1 /* 2 * ARM translation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * Copyright (c) 2005-2007 CodeSourcery 6 * Copyright (c) 2007 OpenedHand, Ltd. 7 * 8 * This library is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU Lesser General Public 10 * License as published by the Free Software Foundation; either 11 * version 2.1 of the License, or (at your option) any later version. 12 * 13 * This library is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * Lesser General Public License for more details. 17 * 18 * You should have received a copy of the GNU Lesser General Public 19 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 #include "qemu/osdep.h" 22 23 #include "translate.h" 24 #include "translate-a32.h" 25 #include "qemu/log.h" 26 #include "disas/disas.h" 27 #include "arm_ldst.h" 28 #include "semihosting/semihost.h" 29 #include "cpregs.h" 30 #include "exec/helper-proto.h" 31 32 #define HELPER_H "helper.h" 33 #include "exec/helper-info.c.inc" 34 #undef HELPER_H 35 36 #define ENABLE_ARCH_4T arm_dc_feature(s, ARM_FEATURE_V4T) 37 #define ENABLE_ARCH_5 arm_dc_feature(s, ARM_FEATURE_V5) 38 /* currently all emulated v5 cores are also v5TE, so don't bother */ 39 #define ENABLE_ARCH_5TE arm_dc_feature(s, ARM_FEATURE_V5) 40 #define ENABLE_ARCH_5J dc_isar_feature(aa32_jazelle, s) 41 #define ENABLE_ARCH_6 arm_dc_feature(s, ARM_FEATURE_V6) 42 #define ENABLE_ARCH_6K arm_dc_feature(s, ARM_FEATURE_V6K) 43 #define ENABLE_ARCH_6T2 arm_dc_feature(s, ARM_FEATURE_THUMB2) 44 #define ENABLE_ARCH_7 arm_dc_feature(s, ARM_FEATURE_V7) 45 #define ENABLE_ARCH_8 arm_dc_feature(s, ARM_FEATURE_V8) 46 47 /* These are TCG temporaries used only by the legacy iwMMXt decoder */ 48 static TCGv_i64 cpu_V0, cpu_V1, cpu_M0; 49 /* These are TCG globals which alias CPUARMState fields */ 50 static TCGv_i32 cpu_R[16]; 51 TCGv_i32 cpu_CF, cpu_NF, cpu_VF, cpu_ZF; 52 TCGv_i64 cpu_exclusive_addr; 53 TCGv_i64 cpu_exclusive_val; 54 55 static const char * const regnames[] = 56 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "pc" }; 58 59 60 /* initialize TCG globals. */ 61 void arm_translate_init(void) 62 { 63 int i; 64 65 for (i = 0; i < 16; i++) { 66 cpu_R[i] = tcg_global_mem_new_i32(cpu_env, 67 offsetof(CPUARMState, regs[i]), 68 regnames[i]); 69 } 70 cpu_CF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, CF), "CF"); 71 cpu_NF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, NF), "NF"); 72 cpu_VF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, VF), "VF"); 73 cpu_ZF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, ZF), "ZF"); 74 75 cpu_exclusive_addr = tcg_global_mem_new_i64(cpu_env, 76 offsetof(CPUARMState, exclusive_addr), "exclusive_addr"); 77 cpu_exclusive_val = tcg_global_mem_new_i64(cpu_env, 78 offsetof(CPUARMState, exclusive_val), "exclusive_val"); 79 80 a64_translate_init(); 81 } 82 83 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op) 84 { 85 /* Expand the encoded constant as per AdvSIMDExpandImm pseudocode */ 86 switch (cmode) { 87 case 0: case 1: 88 /* no-op */ 89 break; 90 case 2: case 3: 91 imm <<= 8; 92 break; 93 case 4: case 5: 94 imm <<= 16; 95 break; 96 case 6: case 7: 97 imm <<= 24; 98 break; 99 case 8: case 9: 100 imm |= imm << 16; 101 break; 102 case 10: case 11: 103 imm = (imm << 8) | (imm << 24); 104 break; 105 case 12: 106 imm = (imm << 8) | 0xff; 107 break; 108 case 13: 109 imm = (imm << 16) | 0xffff; 110 break; 111 case 14: 112 if (op) { 113 /* 114 * This and cmode == 15 op == 1 are the only cases where 115 * the top and bottom 32 bits of the encoded constant differ. 116 */ 117 uint64_t imm64 = 0; 118 int n; 119 120 for (n = 0; n < 8; n++) { 121 if (imm & (1 << n)) { 122 imm64 |= (0xffULL << (n * 8)); 123 } 124 } 125 return imm64; 126 } 127 imm |= (imm << 8) | (imm << 16) | (imm << 24); 128 break; 129 case 15: 130 if (op) { 131 /* Reserved encoding for AArch32; valid for AArch64 */ 132 uint64_t imm64 = (uint64_t)(imm & 0x3f) << 48; 133 if (imm & 0x80) { 134 imm64 |= 0x8000000000000000ULL; 135 } 136 if (imm & 0x40) { 137 imm64 |= 0x3fc0000000000000ULL; 138 } else { 139 imm64 |= 0x4000000000000000ULL; 140 } 141 return imm64; 142 } 143 imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19) 144 | ((imm & 0x40) ? (0x1f << 25) : (1 << 30)); 145 break; 146 } 147 if (op) { 148 imm = ~imm; 149 } 150 return dup_const(MO_32, imm); 151 } 152 153 /* Generate a label used for skipping this instruction */ 154 void arm_gen_condlabel(DisasContext *s) 155 { 156 if (!s->condjmp) { 157 s->condlabel = gen_disas_label(s); 158 s->condjmp = 1; 159 } 160 } 161 162 /* Flags for the disas_set_da_iss info argument: 163 * lower bits hold the Rt register number, higher bits are flags. 164 */ 165 typedef enum ISSInfo { 166 ISSNone = 0, 167 ISSRegMask = 0x1f, 168 ISSInvalid = (1 << 5), 169 ISSIsAcqRel = (1 << 6), 170 ISSIsWrite = (1 << 7), 171 ISSIs16Bit = (1 << 8), 172 } ISSInfo; 173 174 /* 175 * Store var into env + offset to a member with size bytes. 176 * Free var after use. 177 */ 178 void store_cpu_offset(TCGv_i32 var, int offset, int size) 179 { 180 switch (size) { 181 case 1: 182 tcg_gen_st8_i32(var, cpu_env, offset); 183 break; 184 case 4: 185 tcg_gen_st_i32(var, cpu_env, offset); 186 break; 187 default: 188 g_assert_not_reached(); 189 } 190 } 191 192 /* Save the syndrome information for a Data Abort */ 193 static void disas_set_da_iss(DisasContext *s, MemOp memop, ISSInfo issinfo) 194 { 195 uint32_t syn; 196 int sas = memop & MO_SIZE; 197 bool sse = memop & MO_SIGN; 198 bool is_acqrel = issinfo & ISSIsAcqRel; 199 bool is_write = issinfo & ISSIsWrite; 200 bool is_16bit = issinfo & ISSIs16Bit; 201 int srt = issinfo & ISSRegMask; 202 203 if (issinfo & ISSInvalid) { 204 /* Some callsites want to conditionally provide ISS info, 205 * eg "only if this was not a writeback" 206 */ 207 return; 208 } 209 210 if (srt == 15) { 211 /* For AArch32, insns where the src/dest is R15 never generate 212 * ISS information. Catching that here saves checking at all 213 * the call sites. 214 */ 215 return; 216 } 217 218 syn = syn_data_abort_with_iss(0, sas, sse, srt, 0, is_acqrel, 219 0, 0, 0, is_write, 0, is_16bit); 220 disas_set_insn_syndrome(s, syn); 221 } 222 223 static inline int get_a32_user_mem_index(DisasContext *s) 224 { 225 /* Return the core mmu_idx to use for A32/T32 "unprivileged load/store" 226 * insns: 227 * if PL2, UNPREDICTABLE (we choose to implement as if PL0) 228 * otherwise, access as if at PL0. 229 */ 230 switch (s->mmu_idx) { 231 case ARMMMUIdx_E3: 232 case ARMMMUIdx_E2: /* this one is UNPREDICTABLE */ 233 case ARMMMUIdx_E10_0: 234 case ARMMMUIdx_E10_1: 235 case ARMMMUIdx_E10_1_PAN: 236 return arm_to_core_mmu_idx(ARMMMUIdx_E10_0); 237 case ARMMMUIdx_MUser: 238 case ARMMMUIdx_MPriv: 239 return arm_to_core_mmu_idx(ARMMMUIdx_MUser); 240 case ARMMMUIdx_MUserNegPri: 241 case ARMMMUIdx_MPrivNegPri: 242 return arm_to_core_mmu_idx(ARMMMUIdx_MUserNegPri); 243 case ARMMMUIdx_MSUser: 244 case ARMMMUIdx_MSPriv: 245 return arm_to_core_mmu_idx(ARMMMUIdx_MSUser); 246 case ARMMMUIdx_MSUserNegPri: 247 case ARMMMUIdx_MSPrivNegPri: 248 return arm_to_core_mmu_idx(ARMMMUIdx_MSUserNegPri); 249 default: 250 g_assert_not_reached(); 251 } 252 } 253 254 /* The pc_curr difference for an architectural jump. */ 255 static target_long jmp_diff(DisasContext *s, target_long diff) 256 { 257 return diff + (s->thumb ? 4 : 8); 258 } 259 260 static void gen_pc_plus_diff(DisasContext *s, TCGv_i32 var, target_long diff) 261 { 262 assert(s->pc_save != -1); 263 if (tb_cflags(s->base.tb) & CF_PCREL) { 264 tcg_gen_addi_i32(var, cpu_R[15], (s->pc_curr - s->pc_save) + diff); 265 } else { 266 tcg_gen_movi_i32(var, s->pc_curr + diff); 267 } 268 } 269 270 /* Set a variable to the value of a CPU register. */ 271 void load_reg_var(DisasContext *s, TCGv_i32 var, int reg) 272 { 273 if (reg == 15) { 274 gen_pc_plus_diff(s, var, jmp_diff(s, 0)); 275 } else { 276 tcg_gen_mov_i32(var, cpu_R[reg]); 277 } 278 } 279 280 /* 281 * Create a new temp, REG + OFS, except PC is ALIGN(PC, 4). 282 * This is used for load/store for which use of PC implies (literal), 283 * or ADD that implies ADR. 284 */ 285 TCGv_i32 add_reg_for_lit(DisasContext *s, int reg, int ofs) 286 { 287 TCGv_i32 tmp = tcg_temp_new_i32(); 288 289 if (reg == 15) { 290 /* 291 * This address is computed from an aligned PC: 292 * subtract off the low bits. 293 */ 294 gen_pc_plus_diff(s, tmp, jmp_diff(s, ofs - (s->pc_curr & 3))); 295 } else { 296 tcg_gen_addi_i32(tmp, cpu_R[reg], ofs); 297 } 298 return tmp; 299 } 300 301 /* Set a CPU register. The source must be a temporary and will be 302 marked as dead. */ 303 void store_reg(DisasContext *s, int reg, TCGv_i32 var) 304 { 305 if (reg == 15) { 306 /* In Thumb mode, we must ignore bit 0. 307 * In ARM mode, for ARMv4 and ARMv5, it is UNPREDICTABLE if bits [1:0] 308 * are not 0b00, but for ARMv6 and above, we must ignore bits [1:0]. 309 * We choose to ignore [1:0] in ARM mode for all architecture versions. 310 */ 311 tcg_gen_andi_i32(var, var, s->thumb ? ~1 : ~3); 312 s->base.is_jmp = DISAS_JUMP; 313 s->pc_save = -1; 314 } else if (reg == 13 && arm_dc_feature(s, ARM_FEATURE_M)) { 315 /* For M-profile SP bits [1:0] are always zero */ 316 tcg_gen_andi_i32(var, var, ~3); 317 } 318 tcg_gen_mov_i32(cpu_R[reg], var); 319 } 320 321 /* 322 * Variant of store_reg which applies v8M stack-limit checks before updating 323 * SP. If the check fails this will result in an exception being taken. 324 * We disable the stack checks for CONFIG_USER_ONLY because we have 325 * no idea what the stack limits should be in that case. 326 * If stack checking is not being done this just acts like store_reg(). 327 */ 328 static void store_sp_checked(DisasContext *s, TCGv_i32 var) 329 { 330 #ifndef CONFIG_USER_ONLY 331 if (s->v8m_stackcheck) { 332 gen_helper_v8m_stackcheck(cpu_env, var); 333 } 334 #endif 335 store_reg(s, 13, var); 336 } 337 338 /* Value extensions. */ 339 #define gen_uxtb(var) tcg_gen_ext8u_i32(var, var) 340 #define gen_uxth(var) tcg_gen_ext16u_i32(var, var) 341 #define gen_sxtb(var) tcg_gen_ext8s_i32(var, var) 342 #define gen_sxth(var) tcg_gen_ext16s_i32(var, var) 343 344 #define gen_sxtb16(var) gen_helper_sxtb16(var, var) 345 #define gen_uxtb16(var) gen_helper_uxtb16(var, var) 346 347 void gen_set_cpsr(TCGv_i32 var, uint32_t mask) 348 { 349 gen_helper_cpsr_write(cpu_env, var, tcg_constant_i32(mask)); 350 } 351 352 static void gen_rebuild_hflags(DisasContext *s, bool new_el) 353 { 354 bool m_profile = arm_dc_feature(s, ARM_FEATURE_M); 355 356 if (new_el) { 357 if (m_profile) { 358 gen_helper_rebuild_hflags_m32_newel(cpu_env); 359 } else { 360 gen_helper_rebuild_hflags_a32_newel(cpu_env); 361 } 362 } else { 363 TCGv_i32 tcg_el = tcg_constant_i32(s->current_el); 364 if (m_profile) { 365 gen_helper_rebuild_hflags_m32(cpu_env, tcg_el); 366 } else { 367 gen_helper_rebuild_hflags_a32(cpu_env, tcg_el); 368 } 369 } 370 } 371 372 static void gen_exception_internal(int excp) 373 { 374 assert(excp_is_internal(excp)); 375 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 376 } 377 378 static void gen_singlestep_exception(DisasContext *s) 379 { 380 /* We just completed step of an insn. Move from Active-not-pending 381 * to Active-pending, and then also take the swstep exception. 382 * This corresponds to making the (IMPDEF) choice to prioritize 383 * swstep exceptions over asynchronous exceptions taken to an exception 384 * level where debug is disabled. This choice has the advantage that 385 * we do not need to maintain internal state corresponding to the 386 * ISV/EX syndrome bits between completion of the step and generation 387 * of the exception, and our syndrome information is always correct. 388 */ 389 gen_ss_advance(s); 390 gen_swstep_exception(s, 1, s->is_ldex); 391 s->base.is_jmp = DISAS_NORETURN; 392 } 393 394 void clear_eci_state(DisasContext *s) 395 { 396 /* 397 * Clear any ECI/ICI state: used when a load multiple/store 398 * multiple insn executes. 399 */ 400 if (s->eci) { 401 store_cpu_field_constant(0, condexec_bits); 402 s->eci = 0; 403 } 404 } 405 406 static void gen_smul_dual(TCGv_i32 a, TCGv_i32 b) 407 { 408 TCGv_i32 tmp1 = tcg_temp_new_i32(); 409 TCGv_i32 tmp2 = tcg_temp_new_i32(); 410 tcg_gen_ext16s_i32(tmp1, a); 411 tcg_gen_ext16s_i32(tmp2, b); 412 tcg_gen_mul_i32(tmp1, tmp1, tmp2); 413 tcg_gen_sari_i32(a, a, 16); 414 tcg_gen_sari_i32(b, b, 16); 415 tcg_gen_mul_i32(b, b, a); 416 tcg_gen_mov_i32(a, tmp1); 417 } 418 419 /* Byteswap each halfword. */ 420 void gen_rev16(TCGv_i32 dest, TCGv_i32 var) 421 { 422 TCGv_i32 tmp = tcg_temp_new_i32(); 423 TCGv_i32 mask = tcg_constant_i32(0x00ff00ff); 424 tcg_gen_shri_i32(tmp, var, 8); 425 tcg_gen_and_i32(tmp, tmp, mask); 426 tcg_gen_and_i32(var, var, mask); 427 tcg_gen_shli_i32(var, var, 8); 428 tcg_gen_or_i32(dest, var, tmp); 429 } 430 431 /* Byteswap low halfword and sign extend. */ 432 static void gen_revsh(TCGv_i32 dest, TCGv_i32 var) 433 { 434 tcg_gen_bswap16_i32(var, var, TCG_BSWAP_OS); 435 } 436 437 /* Dual 16-bit add. Result placed in t0 and t1 is marked as dead. 438 tmp = (t0 ^ t1) & 0x8000; 439 t0 &= ~0x8000; 440 t1 &= ~0x8000; 441 t0 = (t0 + t1) ^ tmp; 442 */ 443 444 static void gen_add16(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 445 { 446 TCGv_i32 tmp = tcg_temp_new_i32(); 447 tcg_gen_xor_i32(tmp, t0, t1); 448 tcg_gen_andi_i32(tmp, tmp, 0x8000); 449 tcg_gen_andi_i32(t0, t0, ~0x8000); 450 tcg_gen_andi_i32(t1, t1, ~0x8000); 451 tcg_gen_add_i32(t0, t0, t1); 452 tcg_gen_xor_i32(dest, t0, tmp); 453 } 454 455 /* Set N and Z flags from var. */ 456 static inline void gen_logic_CC(TCGv_i32 var) 457 { 458 tcg_gen_mov_i32(cpu_NF, var); 459 tcg_gen_mov_i32(cpu_ZF, var); 460 } 461 462 /* dest = T0 + T1 + CF. */ 463 static void gen_add_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 464 { 465 tcg_gen_add_i32(dest, t0, t1); 466 tcg_gen_add_i32(dest, dest, cpu_CF); 467 } 468 469 /* dest = T0 - T1 + CF - 1. */ 470 static void gen_sub_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 471 { 472 tcg_gen_sub_i32(dest, t0, t1); 473 tcg_gen_add_i32(dest, dest, cpu_CF); 474 tcg_gen_subi_i32(dest, dest, 1); 475 } 476 477 /* dest = T0 + T1. Compute C, N, V and Z flags */ 478 static void gen_add_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 479 { 480 TCGv_i32 tmp = tcg_temp_new_i32(); 481 tcg_gen_movi_i32(tmp, 0); 482 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, t1, tmp); 483 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 484 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); 485 tcg_gen_xor_i32(tmp, t0, t1); 486 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 487 tcg_gen_mov_i32(dest, cpu_NF); 488 } 489 490 /* dest = T0 + T1 + CF. Compute C, N, V and Z flags */ 491 static void