->v7m.ltpsize << 16;
183 
184     fpscr |= vfp_get_fpscr_from_host(env);
185 
186     i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
187     fpscr |= i ? FPCR_QC : 0;
188 
189     return fpscr;
190 }
191 
192 uint32_t vfp_get_fpscr(CPUARMState *env)
193 {
194     return HELPER(vfp_get_fpscr)(env);
195 }
196 
197 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
198 {
199     ARMCPU *cpu = env_archcpu(env);
200 
201     /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
202     if (!cpu_isar_feature(any_fp16, cpu)) {
203         val &= ~FPCR_FZ16;
204     }
205 
206     vfp_set_fpscr_to_host(env, val);
207 
208     if (!arm_feature(env, ARM_FEATURE_M)) {
209         /*
210          * Short-vector length and stride; on M-profile these bits
211          * are used for different purposes.
212          * We can't make this conditional be "if MVFR0.FPShVec != 0",
213          * because in v7A no-short-vector-support cores still had to
214          * allow Stride/Len to be written with the only effect that
215          * some insns are required to UNDEF if the guest sets them.
216          */
217         env->vfp.vec_len = extract32(val, 16, 3);
218         env->vfp.vec_stride = extract32(val, 20, 2);
219     } else if (cpu_isar_feature(aa32_mve, cpu)) {
220         env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT,
221                                      FPCR_LTPSIZE_LENGTH);
222     }
223 
224     if (arm_feature(env, ARM_FEATURE_NEON) ||
225         cpu_isar_feature(aa32_mve, cpu)) {
226         /*
227          * The bit we set within fpscr_q is arbitrary; the register as a
228          * whole being zero/non-zero is what counts.
229          * TODO: M-profile MVE also has a QC bit.
230          */
231         env->vfp.qc[0] = val & FPCR_QC;
232         env->vfp.qc[1] = 0;
233         env->vfp.qc[2] = 0;
234         env->vfp.qc[3] = 0;
235     }
236 
237     /*
238      * We don't implement trapped exception handling, so the
239      * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
240      *
241      * The exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in
242      * fp_status; QC, Len and Stride are stored separately earlier.
243      * Clear out all of those and the RES0 bits: only NZCV, AHP, DN,
244      * FZ, RMode and FZ16 are kept in vfp.xregs[FPSCR].
245      */
246     env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
247 }
248 
249 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
250 {
251     HELPER(vfp_set_fpscr)(env, val);
252 }
253 
254 #ifdef CONFIG_TCG
255 
256 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
257 
258 #define VFP_BINOP(name) \
259 dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
260 { \
261     float_status *fpst = fpstp; \
262     return float16_ ## name(a, b, fpst); \
263 } \
264 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
265 { \
266     float_status *fpst = fpstp; \
267     return float32_ ## name(a, b, fpst); \
268 } \
269 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
270 { \
271     float_status *fpst = fpstp; \
272     return float64_ ## name(a, b, fpst); \
273 }
274 VFP_BINOP(add)
275 VFP_BINOP(sub)
276 VFP_BINOP(mul)
277 VFP_BINOP(div)
278 VFP_BINOP(min)
279 VFP_BINOP(max)
280 VFP_BINOP(minnum)
281 VFP_BINOP(maxnum)
282 #undef VFP_BINOP
283 
284 dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
285 {
286     return float16_sqrt(a, &env->vfp.fp_status_f16);
287 }
288 
289 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
290 {
291     return float32_sqrt(a, &env->vfp.fp_status);
292 }
293 
294 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
295 {
296     return float64_sqrt(a, &env->vfp.fp_status);
297 }
298 
299 static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
300 {
301     uint32_t flags;
302     switch (cmp) {
303     case float_relation_equal:
304         flags = 0x6;
305         break;
306     case float_relation_less:
307         flags = 0x8;
308         break;
309     case float_relation_greater:
310         flags = 0x2;
311         break;
312     case float_relation_unordered:
313         flags = 0x3;
314         break;
315     default:
316         g_assert_not_reached();
317     }
318     env->vfp.xregs[ARM_VFP_FPSCR] =
319         deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
320 }
321 
322 /* XXX: check quiet/signaling case */
323 #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
324 void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env)  \
325 { \
326     softfloat_to_vfp_compare(env, \
327         FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
328 } \
329 void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
330 { \
331     softfloat_to_vfp_compare(env, \
332         FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
333 }
334 DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
335 DO_VFP_cmp(s, float32, float32, fp_status)
336 DO_VFP_cmp(d, float64, float64, fp_status)
337 #undef DO_VFP_cmp
338 
339 /* Integer to float and float to integer conversions */
340 
341 #define CONV_ITOF(name, ftype, fsz, sign)                           \
342 ftype HELPER(name)(uint32_t x, void *fpstp)                         \
343 {                                                                   \
344     float_status *fpst = fpstp;                                     \
345     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
346 }
347 
348 #define CONV_FTOI(name, ftype, fsz, sign, round)                \
349 sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
350 {                                                               \
351     float_status *fpst = fpstp;                                 \
352     if (float##fsz##_is_any_nan(x)) {                           \