gen_adc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 492 { 493 TCGv_i32 tmp = tcg_temp_new_i32(); 494 if (TCG_TARGET_HAS_add2_i32) { 495 tcg_gen_movi_i32(tmp, 0); 496 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, cpu_CF, tmp); 497 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1, tmp); 498 } else { 499 TCGv_i64 q0 = tcg_temp_new_i64(); 500 TCGv_i64 q1 = tcg_temp_new_i64(); 501 tcg_gen_extu_i32_i64(q0, t0); 502 tcg_gen_extu_i32_i64(q1, t1); 503 tcg_gen_add_i64(q0, q0, q1); 504 tcg_gen_extu_i32_i64(q1, cpu_CF); 505 tcg_gen_add_i64(q0, q0, q1); 506 tcg_gen_extr_i64_i32(cpu_NF, cpu_CF, q0); 507 } 508 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 509 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); 510 tcg_gen_xor_i32(tmp, t0, t1); 511 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 512 tcg_gen_mov_i32(dest, cpu_NF); 513 } 514 515 /* dest = T0 - T1. Compute C, N, V and Z flags */ 516 static void gen_sub_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 517 { 518 TCGv_i32 tmp; 519 tcg_gen_sub_i32(cpu_NF, t0, t1); 520 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 521 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0, t1); 522 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); 523 tmp = tcg_temp_new_i32(); 524 tcg_gen_xor_i32(tmp, t0, t1); 525 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 526 tcg_gen_mov_i32(dest, cpu_NF); 527 } 528 529 /* dest = T0 + ~T1 + CF. Compute C, N, V and Z flags */ 530 static void gen_sbc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 531 { 532 TCGv_i32 tmp = tcg_temp_new_i32(); 533 tcg_gen_not_i32(tmp, t1); 534 gen_adc_CC(dest, t0, tmp); 535 } 536 537 #define GEN_SHIFT(name) \ 538 static void gen_##name(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) \ 539 { \ 540 TCGv_i32 tmpd = tcg_temp_new_i32(); \ 541 TCGv_i32 tmp1 = tcg_temp_new_i32(); \ 542 TCGv_i32 zero = tcg_constant_i32(0); \ 543 tcg_gen_andi_i32(tmp1, t1, 0x1f); \ 544 tcg_gen_##name##_i32(tmpd, t0, tmp1); \ 545 tcg_gen_andi_i32(tmp1, t1, 0xe0); \ 546 tcg_gen_movcond_i32(TCG_COND_NE, dest, tmp1, zero, zero, tmpd); \ 547 } 548 GEN_SHIFT(shl) 549 GEN_SHIFT(shr) 550 #undef GEN_SHIFT 551 552 static void gen_sar(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 553 { 554 TCGv_i32 tmp1 = tcg_temp_new_i32(); 555 556 tcg_gen_andi_i32(tmp1, t1, 0xff); 557 tcg_gen_umin_i32(tmp1, tmp1, tcg_constant_i32(31)); 558 tcg_gen_sar_i32(dest, t0, tmp1); 559 } 560 561 static void shifter_out_im(TCGv_i32 var, int shift) 562 { 563 tcg_gen_extract_i32(cpu_CF, var, shift, 1); 564 } 565 566 /* Shift by immediate. Includes special handling for shift == 0. */ 567 static inline void gen_arm_shift_im(TCGv_i32 var, int shiftop, 568 int shift, int flags) 569 { 570 switch (shiftop) { 571 case 0: /* LSL */ 572 if (shift != 0) { 573 if (flags) 574 shifter_out_im(var, 32 - shift); 575 tcg_gen_shli_i32(var, var, shift); 576 } 577 break; 578 case 1: /* LSR */ 579 if (shift == 0) { 580 if (flags) { 581 tcg_gen_shri_i32(cpu_CF, var, 31); 582 } 583 tcg_gen_movi_i32(var, 0); 584 } else { 585 if (flags) 586 shifter_out_im(var, shift - 1); 587 tcg_gen_shri_i32(var, var, shift); 588 } 589 break; 590 case 2: /* ASR */ 591 if (shift == 0) 592 shift = 32; 593 if (flags) 594 shifter_out_im(var, shift - 1); 595 if (shift == 32) 596 shift = 31; 597 tcg_gen_sari_i32(var, var, shift); 598 break; 599 case 3: /* ROR/RRX */ 600 if (shift != 0) { 601 if (flags) 602 shifter_out_im(var, shift - 1); 603 tcg_gen_rotri_i32(var, var, shift); break; 604 } else { 605 TCGv_i32 tmp = tcg_temp_new_i32(); 606 tcg_gen_shli_i32(tmp, cpu_CF, 31); 607 if (flags) 608 shifter_out_im(var, 0); 609 tcg_gen_shri_i32(var, var, 1); 610 tcg_gen_or_i32(var, var, tmp); 611 } 612 } 613 }; 614 615 static inline void gen_arm_shift_reg(TCGv_i32 var, int shiftop, 616 TCGv_i32 shift, int flags) 617 { 618 if (flags) { 619 switch (shiftop) { 620 case 0: gen_helper_shl_cc(var, cpu_env, var, shift); break; 621 case 1: gen_helper_shr_cc(var, cpu_env, var, shift); break; 622 case 2: gen_helper_sar_cc(var, cpu_env, var, shift); break; 623 case 3: gen_helper_ror_cc(var, cpu_env, var, shift); break; 624 } 625 } else { 626 switch (shiftop) { 627 case 0: 628 gen_shl(var, var, shift); 629 break; 630 case 1: 631 gen_shr(var, var, shift); 632 break; 633 case 2: 634 gen_sar(var, var, shift); 635 break; 636 case 3: tcg_gen_andi_i32(shift, shift, 0x1f); 637 tcg_gen_rotr_i32(var, var, shift); break; 638 } 639 } 640 } 641 642 /* 643 * Generate a conditional based on ARM condition code cc. 644 * This is common between ARM and Aarch64 targets. 645 */ 646 void arm_test_cc(DisasCompare *cmp, int cc) 647 { 648 TCGv_i32 value; 649 TCGCond cond; 650 651 switch (cc) { 652 case 0: /* eq: Z */ 653 case 1: /* ne: !Z */ 654 cond = TCG_COND_EQ; 655 value = cpu_ZF; 656 break; 657 658 case 2: /* cs: C */ 659 case 3: /* cc: !C */ 660 cond = TCG_COND_NE; 661 value = cpu_CF; 662 break; 663 664 case 4: /* mi: N */ 665 case 5: /* pl: !N */ 666 cond = TCG_COND_LT; 667 value = cpu_NF; 668 break; 669 670 case 6: /* vs: V */ 671 case 7: /* vc: !V */ 672 cond = TCG_COND_LT; 673 value = cpu_VF; 674 break; 675 676 case 8: /* hi: C && !Z */ 677 case 9: /* ls: !C || Z -> !(C && !Z) */ 678 cond = TCG_COND_NE; 679 value = tcg_temp_new_i32(); 680 /* CF is 1 for C, so -CF is an all-bits-set mask for C; 681 ZF is non-zero for !Z; so AND the two subexpressions. */ 682 tcg_gen_neg_i32(value, cpu_CF); 683 tcg_gen_and_i32(value, value, cpu_ZF); 684 break; 685 686 case 10: /* ge: N == V -> N ^ V == 0 */ 687 case 11: /* lt: N != V -> N ^ V != 0 */ 688 /* Since we're only interested in the sign bit, == 0 is >= 0. */ 689 cond = TCG_COND_GE; 690 value = tcg_temp_new_i32(); 691 tcg_gen_xor_i32(value, cpu_VF, cpu_NF); 692 break; 693 694 case 12: /* gt: !Z && N == V */ 695 case 13: /* le: Z || N != V */ 696 cond = TCG_COND_NE; 697 value = tcg_temp_new_i32(); 698 /* (N == V) is equal to the sign bit of ~(NF ^ VF). Propagate 699 * the sign bit then AND with ZF to yield the result. */ 700 tcg_gen_xor_i32(value, cpu_VF, cpu_NF); 701 tcg_gen_sari_i32(value, value, 31); 702 tcg_gen_andc_i32(value, cpu_ZF, value); 703 break; 704 705 case 14: /* always */ 706 case 15: /* always */ 707 /* Use the ALWAYS condition, which will fold early. 708 * It doesn't matter what we use for the value. */ 709 cond = TCG_COND_ALWAYS; 710 value = cpu_ZF; 711 goto no_invert; 712 713 default: 714 fprintf(stderr, "Bad condition code 0x%x\n", cc); 715 abort(); 716 } 717 718 if (cc & 1) { 719 cond = tcg_invert_cond(cond); 720 } 721 722 no_invert: 723 cmp->cond = cond; 724 cmp->value = value; 725 } 726 727 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label) 728 { 729 tcg_gen_brcondi_i32(cmp->cond, cmp->value, 0, label); 730 } 731 732 void arm_gen_test_cc(int cc, TCGLabel *label) 733 { 734 DisasCompare cmp; 735 arm_test_cc(&cmp, cc); 736 arm_jump_cc(&cmp, label); 737 } 738 739 void gen_set_condexec(DisasContext *s) 740 { 741 if (s->condexec_mask) { 742 uint32_t val = (s->condexec_cond << 4) | (s->condexec_mask >> 1); 743 744 store_cpu_field_constant(val, condexec_bits); 745 } 746 } 747 748 void gen_update_pc(DisasContext *s, target_long diff) 749 { 750 gen_pc_plus_diff(s, cpu_R[15], diff); 751 s->pc_save = s->pc_curr + diff; 752 } 753 754 /* Set PC and Thumb state from var. var is marked as dead. */ 755 static inline void gen_bx(DisasContext *s, TCGv_i32 var) 756 { 757 s->base.is_jmp = DISAS_JUMP; 758 tcg_gen_andi_i32(cpu_R[15], var, ~1); 759 tcg_gen_andi_i32(var, var, 1); 760 store_cpu_field(var, thumb); 761 s->pc_save = -1; 762 } 763 764 /* 765 * Set PC and Thumb state from var. var is marked as dead. 766 * For M-profile CPUs, include logic to detect exception-return 767 * branches and handle them. This is needed for Thumb POP/LDM to PC, LDR to PC, 768 * and BX reg, and no others, and happens only for code in Handler mode. 769 * The Security Extension also requires us to check for the FNC_RETURN 770 * which signals a function return from non-secure state; this can happen 771 * in both Handler and Thread mode. 772 * To avoid having to do multiple comparisons in inline generated code, 773 * we make the check we do here loose, so it will match for EXC_RETURN 774 * in Thread mode. For system emulation do_v7m_exception_exit() checks 775 * for these spurious cases and returns without doing anything (giving 776 * the same behaviour as for a branch to a non-magic address). 777 * 778 * In linux-user mode it is unclear what the right behaviour for an 779 * attempted FNC_RETURN should be, because in real hardware this will go 780 * directly to Secure code (ie not the Linux kernel) which will then treat 781 * the error in any way it chooses. For QEMU we opt to make the FNC_RETURN 782 * attempt behave the way it would on a CPU without the security extension, 783 * which is to say "like a normal branch". That means we can simply treat 784 * all branches as normal with no magic address behaviour. 785 */ 786 static inline void gen_bx_excret(DisasContext *s, TCGv_i32 var) 787 { 788 /* Generate the same code here as for a simple bx, but flag via 789 * s->base.is_jmp that we need to do the rest of the work later. 790 */ 791 gen_bx(s, var); 792 #ifndef CONFIG_USER_ONLY 793 if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY) || 794 (s->v7m_handler_mode && arm_dc_feature(s, ARM_FEATURE_M))) { 795 s->base.is_jmp = DISAS_BX_EXCRET; 796 } 797 #endif 798 } 799 800 static inline void gen_bx_excret_final_code(DisasContext *s) 801 { 802 /* Generate the code to finish possible exception return and end the TB */ 803 DisasLabel excret_label = gen_disas_label(s); 804 uint32_t min_magic; 805 806 if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY)) { 807 /* Covers FNC_RETURN and EXC_RETURN magic */ 808 min_magic = FNC_RETURN_MIN_MAGIC; 809 } else { 810 /* EXC_RETURN magic only */ 811 min_magic = EXC_RETURN_MIN_MAGIC; 812 } 813 814 /* Is the new PC value in the magic range indicating exception return? */ 815 tcg_gen_brcondi_i32(TCG_COND_GEU, cpu_R[15], min_magic, excret_label.label); 816 /* No: end the TB as we would for a DISAS_JMP */ 817 if (s->ss_active) { 818 gen_singlestep_exception(s); 819 } else { 820 tcg_gen_exit_tb(NULL, 0); 821 } 822 set_disas_label(s, excret_label); 823 /* Yes: this is an exception return. 824 * At this point in runtime env->regs[15] and env->thumb will hold 825 * the exception-return magic number, which do_v7m_exception_exit() 826 * will read. Nothing else will be able to see those values because 827 * the cpu-exec main loop guarantees that we will always go straight 828 * from raising the exception to the exception-handling code. 829 * 830 * gen_ss_advance(s) does nothing on M profile currently but 831 * calling it is conceptually the right thing as we have executed 832 * this instruction (compare SWI, HVC, SMC handling). 833 */ 834 gen_ss_advance(s); 835 gen_exception_internal(EXCP_EXCEPTION_EXIT); 836 } 837 838 static inline void gen_bxns(DisasContext *s, int rm) 839 { 840 TCGv_i32 var = load_reg(s, rm); 841 842 /* The bxns helper may raise an EXCEPTION_EXIT exception, so in theory 843 * we need to sync state before calling it, but: 844 * - we don't need to do gen_update_pc() because the bxns helper will 845 * always set the PC itself 846 * - we don't need to do gen_set_condexec() because BXNS is UNPREDICTABLE 847 * unless it's outside an IT block or the last insn in an IT block, 848 * so we know that condexec == 0 (already set at the top of the TB) 849 * is correct in the non-UNPREDICTABLE cases, and we can choose 850 * "zeroes the IT bits" as our UNPREDICTABLE behaviour otherwise. 851 */ 852 gen_helper_v7m_bxns(cpu_env, var); 853 s->base.is_jmp = DISAS_EXIT; 854 } 855 856 static inline void gen_blxns(DisasContext *s, int rm) 857 { 858 TCGv_i32 var = load_reg(s, rm); 859 860 /* We don't need to sync condexec state, for the same reason as bxns. 861 * We do however need to set the PC, because the blxns helper reads it. 862 * The blxns helper may throw an exception. 863 */ 864 gen_update_pc(s, curr_insn_len(s)); 865 gen_helper_v7m_blxns(cpu_env, var); 866 s->base.is_jmp = DISAS_EXIT; 867 } 868 869 /* Variant of store_reg which uses branch&exchange logic when storing 870 to r15 in ARM architecture v7 and above. The source must be a temporary 871 and will be marked as dead. */ 872 static inline void store_reg_bx(DisasContext *s, int reg, TCGv_i32 var) 873 { 874 if (reg == 15 && ENABLE_ARCH_7) { 875 gen_bx(s, var); 876 } else { 877 store_reg(s, reg, var); 878 } 879 } 880 881 /* Variant of store_reg which uses branch&exchange logic when storing 882 * to r15 in ARM architecture v5T and above. This is used for storing 883 * the results of a LDR/LDM/POP into r15, and corresponds to the cases 884 * in the ARM ARM which use the LoadWritePC() pseudocode function. */ 885 static inline void store_reg_from_load(DisasContext *s, int reg, TCGv_i32 var) 886 { 887 if (reg == 15 && ENABLE_ARCH_5) { 888 gen_bx_excret(s, var); 889 } else { 890 store_reg(s, reg, var); 891 } 892 } 893 894 #ifdef CONFIG_USER_ONLY 895 #define IS_USER_ONLY 1 896 #else 897 #define IS_USER_ONLY 0 898 #endif 899 900 MemOp pow2_align(unsigned i) 901 { 902 static const MemOp mop_align[] = { 903 0, MO_ALIGN_2, MO_ALIGN_4, MO_ALIGN_8, MO_ALIGN_16, 904 /* 905 * FIXME: TARGET_PAGE_BITS_MIN affects TLB_FLAGS_MASK such 906 * that 256-bit alignment (MO_ALIGN_32) cannot be supported: 907 * see get_alignment_bits(). Enforce only 128-bit alignment for now. 908 */ 909 MO_ALIGN_16 910 }; 911 g_assert(i < ARRAY_SIZE(mop_align)); 912 return mop_align[i]; 913 } 914 915 /* 916 * Abstractions of "generate code to do a guest load/store for 917 * AArch32", where a vaddr is always 32 bits (and is zero 918 * extended if we're a 64 bit core) and data is also 919 * 32 bits unless specifically doing a 64 bit access. 920 * These functions work like tcg_gen_qemu_{ld,st}* except 921 * that the address argument is TCGv_i32 rather than TCGv. 922 */ 923 924 static TCGv gen_aa32_addr(DisasContext *s, TCGv_i32 a32, MemOp op) 925 { 926 TCGv addr = tcg_temp_new(); 927 tcg_gen_extu_i32_tl(addr, a32); 928 929 /* Not needed for user-mode BE32, where we use MO_BE instead. */ 930 if (!IS_USER_ONLY && s->sctlr_b && (op & MO_SIZE) < MO_32) { 931 tcg_gen_xori_tl(addr, addr, 4 - (1 << (op & MO_SIZE))); 932 } 933 return addr; 934 } 935 936 /* 937 * Internal routines are used for NEON cases where the endianness 938 * and/or alignment has already been taken into account and manipulated. 