353         float_raise(float_flag_invalid, fpst);                  \
354         return 0;                                               \
355     }                                                           \
356     return float##fsz##_to_##sign##int32##round(x, fpst);       \
357 }
358 
359 #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
360     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
361     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
362     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
363 
364 FLOAT_CONVS(si, h, uint32_t, 16, )
365 FLOAT_CONVS(si, s, float32, 32, )
366 FLOAT_CONVS(si, d, float64, 64, )
367 FLOAT_CONVS(ui, h, uint32_t, 16, u)
368 FLOAT_CONVS(ui, s, float32, 32, u)
369 FLOAT_CONVS(ui, d, float64, 64, u)
370 
371 #undef CONV_ITOF
372 #undef CONV_FTOI
373 #undef FLOAT_CONVS
374 
375 /* floating point conversion */
376 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
377 {
378     return float32_to_float64(x, &env->vfp.fp_status);
379 }
380 
381 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
382 {
383     return float64_to_float32(x, &env->vfp.fp_status);
384 }
385 
386 uint32_t HELPER(bfcvt)(float32 x, void *status)
387 {
388     return float32_to_bfloat16(x, status);
389 }
390 
391 uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status)
392 {
393     bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
394     bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
395     return deposit32(lo, 16, 16, hi);
396 }
397 
398 /*
399  * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
400  * must always round-to-nearest; the AArch64 ones honour the FPSCR
401  * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
402  * round-to-nearest so either helper will work.) AArch32 float-to-fix
403  * must round-to-zero.
404  */
405 #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)            \
406 ftype HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift,      \
407                                      void *fpstp) \
408 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
409 
410 #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)      \
411     ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t  x, \
412                                                      uint32_t shift,   \
413                                                      void *fpstp)      \
414     {                                                                  \
415         ftype ret;                                                     \
416         float_status *fpst = fpstp;                                    \
417         FloatRoundMode oldmode = fpst->float_rounding_mode;            \
418         fpst->float_rounding_mode = float_round_nearest_even;          \
419         ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp);      \
420         fpst->float_rounding_mode = oldmode;                           \
421         return ret;                                                    \
422     }
423 
424 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
425 uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift,      \
426                                             void *fpst)                   \
427 {                                                                         \
428     if (unlikely(float##fsz##_is_any_nan(x))) {                           \
429         float_raise(float_flag_invalid, fpst);                            \
430         return 0;                                                         \
431     }                                                                     \
432     return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
433 }
434 
435 #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype)            \
436 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
437 VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)        \
438 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
439                          float_round_to_zero, _round_to_zero)    \
440 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
441                          get_float_rounding_mode(fpst), )
442 
443 #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype)        \
444 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
445 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
446                          get_float_rounding_mode(fpst), )
447 
448 VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
449 VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
450 VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
451 VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
452 VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
453 VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
454 VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
455 VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
456 VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
457 VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
458 VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
459 VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
460 VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
461 VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
462 VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
463 VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
464 VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
465 VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
466 
467 #undef VFP_CONV_FIX
468 #undef VFP_CONV_FIX_FLOAT
469 #undef VFP_CONV_FLOAT_FIX_ROUND
470 #undef VFP_CONV_FIX_A64
471 
472 /* Set the current fp rounding mode and return the old one.
473  * The argument is a softfloat float_round_ value.
474  */
475 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
476 {
477     float_status *fp_status = fpstp;
478 
479     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
480     set_float_rounding_mode(rmode, fp_status);
481 
482     return prev_rmode;
483 }
484 
485 /* Half precision conversions.  */
486 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
487 {
488     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
489      * it would affect flushing input denormals.
490      */
491     float_status *fpst = fpstp;
492     bool save = get_flush_inputs_to_zero(fpst);
493     set_flush_inputs_to_zero(false, fpst);
494     float32 r = float16_to_float32(a, !ahp_mode, fpst);
495     set_flush_inputs_to_zero(save, fpst);
496     return r;
497 }
498 
499 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
500 {
501     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
502      * it would affect flushing output denormals.
503      */
504     float_status *fpst = fpstp;
505     bool save = get_flush_to_zero(fpst);
506     set_flush_to_zero(false, fpst);
507     float16 r = float32_to_float16(a, !ahp_mode, fpst);
508     set_flush_to_zero(save, fpst);
509     return r;
510 }
511 
512 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
513 {
514     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
515      * it would affect flushing input denormals.
516      */
517     float_status *fpst = fpstp;
518     bool save = get_flush_inputs_to_zero(fpst);
519     set_flush_inputs_to_zero(false, fpst);
520     float64 r = float16_to_float64(a, !ahp_mode, fpst);
521     set_flush_inputs_to_zero(save, fpst);
522     return r;
523 }
524 
525 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
526 {
527     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
528      * it would affect flushing output denormals.
529      */
530     float_status *fpst = fpstp;
531     bool save = get_flush_to_zero(fpst);
532     set_flush_to_zero(false, fpst);
533     float16 r = float64_to_float16(a, !ahp_mode, fpst);
534     set_flush_to_zero(save, fpst);
535     return r;
536 }
537 
538 /* NEON helpers.  */
539 
540 /* Constants 256 and 512 are used in some helpers; we avoid relying on
541  * int->float conversions at run-time.  */
542 #define float64_256 make_float64(0x4070000000000000LL)
543 #define float64_512 make_float64(0x4080000000000000LL)
544 #define float16_maxnorm make_float16(0x7bff)
545 #define float32_maxnorm make_float32(0x7f7fffff)
546 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
547 
548 /* Reciprocal functions
549  *
550  * The algorithm that must be used to calculate the estimate
551  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
552  */
553 
554 /* See RecipEstimate()
555  *
556  * input is a 9 bit fixed point number
557  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
558  * result range 256 .. 511 for a number from 1.0 to 511/256.
559  */
560 
561 static int recip_estimate(int input)
562 {
563     int a, b, r;
564     assert(256 <= input && input < 512);
565     a = (input * 2) + 1;
566     b = (1 << 19) / a;
567     r = (b + 1) >> 1;
568     assert(256 <= r && r < 512);
569     return r;
570 }
571 
572 /*
573  * Common wrapper to call recip_estimate
574  *
575  * The parameters are exponent and 64 bit fraction (without implicit
576  * bit) where the binary point is nominally at bit 52. Returns a
577  * float64 which can then be rounded to the appropriate size by the
578  * callee.