939 */ 940 void gen_aa32_ld_internal_i32(DisasContext *s, TCGv_i32 val, 941 TCGv_i32 a32, int index, MemOp opc) 942 { 943 TCGv addr = gen_aa32_addr(s, a32, opc); 944 tcg_gen_qemu_ld_i32(val, addr, index, opc); 945 } 946 947 void gen_aa32_st_internal_i32(DisasContext *s, TCGv_i32 val, 948 TCGv_i32 a32, int index, MemOp opc) 949 { 950 TCGv addr = gen_aa32_addr(s, a32, opc); 951 tcg_gen_qemu_st_i32(val, addr, index, opc); 952 } 953 954 void gen_aa32_ld_internal_i64(DisasContext *s, TCGv_i64 val, 955 TCGv_i32 a32, int index, MemOp opc) 956 { 957 TCGv addr = gen_aa32_addr(s, a32, opc); 958 959 tcg_gen_qemu_ld_i64(val, addr, index, opc); 960 961 /* Not needed for user-mode BE32, where we use MO_BE instead. */ 962 if (!IS_USER_ONLY && s->sctlr_b && (opc & MO_SIZE) == MO_64) { 963 tcg_gen_rotri_i64(val, val, 32); 964 } 965 } 966 967 void gen_aa32_st_internal_i64(DisasContext *s, TCGv_i64 val, 968 TCGv_i32 a32, int index, MemOp opc) 969 { 970 TCGv addr = gen_aa32_addr(s, a32, opc); 971 972 /* Not needed for user-mode BE32, where we use MO_BE instead. */ 973 if (!IS_USER_ONLY && s->sctlr_b && (opc & MO_SIZE) == MO_64) { 974 TCGv_i64 tmp = tcg_temp_new_i64(); 975 tcg_gen_rotri_i64(tmp, val, 32); 976 tcg_gen_qemu_st_i64(tmp, addr, index, opc); 977 } else { 978 tcg_gen_qemu_st_i64(val, addr, index, opc); 979 } 980 } 981 982 void gen_aa32_ld_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32, 983 int index, MemOp opc) 984 { 985 gen_aa32_ld_internal_i32(s, val, a32, index, finalize_memop(s, opc)); 986 } 987 988 void gen_aa32_st_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32, 989 int index, MemOp opc) 990 { 991 gen_aa32_st_internal_i32(s, val, a32, index, finalize_memop(s, opc)); 992 } 993 994 void gen_aa32_ld_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32, 995 int index, MemOp opc) 996 { 997 gen_aa32_ld_internal_i64(s, val, a32, index, finalize_memop(s, opc)); 998 } 999 1000 void gen_aa32_st_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32, 1001 int index, MemOp opc) 1002 { 1003 gen_aa32_st_internal_i64(s, val, a32, index, finalize_memop(s, opc)); 1004 } 1005 1006 #define DO_GEN_LD(SUFF, OPC) \ 1007 static inline void gen_aa32_ld##SUFF(DisasContext *s, TCGv_i32 val, \ 1008 TCGv_i32 a32, int index) \ 1009 { \ 1010 gen_aa32_ld_i32(s, val, a32, index, OPC); \ 1011 } 1012 1013 #define DO_GEN_ST(SUFF, OPC) \ 1014 static inline void gen_aa32_st##SUFF(DisasContext *s, TCGv_i32 val, \ 1015 TCGv_i32 a32, int index) \ 1016 { \ 1017 gen_aa32_st_i32(s, val, a32, index, OPC); \ 1018 } 1019 1020 static inline void gen_hvc(DisasContext *s, int imm16) 1021 { 1022 /* The pre HVC helper handles cases when HVC gets trapped 1023 * as an undefined insn by runtime configuration (ie before 1024 * the insn really executes). 1025 */ 1026 gen_update_pc(s, 0); 1027 gen_helper_pre_hvc(cpu_env); 1028 /* Otherwise we will treat this as a real exception which 1029 * happens after execution of the insn. (The distinction matters 1030 * for the PC value reported to the exception handler and also 1031 * for single stepping.) 1032 */ 1033 s->svc_imm = imm16; 1034 gen_update_pc(s, curr_insn_len(s)); 1035 s->base.is_jmp = DISAS_HVC; 1036 } 1037 1038 static inline void gen_smc(DisasContext *s) 1039 { 1040 /* As with HVC, we may take an exception either before or after 1041 * the insn executes. 1042 */ 1043 gen_update_pc(s, 0); 1044 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa32_smc())); 1045 gen_update_pc(s, curr_insn_len(s)); 1046 s->base.is_jmp = DISAS_SMC; 1047 } 1048 1049 static void gen_exception_internal_insn(DisasContext *s, int excp) 1050 { 1051 gen_set_condexec(s); 1052 gen_update_pc(s, 0); 1053 gen_exception_internal(excp); 1054 s->base.is_jmp = DISAS_NORETURN; 1055 } 1056 1057 static void gen_exception_el_v(int excp, uint32_t syndrome, TCGv_i32 tcg_el) 1058 { 1059 gen_helper_exception_with_syndrome_el(cpu_env, tcg_constant_i32(excp), 1060 tcg_constant_i32(syndrome), tcg_el); 1061 } 1062 1063 static void gen_exception_el(int excp, uint32_t syndrome, uint32_t target_el) 1064 { 1065 gen_exception_el_v(excp, syndrome, tcg_constant_i32(target_el)); 1066 } 1067 1068 static void gen_exception(int excp, uint32_t syndrome) 1069 { 1070 gen_helper_exception_with_syndrome(cpu_env, tcg_constant_i32(excp), 1071 tcg_constant_i32(syndrome)); 1072 } 1073 1074 static void gen_exception_insn_el_v(DisasContext *s, target_long pc_diff, 1075 int excp, uint32_t syn, TCGv_i32 tcg_el) 1076 { 1077 if (s->aarch64) { 1078 gen_a64_update_pc(s, pc_diff); 1079 } else { 1080 gen_set_condexec(s); 1081 gen_update_pc(s, pc_diff); 1082 } 1083 gen_exception_el_v(excp, syn, tcg_el); 1084 s->base.is_jmp = DISAS_NORETURN; 1085 } 1086 1087 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp, 1088 uint32_t syn, uint32_t target_el) 1089 { 1090 gen_exception_insn_el_v(s, pc_diff, excp, syn, 1091 tcg_constant_i32(target_el)); 1092 } 1093 1094 void gen_exception_insn(DisasContext *s, target_long pc_diff, 1095 int excp, uint32_t syn) 1096 { 1097 if (s->aarch64) { 1098 gen_a64_update_pc(s, pc_diff); 1099 } else { 1100 gen_set_condexec(s); 1101 gen_update_pc(s, pc_diff); 1102 } 1103 gen_exception(excp, syn); 1104 s->base.is_jmp = DISAS_NORETURN; 1105 } 1106 1107 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syn) 1108 { 1109 gen_set_condexec(s); 1110 gen_update_pc(s, 0); 1111 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syn)); 1112 s->base.is_jmp = DISAS_NORETURN; 1113 } 1114 1115 void unallocated_encoding(DisasContext *s) 1116 { 1117 /* Unallocated and reserved encodings are uncategorized */ 1118 gen_exception_insn(s, 0, EXCP_UDEF, syn_uncategorized()); 1119 } 1120 1121 /* Force a TB lookup after an instruction that changes the CPU state. */ 1122 void gen_lookup_tb(DisasContext *s) 1123 { 1124 gen_pc_plus_diff(s, cpu_R[15], curr_insn_len(s)); 1125 s->base.is_jmp = DISAS_EXIT; 1126 } 1127 1128 static inline void gen_hlt(DisasContext *s, int imm) 1129 { 1130 /* HLT. This has two purposes. 1131 * Architecturally, it is an external halting debug instruction. 1132 * Since QEMU doesn't implement external debug, we treat this as 1133 * it is required for halting debug disabled: it will UNDEF. 1134 * Secondly, "HLT 0x3C" is a T32 semihosting trap instruction, 1135 * and "HLT 0xF000" is an A32 semihosting syscall. These traps 1136 * must trigger semihosting even for ARMv7 and earlier, where 1137 * HLT was an undefined encoding. 1138 * In system mode, we don't allow userspace access to 1139 * semihosting, to provide some semblance of security 1140 * (and for consistency with our 32-bit semihosting). 1141 */ 1142 if (semihosting_enabled(s->current_el == 0) && 1143 (imm == (s->thumb ? 0x3c : 0xf000))) { 1144 gen_exception_internal_insn(s, EXCP_SEMIHOST); 1145 return; 1146 } 1147 1148 unallocated_encoding(s); 1149 } 1150 1151 /* 1152 * Return the offset of a "full" NEON Dreg. 1153 */ 1154 long neon_full_reg_offset(unsigned reg) 1155 { 1156 return offsetof(CPUARMState, vfp.zregs[reg >> 1].d[reg & 1]); 1157 } 1158 1159 /* 1160 * Return the offset of a 2**SIZE piece of a NEON register, at index ELE, 1161 * where 0 is the least significant end of the register. 1162 */ 1163 long neon_element_offset(int reg, int element, MemOp memop) 1164 { 1165 int element_size = 1 << (memop & MO_SIZE); 1166 int ofs = element * element_size; 1167 #if HOST_BIG_ENDIAN 1168 /* 1169 * Calculate the offset assuming fully little-endian, 1170 * then XOR to account for the order of the 8-byte units. 1171 */ 1172 if (element_size < 8) { 1173 ofs ^= 8 - element_size; 1174 } 1175 #endif 1176 return neon_full_reg_offset(reg) + ofs; 1177 } 1178 1179 /* Return the offset of a VFP Dreg (dp = true) or VFP Sreg (dp = false). */ 1180 long vfp_reg_offset(bool dp, unsigned reg) 1181 { 1182 if (dp) { 1183 return neon_element_offset(reg, 0, MO_64); 1184 } else { 1185 return neon_element_offset(reg >> 1, reg & 1, MO_32); 1186 } 1187 } 1188 1189 void read_neon_element32(TCGv_i32 dest, int reg, int ele, MemOp memop) 1190 { 1191 long off = neon_element_offset(reg, ele, memop); 1192 1193 switch (memop) { 1194 case MO_SB: 1195 tcg_gen_ld8s_i32(dest, cpu_env, off); 1196 break; 1197 case MO_UB: 1198 tcg_gen_ld8u_i32(dest, cpu_env, off); 1199 break; 1200 case MO_SW: 1201 tcg_gen_ld16s_i32(dest, cpu_env, off); 1202 break; 1203 case MO_UW: 1204 tcg_gen_ld16u_i32(dest, cpu_env, off); 1205 break; 1206 case MO_UL: 1207 case MO_SL: 1208 tcg_gen_ld_i32(dest, cpu_env, off); 1209 break; 1210 default: 1211 g_assert_not_reached(); 1212 } 1213 } 1214 1215 void read_neon_element64(TCGv_i64 dest, int reg, int ele, MemOp memop) 1216 { 1217 long off = neon_element_offset(reg, ele, memop); 1218 1219 switch (memop) { 1220 case MO_SL: 1221 tcg_gen_ld32s_i64(dest, cpu_env, off); 1222 break; 1223 case MO_UL: 1224 tcg_gen_ld32u_i64(dest, cpu_env, off); 1225 break; 1226 case MO_UQ: 1227 tcg_gen_ld_i64(dest, cpu_env, off); 1228 break; 1229 default: 1230 g_assert_not_reached(); 1231 } 1232 } 1233 1234 void write_neon_element32(TCGv_i32 src, int reg, int ele, MemOp memop) 1235 { 1236 long off = neon_element_offset(reg, ele, memop); 1237 1238 switch (memop) { 1239 case MO_8: 1240 tcg_gen_st8_i32(src, cpu_env, off); 1241 break; 1242 case MO_16: 1243 tcg_gen_st16_i32(src, cpu_env, off); 1244 break; 1245 case MO_32: 1246 tcg_gen_st_i32(src, cpu_env, off); 1247 break; 1248 default: 1249 g_assert_not_reached(); 1250 } 1251 } 1252 1253 void write_neon_element64(TCGv_i64 src, int reg, int ele, MemOp memop) 1254 { 1255 long off = neon_element_offset(reg, ele, memop); 1256 1257 switch (memop) { 1258 case MO_32: 1259 tcg_gen_st32_i64(src, cpu_env, off); 1260 break; 1261 case MO_64: 1262 tcg_gen_st_i64(src, cpu_env, off); 1263 break; 1264 default: 1265 g_assert_not_reached(); 1266 } 1267 } 1268 1269 #define ARM_CP_RW_BIT (1 << 20) 1270 1271 static inline void iwmmxt_load_reg(TCGv_i64 var, int reg) 1272 { 1273 tcg_gen_ld_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg])); 1274 } 1275 1276 static inline void iwmmxt_store_reg(TCGv_i64 var, int reg) 1277 { 1278 tcg_gen_st_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg])); 1279 } 1280 1281 static inline TCGv_i32 iwmmxt_load_creg(int reg) 1282 { 1283 TCGv_i32 var = tcg_temp_new_i32(); 1284 tcg_gen_ld_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg])); 1285 return var; 1286 } 1287 1288 static inline void iwmmxt_store_creg(int reg, TCGv_i32 var) 1289 { 1290 tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg])); 1291 } 1292 1293 static inline void gen_op_iwmmxt_movq_wRn_M0(int rn) 1294 { 1295 iwmmxt_store_reg(cpu_M0, rn); 1296 } 1297 1298 static inline void gen_op_iwmmxt_movq_M0_wRn(int rn) 1299 { 1300 iwmmxt_load_reg(cpu_M0, rn); 1301 } 1302 1303 static inline void gen_op_iwmmxt_orq_M0_wRn(int rn) 1304 { 1305 iwmmxt_load_reg(cpu_V1, rn); 1306 tcg_gen_or_i64(cpu_M0, cpu_M0, cpu_V1); 1307 } 1308 1309 static inline void gen_op_iwmmxt_andq_M0_wRn(int rn) 1310 { 1311 iwmmxt_load_reg(cpu_V1, rn); 1312 tcg_gen_and_i64(cpu_M0, cpu_M0, cpu_V1); 1313 } 1314 1315 static inline void gen_op_iwmmxt_xorq_M0_wRn(int rn) 1316 { 1317 iwmmxt_load_reg(cpu_V1, rn); 1318 tcg_gen_xor_i64(cpu_M0, cpu_M0, cpu_V1); 1319 } 1320 1321 #define IWMMXT_OP(name) \ 1322 static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \ 1323 { \ 1324 iwmmxt_load_reg(cpu_V1, rn); \ 1325 gen_helper_iwmmxt_##name(cpu_M0, cpu_M0, cpu_V1); \ 1326 } 1327 1328 #define IWMMXT_OP_ENV(name) \ 1329 static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \ 1330 { \ 1331 iwmmxt_load_reg(cpu_V1, rn); \ 1332 gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0, cpu_V1); \ 1333 } 1334 1335 #define IWMMXT_OP_ENV_SIZE(name) \ 1336 IWMMXT_OP_ENV(name##b) \ 1337 IWMMXT_OP_ENV(name##w) \ 1338 IWMMXT_OP_ENV(name##l) 1339 1340 #define IWMMXT_OP_ENV1(name) \ 1341 static inline void gen_op_iwmmxt_##name##_M0(void) \ 1342 { \ 1343 gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0); \ 1344 } 1345 1346 IWMMXT_OP(maddsq) 1347 IWMMXT_OP(madduq) 1348 IWMMXT_OP(sadb) 1349 IWMMXT_OP(sadw) 1350 IWMMXT_OP(mulslw) 1351 IWMMXT_OP(mulshw) 1352 IWMMXT_OP(mululw) 1353 IWMMXT_OP(muluhw) 1354 IWMMXT_OP(macsw) 1355 IWMMXT_OP(macuw) 1356 1357 IWMMXT_OP_ENV_SIZE(unpackl) 1358 IWMMXT_OP_ENV_SIZE(unpackh) 1359 1360 IWMMXT_OP_ENV1(unpacklub) 1361 IWMMXT_OP_ENV1(unpackluw) 1362 IWMMXT_OP_ENV1(unpacklul) 1363 IWMMXT_OP_ENV1(unpackhub) 1364 IWMMXT_OP_ENV1(unpackhuw) 1365 IWMMXT_OP_ENV1(unpackhul) 1366 IWMMXT_OP_ENV1(unpacklsb) 1367 IWMMXT_OP_ENV1(unpacklsw) 1368 IWMMXT_OP_ENV1(unpacklsl) 1369 IWMMXT_OP_ENV1(unpackhsb) 1370 IWMMXT_OP_ENV1(unpackhsw) 1371 IWMMXT_OP_ENV1(unpackhsl) 1372 1373 IWMMXT_OP_ENV_SIZE(cmpeq) 1374 IWMMXT_OP_ENV_SIZE(cmpgtu) 1375 IWMMXT_OP_ENV_SIZE(cmpgts) 1376 1377 IWMMXT_OP_ENV_SIZE(mins) 1378 IWMMXT_OP_ENV_SIZE(minu) 1379 IWMMXT_OP_ENV_SIZE(maxs) 1380 IWMMXT_OP_ENV_SIZE(maxu) 1381 1382 IWMMXT_OP_ENV_SIZE(subn) 1383 IWMMXT_OP_ENV_SIZE(addn) 1384 IWMMXT_OP_ENV_SIZE(subu) 1385 IWMMXT_OP_ENV_SIZE(addu) 1386 IWMMXT_OP_ENV_SIZE(subs) 1387 IWMMXT_OP_ENV_SIZE(adds) 1388 1389 IWMMXT_OP_ENV(avgb0) 1390 IWMMXT_OP_ENV(avgb1) 1391 IWMMXT_OP_ENV(avgw0) 1392 IWMMXT_OP_ENV(avgw1) 1393 1394 IWMMXT_OP_ENV(packuw) 1395 IWMMXT_OP_ENV(packul) 1396 IWMMXT_OP_ENV(packuq) 1397 IWMMXT_OP_ENV(packsw) 1398 IWMMXT_OP_ENV(packsl) 1399 IWMMXT_OP_ENV(packsq) 1400 1401 static void gen_op_iwmmxt_set_mup(void) 1402 { 1403 TCGv_i32 tmp; 1404 tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]); 1405 tcg_gen_ori_i32(tmp, tmp, 2); 1406 store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]); 1407 } 1408 1409 static void gen_op_iwmmxt_set_cup(void) 1410 { 1411 TCGv_i32 tmp; 1412 tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]); 1413 tcg_gen_ori_i32(tmp, tmp, 1); 1414 store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]); 1415 } 1416 1417 static void gen_op_iwmmxt_setpsr_nz(void) 1418 { 1419 TCGv_i32 tmp = tcg_temp_new_i32(); 1420 gen_helper_iwmmxt_setpsr_nz(tmp, cpu_M0); 1421 store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCASF]); 1422 } 1423 1424 static inline void gen_op_iwmmxt_addl_M0_wRn(int rn) 1425 { 1426 iwmmxt_load_reg(cpu_V1, rn); 1427 tcg_gen_ext32u_i64(cpu_V1, cpu_V1); 1428 tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1); 1429 } 1430 1431 static inline int gen_iwmmxt_address(DisasContext *s, uint32_t insn, 1432 TCGv_i32 dest) 1433 { 1434 int rd; 1435 uint32_t offset; 1436 TCGv_i32 tmp; 1437 1438 rd = (insn >> 16) & 0xf; 1439 tmp = load_reg(s, rd); 1440 1441 offset = (insn & 0xff) << ((insn >> 7) & 2); 1442 if (insn & (1 << 24)) { 1443 /* Pre indexed */ 1444 if (insn & (1 << 23)) 1445 tcg_gen_addi_i32(tmp, tmp, offset); 1446 else 1447 tcg_gen_addi_i32(tmp, tmp, -offset); 1448 tcg_gen_mov_i32(dest, tmp); 1449 if (insn & (1 << 21)) { 1450 store_reg(s, rd, tmp); 1451 } 1452 } else if (insn & (1 << 21)) { 1453 /* Post indexed */ 1454 tcg_gen_mov_i32(dest, tmp); 1455 if (insn & (1 << 23)) 1456 tcg_gen_addi_i32(tmp, tmp, offset); 1457 else 1458 tcg_gen_addi_i32(tmp, tmp, -offset); 1459 store_reg(s, rd, tmp); 1460 } else if (!(insn & (1 << 23))) 1461 return 1; 1462 return 0; 1463 } 1464 1465 static inline int gen_iwmmxt_shift(uint32_t insn, uint32_t mask, TCGv_i32 dest) 1466 { 1467 int rd = (insn >> 0) & 0xf; 1468 TCGv_i32 tmp; 1469 1470 if (insn & (1 << 8)) { 1471 if (rd < ARM_IWMMXT_wCGR0 || rd > ARM_IWMMXT_wCGR3) { 1472 return 1; 1473 } else { 1474 tmp = iwmmxt_load_creg(rd); 1475 } 1476 } else { 1477 tmp = tcg_temp_new_i32(); 1478 iwmmxt_load_reg(cpu_V0, rd); 1479 tcg_gen_extrl_i64_i32(tmp, cpu_V0); 1480 } 1481 tcg_gen_andi_i32(tmp, tmp, mask); 1482 tcg_gen_mov_i32(dest, tmp); 1483 return 0; 1484 } 1485 1486 /* Disassemble an iwMMXt instruction. Returns nonzero if an error occurred 1487 (ie. an undefined instruction). */ 1488 static int disas_iwmmxt_insn(DisasContext *s, uint32_t insn) 1489 { 1490 int rd, wrd; 1491 int rdhi, rdlo, rd0, rd1, i; 1492 TCGv_i32 addr; 1493 TCGv_i32 tmp, tmp2, tmp3; 1494 1495 if ((insn & 0x0e000e00) == 0x0c000000) { 1496 if ((insn & 0x0fe00ff0) == 0x0c400000) { 1497 wrd = insn & 0xf; 1498 rdlo = (insn >> 12) & 0xf; 1499 rdhi = (insn >> 16) & 0xf; 1500 if (insn & ARM_CP_RW_BIT) { /* TMRRC */ 1501 iwmmxt_load_reg(cpu_V0, wrd); 1502 tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0); 1503 tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0); 1504 } else { /* TMCRR */ 1505 tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]); 1506 iwmmxt_store_reg(cpu_V0, wrd); 1507 gen_op_iwmmxt_set_mup(); 1508 } 1509 return 0; 1510 } 1511 1512 wrd = (insn >> 12) & 0xf; 1513 addr = tcg_temp_new_i32(); 1514 if (gen_iwmmxt_address(s, insn, addr)) { 1515 return 1; 1516 } 1517 if (insn & ARM_CP_RW_BIT) { 1518 if ((insn >> 28) == 0xf) { /* WLDRW wCx */ 1519 tmp = tcg_temp_new_i32(); 1520 gen_aa32_ld32u(s, tmp, addr, get_mem_index(s)); 1521 iwmmxt_store_creg(wrd, tmp); 1522 } else { 1523 i = 1; 1524 if (insn & (1 << 8)) { 1525 if (insn & (1 << 22)) { /* WLDRD */ 1526 gen_aa32_ld64(s, cpu_M0, addr, get_mem_index(s)); 1527 i = 0; 1528 } else { /* WLDRW wRd */ 1529 tmp = tcg_temp_new_i32(); 1530 gen_aa32_ld32u(s, tmp, addr, get_mem_index(s)); 1531 } 1532 } else { 1533 tmp = tcg_temp_new_i32(); 1534 if (insn & (1 << 22)) { /* WLDRH */ 1535 gen_aa32_ld16u(s, tmp, addr, get_mem_index(s)); 1536 } else { /* WLDRB */ 1537 gen_aa32_ld8u(s, tmp, addr, get_mem_index(s)); 1538 } 1539 } 1540 if (i) { 1541 tcg_gen_extu_i32_i64(cpu_M0, tmp); 1542 } 1543 gen_op_iwmmxt_movq_wRn_M0(wrd); 1544 } 1545 } else { 1546 if ((insn >> 28) == 0xf) { /* WSTRW wCx */ 1547 tmp = iwmmxt_load_creg(wrd); 1548 gen_aa32_st32(s, tmp, addr, get_mem_index(s)); 1549 } else { 1550 gen_op_iwmmxt_movq_M0_wRn(wrd); 1551 tmp = tcg_temp_new_i32(); 1552 if (insn & (1 << 8)) { 1553 if (insn & (1 << 22)) { /* WSTRD */ 1554 gen_aa32_st64(s, cpu_M0, addr, get_mem_index(s)); 1555 } else { /* WSTRW wRd */ 1556 tcg_gen_extrl_i64_i32(tmp, cpu_M0); 1557 gen_aa32_st32(s, tmp, addr, get_mem_index(s)); 1558 } 1559 } else { 1560 if (insn & (1 << 22)) { /* WSTRH */ 1561 tcg_gen_extrl_i64_i32(tmp, cpu_M0); 1562 gen_aa32_st16(s, tmp, addr, get_mem_index(s)); 1563 } else { /* WSTRB */ 1564 tcg_gen_extrl_i64_i32(tmp, cpu_M0); 1565 gen_aa32_st8(s, tmp, addr, get_mem_index(s)); 1566 } 1567 } 1568 } 1569 } 1570 return 0; 1571 } 1572 1573 if ((insn & 0x0f000000) != 0x0e000000) 1574 return 1; 1575 1576 switch (((insn >> 12) & 0xf00) | ((insn >> 4) & 0xff)) { 1577 case 0x000: /* WOR */ 1578 wrd = (insn >> 12) & 0xf; 1579 rd0 = (insn >> 0) & 0xf; 1580 rd1 = (insn >> 16) & 0xf; 1581 gen_op_iwmmxt_movq_M0_wRn(rd0); 1582 gen_op_iwmmxt_orq_M0_wRn(rd1); 1583 gen_op_iwmmxt_setpsr_nz(); 1584 gen_op_iwmmxt_movq_wRn_M0(wrd); 1585 gen_op_iwmmxt_set_mup(); 1586 gen_op_iwmmxt_set_cup(); 1587 break; 1588 case 0x011: /* TMCR */ 1589 if (insn & 0xf) 1590 return 1; 1591 rd = (insn >> 12) & 0xf; 1592 wrd = (insn >> 16) & 0xf; 1593 switch (wrd) { 1594 case ARM_IWMMXT_wCID: 1595 case ARM_IWMMXT_wCASF: 1596 break; 1597 case ARM_IWMMXT_wCon: 1598 gen_op_iwmmxt_set_cup(); 1599 /* Fall through. */ 1600 case ARM_IWMMXT_wCSSF: 1601 tmp = iwmmxt_load_creg(wrd); 1602 tmp2 = load_reg(s, rd); 1603 tcg_gen_andc_i32(tmp, tmp, tmp2); 1604 iwmmxt_store_creg(wrd, tmp); 1605 break; 1606 case ARM_IWMMXT_wCGR0: 1607 case ARM_IWMMXT_wCGR1: 1608 case ARM_IWMMXT_wCGR2: 1609 case ARM_IWMMXT_wCGR3: 1610 gen_op_iwmmxt_set_cup(); 1611 tmp = load_reg(s, rd); 1612 iwmmxt_store_creg(wrd, tmp); 1613 break; 1614 default: 1615 return 1; 1616 } 1617 break; 1618 case 0x100: /* WXOR */ 1619 wrd = (insn >> 12) & 0xf; 1620 rd0 = (insn >> 0) & 0xf; 1621 rd1 = (insn >> 16) & 0xf; 1622 gen_op_iwmmxt_movq_M0_wRn(rd0); 1623 gen_op_iwmmxt_xorq_M0_wRn(rd1); 1624 gen_op_iwmmxt_setpsr_nz(); 1625 gen_op_iwmmxt_movq_wRn_M0(wrd); 1626 gen_op_iwmmxt_set_mup(); 1627 gen_op_iwmmxt_set_cup(); 1628 break; 1629 case 0x111: /* TMRC */ 1630 if (insn & 0xf) 1631 return 1; 1632 rd = (insn >> 12) & 0xf; 1633 wrd = (insn >> 16) & 0xf; 1634 tmp = iwmmxt_load_creg(wrd); 1635 store_reg(s, rd, tmp); 1636 break; 1637 case 0x300: /* WANDN */ 1638 wrd = (insn >> 12) & 0xf; 1639 rd0 = (insn >> 0) & 0xf; 1640 rd1 = (insn >> 16) & 0xf; 1641 gen_op_iwmmxt_movq_M0_wRn(rd0); 1642 tcg_gen_neg_i64(cpu_M0, cpu_M0); 1643 gen_op_iwmmxt_andq_M0_wRn(rd1); 1644 gen_op_iwmmxt_setpsr_nz(); 1645 gen_op_iwmmxt_movq_wRn_M0(wrd); 1646 gen_op_iwmmxt_set_mup(); 1647 gen_op_iwmmxt_set_cup(); 1648 break; 1649 case 0x200: /* WAND */ 1650 wrd = (insn >> 12) & 0xf; 1651 rd0 = (insn >> 0) & 0xf; 1652 rd1 = (insn >> 16) & 0xf; 1653 gen_op_iwmmxt_movq_M0_wRn(rd0); 1654 gen_op_iwmmxt_andq_M0_wRn(rd1); 1655 gen_op_iwmmxt_setpsr_nz(); 1656 gen_op_iwmmxt_movq_wRn_M0(wrd); 1657 gen_op_iwmmxt_set_mup(); 1658 gen_op_iwmmxt_set_cup(); 1659 break; 1660 case 0x810: case 0xa10: /* WMADD */ 1661 wrd = (insn >> 12) & 0xf; 1662 rd0 = (insn >> 0) & 0xf; 1663 rd1 = (insn >> 16) & 0xf; 1664 gen_op_iwmmxt_movq_M0_wRn(rd0); 1665 if (insn & (1 << 21)) 1666 gen_op_iwmmxt_maddsq_M0_wRn(rd1); 1667 else 1668 gen_op_iwmmxt_madduq_M0_wRn(rd1); 1669 gen_op_iwmmxt_movq_wRn_M0(wrd); 1670 gen_op_iwmmxt_set_mup(); 1671 break; 1672 case 0x10e: case 0x50e: case 0x90e: case 0xd0e: /* WUNPCKIL */ 1673 wrd = (insn >> 12) & 0xf; 1674 rd0 = (insn >> 16) & 0xf; 1675 rd1 = (insn >> 0) & 0xf; 1676 gen_op_iwmmxt_movq_M0_wRn(rd0); 1677 switch ((insn >> 22) & 3) { 1678 case 0: 1679 gen_op_iwmmxt_unpacklb_M0_wRn(rd1); 1680 break; 1681 case 1: 1682 gen_op_iwmmxt_unpacklw_M0_wRn(rd1); 1683 break; 1684 case 2: 1685 gen_op_iwmmxt_unpackll_M0_wRn(rd1); 1686 break; 1687 case 3: 1688 return 1; 1689 } 1690 gen_op_iwmmxt_movq_wRn_M0(wrd); 1691 gen_op_iwmmxt_set_mup(); 1692 gen_op_iwmmxt_set_cup(); 1693 break; 1694 case 0x10c: case 0x50c: case 0x90c: case 0xd0c: /* WUNPCKIH */ 1695 wrd = (insn >> 12) & 0xf; 1696 rd0 = (insn >> 16) & 0xf; 1697 rd1 = (insn >> 0) & 0xf; 1698 gen_op_iwmmxt_movq_M0_wRn(rd0); 1699 switch ((insn >> 22) & 3) { 1700 case 0: 1701 gen_op_iwmmxt_unpackhb_M0_wRn(rd1); 1702 break; 1703 case 1: 1704 gen_op_iwmmxt_unpackhw_M0_wRn(rd1); 1705 break; 1706 case 2: 1707 gen_op_iwmmxt_unpackhl_M0_wRn(rd1); 1708 break; 1709 case 3: 1710 return 1; 1711 } 1712 gen_op_iwmmxt_movq_wRn_M0(wrd); 1713 gen_op_iwmmxt_set_mup(); 1714 gen_op_iwmmxt_set_cup(); 1715 break; 1716 case 0x012: case 0x112: case 0x412: case 0x512: /* WSAD */ 1717 wrd = (insn >> 12) & 0xf; 1718 rd0 = (insn >> 16) & 0xf; 1719 rd1 = (insn >> 0) & 0xf; 1720 gen_op_iwmmxt_movq_M0_wRn(rd0); 1721 if (insn & (1 << 22)) 1722 gen_op_iwmmxt_sadw_M0_wRn(rd1); 1723 else 1724 gen_op_iwmmxt_sadb_M0_wRn(rd1); 1725 if (!(insn & (1 << 20))) 1726 gen_op_iwmmxt_addl_M0_wRn(wrd); 1727 gen_op_iwmmxt_movq_wRn_M0(wrd); 1728 gen_op_iwmmxt_set_mup(); 1729 break; 1730 case 0x010: case 0x110: case 0x210: case 0x310: /* WMUL */ 1731 wrd = (insn >> 12) & 0xf; 1732 rd0 = (insn >> 16) & 0xf; 1733 rd1 = (insn >> 0) & 0xf; 1734 gen_op_iwmmxt_movq_M0_wRn(rd0); 1735 if (insn & (1 << 21)) { 1736 if (insn & (1 << 20)) 1737 gen_op_iwmmxt_mulshw_M0_wRn(rd1); 1738 else 1739 gen_op_iwmmxt_mulslw_M0_wRn(rd1); 1740 } else { 1741 if (insn & (1 << 20)) 1742 gen_op_iwmmxt_muluhw_M0_wRn(rd1); 1743 else 1744 gen_op_iwmmxt_mululw_M0_wRn(rd1); 1745 } 1746 gen_op_iwmmxt_movq_wRn_M0(wrd); 1747 gen_op_iwmmxt_set_mup(); 1748 break; 1749 case 0x410: case 0x510: case 0x610: case 0x710: /* WMAC */ 1750 wrd = (insn >> 12) & 0xf; 1751 rd0 = (insn >> 16) & 0xf; 1752 rd1 = (insn >> 0) & 0xf; 1753 gen_op_iwmmxt_movq_M0_wRn(rd0); 1754 if (insn & (1 << 21)) 1755 gen_op_iwmmxt_macsw_M0_wRn(rd1); 1756 else 1757 gen_op_iwmmxt_macuw_M0_wRn(rd1); 1758 if (!(insn & (1 << 20))) { 1759 iwmmxt_load_reg(cpu_V1, wrd); 1760 tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1); 1761 } 1762 gen_op_iwmmxt_movq_wRn_M0(wrd); 1763 gen_op_iwmmxt_set_mup(); 1764 break; 1765 case 0x006: case 0x406: case 0x806: case 0xc06: /* WCMPEQ */ 1766 wrd = (insn >> 12) & 0xf; 1767 rd0 = (insn >> 16) & 0xf; 1768 rd1 = (insn >> 0) & 0xf; 1769 gen_op_iwmmxt_movq_M0_wRn(rd0); 1770 switch ((insn >> 22) & 3) { 1771 case 0: 1772 gen_op_iwmmxt_cmpeqb_M0_wRn(rd1); 1773 break; 1774 case 1: 1775 gen_op_iwmmxt_cmpeqw_M0_wRn(rd1); 1776 break; 1777 case 2: 1778 gen_op_iwmmxt_cmpeql_M0_wRn(rd1); 1779 break; 1780 case 3: 1781 return 1; 1782 } 1783 gen_op_iwmmxt_movq_wRn_M0(wrd); 1784 gen_op_iwmmxt_set_mup(); 1785 gen_op_iwmmxt_set_cup(); 1786 break; 1787 case 0x800: case 0x900: case 0xc00: case 0xd00: /* WAVG2 */ 1788 wrd = (insn >> 12) & 0xf; 1789 rd0 = (insn >> 16) & 0xf; 1790 rd1 = (insn >> 0) & 0xf; 1791 gen_op_iwmmxt_movq_M0_wRn(rd0); 1792 if (insn & (1 << 22)) { 1793 if (insn & (1 << 20)) 1794 gen_op_iwmmxt_avgw1_M0_wRn(rd1); 1795 else 1796 gen_op_iwmmxt_avgw0_M0_wRn(rd1); 1797 } else { 1798 if (insn & (1 << 20)) 1799 gen_op_iwmmxt_avgb1_M0_wRn(rd1); 1800 else 1801 gen_op_iwmmxt_avgb0_M0_wRn(rd1); 1802 } 1803 gen_op_iwmmxt_movq_wRn_M0(wrd); 1804 gen_op_iwmmxt_set_mup(); 1805 gen_op_iwmmxt_set_cup(); 1806 break; 1807 case 0x802: case 0x902: case 0xa02: case 0xb02: /* WALIGNR */ 1808 wrd = (insn >> 12) & 0xf; 1809 rd0 = (insn >> 16) & 0xf; 1810 rd1 = (insn >> 0) & 0xf; 1811 gen_op_iwmmxt_movq_M0_wRn(rd0); 1812 tmp = iwmmxt_load_creg(ARM_IWMMXT_wCGR0 + ((insn >> 20) & 3)); 1813 tcg_gen_andi_i32(tmp, tmp, 7); 1814 iwmmxt_load_reg(cpu_V1, rd1); 1815 gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp); 1816 gen_op_iwmmxt_movq_wRn_M0(wrd); 1817 gen_op_iwmmxt_set_mup(); 1818 break; 1819 case 0x601: case 0x605: case 0x609: case 0x60d: /* TINSR */ 1820 if (((insn >> 6) & 3) == 3) 1821 return 1; 1822 rd = (insn >> 12) & 0xf; 1823 wrd = (insn >> 16) & 0xf; 1824 tmp = load_reg(s, rd); 1825 gen_op_iwmmxt_movq_M0_wRn(wrd); 1826 switch ((insn >> 6) & 3) { 1827 case 0: 1828 tmp2 = tcg_constant_i32(0xff); 1829 tmp3 = tcg_constant_i32((insn & 7) << 3); 1830 break; 1831 case 1: 1832 tmp2 = tcg_constant_i32(0xffff); 1833 tmp3 = tcg_constant_i32((insn & 3) << 4); 1834 break; 1835 case 2: 1836 tmp2 = tcg_constant_i32(0xffffffff); 1837 tmp3 = tcg_constant_i32((insn & 1) << 5); 1838 break; 1839 default: 1840 g_assert_not_reached(); 1841 } 1842 gen_helper_iwmmxt_insr(cpu_M0, cpu_M0, tmp, tmp2, tmp3); 1843 gen_op_iwmmxt_movq_wRn_M0(wrd); 1844 gen_op_iwmmxt_set_mup(); 1845 break; 1846 case 0x107: case 0x507: case 0x907: case 0xd07: /* TEXTRM */ 1847 rd = (insn >> 12) & 0xf; 1848 wrd = (insn >> 16) & 0xf; 1849 if (rd == 15 || ((insn >> 22) & 3) == 3) 1850 return 1; 1851 gen_op_iwmmxt_movq_M0_wRn(wrd); 1852 tmp = tcg_temp_new_i32(); 1853 switch ((insn >> 22) & 3) { 1854 case 0: 1855 tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 7) << 3); 1856 tcg_gen_extrl_i64_i32(tmp, cpu_M0); 1857 if (insn & 8) { 1858 tcg_gen_ext8s_i32(tmp, tmp); 1859 } else { 1860 tcg_gen_andi_i32(tmp, tmp, 0xff); 1861 } 1862 break; 1863 case 1: 1864 tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 3) << 4); 1865 tcg_gen_extrl_i64_i32(tmp, cpu_M0); 1866 if (insn & 8) { 1867 tcg_gen_ext16s_i32(tmp, tmp); 1868 } else { 1869 tcg_gen_andi_i32(tmp, tmp, 0xffff); 1870 } 1871 break; 1872 case 2: 1873 tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 1) << 5); 1874 tcg_gen_extrl_i64_i32(tmp, cpu_M0); 1875 break; 1876 } 1877 store_reg(s, rd, tmp); 1878 break; 1879 case 0x117: case 0x517: case 0x917: case 0xd17: /* TEXTRC */ 1880 if ((insn & 0x000ff008) != 0x0003f000 || ((insn >> 22) & 3) == 3) 1881 return 1; 1882 tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); 1883 switch ((insn >> 22) & 3) { 1884 case 0: 1885 tcg_gen_shri_i32(tmp, tmp, ((insn & 7) << 2) + 0); 1886 break; 1887 case 1: 1888 tcg_gen_shri_i32(tmp, tmp, ((insn & 3) << 3) + 4); 1889 break; 1890 case 2: 1891 tcg_gen_shri_i32(tmp, tmp, ((insn & 1) << 4) + 12); 1892 break; 1893 } 1894 tcg_gen_shli_i32(tmp, tmp, 28); 1895 gen_set_nzcv(tmp); 1896 break; 1897 case 0x401: case 0x405: case 0x409: case 0x40d: /* TBCST */ 1898 if (((insn >> 6) & 3) == 3) 1899 return 1; 1900 rd = (insn >> 12) & 0xf; 1901 wrd = (insn >> 16) & 0xf; 1902 tmp = load_reg(s, rd); 1903 switch ((insn >> 6) & 3) { 1904 case 0: 1905 gen_helper_iwmmxt_bcstb(cpu_M0, tmp); 1906 break; 1907 case 1: 1908 gen_helper_iwmmxt_bcstw(cpu_M0, tmp); 1909 break; 1910 case 2: 1911 gen_helper_iwmmxt_bcstl(cpu_M0, tmp); 1912 break; 1913 } 1914 gen_op_iwmmxt_movq_wRn_M0(wrd); 1915 gen_op_iwmmxt_set_mup(); 1916 break; 1917 case 0x113: case 0x513: case 0x913: case 0xd13: /* TANDC */ 1918 if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3) 1919 return 1; 1920 tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); 1921 tmp2 = tcg_temp_new_i32(); 1922 tcg_gen_mov_i32(tmp2, tmp); 1923 switch ((insn >> 22) & 3) { 1924 case 0: 1925 for (i = 0; i < 7; i ++) { 1926 tcg_gen_shli_i32(tmp2, tmp2, 4); 1927 tcg_gen_and_i32(tmp, tmp, tmp2); 1928 } 1929 break; 1930 case 1: 1931 for (i = 0; i < 3; i ++) { 1932 tcg_gen_shli_i32(tmp2, tmp2, 8); 1933 tcg_gen_and_i32(tmp, tmp, tmp2); 1934 } 1935 break; 1936 case 2: 1937 tcg_gen_shli_i32(tmp2, tmp2, 16); 1938 tcg_gen_and_i32(tmp, tmp, tmp2); 1939 break; 1940 } 1941 gen_set_nzcv(tmp); 1942 break; 1943 case 0x01c: case 0x41c: case 0x81c: case 0xc1c: /* WACC */ 1944 wrd = (insn >> 12) & 0xf; 1945 rd0 = (insn >> 16) & 0xf; 1946 gen_op_iwmmxt_movq_M0_wRn(rd0); 1947 switch ((insn >> 22) & 3) { 1948 case 0: 1949 gen_helper_iwmmxt_addcb(cpu_M0, cpu_M0); 1950 break; 1951 case 1: 1952 gen_helper_iwmmxt_addcw(cpu_M0, cpu_M0); 1953 break; 1954 case 2: 1955 gen_helper_iwmmxt_addcl(cpu_M0, cpu_M0); 1956 break; 1957 case 3: 1958 return 1; 1959 } 1960 gen_op_iwmmxt_movq_wRn_M0(wrd); 1961 gen_op_iwmmxt_set_mup(); 1962 break; 1963 case 0x115: case 0x515: case 0x915: case 0xd15: /* TORC */ 1964 if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3) 1965 return 1; 1966 tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); 1967 tmp2 = tcg_temp_new_i32(); 1968 tcg_gen_mov_i32(tmp2, tmp); 1969 switch ((insn >> 22) & 3) { 1970 case 0: 1971 for (i = 0; i < 7; i ++) { 1972 tcg_gen_shli_i32(tmp2, tmp2, 4); 1973 tcg_gen_or_i32(tmp, tmp, tmp2); 1974 } 1975 break; 1976 case 1: 1977 for (i = 0; i < 3; i ++) { 1978 tcg_gen_shli_i32(tmp2, tmp2, 8); 1979 tcg_gen_or_i32(tmp, tmp, tmp2); 1980 } 1981 break; 1982 case 2: 1983 tcg_gen_shli_i32(tmp2, tmp2, 16); 1984 tcg_gen_or_i32(tmp, tmp, tmp2); 1985 break; 1986 } 1987 gen_set_nzcv(tmp); 1988 break; 1989 case 0x103: case 0x503: case 0x903: case 0xd03: /* TMOVMSK */ 1990 rd = (insn >> 12) & 0xf; 1991 rd0 = (insn >> 16) & 0xf; 1992 if ((insn & 0xf) != 0 || ((insn >> 22) & 3) == 3) 1993 return 1; 1994 gen_op_iwmmxt_movq_M0_wRn(rd0); 1995 tmp = tcg_temp_new_i32(); 1996 switch ((insn >> 22) & 3) { 1997 case 0: 1998 gen_helper_iwmmxt_msbb(tmp, cpu_M0); 1999 break; 2000 case 1: 2001 gen_helper_iwmmxt_msbw(tmp, cpu_M0); 2002 break; 2003 case 2: 2004 gen_helper_iwmmxt_msbl(tmp, cpu_M0); 2005 break; 2006 } 2007 store_reg(s, rd, tmp); 2008 break; 2009 case 0x106: case 0x306: case 0x506: case 0x706: /* WCMPGT */ 2010 case 0x906: case 0xb06: case 0xd06: case 0xf06: 2011 wrd = (insn >> 12) & 0xf; 2012 rd0 = (insn >> 16) & 0xf; 2013 rd1 = (insn >> 0) & 0xf; 2014 gen_op_iwmmxt_movq_M0_wRn(rd0); 2015 switch ((insn >> 22) & 3) { 2016 case 0: 2017 if (insn & (1 << 21)) 2018 gen_op_iwmmxt_cmpgtsb_M0_wRn(rd1); 2019 else 2020 gen_op_iwmmxt_cmpgtub_M0_wRn(rd1); 2021 break; 2022 case 1: 2023 if (insn & (1 << 21)) 2024 gen_op_iwmmxt_cmpgtsw_M0_wRn(rd1); 2025 else 2026 gen_op_iwmmxt_cmpgtuw_M0_wRn(rd1); 2027 break; 2028 case 2: 2029 if (insn & (1 << 21)) 2030 gen_op_iwmmxt_cmpgtsl_M0_wRn(rd1); 2031 else 2032 gen_op_iwmmxt_cmpgtul_M0_wRn(rd1); 2033 break; 2034 case 3: 2035 return 1; 2036 } 2037 gen_op_iwmmxt_movq_wRn_M0(wrd); 2038 gen_op_iwmmxt_set_mup(); 2039 gen_op_iwmmxt_set_cup(); 2040 break; 2041 case 0x00e: case 0x20e: case 0x40e: case 0x60e: /* WUNPCKEL */ 2042 case 0x80e: case 0xa0e: case 0xc0e: case 0xe0e: 2043 wrd = (insn >> 12) & 0xf; 2044 rd0 = (insn >> 16) & 0xf; 2045 gen_op_iwmmxt_movq_M0_wRn(rd0); 2046 switch ((insn >> 22) & 3) { 2047 case 0: 2048 if (insn & (1 << 21)) 2049 gen_op_iwmmxt_unpacklsb_M0(); 2050 else 2051 gen_op_iwmmxt_unpacklub_M0(); 2052 break; 2053 case 1: 2054 if (insn & (1 << 21)) 2055 gen_op_iwmmxt_unpacklsw_M0(); 2056 else 2057 gen_op_iwmmxt_unpackluw_M0(); 2058 break; 2059 case 2: 2060 if (insn & (1 << 21)) 2061 gen_op_iwmmxt_unpacklsl_M0(); 2062 else 2063 gen_op_iwmmxt_unpacklul_M0(); 2064 break; 2065 case 3: 2066 return 1; 2067 } 2068 gen_op_iwmmxt_movq_wRn_M0(wrd); 2069 gen_op_iwmmxt_set_mup(); 2070 gen_op_iwmmxt_set_cup(); 2071 break; 2072 case 0x00c: case 0x20c: case 0x40c: case 0x60c: /* WUNPCKEH */ 2073 case 0x80c: case 0xa0c: case 0xc0c: case 0xe0c: 2074 wrd = (insn >> 12) & 0xf; 2075 rd0 = (insn >> 16) & 0xf; 2076 gen_op_iwmmxt_movq_M0_wRn(rd0); 2077 switch ((insn >> 22) & 3) { 2078 case 0: 2079 if (insn & (1 << 21)) 2080 gen_op_iwmmxt_unpackhsb_M0(); 2081 else 2082 gen_op_iwmmxt_unpackhub_M0(); 2083 break; 2084 case 1: 2085 if (insn & (1 << 21)) 2086 gen_op_iwmmxt_unpackhsw_M0(); 2087 else 2088 gen_op_iwmmxt_unpackhuw_M0(); 2089 break; 2090 case 2: 2091 if (insn & (1 << 21)) 2092 gen_op_iwmmxt_unpackhsl_M0(); 2093 else 2094 gen_op_iwmmxt_unpackhul_M0(); 2095 break; 2096 case 3: 2097 return 1; 2098 } 2099 gen_op_iwmmxt_movq_wRn_M0(wrd); 2100 gen_op_iwmmxt_set_mup(); 2101 gen_op_iwmmxt_set_cup(); 2102 break; 2103 case 0x204: case 0x604: case 0xa04: case 0xe04: /* WSRL */ 2104 case 0x214: case 0x614: case 0xa14: case 0xe14: 2105 if (((insn >> 22) & 3) == 0) 2106 return 1; 2107 wrd = (insn >> 12) & 0xf; 2108 rd0 = (insn >> 16) & 0xf; 2109 gen_op_iwmmxt_movq_M0_wRn(rd0); 2110 tmp = tcg_temp_new_i32(); 2111 if (gen_iwmmxt_shift(insn, 0xff, tmp)) { 2112 return 1; 2113 } 2114 switch ((insn >> 22) & 3) { 2115 case 1: 2116 gen_helper_iwmmxt_srlw(cpu_M0, cpu_env, cpu_M0, tmp); 2117 break; 2118 case 2: 2119 gen_helper_iwmmxt_srll(cpu_M0, cpu_env, cpu_M0, tmp); 2120 break; 2121 case 3: 2122 gen_helper_iwmmxt_srlq(cpu_M0, cpu_env, cpu_M0, tmp); 2123 break; 2124 } 2125 gen_op_iwmmxt_movq_wRn_M0(wrd); 2126 gen_op_iwmmxt_set_mup(); 2127 gen_op_iwmmxt_set_cup(); 2128 break; 2129 case 0x004: case 0x404: case 0x804: case 0xc04: /* WSRA */ 2130 case 0x014: case 0x414: case 0x814: case 0xc14: 2131 if (((insn >> 22) & 3) == 0) 2132 return 1; 2133 wrd = (insn >> 12) & 0xf; 2134 rd0 = (insn >> 16) & 0xf; 2135 gen_op_iwmmxt_movq_M0_wRn(rd0); 2136 tmp = tcg_temp_new_i32(); 2137 if (gen_iwmmxt_shift(insn, 0xff, tmp)) { 2138 return 1; 2139 } 2140 switch ((insn >> 22) & 3) { 2141 case 1: 2142 gen_helper_iwmmxt_sraw(cpu_M0, cpu_env, cpu_M0, tmp); 2143 break; 2144 case 2: 2145 gen_helper_iwmmxt_sral(cpu_M0, cpu_env, cpu_M0, tmp); 2146 break; 2147 case 3: 2148 gen_helper_iwmmxt_sraq(cpu_M0, cpu_env, cpu_M0, tmp); 2149 break; 2150 } 2151 gen_op_iwmmxt_movq_wRn_M0(wrd); 2152 gen_op_iwmmxt_set_mup(); 2153 gen_op_iwmmxt_set_cup(); 2154 break; 2155 case 0x104: case 0x504: case 0x904: case 0xd04: /* WSLL */ 2156 case 0x114: case 0x514: case 0x914: case 0xd14: 2157 if (((insn >> 22) & 3) == 0) 2158 return 1; 2159 wrd = (insn >> 12) & 0xf; 2160 rd0 = (insn >> 16) & 0xf; 2161 gen_op_iwmmxt_movq_M0_wRn(rd0); 2162 tmp = tcg_temp_new_i32(); 2163 if (gen_iwmmxt_shift(insn, 0xff, tmp)) { 2164 return 1; 2165 } 2166 switch ((insn >> 22) & 3) { 2167 case 1: 2168 gen_helper_iwmmxt_sllw(cpu_M0, cpu_env, cpu_M0, tmp); 2169 break; 2170 case 2: 2171 gen_helper_iwmmxt_slll(cpu_M0, cpu_env, cpu_M0, tmp); 2172 break; 2173 case 3: 2174 gen_helper_iwmmxt_sllq(cpu_M0, cpu_env, cpu_M0, tmp); 2175 break; 2176 } 2177 gen_op_iwmmxt_movq_wRn_M0(wrd); 2178 gen_op_iwmmxt_set_mup(); 2179 gen_op_iwmmxt_set_cup(); 2180 break; 2181 case 0x304: case 0x704: case 0xb04: case 0xf04: /* WROR */ 2182 case 0x314: case 0x714: case 0xb14: case 0xf14: 2183 if (((insn >> 22) & 3) == 0) 2184 return 1; 2185 wrd = (insn >> 12) & 0xf; 2186 rd0 = (insn >> 16) & 0xf; 2187 gen_op_iwmmxt_movq_M0_wRn(rd0); 2188 tmp = tcg_temp_new_i32(); 2189 switch ((insn >> 22) & 3) { 2190 case 1: 2191 if (gen_iwmmxt_shift(insn, 0xf, tmp)) { 2192 return 1; 2193 } 2194 gen_helper_iwmmxt_rorw(cpu_M0, cpu_env, cpu_M0, tmp); 2195 break; 2196 case 2: 2197 if (gen_iwmmxt_shift(insn, 0x1f, tmp)) { 2198 return 1; 2199 } 2200 gen_helper_iwmmxt_rorl(cpu_M0, cpu_env, cpu_M0, tmp); 2201 break; 2202 case 3: 2203 if (gen_iwmmxt_shift(insn, 0x3f, tmp)) { 2204 return 1; 2205 } 2206 gen_helper_iwmmxt_rorq(cpu_M0, cpu_env, cpu_M0, tmp); 2207 break; 2208 } 2209 gen_op_iwmmxt_movq_wRn_M0(wrd); 2210 gen_op_iwmmxt_set_mup(); 2211 gen_op_iwmmxt_set_cup(); 2212 break; 2213 case 0x116: case 0x316: case 0x516: case 0x716: /* WMIN */ 2214 case 0x916: case 0xb16: case 0xd16: case 0xf16: 2215 wrd = (insn >> 12) & 0xf; 2216 rd0 = (insn >> 16) & 0xf; 2217 rd1 = (insn >> 0) & 0xf; 2218 gen_op_iwmmxt_movq_M0_wRn(rd0); 2219 switch ((insn >> 22) & 3) { 2220 case 0: 2221 if (insn & (1 << 21)) 2222 gen_op_iwmmxt_minsb_M0_wRn(rd1); 2223 else 2224 gen_op_iwmmxt_minub_M0_wRn(rd1); 2225 break; 2226 case 1: 2227 if (insn & (1 << 21)) 2228 gen_op_iwmmxt_minsw_M0_wRn(rd1); 2229 else 2230 gen_op_iwmmxt_minuw_M0_wRn(rd1); 2231 break; 2232 case 2: 2233 if (insn & (1 << 21)) 2234 gen_op_iwmmxt_minsl_M0_wRn(rd1); 2235 else 2236 gen_op_iwmmxt_minul_M0_wRn(rd1); 2237 break; 2238 case 3: 2239 return 1; 2240 } 2241 gen_op_iwmmxt_movq_wRn_M0(wrd); 2242 gen_op_iwmmxt_set_mup(); 2243 break; 2244 case 0x016: case 0x216: case 0x416: case 0x616: /* WMAX */ 2245 case 0x816: case 0xa16: case 0xc16: case 0xe16: 2246 wrd = (insn >> 12) & 0xf; 2247 rd0 = (insn >> 16) & 0xf; 2248 rd1 = (insn >> 0) & 0xf; 2249 gen_op_iwmmxt_movq_M0_wRn(rd0); 2250 switch ((insn >> 22) & 3) { 2251 case 0: 2252 if (insn & (1 << 21)) 2253 gen_op_iwmmxt_maxsb_M0_wRn(rd1); 2254 else 2255 gen_op_iwmmxt_maxub_M0_wRn(rd1); 2256 break; 2257 case 1: 2258 if (insn & (1 << 21)) 2259 gen_op_iwmmxt_maxsw_M0_wRn(rd1); 2260 else 2261 gen_op_iwmmxt_maxuw_M0_wRn(rd1); 2262 break; 2263 case 2: 2264 if (insn & (1 << 21)) 2265 gen_op_iwmmxt_maxsl_M0_wRn(rd1); 2266 else 2267 gen_op_iwmmxt_maxul_M0_wRn(rd1); 2268 break; 2269 case 3: 2270 return 1; 2271 } 2272 gen_op_iwmmxt_movq_wRn_M0(wrd); 2273 gen_op_iwmmxt_set_mup(); 2274 break; 2275 case 0x002: case 0x102: case 0x202: case 0x302: /* WALIGNI */ 2276 case 0x402: case 0x502: case 0x602: case 0x702: 2277 wrd = (insn >> 12) & 0xf; 2278 rd0 = (insn >> 16) & 0xf; 2279 rd1 = (insn >> 0) & 0xf; 2280 gen_op_iwmmxt_movq_M0_wRn(rd0); 2281 iwmmxt_load_reg(cpu_V1, rd1); 2282 gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, 2283 tcg_constant_i32((insn >> 20) & 3)); 2284 gen_op_iwmmxt_movq_wRn_M0(wrd); 2285 gen_op_iwmmxt_set_mup(); 2286 break; 2287 case 0x01a: case 0x11a: case 0x21a: case 0x31a: /* WSUB */ 2288 case 0x41a: case 0x51a: case 0x61a: case 0x71a: 2289 case 0x81a: case 0x91a: case 0xa1a: case 0xb1a: 2290 case 0xc1a: case 0xd1a: case 0xe1a: case 0xf1a: 2291 wrd = (insn >> 12) & 0xf; 2292 rd0 = (insn >> 16) & 0xf; 2293 rd1 = (insn >> 0) & 0xf; 2294 gen_op_iwmmxt_movq_M0_wRn(rd0); 2295 switch ((insn >> 20) & 0xf) { 2296 case 0x0: 2297 gen_op_iwmmxt_subnb_M0_wRn(rd1); 2298 break; 2299 case 0x1: 2300 gen_op_iwmmxt_subub_M0_wRn(rd1); 2301 break; 2302 case 0x3: 2303 gen_op_iwmmxt_subsb_M0_wRn(rd1); 2304 break; 2305 case 0x4: 2306 gen_op_iwmmxt_subnw_M0_wRn(rd1); 2307 break; 2308 case 0x5: 2309 gen_op_iwmmxt_subuw_M0_wRn(rd1); 2310 break; 2311 case 0x7: 2312 gen_op_iwmmxt_subsw_M0_wRn(rd1); 2313 break; 2314 case 0x8: 2315 gen_op_iwmmxt_subnl_M0_wRn(rd1); 2316 break; 2317 case 0x9: 2318 gen_op_iwmmxt_subul_M0_wRn(rd1); 2319 break; 2320 case 0xb: 2321 gen_op_iwmmxt_subsl_M0_wRn(rd1); 2322 break; 2323 default: 2324 return 1; 2325 } 2326 gen_op_iwmmxt_movq_wRn_M0(wrd); 2327 gen_op_iwmmxt_set_mup(); 2328 gen_op_iwmmxt_set_cup(); 2329 break; 2330 case 0x01e: case 0x11e: case 0x21e: case 0x31e: /* WSHUFH */ 2331 case 0x41e: case 0x51e: case 0x61e: case 0x71e: 2332 case 0x81e: case 0x91e: case 0xa1e: case 0xb1e: 2333 case 0xc1e: case 0xd1e: case 0xe1e: case 0xf1e: 2334 wrd = (insn >> 12) & 0xf; 2335 rd0 = (insn >> 16) & 0xf; 2336 gen_op_iwmmxt_movq_M0_wRn(rd0); 2337 tmp = tcg_constant_i32(((insn >> 16) & 0xf0) | (insn & 0x0f)); 2338 gen_helper_iwmmxt_shufh(cpu_M0, cpu_env, cpu_M0, tmp); 2339 gen_op_iwmmxt_movq_wRn_M0(wrd); 2340 gen_op_iwmmxt_set_mup(); 2341 gen_op_iwmmxt_set_cup(); 2342 break; 2343 case 0x018: case 0x118: case 0x218: case 0x318: /* WADD */ 2344 case 0x418: case 0x518: case 0x618: case 0x718: 2345 case 0x818: case 0x918: case 0xa18: case 0xb18: 2346 case 0xc18: case 0xd18: case 0xe18: case 0xf18: 2347 wrd = (insn >> 12) & 0xf; 2348 rd0 = (insn >> 16) & 0xf; 2349 rd1 = (insn >> 0) & 0xf; 2350 gen_op_iwmmxt_movq_M0_wRn(rd0); 2351 switch ((insn >> 20) & 0xf) { 2352 case 0x0: 2353 gen_op_iwmmxt_addnb_M0_wRn(rd1); 2354 break; 2355 case 0x1: 2356 gen_op_iwmmxt_addub_M0_wRn(rd1); 2357 break; 2358 case 0x3: 2359 gen_op_iwmmxt_addsb_M0_wRn(rd1); 2360 break; 2361 case 0x4: 2362 gen_op_iwmmxt_addnw_M0_wRn(rd1); 2363 break; 2364 case 0x5: 2365 gen_op_iwmmxt_adduw_M0_wRn(rd1); 2366 break; 2367 case 0x7: 2368 gen_op_iwmmxt_addsw_M0_wRn(rd1); 2369 break; 2370 case 0x8: 2371 gen_op_iwmmxt_addnl_M0_wRn(rd1); 2372 break; 2373 case 0x9: 2374 gen_op_iwmmxt_addul_M0_wRn(rd1); 2375 break; 2376 case 0xb: 2377 gen_op_iwmmxt_addsl_M0_wRn(rd1); 2378 break; 2379 default: 2380 return 1; 2381 } 2382 gen_op_iwmmxt_movq_wRn_M0(wrd); 2383 gen_op_iwmmxt_set_mup(); 2384 gen_op_iwmmxt_set_cup(); 2385 break; 2386 case 0x008: case 0x108: case 0x208: case 0x308: /* WPACK */ 2387 case 0x408: case 0x508: case 0x608: case 0x708: 2388 case 0x808: case 0x908: case 0xa08: case 0xb08: 2389 case 0xc08: case 0xd08: case 0xe08: case 0xf08: 2390 if (!(insn & (1 << 20)) || ((insn >> 22) & 3) == 0) 2391 return 1; 2392 wrd = (insn >> 12) & 0xf; 2393 rd0 = (insn >> 16) & 0xf; 2394 rd1 = (insn >> 0) & 0xf; 2395 gen_op_iwmmxt_movq_M0_wRn(rd0); 2396 switch ((insn >> 22) & 3) { 2397 case 1: 2398 if (insn & (1 << 21)) 2399 gen_op_iwmmxt_packsw_M0_wRn(rd1); 2400 else 2401 gen_op_iwmmxt_packuw_M0_wRn(rd1); 2402 break; 2403 case 2: 2404 if (insn & (1 << 21)) 2405 gen_op_iwmmxt_packsl_M0_wRn(rd1); 2406 else 2407 gen_op_iwmmxt_packul_M0_wRn(rd1); 2408 break; 2409 case 3: 2410 if (insn & (1 << 21)) 2411 gen_op_iwmmxt_packsq_M0_wRn(rd1); 2412 else 2413 gen_op_iwmmxt_packuq_M0_wRn(rd1); 2414 break; 2415 } 2416 gen_op_iwmmxt_movq_wRn_M0(wrd); 2417 gen_op_iwmmxt_set_mup(); 2418 gen_op_iwmmxt_set_cup(); 2419 break; 2420 case 0x201: case 0x203: case 0x205: case 0x207: 2421 case 0x209: case 0x20b: case 0x20d: case 0x20f: 2422 case 0x211: case 0x213: case 0x215: case 0x217: 2423 case 0x219: case 0x21b: case 0x21d: case 0x21f: 2424 wrd = (insn >> 5) & 0xf; 2425 rd0 = (insn >> 12) & 0xf; 2426 rd1 = (insn >> 0) & 0xf; 2427 if (rd0 == 0xf || rd1 == 0xf) 2428 return 1; 2429 gen_op_iwmmxt_movq_M0_wRn(wrd); 2430 tmp = load_reg(s, rd0); 2431 tmp2 = load_reg(s, rd1); 2432 switch ((insn >> 16) & 0xf) { 2433 case 0x0: /* TMIA */ 2434 gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2); 2435 break; 2436 case 0x8: /* TMIAPH */ 2437 gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2); 2438 break; 2439 case 0xc: case 0xd: case 0xe: case 0xf: /* TMIAxy */ 2440 if (insn & (1 << 16)) 2441 tcg_gen_shri_i32(tmp, tmp, 16); 2442 if (insn & (1 << 17)) 2443 tcg_gen_shri_i32(tmp2, tmp2, 16); 2444 gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2); 2445 break; 2446 default: 2447 return 1; 2448 } 2449 gen_op_iwmmxt_movq_wRn_M0(wrd); 2450 gen_op_iwmmxt_set_mup(); 2451 break; 2452 default: 2453 return 1; 2454 } 2455 2456 return 0; 2457 } 2458 2459 /* Disassemble an XScale DSP instruction. Returns nonzero if an error occurred 2460 (ie. an undefined instruction). */ 2461 static int disas_dsp_insn(DisasContext *s, uint32_t insn) 2462 { 2463 int acc, rd0, rd1, rdhi, rdlo; 2464 TCGv_i32 tmp, tmp2; 2465 2466 if ((insn & 0x0ff00f10) == 0x0e200010) { 2467 /* Multiply with Internal Accumulate Format */ 2468 rd0 = (insn >> 12) & 0xf; 2469 rd1 = insn & 0xf; 2470 acc = (insn >> 5) & 7; 2471 2472 if (acc != 0) 2473 return 1; 2474 2475 tmp = load_reg(s, rd0); 2476 tmp2 = load_reg(s, rd1); 2477 switch ((insn >> 16) & 0xf) { 2478 case 0x0: /* MIA */ 2479 gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2); 2480 break; 2481 case 0x8: /* MIAPH */ 2482 gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2); 2483 break; 2484 case 0xc: /* MIABB */ 2485 case 0xd: /* MIABT */ 2486 case 0xe: /* MIATB */ 2487 case 0xf: /* MIATT */ 2488 if (insn & (1 << 16)) 2489 tcg_gen_shri_i32(tmp, tmp, 16); 2490 if (insn & (1 << 17)) 2491 tcg_gen_shri_i32(tmp2, tmp2, 16); 2492 gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2); 2493 break; 2494 