579  */
580 
581 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
582 {
583     uint32_t scaled, estimate;
584     uint64_t result_frac;
585     int result_exp;
586 
587     /* Handle sub-normals */
588     if (*exp == 0) {
589         if (extract64(frac, 51, 1) == 0) {
590             *exp = -1;
591             frac <<= 2;
592         } else {
593             frac <<= 1;
594         }
595     }
596 
597     /* scaled = UInt('1':fraction<51:44>) */
598     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
599     estimate = recip_estimate(scaled);
600 
601     result_exp = exp_off - *exp;
602     result_frac = deposit64(0, 44, 8, estimate);
603     if (result_exp == 0) {
604         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
605     } else if (result_exp == -1) {
606         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
607         result_exp = 0;
608     }
609 
610     *exp = result_exp;
611 
612     return result_frac;
613 }
614 
615 static bool round_to_inf(float_status *fpst, bool sign_bit)
616 {
617     switch (fpst->float_rounding_mode) {
618     case float_round_nearest_even: /* Round to Nearest */
619         return true;
620     case float_round_up: /* Round to +Inf */
621         return !sign_bit;
622     case float_round_down: /* Round to -Inf */
623         return sign_bit;
624     case float_round_to_zero: /* Round to Zero */
625         return false;
626     default:
627         g_assert_not_reached();
628     }
629 }
630 
631 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
632 {
633     float_status *fpst = fpstp;
634     float16 f16 = float16_squash_input_denormal(input, fpst);
635     uint32_t f16_val = float16_val(f16);
636     uint32_t f16_sign = float16_is_neg(f16);
637     int f16_exp = extract32(f16_val, 10, 5);
638     uint32_t f16_frac = extract32(f16_val, 0, 10);
639     uint64_t f64_frac;
640 
641     if (float16_is_any_nan(f16)) {
642         float16 nan = f16;
643         if (float16_is_signaling_nan(f16, fpst)) {
644             float_raise(float_flag_invalid, fpst);
645             if (!fpst->default_nan_mode) {
646                 nan = float16_silence_nan(f16, fpst);
647             }
648         }
649         if (fpst->default_nan_mode) {
650             nan =  float16_default_nan(fpst);
651         }
652         return nan;
653     } else if (float16_is_infinity(f16)) {
654         return float16_set_sign(float16_zero, float16_is_neg(f16));
655     } else if (float16_is_zero(f16)) {
656         float_raise(float_flag_divbyzero, fpst);
657         return float16_set_sign(float16_infinity, float16_is_neg(f16));
658     } else if (float16_abs(f16) < (1 << 8)) {
659         /* Abs(value) < 2.0^-16 */
660         float_raise(float_flag_overflow | float_flag_inexact, fpst);
661         if (round_to_inf(fpst, f16_sign)) {
662             return float16_set_sign(float16_infinity, f16_sign);
663         } else {
664             return float16_set_sign(float16_maxnorm, f16_sign);
665         }
666     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
667         float_raise(float_flag_underflow, fpst);
668         return float16_set_sign(float16_zero, float16_is_neg(f16));
669     }
670 
671     f64_frac = call_recip_estimate(&f16_exp, 29,
672                                    ((uint64_t) f16_frac) << (52 - 10));
673 
674     /* result = sign : result_exp<4:0> : fraction<51:42> */
675     f16_val = deposit32(0, 15, 1, f16_sign);
676     f16_val = deposit32(f16_val, 10, 5, f16_exp);
677     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
678     return make_float16(f16_val);
679 }
680 
681 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
682 {
683     float_status *fpst = fpstp;
684     float32 f32 = float32_squash_input_denormal(input, fpst);
685     uint32_t f32_val = float32_val(f32);
686     bool f32_sign = float32_is_neg(f32);
687     int f32_exp = extract32(f32_val, 23, 8);
688     uint32_t f32_frac = extract32(f32_val, 0, 23);
689     uint64_t f64_frac;
690 
691     if (float32_is_any_nan(f32)) {
692         float32 nan = f32;
693         if (float32_is_signaling_nan(f32, fpst)) {
694             float_raise(float_flag_invalid, fpst);
695             if (!fpst->default_nan_mode) {
696                 nan = float32_silence_nan(f32, fpst);
697             }
698         }
699         if (fpst->default_nan_mode) {
700             nan =  float32_default_nan(fpst);
701         }
702         return nan;