default: 2495 return 1; 2496 } 2497 2498 gen_op_iwmmxt_movq_wRn_M0(acc); 2499 return 0; 2500 } 2501 2502 if ((insn & 0x0fe00ff8) == 0x0c400000) { 2503 /* Internal Accumulator Access Format */ 2504 rdhi = (insn >> 16) & 0xf; 2505 rdlo = (insn >> 12) & 0xf; 2506 acc = insn & 7; 2507 2508 if (acc != 0) 2509 return 1; 2510 2511 if (insn & ARM_CP_RW_BIT) { /* MRA */ 2512 iwmmxt_load_reg(cpu_V0, acc); 2513 tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0); 2514 tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0); 2515 tcg_gen_andi_i32(cpu_R[rdhi], cpu_R[rdhi], (1 << (40 - 32)) - 1); 2516 } else { /* MAR */ 2517 tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]); 2518 iwmmxt_store_reg(cpu_V0, acc); 2519 } 2520 return 0; 2521 } 2522 2523 return 1; 2524 } 2525 2526 static void gen_goto_ptr(void) 2527 { 2528 tcg_gen_lookup_and_goto_ptr(); 2529 } 2530 2531 /* This will end the TB but doesn't guarantee we'll return to 2532 * cpu_loop_exec. Any live exit_requests will be processed as we 2533 * enter the next TB. 2534 */ 2535 static void gen_goto_tb(DisasContext *s, int n, target_long diff) 2536 { 2537 if (translator_use_goto_tb(&s->base, s->pc_curr + diff)) { 2538 /* 2539 * For pcrel, the pc must always be up-to-date on entry to 2540 * the linked TB, so that it can use simple additions for all 2541 * further adjustments. For !pcrel, the linked TB is compiled 2542 * to know its full virtual address, so we can delay the 2543 * update to pc to the unlinked path. A long chain of links 2544 * can thus avoid many updates to the PC. 2545 */ 2546 if (tb_cflags(s->base.tb) & CF_PCREL) { 2547 gen_update_pc(s, diff); 2548 tcg_gen_goto_tb(n); 2549 } else { 2550 tcg_gen_goto_tb(n); 2551 gen_update_pc(s, diff); 2552 } 2553 tcg_gen_exit_tb(s->base.tb, n); 2554 } else { 2555 gen_update_pc(s, diff); 2556 gen_goto_ptr(); 2557 } 2558 s->base.is_jmp = DISAS_NORETURN; 2559 } 2560 2561 /* Jump, specifying which TB number to use if we gen_goto_tb() */ 2562 static void gen_jmp_tb(DisasContext *s, target_long diff, int tbno) 2563 { 2564 if (unlikely(s->ss_active)) { 2565 /* An indirect jump so that we still trigger the debug exception. */ 2566 gen_update_pc(s, diff); 2567 s->base.is_jmp = DISAS_JUMP; 2568 return; 2569 } 2570 switch (s->base.is_jmp) { 2571 case DISAS_NEXT: 2572 case DISAS_TOO_MANY: 2573 case DISAS_NORETURN: 2574 /* 2575 * The normal case: just go to the destination TB. 2576 * NB: NORETURN happens if we generate code like 2577 * gen_brcondi(l); 2578 * gen_jmp(); 2579 * gen_set_label(l); 2580 * gen_jmp(); 2581 * on the second call to gen_jmp(). 2582 */ 2583 gen_goto_tb(s, tbno, diff); 2584 break; 2585 case DISAS_UPDATE_NOCHAIN: 2586 case DISAS_UPDATE_EXIT: 2587 /* 2588 * We already decided we're leaving the TB for some other reason. 2589 * Avoid using goto_tb so we really do exit back to the main loop 2590 * and don't chain to another TB. 2591 */ 2592 gen_update_pc(s, diff); 2593 gen_goto_ptr(); 2594 s->base.is_jmp = DISAS_NORETURN; 2595 break; 2596 default: 2597 /* 2598 * We shouldn't be emitting code for a jump and also have 2599 * is_jmp set to one of the special cases like DISAS_SWI. 2600 */ 2601 g_assert_not_reached(); 2602 } 2603 } 2604 2605 static inline void gen_jmp(DisasContext *s, target_long diff) 2606 { 2607 gen_jmp_tb(s, diff, 0); 2608 } 2609 2610 static inline void gen_mulxy(TCGv_i32 t0, TCGv_i32 t1, int x, int y) 2611 { 2612 if (x) 2613 tcg_gen_sari_i32(t0, t0, 16); 2614 else 2615 gen_sxth(t0); 2616 if (y) 2617 tcg_gen_sari_i32(t1, t1, 16); 2618 else 2619 gen_sxth(t1); 2620 tcg_gen_mul_i32(t0, t0, t1); 2621 } 2622 2623 /* Return the mask of PSR bits set by a MSR instruction. */ 2624 static uint32_t msr_mask(DisasContext *s, int flags, int spsr) 2625 { 2626 uint32_t mask = 0; 2627 2628 if (flags & (1 << 0)) { 2629 mask |= 0xff; 2630 } 2631 if (flags & (1 << 1)) { 2632 mask |= 0xff00; 2633 } 2634 if (flags & (1 << 2)) { 2635 mask |= 0xff0000; 2636 } 2637 if (flags & (1 << 3)) { 2638 mask |= 0xff000000; 2639 } 2640 2641 /* Mask out undefined and reserved bits. */ 2642 mask &= aarch32_cpsr_valid_mask(s->features, s->isar); 2643 2644 /* Mask out execution state. */ 2645 if (!spsr) { 2646 mask &= ~CPSR_EXEC; 2647 } 2648 2649 /* Mask out privileged bits. */ 2650 if (IS_USER(s)) { 2651 mask &= CPSR_USER; 2652 } 2653 return mask; 2654 } 2655 2656 /* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */ 2657 static int gen_set_psr(DisasContext *s, uint32_t mask, int spsr, TCGv_i32 t0) 2658 { 2659 TCGv_i32 tmp; 2660 if (spsr) { 2661 /* ??? This is also undefined in system mode. */ 2662 if (IS_USER(s)) 2663 return 1; 2664 2665 tmp = load_cpu_field(spsr); 2666 tcg_gen_andi_i32(tmp, tmp, ~mask); 2667 tcg_gen_andi_i32(t0, t0, mask); 2668 tcg_gen_or_i32(tmp, tmp, t0); 2669 store_cpu_field(tmp, spsr); 2670 } else { 2671 gen_set_cpsr(t0, mask); 2672 } 2673 gen_lookup_tb(s); 2674 return 0; 2675 } 2676 2677 /* Returns nonzero if access to the PSR is not permitted. */ 2678 static int gen_set_psr_im(DisasContext *s, uint32_t mask, int spsr, uint32_t val) 2679 { 2680 TCGv_i32 tmp; 2681 tmp = tcg_temp_new_i32(); 2682 tcg_gen_movi_i32(tmp, val); 2683 return gen_set_psr(s, mask, spsr, tmp); 2684 } 2685 2686 static bool msr_banked_access_decode(DisasContext *s, int r, int sysm, int rn, 2687 int *tgtmode, int *regno) 2688 { 2689 /* Decode the r and sysm fields of MSR/MRS banked accesses into 2690 * the target mode and register number, and identify the various 2691 * unpredictable cases. 2692 * MSR (banked) and MRS (banked) are CONSTRAINED UNPREDICTABLE if: 2693 * + executed in user mode 2694 * + using R15 as the src/dest register 2695 * + accessing an unimplemented register 2696 * + accessing a register that's inaccessible at current PL/security state* 2697 * + accessing a register that you could access with a different insn 2698 * We choose to UNDEF in all these cases. 2699 * Since we don't know which of the various AArch32 modes we are in 2700 * we have to defer some checks to runtime. 2701 * Accesses to Monitor mode registers from Secure EL1 (which implies 2702 * that EL3 is AArch64) must trap to EL3. 2703 * 2704 * If the access checks fail this function will emit code to take 2705 * an exception and return false. Otherwise it will return true, 2706 * and set *tgtmode and *regno appropriately. 2707 */ 2708 /* These instructions are present only in ARMv8, or in ARMv7 with the 2709 * Virtualization Extensions. 2710 */ 2711 if (!arm_dc_feature(s, ARM_FEATURE_V8) && 2712 !arm_dc_feature(s, ARM_FEATURE_EL2)) { 2713 goto undef; 2714 } 2715 2716 if (IS_USER(s) || rn == 15) { 2717 goto undef; 2718 } 2719 2720 /* The table in the v8 ARM ARM section F5.2.3 describes the encoding 2721 * of registers into (r, sysm). 2722 */ 2723 if (r) { 2724 /* SPSRs for other modes */ 2725 switch (sysm) { 2726 case 0xe: /* SPSR_fiq */ 2727 *tgtmode = ARM_CPU_MODE_FIQ; 2728 break; 2729 case 0x10: /* SPSR_irq */ 2730 *tgtmode = ARM_CPU_MODE_IRQ; 2731 break; 2732 case 0x12: /* SPSR_svc */ 2733 *tgtmode = ARM_CPU_MODE_SVC; 2734 break; 2735 case 0x14: /* SPSR_abt */ 2736 *tgtmode = ARM_CPU_MODE_ABT; 2737 break; 2738 case 0x16: /* SPSR_und */ 2739 *tgtmode = ARM_CPU_MODE_UND; 2740 break; 2741 case 0x1c: /* SPSR_mon */ 2742 *tgtmode = ARM_CPU_MODE_MON; 2743 break; 2744 case 0x1e: /* SPSR_hyp */ 2745 *tgtmode = ARM_CPU_MODE_HYP; 2746 break; 2747 default: /* unallocated */ 2748 goto undef; 2749 } 2750 /* We arbitrarily assign SPSR a register number of 16. */ 2751 *regno = 16; 2752 } else { 2753 /* general purpose registers for other modes */ 2754 switch (sysm) { 2755 case 0x0 ... 0x6: /* 0b00xxx : r8_usr ... r14_usr */ 2756 *tgtmode = ARM_CPU_MODE_USR; 2757 *regno = sysm + 8; 2758 break; 2759 case 0x8 ... 0xe: /* 0b01xxx : r8_fiq ... r14_fiq */ 2760 *tgtmode = ARM_CPU_MODE_FIQ; 2761 *regno = sysm; 2762 break; 2763 case 0x10 ... 0x11: /* 0b1000x : r14_irq, r13_irq */ 2764 *tgtmode = ARM_CPU_MODE_IRQ; 2765 *regno = sysm & 1 ? 13 : 14; 2766 break; 2767 case 0x12 ... 0x13: /* 0b1001x : r14_svc, r13_svc */ 2768 *tgtmode = ARM_CPU_MODE_SVC; 2769 *regno = sysm & 1 ? 13 : 14; 2770 break; 2771 case 0x14 ... 0x15: /* 0b1010x : r14_abt, r13_abt */ 2772 *tgtmode = ARM_CPU_MODE_ABT; 2773 *regno = sysm & 1 ? 13 : 14; 2774 break; 2775 case 0x16 ... 0x17: /* 0b1011x : r14_und, r13_und */ 2776 *tgtmode = ARM_CPU_MODE_UND; 2777 *regno = sysm & 1 ? 13 : 14; 2778 break; 2779 case 0x1c ... 0x1d: /* 0b1110x : r14_mon, r13_mon */ 2780 *tgtmode = ARM_CPU_MODE_MON; 2781 *regno = sysm & 1 ? 13 : 14; 2782 break; 2783 case 0x1e ... 0x1f: /* 0b1111x : elr_hyp, r13_hyp */ 2784 *tgtmode = ARM_CPU_MODE_HYP; 2785 /* Arbitrarily pick 17 for ELR_Hyp (which is not a banked LR!) */ 2786 *regno = sysm & 1 ? 13 : 17; 2787 break; 2788 default: /* unallocated */ 2789 goto undef; 2790 } 2791 } 2792 2793 /* Catch the 'accessing inaccessible register' cases we can detect 2794 * at translate time. 2795 */ 2796 switch (*tgtmode) { 2797 case ARM_CPU_MODE_MON: 2798 if (!arm_dc_feature(s, ARM_FEATURE_EL3) || s->ns) { 2799 goto undef; 2800 } 2801 if (s->current_el == 1) { 2802 /* If we're in Secure EL1 (which implies that EL3 is AArch64) 2803 * then accesses to Mon registers trap to Secure EL2, if it exists, 2804 * otherwise EL3. 2805 */ 2806 TCGv_i32 tcg_el; 2807 2808 if (arm_dc_feature(s, ARM_FEATURE_AARCH64) && 2809 dc_isar_feature(aa64_sel2, s)) { 2810 /* Target EL is EL<3 minus SCR_EL3.EEL2> */ 2811 tcg_el = load_cpu_field_low32(cp15.scr_el3); 2812 tcg_gen_sextract_i32(tcg_el, tcg_el, ctz32(SCR_EEL2), 1); 2813 tcg_gen_addi_i32(tcg_el, tcg_el, 3); 2814 } else { 2815 tcg_el = tcg_constant_i32(3); 2816 } 2817 2818 gen_exception_insn_el_v(s, 0, EXCP_UDEF, 2819 syn_uncategorized(), tcg_el); 2820 return false; 2821 } 2822 break; 2823 case ARM_CPU_MODE_HYP: 2824 /* 2825 * SPSR_hyp and r13_hyp can only be accessed from Monitor mode 2826 * (and so we can forbid accesses from EL2 or below). elr_hyp 2827 * can be accessed also from Hyp mode, so forbid accesses from 2828 * EL0 or EL1. 2829 */ 2830 if (!arm_dc_feature(s, ARM_FEATURE_EL2) || s->current_el < 2 || 2831 (s->current_el < 3 && *regno != 17)) { 2832 goto undef; 2833 } 2834 break; 2835 default: 2836 break; 2837 } 2838 2839 return true; 2840 2841 undef: 2842 /* If we get here then some access check did not pass */ 2843 gen_exception_insn(s, 0, EXCP_UDEF, syn_uncategorized()); 2844 return false; 2845 } 2846 2847 static void gen_msr_banked(DisasContext *s, int r, int sysm, int rn) 2848 { 2849 TCGv_i32 tcg_reg; 2850 int tgtmode = 0, regno = 0; 2851 2852 if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) { 2853 return; 2854 } 2855 2856 /* Sync state because msr_banked() can raise exceptions */ 2857 gen_set_condexec(s); 2858 gen_update_pc(s, 0); 2859 tcg_reg = load_reg(s, rn); 2860 gen_helper_msr_banked(cpu_env, tcg_reg, 2861 tcg_constant_i32(tgtmode), 2862 tcg_constant_i32(regno)); 2863 s->base.is_jmp = DISAS_UPDATE_EXIT; 2864 } 2865 2866 static void gen_mrs_banked(DisasContext *s, int r, int sysm, int rn) 2867 { 2868 TCGv_i32 tcg_reg; 2869 int tgtmode = 0, regno = 0; 2870 2871 if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) { 2872 return; 2873 } 2874 2875 /* Sync state because mrs_banked() can raise exceptions */ 2876 gen_set_condexec(s); 2877 gen_update_pc(s, 0); 2878 tcg_reg = tcg_temp_new_i32(); 2879 gen_helper_mrs_banked(tcg_reg, cpu_env, 2880 tcg_constant_i32(tgtmode), 2881 tcg_constant_i32(regno)); 2882 store_reg(s, rn, tcg_reg); 2883 s->base.is_jmp = DISAS_UPDATE_EXIT; 2884 } 2885 2886 /* Store value to PC as for an exception return (ie don't 2887 * mask bits). The subsequent call to gen_helper_cpsr_write_eret() 2888 * will do the masking based on the new value of the Thumb bit. 2889 */ 2890 static void store_pc_exc_ret(DisasContext *s, TCGv_i32 pc) 2891 { 2892 tcg_gen_mov_i32(cpu_R[15], pc); 2893 } 2894 2895 /* Generate a v6 exception return. Marks both values as dead. */ 2896 static void gen_rfe(DisasContext *s, TCGv_i32 pc, TCGv_i32 cpsr) 2897 { 2898 store_pc_exc_ret(s, pc); 2899 /* The cpsr_write_eret helper will mask the low bits of PC 2900 * appropriately depending on the new Thumb bit, so it must 2901 * be called after storing the new PC. 2902 */ 2903 translator_io_start(&s->base); 2904 gen_helper_cpsr_write_eret(cpu_env, cpsr); 2905 /* Must exit loop to check un-masked IRQs */ 2906 s->base.is_jmp = DISAS_EXIT; 2907 } 2908 2909 /* Generate an old-style exception return. Marks pc as dead. */ 2910 static void gen_exception_return(DisasContext *s, TCGv_i32 pc) 2911 { 2912 gen_rfe(s, pc, load_cpu_field(spsr)); 2913 } 2914 2915 static void gen_gvec_fn3_qc(uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, 2916 uint32_t opr_sz, uint32_t max_sz, 2917 gen_helper_gvec_3_ptr *fn) 2918 { 2919 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 2920 2921 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 2922 tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, qc_ptr, 2923 opr_sz, max_sz, 0, fn); 2924 } 2925 2926 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 2927 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 2928 { 2929 static gen_helper_gvec_3_ptr * const fns[2] = { 2930 gen_helper_gvec_qrdmlah_s16, gen_helper_gvec_qrdmlah_s32 2931 }; 2932 tcg_debug_assert(vece >= 1 && vece <= 2); 2933 gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]); 2934 } 2935 2936 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 2937 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 2938 { 2939 static gen_helper_gvec_3_ptr * const fns[2] = { 2940 gen_helper_gvec_qrdmlsh_s16, gen_helper_gvec_qrdmlsh_s32 2941 }; 2942 tcg_debug_assert(vece >= 1 && vece <= 2); 2943 gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]); 2944 } 2945 2946 #define GEN_CMP0(NAME, COND) \ 2947 void NAME(unsigned vece, uint32_t d, uint32_t m, \ 2948 uint32_t opr_sz, uint32_t max_sz) \ 2949 { tcg_gen_gvec_cmpi(COND, vece, d, m, 0, opr_sz, max_sz); } 2950 2951 GEN_CMP0(gen_gvec_ceq0, TCG_COND_EQ) 2952 GEN_CMP0(gen_gvec_cle0, TCG_COND_LE) 2953 GEN_CMP0(gen_gvec_cge0, TCG_COND_GE) 2954 GEN_CMP0(gen_gvec_clt0, TCG_COND_LT) 2955 GEN_CMP0(gen_gvec_cgt0, TCG_COND_GT) 2956 2957 #undef GEN_CMP0 2958 2959 static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 2960 { 2961 tcg_gen_vec_sar8i_i64(a, a, shift); 2962 tcg_gen_vec_add8_i64(d, d, a); 2963 } 2964 2965 static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 2966 { 2967 tcg_gen_vec_sar16i_i64(a, a, shift); 2968 tcg_gen_vec_add16_i64(d, d, a); 2969 } 2970 2971 static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) 2972 { 2973 tcg_gen_sari_i32(a, a, shift); 2974 tcg_gen_add_i32(d, d, a); 2975 } 2976 2977 static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 2978 { 2979 tcg_gen_sari_i64(a, a, shift); 2980 tcg_gen_add_i64(d, d, a); 2981 } 2982 2983 static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 2984 { 2985 tcg_gen_sari_vec(vece, a, a, sh); 2986 tcg_gen_add_vec(vece, d, d, a); 2987 } 2988 2989 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 2990 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 2991 { 2992 static const TCGOpcode vecop_list[] = { 2993 INDEX_op_sari_vec, INDEX_op_add_vec, 0 2994 }; 2995 static const GVecGen2i ops[4] = { 2996 { .fni8 = gen_ssra8_i64, 2997 .fniv = gen_ssra_vec, 2998 .fno = gen_helper_gvec_ssra_b, 2999 .load_dest = true, 3000 .opt_opc = vecop_list, 3001 .vece = MO_8 }, 3002 { .fni8 = gen_ssra16_i64, 3003 .fniv = gen_ssra_vec, 3004 .fno = gen_helper_gvec_ssra_h, 3005 .load_dest = true, 3006 .opt_opc = vecop_list, 3007 .vece = MO_16 }, 3008 { .fni4 = gen_ssra32_i32, 3009 .fniv = gen_ssra_vec, 3010 .fno = gen_helper_gvec_ssra_s, 3011 .load_dest = true, 3012 .opt_opc = vecop_list, 3013 .vece = MO_32 }, 3014 { .fni8 = gen_ssra64_i64, 3015 .fniv = gen_ssra_vec, 3016 .fno = gen_helper_gvec_ssra_d, 3017 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3018 .opt_opc = vecop_list, 3019 .load_dest = true, 3020 .vece = MO_64 }, 3021 }; 3022 3023 /* tszimm encoding produces immediates in the range [1..esize]. */ 3024 tcg_debug_assert(shift > 0); 3025 tcg_debug_assert(shift <= (8 << vece)); 3026 3027 /* 3028 * Shifts larger than the element size are architecturally valid. 3029 * Signed results in all sign bits. 3030 */ 3031 shift = MIN(shift, (8 << vece) - 1); 3032 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3033 } 3034 3035 static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3036 { 3037 tcg_gen_vec_shr8i_i64(a, a, shift); 3038 tcg_gen_vec_add8_i64(d, d, a); 3039 } 3040 3041 static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3042 { 3043 tcg_gen_vec_shr16i_i64(a, a, shift); 3044 tcg_gen_vec_add16_i64(d, d, a); 3045 } 3046 3047 static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) 3048 { 3049 tcg_gen_shri_i32(a, a, shift); 3050 tcg_gen_add_i32(d, d, a); 3051 } 3052 3053 static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3054 { 3055 tcg_gen_shri_i64(a, a, shift); 3056 tcg_gen_add_i64(d, d, a); 3057 } 3058 3059 static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3060 { 3061 tcg_gen_shri_vec(vece, a, a, sh); 3062 tcg_gen_add_vec(vece, d, d, a); 3063 } 3064 3065 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3066 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3067 { 3068 static const TCGOpcode vecop_list[] = { 3069 INDEX_op_shri_vec, INDEX_op_add_vec, 0 3070 }; 3071 static const GVecGen2i ops[4] = { 3072 { .fni8 = gen_usra8_i64, 3073 .fniv = gen_usra_vec, 3074 .fno = gen_helper_gvec_usra_b, 3075 .load_dest = true, 3076 .opt_opc = vecop_list, 3077 .vece = MO_8, }, 3078 { .fni8 = gen_usra16_i64, 3079 .fniv = gen_usra_vec, 3080 .fno = gen_helper_gvec_usra_h, 3081 .load_dest = true, 3082 .opt_opc = vecop_list, 3083 .vece = MO_16, }, 3084 { .fni4 = gen_usra32_i32, 3085 .fniv = gen_usra_vec, 3086 .fno = gen_helper_gvec_usra_s, 3087 .load_dest = true, 3088 .opt_opc = vecop_list, 3089 .vece = MO_32, }, 3090 { .fni8 = gen_usra64_i64, 3091 .fniv = gen_usra_vec, 3092 .fno = gen_helper_gvec_usra_d, 3093 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3094 .load_dest = true, 3095 .opt_opc = vecop_list, 3096 .vece = MO_64, }, 3097 }; 3098 3099 /* tszimm encoding produces immediates in the range [1..esize]. */ 3100 tcg_debug_assert(shift > 0); 3101 tcg_debug_assert(shift <= (8 << vece)); 3102 3103 /* 3104 * Shifts larger than the element size are architecturally valid. 3105 * Unsigned results in all zeros as input to accumulate: nop. 3106 */ 3107 if (shift < (8 << vece)) { 3108 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3109 } else { 3110 /* Nop, but we do need to clear the tail. */ 3111 tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); 3112 } 3113 } 3114 3115 /* 3116 * Shift one less than the requested amount, and the low bit is 3117 * the rounding bit. For the 8 and 16-bit operations, because we 3118 * mask the low bit, we can perform a normal integer shift instead 3119 * of a vector shift. 3120 */ 3121 static void gen_srshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3122 { 3123 TCGv_i64 t = tcg_temp_new_i64(); 3124 3125 tcg_gen_shri_i64(t, a, sh - 1); 3126 tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); 3127 tcg_gen_vec_sar8i_i64(d, a, sh); 3128 tcg_gen_vec_add8_i64(d, d, t); 3129 } 3130 3131 static void gen_srshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3132 { 3133 TCGv_i64 t = tcg_temp_new_i64(); 3134 3135 tcg_gen_shri_i64(t, a, sh - 1); 3136 tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); 3137 tcg_gen_vec_sar16i_i64(d, a, sh); 3138 tcg_gen_vec_add16_i64(d, d, t); 3139 } 3140 3141 static void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) 3142 { 3143 TCGv_i32 t; 3144 3145 /* Handle shift by the input size for the benefit of trans_SRSHR_ri */ 3146 if (sh == 32) { 3147 tcg_gen_movi_i32(d, 0); 3148 return; 3149 } 3150 t = tcg_temp_new_i32(); 3151 tcg_gen_extract_i32(t, a, sh - 1, 1); 3152 tcg_gen_sari_i32(d, a, sh); 3153 tcg_gen_add_i32(d, d, t); 3154 } 3155 3156 static void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3157 { 3158 TCGv_i64 t = tcg_temp_new_i64(); 3159 3160 tcg_gen_extract_i64(t, a, sh - 1, 1); 3161 tcg_gen_sari_i64(d, a, sh); 3162 tcg_gen_add_i64(d, d, t); 3163 } 3164 3165 static void gen_srshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3166 { 3167 TCGv_vec t = tcg_temp_new_vec_matching(d); 3168 TCGv_vec ones = tcg_temp_new_vec_matching(d); 3169 3170 tcg_gen_shri_vec(vece, t, a, sh - 1); 3171 tcg_gen_dupi_vec(vece, ones, 1); 3172 tcg_gen_and_vec(vece, t, t, ones); 3173 tcg_gen_sari_vec(vece, d, a, sh); 3174 tcg_gen_add_vec(vece, d, d, t); 3175 } 3176 3177 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3178 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3179 { 3180 static const TCGOpcode vecop_list[] = { 3181 INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0 3182 }; 3183 static const GVecGen2i ops[4] = { 3184 { .fni8 = gen_srshr8_i64, 3185 .fniv = gen_srshr_vec, 3186 .fno = gen_helper_gvec_srshr_b, 3187 .opt_opc = vecop_list, 3188 .vece = MO_8 }, 3189 { .fni8 = gen_srshr16_i64, 3190 .fniv = gen_srshr_vec, 3191 .fno = gen_helper_gvec_srshr_h, 3192 .opt_opc = vecop_list, 3193 .vece = MO_16 }, 3194 { .fni4 = gen_srshr32_i32, 3195 .fniv = gen_srshr_vec, 3196 .fno = gen_helper_gvec_srshr_s, 3197 .opt_opc = vecop_list, 3198 .vece = MO_32 }, 3199 { .fni8 = gen_srshr64_i64, 3200 .fniv = gen_srshr_vec, 3201 .fno = gen_helper_gvec_srshr_d, 3202 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3203 .opt_opc = vecop_list, 3204 .vece = MO_64 }, 3205 }; 3206 3207 /* tszimm encoding produces immediates in the range [1..esize] */ 3208 tcg_debug_assert(shift > 0); 3209 tcg_debug_assert(shift <= (8 << vece)); 3210 3211 if (shift == (8 << vece)) { 3212 /* 3213 * Shifts larger than the element size are architecturally valid. 3214 * Signed results in all sign bits. With rounding, this produces 3215 * (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0. 3216 * I.e. always zero. 3217 */ 3218 tcg_gen_gvec_dup_imm(vece, rd_ofs, opr_sz, max_sz, 0); 3219 } else { 3220 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3221 } 3222 } 3223 3224 static void gen_srsra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3225 { 3226 TCGv_i64 t = tcg_temp_new_i64(); 3227 3228 gen_srshr8_i64(t, a, sh); 3229 tcg_gen_vec_add8_i64(d, d, t); 3230 } 3231 3232 static void gen_srsra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3233 { 3234 TCGv_i64 t = tcg_temp_new_i64(); 3235 3236 gen_srshr16_i64(t, a, sh); 3237 tcg_gen_vec_add16_i64(d, d, t); 3238 } 3239 3240 static void gen_srsra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) 3241 { 3242 TCGv_i32 t = tcg_temp_new_i32(); 3243 3244 gen_srshr32_i32(t, a, sh); 3245 tcg_gen_add_i32(d, d, t); 3246 } 3247 3248 static void gen_srsra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3249 { 3250 TCGv_i64 t = tcg_temp_new_i64(); 3251 3252 gen_srshr64_i64(t, a, sh); 3253 tcg_gen_add_i64(d, d, t); 3254 } 3255 3256 static void gen_srsra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3257 { 3258 TCGv_vec t = tcg_temp_new_vec_matching(d); 3259 3260 gen_srshr_vec(vece, t, a, sh); 3261 tcg_gen_add_vec(vece, d, d, t); 3262 } 3263 3264 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3265 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3266 { 3267 static const TCGOpcode vecop_list[] = { 3268 INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0 3269 }; 3270 static const GVecGen2i ops[4] = { 3271 { .fni8 = gen_srsra8_i64, 3272 .fniv = gen_srsra_vec, 3273 .fno = gen_helper_gvec_srsra_b, 3274 .opt_opc = vecop_list, 3275 .load_dest = true, 3276 .vece = MO_8 }, 3277 { .fni8 = gen_srsra16_i64, 3278 .fniv = gen_srsra_vec, 3279 .fno = gen_helper_gvec_srsra_h, 3280 .opt_opc = vecop_list, 3281 .load_dest = true, 3282 .vece = MO_16 }, 3283 { .fni4 = gen_srsra32_i32, 3284 .fniv = gen_srsra_vec, 3285 .fno = gen_helper_gvec_srsra_s, 3286 .opt_opc = vecop_list, 3287 .load_dest = true, 3288 .vece = MO_32 }, 3289 { .fni8 = gen_srsra64_i64, 3290 .fniv = gen_srsra_vec, 3291 .fno = gen_helper_gvec_srsra_d, 3292 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3293 .opt_opc = vecop_list, 3294 .load_dest = true, 3295 .vece = MO_64 }, 3296 }; 3297 3298 /* tszimm encoding produces immediates in the range [1..esize] */ 3299 tcg_debug_assert(shift > 0); 3300 tcg_debug_assert(shift <= (8 << vece)); 3301 3302 /* 3303 * Shifts larger than the element size are architecturally valid. 3304 * Signed results in all sign bits. With rounding, this produces 3305 * (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0. 3306 * I.e. always zero. With accumulation, this leaves D unchanged. 3307 */ 3308 if (shift == (8 << vece)) { 3309 /* Nop, but we do need to clear the tail. */ 3310 tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); 3311 } else { 3312 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3313 } 3314 } 3315 3316 static void gen_urshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3317 { 3318 TCGv_i64 t = tcg_temp_new_i64(); 3319 3320 tcg_gen_shri_i64(t, a, sh - 1); 3321 tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); 3322 tcg_gen_vec_shr8i_i64(d, a, sh); 3323 tcg_gen_vec_add8_i64(d, d, t); 3324 } 3325 3326 static void gen_urshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3327 { 3328 TCGv_i64 t = tcg_temp_new_i64(); 3329 3330 tcg_gen_shri_i64(t, a, sh - 1); 3331 tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); 3332 tcg_gen_vec_shr16i_i64(d, a, sh); 3333 tcg_gen_vec_add16_i64(d, d, t); 3334 } 3335 3336 static void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) 3337 { 3338 TCGv_i32 t; 3339 3340 /* Handle shift by the input size for the benefit of trans_URSHR_ri */ 3341 if (sh == 32) { 3342 tcg_gen_extract_i32(d, a, sh - 1, 1); 3343 return; 3344 } 3345 t = tcg_temp_new_i32(); 3346 tcg_gen_extract_i32(t, a, sh - 1, 1); 3347 tcg_gen_shri_i32(d, a, sh); 3348 tcg_gen_add_i32(d, d, t); 3349 } 3350 3351 static void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3352 { 3353 TCGv_i64 t = tcg_temp_new_i64(); 3354 3355 tcg_gen_extract_i64(t, a, sh - 1, 1); 3356 tcg_gen_shri_i64(d, a, sh); 3357 tcg_gen_add_i64(d, d, t); 3358 } 3359 3360 static void gen_urshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t shift) 3361 { 3362 TCGv_vec t = tcg_temp_new_vec_matching(d); 3363 TCGv_vec ones = tcg_temp_new_vec_matching(d); 3364 3365 tcg_gen_shri_vec(vece, t, a, shift - 1); 3366 tcg_gen_dupi_vec(vece, ones, 1); 3367 tcg_gen_and_vec(vece, t, t, ones); 3368 tcg_gen_shri_vec(vece, d, a, shift); 3369 tcg_gen_add_vec(vece, d, d, t); 3370 } 3371 3372 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3373 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3374 { 3375 static const TCGOpcode vecop_list[] = { 3376 INDEX_op_shri_vec, INDEX_op_add_vec, 0 3377 }; 3378 static const GVecGen2i ops[4] = { 3379 { .fni8 = gen_urshr8_i64, 3380 .fniv = gen_urshr_vec, 3381 .fno = gen_helper_gvec_urshr_b, 3382 .opt_opc = vecop_list, 3383 .vece = MO_8 }, 3384 { .fni8 = gen_urshr16_i64, 3385 .fniv = gen_urshr_vec, 3386 .fno = gen_helper_gvec_urshr_h, 3387 .opt_opc = vecop_list, 3388 .vece = MO_16 }, 3389 { .fni4 = gen_urshr32_i32, 3390 .fniv = gen_urshr_vec, 3391 .fno = gen_helper_gvec_urshr_s, 3392 .opt_opc = vecop_list, 3393 .vece = MO_32 }, 3394 { .fni8 = gen_urshr64_i64, 3395 .fniv = gen_urshr_vec, 3396 .fno = gen_helper_gvec_urshr_d, 3397 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3398 .opt_opc = vecop_list, 3399 .vece = MO_64 }, 3400 }; 3401 3402 /* tszimm encoding produces immediates in the range [1..esize] */ 3403 tcg_debug_assert(shift > 0); 3404 tcg_debug_assert(shift <= (8 << vece)); 3405 3406 if (shift == (8 << vece)) { 3407 /* 3408 * Shifts larger than the element size are architecturally valid. 