703     } else if (float32_is_infinity(f32)) {
704         return float32_set_sign(float32_zero, float32_is_neg(f32));
705     } else if (float32_is_zero(f32)) {
706         float_raise(float_flag_divbyzero, fpst);
707         return float32_set_sign(float32_infinity, float32_is_neg(f32));
708     } else if (float32_abs(f32) < (1ULL << 21)) {
709         /* Abs(value) < 2.0^-128 */
710         float_raise(float_flag_overflow | float_flag_inexact, fpst);
711         if (round_to_inf(fpst, f32_sign)) {
712             return float32_set_sign(float32_infinity, f32_sign);
713         } else {
714             return float32_set_sign(float32_maxnorm, f32_sign);
715         }
716     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
717         float_raise(float_flag_underflow, fpst);
718         return float32_set_sign(float32_zero, float32_is_neg(f32));
719     }
720 
721     f64_frac = call_recip_estimate(&f32_exp, 253,
722                                    ((uint64_t) f32_frac) << (52 - 23));
723 
724     /* result = sign : result_exp<7:0> : fraction<51:29> */
725     f32_val = deposit32(0, 31, 1, f32_sign);
726     f32_val = deposit32(f32_val, 23, 8, f32_exp);
727     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
728     return make_float32(f32_val);
729 }
730 
731 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
732 {
733     float_status *fpst = fpstp;
734     float64 f64 = float64_squash_input_denormal(input, fpst);
735     uint64_t f64_val = float64_val(f64);
736     bool f64_sign = float64_is_neg(f64);
737     int f64_exp = extract64(f64_val, 52, 11);
738     uint64_t f64_frac = extract64(f64_val, 0, 52);
739 
740     /* Deal with any special cases */
741     if (float64_is_any_nan(f64)) {
742         float64 nan = f64;
743         if (float64_is_signaling_nan(f64, fpst)) {
744             float_raise(float_flag_invalid, fpst);
745             if (!fpst->default_nan_mode) {
746                 nan = float64_silence_nan(f64, fpst);
747             }
748         }
749         if (fpst->default_nan_mode) {
750             nan =  float64_default_nan(fpst);
751         }
752         return nan;
753     } else if (float64_is_infinity(f64)) {
754         return float64_set_sign(float64_zero, float64_is_neg(f64));
755     } else if (float64_is_zero(f64)) {
756         float_raise(float_flag_divbyzero, fpst);
757         return float64_set_sign(float64_infinity, float64_is_neg(f64));
758     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
759         /* Abs(value) < 2.0^-1024 */
760         float_raise(float_flag_overflow | float_flag_inexact, fpst);
761         if (round_to_inf(fpst, f64_sign)) {
762             return float64_set_sign(float64_infinity, f64_sign);
763         } else {
764             return float64_set_sign(float64_maxnorm, f64_sign);
765         }
766     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
767         float_raise(float_flag_underflow, fpst);
768         return float64_set_sign(float64_zero, float64_is_neg(f64));
769     }
770 
771     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
772 
773     /* result = sign : result_exp<10:0> : fraction<51:0>; */
774     f64_val = deposit64(0, 63, 1, f64_sign);
775     f64_val = deposit64(f64_val, 52, 11, f64_exp);
776     f64_val = deposit64(f64_val, 0, 52, f64_frac);
777     return make_float64(f64_val);
778 }
779 
780 /* The algorithm that must be used to calculate the estimate
781  * is specified by the ARM ARM.
782  */
783 
784 static int do_recip_sqrt_estimate(int a)
785 {
786     int b, estimate;
787 
788     assert(128 <= a && a < 512);
789     if (a < 256) {
790         a = a * 2 + 1;
791     } else {
792         a = (a >> 1) << 1;
793         a = (a + 1) * 2;
794     }
795     b = 512;
796     while (a * (b + 1) * (b + 1) < (1 << 28)) {
797         b += 1;
798     }
799     estimate = (b + 1) / 2;
800     assert(256 <= estimate && estimate < 512);
801 
802     return estimate;
803 }
804 
805 
806 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
807 {
808     int estimate;
809     uint32_t scaled;
810 
811     if (*exp == 0) {
812         while (extract64(frac, 51, 1) == 0) {
813             frac = frac << 1;
814             *exp -= 1;
815         }
816         frac = extract64(frac, 0, 51) << 1;
817     }
818 
819     if (*exp & 1) {
820         /* scaled = UInt('01':fraction<51:45>) */
821         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
822     } else {
823         /* scaled = UInt('1':fraction<51:44>) */
824         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
825     }
826     estimate = do_recip_sqrt_estimate(scaled);
827 
828     *exp = (exp_off - *exp) / 2;
829     return extract64(estimate, 0, 8) << 44;
830 }
831 
832 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
833 {
834     float_status *s = fpstp;
835     float16 f16 = float16_squash_input_denormal(input, s);
836     uint16_t val = float16_val(f16);
837     bool f16_sign = float16_is_neg(f16);
838     int f16_exp = extract32(val, 10, 5);
839     uint16_t f16_frac = extract32(val, 0, 10);
840     uint64_t f64_frac;
841 
842     if (float16_is_any_nan(f16)) {
843         float16 nan = f16;
844         if (float16_is_signaling_nan(f16, s)) {
845             float_raise(float_flag_invalid, s);
846             if (!s->default_nan_mode) {
847                 nan = float16_silence_nan(f16, fpstp);
848             }
849         }
850         if (s->default_nan_mode) {
851             nan =  float16_default_nan(s);
852         }
853         return nan;
854     } else if (float16_is_zero(f16)) {
855         float_raise(float_flag_divbyzero, s);
856         return float16_set_sign(float16_infinity, f16_sign);
857     } else if (f16_sign) {
858         float_raise(float_flag_invalid, s);
859         return float16_default_nan(s);
860     } else if (float16_is_infinity(f16)) {
861         return float16_zero;
862     }
863 
864     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
865      * preserving the parity of the exponent.  */
866 
867     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
868 
869     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
870 
871     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
872     val = deposit32(0, 15, 1, f16_sign);
873     val = deposit32(val, 10, 5, f16_exp);
874     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
875     return make_float16(val);
876 }
877 
878 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
879 {
880     float_status *s = fpstp;
881     float32 f32 = float32_squash_input_denormal(input, s);
882     uint32_t val = float32_val(f32);
883     uint32_t f32_sign = float32_is_neg(f32);
884     int f32_exp = extract32(val, 23, 8);
885     uint32_t f32_frac = extract32(val, 0, 23);
886     uint64_t f64_frac;
887 
888     if (float32_is_any_nan(f32)) {
889         float32 nan = f32;
890         if (float32_is_signaling_nan(f32, s)) {
891             float_raise(float_flag_invalid, s);
892             if (!s->default_nan_mode) {
893                 nan = float32_silence_nan(f32, fpstp);
894             }
895         }
896         if (s->default_nan_mode) {
897             nan =  float32_default_nan(s);
898         }
899         return nan;
900     } else if (float32_is_zero(f32)) {
901         float_raise(float_flag_divbyzero, s);
902         return float32_set_sign(float32_infinity, float32_is_neg(f32));
903     } else if (float32_is_neg(f32)) {
904         float_raise(float_flag_invalid, s);
905         return float32_default_nan(s);
906     } else if (float32_is_infinity(f32)) {
907         return float32_zero;
908     }
909 
910     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
911      * preserving the parity of the exponent.  */
912 
913     f64_frac = ((uint64_t) f32_frac) << 29;
914 
915     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
916 
917     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
918     val = deposit32(0, 31, 1, f32_sign);
919     val = deposit32(val, 23, 8, f32_exp);
920     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
921     return make_float32(val);
922 }
923 
924 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
925 {
926     float_status *s = fpstp;
927     float64 f64 = float64_squash_input_denormal(input, s);
928     uint64_t val = float64_val(f64);
929     bool f64_sign = float64_is_neg(f64);
930     int f64_exp = extract64(val, 52, 11);
931     uint64_t f64_frac = extract64(val, 0, 52);
932 
933     if (float64_is_any_nan(f64)) {
934         float64 nan = f64;
935         if (float64_is_signaling_nan(f64, s)) {
936             float_raise(float_flag_invalid, s);
937             if (!s->default_nan_mode) {
938                 nan = float64_silence_nan(f64, fpstp);
939             }
940         }
941         if (s->default_nan_mode) {
942             nan =  float64_default_nan(s);
943         }
944         return nan;
945     } else if (float64_is_zero(f64)) {
946         float_raise(float_flag_divbyzero, s);
947         return float64_set_sign(float64_infinity, float64_is_neg(f64));
948     } else if (float64_is_neg(f64)) {
949         float_raise(float_flag_invalid, s);
950         return float64_default_nan(s);
951     } else if (float64_is_infinity(f64)) {
952         return float64_zero;
953     }
954 
955     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
956 
957     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
958     val = deposit64(0, 61, 1, f64_sign);
959     val = deposit64(val, 52, 11, f64_exp);
960     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
961     return make_float64(val);
962 }
963 
964 uint32_t HELPER(recpe_u32)(uint32_t a)
965 {
966     int input, estimate;
967 
968     if ((a & 0x80000000) == 0) {
969         return 0xffffffff;
970     }
971 
972     input = extract32(a, 23, 9);
973     estimate = recip_estimate(input);
974 
975     return deposit32(0, (32 - 9), 9, estimate);
976 }
977 
978 uint32_t HELPER(rsqrte_u32)(uint32_t a)
979 {
980     int estimate;
981 
982     if ((a & 0xc0000000) == 0) {
983         return 0xffffffff;
984     }
985 
986     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
987 
988     return deposit32(0, 23, 9, estimate);
989 }
990 
991 /* VFPv4 fused multiply-accumulate */
992 dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
993                                    dh_ctype_f16 c, void *fpstp)
994 {
995     float_status *fpst = fpstp;
996     return float16_muladd(a, b, c, 0, fpst);
997 }
998 
999 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1000 {
1001     float_status *fpst = fpstp;
1002     return float32_muladd(a, b, c, 0, fpst);
1003 }
1004 
1005 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1006 {
1007     float_status *fpst = fpstp;
1008     return float64_muladd(a, b, c, 0, fpst);
1009 }
1010 
1011 /* ARMv8 round to integral */
1012 dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
1013 {
1014     return float16_round_to_int(x, fp_status);
1015 }
1016 
1017 float32 HELPER(rints_exact)(float32 x, void *fp_status)
1018 {
1019     return float32_round_to_int(x, fp_status);
1020 }
1021 
1022 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1023 {
1024     return float64_round_to_int(x, fp_status);
1025 }
1026 
1027 dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
1028 {
1029     int old_flags = get_float_exception_flags(fp_status), new_flags;
1030     float16 ret;
1031 
1032     ret = float16_round_to_int(x, fp_status);
1033 
1034     /* Suppress any inexact exceptions the conversion produced */
1035     if (!(old_flags & float_flag_inexact)) {
1036         new_flags = get_float_exception_flags(fp_status);
1037         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1038     }
1039 
1040     return ret;
1041 }
1042 
1043 float32 HELPER(rints)(float32 x, void *fp_status)
1044 {
1045     int old_flags = get_float_exception_flags(fp_status), new_flags;
1046     float32 ret;
1047 
1048     ret = float32_round_to_int(x, fp_status);
1049 
1050     /* Suppress any inexact exceptions the conversion produced */
1051     if (!(old_flags & float_flag_inexact)) {
1052         new_flags = get_float_exception_flags(fp_status);
1053         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1054     }
1055 
1056     return ret;
1057 }
1058 
1059 float64 HELPER(rintd)(float64 x, void *fp_status)
1060 {
1061     int old_flags = get_float_exception_flags(fp_status), new_flags;
1062     float64 ret;
1063 
1064     ret = float64_round_to_int(x, fp_status);
1065 
1066     new_flags = get_float_exception_flags(fp_status);
1067 
1068     /* Suppress any inexact exceptions the conversion produced */
1069     if (!(old_flags & float_flag_inexact)) {
1070         new_flags = get_float_exception_flags(fp_status);
1071         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1072     }
1073 
1074     return ret;
1075 }
1076 
1077 /* Convert ARM rounding mode to softfloat */
1078 const FloatRoundMode arm_rmode_to_sf_map[] = {
1079     [FPROUNDING_TIEEVEN] = float_round_nearest_even,
1080     [FPROUNDING_POSINF] = float_round_up,
1081     [FPROUNDING_NEGINF] = float_round_down,
1082     [FPROUNDING_ZERO] = float_round_to_zero,
1083     [FPROUNDING_TIEAWAY] = float_round_ties_away,
1084     [FPROUNDING_ODD] = float_round_to_odd,
1085 };
1086 
1087 /*
1088  * Implement float64 to int32_t conversion without saturation;
1089  * the result is supplied modulo 2^32.
1090  */
1091 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1092 {
1093     float_status *status = vstatus;
1094     uint32_t frac, e_old, e_new;
1095     bool inexact;
1096 
1097     e_old = get_float_exception_flags(status);
1098     set_float_exception_flags(0, status);
1099     frac = float64_to_int32_modulo(value, float_round_to_zero, status);
1100     e_new = get_float_exception_flags(status);
1101     set_float_exception_flags(e_old | e_new, status);
1102 
1103     /* Normal inexact, denormal with flush-to-zero, or overflow or NaN */
1104     inexact = e_new & (float_flag_inexact |
1105                        float_flag_input_denormal |
1106                        float_flag_invalid);
1107 
1108     /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1109     inexact |= value == float64_chs(float64_zero);
1110 
1111     /* Pack the result and the env->ZF representation of Z together.  */
1112     return deposit64(frac, 32, 32, inexact);
1113 }
1114 
1115 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1116 {
1117     uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1118     uint32_t result = pair;
1119     uint32_t z = (pair >> 32) == 0;
1120 
1121     /* Store Z, clear NCV, in FPSCR.NZCV.  */
1122     env->vfp.xregs[ARM_VFP_FPSCR]
1123         = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1124 
1125     return result;
1126 }
1127 
1128 /* Round a float32 to an integer that fits in int32_t or int64_t.  */
1129 static float32 frint_s(float32 f, float_status *fpst, int intsize)
1130 {
1131     int old_flags = get_float_exception_flags(fpst);
1132     uint32_t exp = extract32(f, 23, 8);
1133 
1134     if (unlikely(exp == 0xff)) {
1135         /* NaN or Inf.  */
1136         goto overflow;
1137     }
1138 
1139     /* Round and re-extract the exponent.  */
1140     f = float32_round_to_int(f, fpst);
1141     exp = extract32(f, 23, 8);
1142 
1143     /* Validate the range of the result.  */
1144     if (exp < 126 + intsize) {
1145         /* abs(F) <= INT{N}_MAX */
1146         return f;
1147     }
1148     if (exp == 126 + intsize) {
1149         uint32_t sign = extract32(f, 31, 1);
1150         uint32_t frac = extract32(f, 0, 23);
1151         if (sign && frac == 0) {
1152             /* F == INT{N}_MIN */
1153             return f;
1154         }
1155     }
1156 
1157  overflow:
1158     /*
1159      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1160      * inexact exception float32_round_to_int may have raised.
1161      */
1162     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1163     return (0x100u + 126u + intsize) << 23;
1164 }
1165 
1166 float32 HELPER(frint32_s)(float32 f, void *fpst)
1167 {
1168     return frint_s(f, fpst, 32);
1169 }
1170 
1171 float32 HELPER(frint64_s)(float32 f, void *fpst)
1172 {
1173     return frint_s(f, fpst, 64);
1174 }
1175 
1176 /* Round a float64 to an integer that fits in int32_t or int64_t.  */
1177 static float64 frint_d(float64 f, float_status *fpst, int intsize)
1178 {
1179     int old_flags = get_float_exception_flags(fpst);
1180     uint32_t exp = extract64(f, 52, 11);
1181 
1182     if (unlikely(exp == 0x7ff)) {
1183         /* NaN or Inf.  */
1184         goto overflow;
1185     }
1186 
1187     /* Round and re-extract the exponent.  */
1188     f = float64_round_to_int(f, fpst);
1189     exp = extract64(f, 52, 11);
1190 
1191     /* Validate the range of the result.  */
1192     if (exp < 1022 + intsize) {
1193         /* abs(F) <= INT{N}_MAX */
1194         return f;
1195     }
1196     if (exp == 1022 + intsize) {
1197         uint64_t sign = extract64(f, 63, 1);
1198         uint64_t frac = extract64(f, 0, 52);
1199         if (sign && frac == 0) {
1200             /* F == INT{N}_MIN */
1201             return f;
1202         }
1203     }
1204 
1205  overflow:
1206     /*
1207      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1208      * inexact exception float64_round_to_int may have raised.
1209      */
1210     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1211     return (uint64_t)(0x800 + 1022 + intsize) << 52;
1212 }
1213 
1214 float64 HELPER(frint32_d)(float64 f, void *fpst)
1215 {
1216     return frint_d(f, fpst, 32);
1217 }
1218 
1219 float64 HELPER(frint64_d)(float64 f, void *fpst)
1220 {
1221     return frint_d(f, fpst, 64);
1222 }
1223 
1224 void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1225 {
1226     uint32_t syndrome;
1227 
1228     switch (reg) {
1229     case ARM_VFP_MVFR0:
1230     case ARM_VFP_MVFR1:
1231     case ARM_VFP_MVFR2:
1232         if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1233             return;
1234         }
1235         break;
1236     case ARM_VFP_FPSID:
1237         if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1238             return;
1239         }
1240         break;
1241     default:
1242         g_assert_not_reached();
1243     }
1244 
1245     syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1246                 | ARM_EL_IL
1247                 | (1 << 24) | (0xe << 20) | (7 << 14)
1248                 | (reg << 10) | (rt << 5) | 1);
1249 
1250     raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1251 }
1252 
1253 #endif
1254