3409 * Unsigned results in zero. With rounding, this produces a 3410 * copy of the most significant bit. 3411 */ 3412 tcg_gen_gvec_shri(vece, rd_ofs, rm_ofs, shift - 1, opr_sz, max_sz); 3413 } else { 3414 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3415 } 3416 } 3417 3418 static void gen_ursra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3419 { 3420 TCGv_i64 t = tcg_temp_new_i64(); 3421 3422 if (sh == 8) { 3423 tcg_gen_vec_shr8i_i64(t, a, 7); 3424 } else { 3425 gen_urshr8_i64(t, a, sh); 3426 } 3427 tcg_gen_vec_add8_i64(d, d, t); 3428 } 3429 3430 static void gen_ursra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3431 { 3432 TCGv_i64 t = tcg_temp_new_i64(); 3433 3434 if (sh == 16) { 3435 tcg_gen_vec_shr16i_i64(t, a, 15); 3436 } else { 3437 gen_urshr16_i64(t, a, sh); 3438 } 3439 tcg_gen_vec_add16_i64(d, d, t); 3440 } 3441 3442 static void gen_ursra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) 3443 { 3444 TCGv_i32 t = tcg_temp_new_i32(); 3445 3446 if (sh == 32) { 3447 tcg_gen_shri_i32(t, a, 31); 3448 } else { 3449 gen_urshr32_i32(t, a, sh); 3450 } 3451 tcg_gen_add_i32(d, d, t); 3452 } 3453 3454 static void gen_ursra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3455 { 3456 TCGv_i64 t = tcg_temp_new_i64(); 3457 3458 if (sh == 64) { 3459 tcg_gen_shri_i64(t, a, 63); 3460 } else { 3461 gen_urshr64_i64(t, a, sh); 3462 } 3463 tcg_gen_add_i64(d, d, t); 3464 } 3465 3466 static void gen_ursra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3467 { 3468 TCGv_vec t = tcg_temp_new_vec_matching(d); 3469 3470 if (sh == (8 << vece)) { 3471 tcg_gen_shri_vec(vece, t, a, sh - 1); 3472 } else { 3473 gen_urshr_vec(vece, t, a, sh); 3474 } 3475 tcg_gen_add_vec(vece, d, d, t); 3476 } 3477 3478 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3479 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3480 { 3481 static const TCGOpcode vecop_list[] = { 3482 INDEX_op_shri_vec, INDEX_op_add_vec, 0 3483 }; 3484 static const GVecGen2i ops[4] = { 3485 { .fni8 = gen_ursra8_i64, 3486 .fniv = gen_ursra_vec, 3487 .fno = gen_helper_gvec_ursra_b, 3488 .opt_opc = vecop_list, 3489 .load_dest = true, 3490 .vece = MO_8 }, 3491 { .fni8 = gen_ursra16_i64, 3492 .fniv = gen_ursra_vec, 3493 .fno = gen_helper_gvec_ursra_h, 3494 .opt_opc = vecop_list, 3495 .load_dest = true, 3496 .vece = MO_16 }, 3497 { .fni4 = gen_ursra32_i32, 3498 .fniv = gen_ursra_vec, 3499 .fno = gen_helper_gvec_ursra_s, 3500 .opt_opc = vecop_list, 3501 .load_dest = true, 3502 .vece = MO_32 }, 3503 { .fni8 = gen_ursra64_i64, 3504 .fniv = gen_ursra_vec, 3505 .fno = gen_helper_gvec_ursra_d, 3506 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3507 .opt_opc = vecop_list, 3508 .load_dest = true, 3509 .vece = MO_64 }, 3510 }; 3511 3512 /* tszimm encoding produces immediates in the range [1..esize] */ 3513 tcg_debug_assert(shift > 0); 3514 tcg_debug_assert(shift <= (8 << vece)); 3515 3516 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3517 } 3518 3519 static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3520 { 3521 uint64_t mask = dup_const(MO_8, 0xff >> shift); 3522 TCGv_i64 t = tcg_temp_new_i64(); 3523 3524 tcg_gen_shri_i64(t, a, shift); 3525 tcg_gen_andi_i64(t, t, mask); 3526 tcg_gen_andi_i64(d, d, ~mask); 3527 tcg_gen_or_i64(d, d, t); 3528 } 3529 3530 static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3531 { 3532 uint64_t mask = dup_const(MO_16, 0xffff >> shift); 3533 TCGv_i64 t = tcg_temp_new_i64(); 3534 3535 tcg_gen_shri_i64(t, a, shift); 3536 tcg_gen_andi_i64(t, t, mask); 3537 tcg_gen_andi_i64(d, d, ~mask); 3538 tcg_gen_or_i64(d, d, t); 3539 } 3540 3541 static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) 3542 { 3543 tcg_gen_shri_i32(a, a, shift); 3544 tcg_gen_deposit_i32(d, d, a, 0, 32 - shift); 3545 } 3546 3547 static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3548 { 3549 tcg_gen_shri_i64(a, a, shift); 3550 tcg_gen_deposit_i64(d, d, a, 0, 64 - shift); 3551 } 3552 3553 static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3554 { 3555 TCGv_vec t = tcg_temp_new_vec_matching(d); 3556 TCGv_vec m = tcg_temp_new_vec_matching(d); 3557 3558 tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK((8 << vece) - sh, sh)); 3559 tcg_gen_shri_vec(vece, t, a, sh); 3560 tcg_gen_and_vec(vece, d, d, m); 3561 tcg_gen_or_vec(vece, d, d, t); 3562 } 3563 3564 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3565 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3566 { 3567 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 }; 3568 const GVecGen2i ops[4] = { 3569 { .fni8 = gen_shr8_ins_i64, 3570 .fniv = gen_shr_ins_vec, 3571 .fno = gen_helper_gvec_sri_b, 3572 .load_dest = true, 3573 .opt_opc = vecop_list, 3574 .vece = MO_8 }, 3575 { .fni8 = gen_shr16_ins_i64, 3576 .fniv = gen_shr_ins_vec, 3577 .fno = gen_helper_gvec_sri_h, 3578 .load_dest = true, 3579 .opt_opc = vecop_list, 3580 .vece = MO_16 }, 3581 { .fni4 = gen_shr32_ins_i32, 3582 .fniv = gen_shr_ins_vec, 3583 .fno = gen_helper_gvec_sri_s, 3584 .load_dest = true, 3585 .opt_opc = vecop_list, 3586 .vece = MO_32 }, 3587 { .fni8 = gen_shr64_ins_i64, 3588 .fniv = gen_shr_ins_vec, 3589 .fno = gen_helper_gvec_sri_d, 3590 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3591 .load_dest = true, 3592 .opt_opc = vecop_list, 3593 .vece = MO_64 }, 3594 }; 3595 3596 /* tszimm encoding produces immediates in the range [1..esize]. */ 3597 tcg_debug_assert(shift > 0); 3598 tcg_debug_assert(shift <= (8 << vece)); 3599 3600 /* Shift of esize leaves destination unchanged. */ 3601 if (shift < (8 << vece)) { 3602 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3603 } else { 3604 /* Nop, but we do need to clear the tail. */ 3605 tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); 3606 } 3607 } 3608 3609 static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3610 { 3611 uint64_t mask = dup_const(MO_8, 0xff << shift); 3612 TCGv_i64 t = tcg_temp_new_i64(); 3613 3614 tcg_gen_shli_i64(t, a, shift); 3615 tcg_gen_andi_i64(t, t, mask); 3616 tcg_gen_andi_i64(d, d, ~mask); 3617 tcg_gen_or_i64(d, d, t); 3618 } 3619 3620 static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3621 { 3622 uint64_t mask = dup_const(MO_16, 0xffff << shift); 3623 TCGv_i64 t = tcg_temp_new_i64(); 3624 3625 tcg_gen_shli_i64(t, a, shift); 3626 tcg_gen_andi_i64(t, t, mask); 3627 tcg_gen_andi_i64(d, d, ~mask); 3628 tcg_gen_or_i64(d, d, t); 3629 } 3630 3631 static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) 3632 { 3633 tcg_gen_deposit_i32(d, d, a, shift, 32 - shift); 3634 } 3635 3636 static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3637 { 3638 tcg_gen_deposit_i64(d, d, a, shift, 64 - shift); 3639 } 3640 3641 static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3642 { 3643 TCGv_vec t = tcg_temp_new_vec_matching(d); 3644 TCGv_vec m = tcg_temp_new_vec_matching(d); 3645 3646 tcg_gen_shli_vec(vece, t, a, sh); 3647 tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK(0, sh)); 3648 tcg_gen_and_vec(vece, d, d, m); 3649 tcg_gen_or_vec(vece, d, d, t); 3650 } 3651 3652 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3653 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3654 { 3655 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 }; 3656 const GVecGen2i ops[4] = { 3657 { .fni8 = gen_shl8_ins_i64, 3658 .fniv = gen_shl_ins_vec, 3659 .fno = gen_helper_gvec_sli_b, 3660 .load_dest = true, 3661 .opt_opc = vecop_list, 3662 .vece = MO_8 }, 3663 { .fni8 = gen_shl16_ins_i64, 3664 .fniv = gen_shl_ins_vec, 3665 .fno = gen_helper_gvec_sli_h, 3666 .load_dest = true, 3667 .opt_opc = vecop_list, 3668 .vece = MO_16 }, 3669 { .fni4 = gen_shl32_ins_i32, 3670 .fniv = gen_shl_ins_vec, 3671 .fno = gen_helper_gvec_sli_s, 3672 .load_dest = true, 3673 .opt_opc = vecop_list, 3674 .vece = MO_32 }, 3675 { .fni8 = gen_shl64_ins_i64, 3676 .fniv = gen_shl_ins_vec, 3677 .fno = gen_helper_gvec_sli_d, 3678 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3679 .load_dest = true, 3680 .opt_opc = vecop_list, 3681 .vece = MO_64 }, 3682 }; 3683 3684 /* tszimm encoding produces immediates in the range [0..esize-1]. */ 3685 tcg_debug_assert(shift >= 0); 3686 tcg_debug_assert(shift < (8 << vece)); 3687 3688 if (shift == 0) { 3689 tcg_gen_gvec_mov(vece, rd_ofs, rm_ofs, opr_sz, max_sz); 3690 } else { 3691 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3692 } 3693 } 3694 3695 static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3696 { 3697 gen_helper_neon_mul_u8(a, a, b); 3698 gen_helper_neon_add_u8(d, d, a); 3699 } 3700 3701 static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3702 { 3703 gen_helper_neon_mul_u8(a, a, b); 3704 gen_helper_neon_sub_u8(d, d, a); 3705 } 3706 3707 static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3708 { 3709 gen_helper_neon_mul_u16(a, a, b); 3710 gen_helper_neon_add_u16(d, d, a); 3711 } 3712 3713 static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3714 { 3715 gen_helper_neon_mul_u16(a, a, b); 3716 gen_helper_neon_sub_u16(d, d, a); 3717 } 3718 3719 static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3720 { 3721 tcg_gen_mul_i32(a, a, b); 3722 tcg_gen_add_i32(d, d, a); 3723 } 3724 3725 static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3726 { 3727 tcg_gen_mul_i32(a, a, b); 3728 tcg_gen_sub_i32(d, d, a); 3729 } 3730 3731 static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 3732 { 3733 tcg_gen_mul_i64(a, a, b); 3734 tcg_gen_add_i64(d, d, a); 3735 } 3736 3737 static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 3738 { 3739 tcg_gen_mul_i64(a, a, b); 3740 tcg_gen_sub_i64(d, d, a); 3741 } 3742 3743 static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 3744 { 3745 tcg_gen_mul_vec(vece, a, a, b); 3746 tcg_gen_add_vec(vece, d, d, a); 3747 } 3748 3749 static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 3750 { 3751 tcg_gen_mul_vec(vece, a, a, b); 3752 tcg_gen_sub_vec(vece, d, d, a); 3753 } 3754 3755 /* Note that while NEON does not support VMLA and VMLS as 64-bit ops, 3756 * these tables are shared with AArch64 which does support them. 3757 */ 3758 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 3759 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 3760 { 3761 static const TCGOpcode vecop_list[] = { 3762 INDEX_op_mul_vec, INDEX_op_add_vec, 0 3763 }; 3764 static const GVecGen3 ops[4] = { 3765 { .fni4 = gen_mla8_i32, 3766 .fniv = gen_mla_vec, 3767 .load_dest = true, 3768 .opt_opc = vecop_list, 3769 .vece = MO_8 }, 3770 { .fni4 = gen_mla16_i32, 3771 .fniv = gen_mla_vec, 3772 .load_dest = true, 3773 .opt_opc = vecop_list, 3774 .vece = MO_16 }, 3775 { .fni4 = gen_mla32_i32, 3776 .fniv = gen_mla_vec, 3777 .load_dest = true, 3778 .opt_opc = vecop_list, 3779 .vece = MO_32 }, 3780 { .fni8 = gen_mla64_i64, 3781 .fniv = gen_mla_vec, 3782 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3783 .load_dest = true, 3784 .opt_opc = vecop_list, 3785 .vece = MO_64 }, 3786 }; 3787 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 3788 } 3789 3790 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 3791 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 3792 { 3793 static const TCGOpcode vecop_list[] = { 3794 INDEX_op_mul_vec, INDEX_op_sub_vec, 0 3795 }; 3796 static const GVecGen3 ops[4] = { 3797 { .fni4 = gen_mls8_i32, 3798 .fniv = gen_mls_vec, 3799 .load_dest = true, 3800 .opt_opc = vecop_list, 3801 .vece = MO_8 }, 3802 { .fni4 = gen_mls16_i32, 3803 .fniv = gen_mls_vec, 3804 .load_dest = true, 3805 .opt_opc = vecop_list, 3806 .vece = MO_16 }, 3807 { .fni4 = gen_mls32_i32, 3808 .fniv = gen_mls_vec, 3809 .load_dest = true, 3810 .opt_opc = vecop_list, 3811 .vece = MO_32 }, 3812 { .fni8 = gen_mls64_i64, 3813 .fniv = gen_mls_vec, 3814 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3815 .load_dest = true, 3816 .opt_opc = vecop_list, 3817 .vece = MO_64 }, 3818 }; 3819 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 3820 } 3821 3822 /* CMTST : test is "if (X & Y != 0)". */ 3823 static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3824 { 3825 tcg_gen_and_i32(d, a, b); 3826 tcg_gen_negsetcond_i32(TCG_COND_NE, d, d, tcg_constant_i32(0)); 3827 } 3828 3829 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 3830 { 3831 tcg_gen_and_i64(d, a, b); 3832 tcg_gen_negsetcond_i64(TCG_COND_NE, d, d, tcg_constant_i64(0)); 3833 } 3834 3835 static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 3836 { 3837 tcg_gen_and_vec(vece, d, a, b); 3838 tcg_gen_dupi_vec(vece, a, 0); 3839 tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a); 3840 } 3841 3842 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 3843 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 3844 { 3845 static const TCGOpcode vecop_list[] = { INDEX_op_cmp_vec, 0 }; 3846 static const GVecGen3 ops[4] = { 3847 { .fni4 = gen_helper_neon_tst_u8, 3848 .fniv = gen_cmtst_vec, 3849 .opt_opc = vecop_list, 3850 .vece = MO_8 }, 3851 { .fni4 = gen_helper_neon_tst_u16, 3852 .fniv = gen_cmtst_vec, 3853 .opt_opc = vecop_list, 3854 .vece = MO_16 }, 3855 { .fni4 = gen_cmtst_i32, 3856 .fniv = gen_cmtst_vec, 3857 .opt_opc = vecop_list, 3858 .vece = MO_32 }, 3859 { .fni8 = gen_cmtst_i64, 3860 .fniv = gen_cmtst_vec, 3861 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3862 .opt_opc = vecop_list, 3863 .vece = MO_64 }, 3864 }; 3865 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 3866 } 3867 3868 void gen_ushl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift) 3869 { 3870 TCGv_i32 lval = tcg_temp_new_i32(); 3871 TCGv_i32 rval = tcg_temp_new_i32(); 3872 TCGv_i32 lsh = tcg_temp_new_i32(); 3873 TCGv_i32 rsh = tcg_temp_new_i32(); 3874 TCGv_i32 zero = tcg_constant_i32(0); 3875 TCGv_i32 max = tcg_constant_i32(32); 3876 3877 /* 3878 * Rely on the TCG guarantee that out of range shifts produce 3879 * unspecified results, not undefined behaviour (i.e. no trap). 3880 * Discard out-of-range results after the fact. 3881 */ 3882 tcg_gen_ext8s_i32(lsh, shift); 3883 tcg_gen_neg_i32(rsh, lsh); 3884 tcg_gen_shl_i32(lval, src, lsh); 3885 tcg_gen_shr_i32(rval, src, rsh); 3886 tcg_gen_movcond_i32(TCG_COND_LTU, dst, lsh, max, lval, zero); 3887 tcg_gen_movcond_i32(TCG_COND_LTU, dst, rsh, max, rval, dst); 3888 } 3889 3890 void gen_ushl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift) 3891 { 3892 TCGv_i64 lval = tcg_temp_new_i64(); 3893 TCGv_i64 rval = tcg_temp_new_i64(); 3894 TCGv_i64 lsh = tcg_temp_new_i64(); 3895 TCGv_i64 rsh = tcg_temp_new_i64(); 3896 TCGv_i64 zero = tcg_constant_i64(0); 3897 TCGv_i64 max = tcg_constant_i64(64); 3898 3899 /* 3900 * Rely on the TCG guarantee that out of range shifts produce 3901 * unspecified results, not undefined behaviour (i.e. no trap). 3902 * Discard out-of-range results after the fact. 3903 */ 3904 tcg_gen_ext8s_i64(lsh, shift); 3905 tcg_gen_neg_i64(rsh, lsh); 3906 tcg_gen_shl_i64(lval, src, lsh); 3907 tcg_gen_shr_i64(rval, src, rsh); 3908 tcg_gen_movcond_i64(TCG_COND_LTU, dst, lsh, max, lval, zero); 3909 tcg_gen_movcond_i64(TCG_COND_LTU, dst, rsh, max, rval, dst); 3910 } 3911 3912 static void gen_ushl_vec(unsigned vece, TCGv_vec dst, 3913 TCGv_vec src, TCGv_vec shift) 3914 { 3915 TCGv_vec lval = tcg_temp_new_vec_matching(dst); 3916 TCGv_vec rval = tcg_temp_new_vec_matching(dst); 3917 TCGv_vec lsh = tcg_temp_new_vec_matching(dst); 3918 TCGv_vec rsh = tcg_temp_new_vec_matching(dst); 3919 TCGv_vec msk, max; 3920 3921 tcg_gen_neg_vec(vece, rsh, shift); 3922 if (vece == MO_8) { 3923 tcg_gen_mov_vec(lsh, shift); 3924 } else { 3925 msk = tcg_temp_new_vec_matching(dst); 3926 tcg_gen_dupi_vec(vece, msk, 0xff); 3927 tcg_gen_and_vec(vece, lsh, shift, msk); 3928 tcg_gen_and_vec(vece, rsh, rsh, msk); 3929 } 3930 3931 /* 3932 * Rely on the TCG guarantee that out of range shifts produce 3933 * unspecified results, not undefined behaviour (i.e. no trap). 3934 * Discard out-of-range results after the fact. 3935 */ 3936 tcg_gen_shlv_vec(vece, lval, src, lsh); 3937 tcg_gen_shrv_vec(vece, rval, src, rsh); 3938 3939 max = tcg_temp_new_vec_matching(dst); 3940 tcg_gen_dupi_vec(vece, max, 8 << vece); 3941 3942 /* 3943 * The choice of LT (signed) and GEU (unsigned) are biased toward 3944 * the instructions of the x86_64 host. For MO_8, the whole byte 3945 * is significant so we must use an unsigned compare; otherwise we 3946 * have already masked to a byte and so a signed compare works. 3947 * Other tcg hosts have a full set of comparisons and do not care. 3948 */ 3949 if (vece == MO_8) { 3950 tcg_gen_cmp_vec(TCG_COND_GEU, vece, lsh, lsh, max); 3951 tcg_gen_cmp_vec(TCG_COND_GEU, vece, rsh, rsh, max); 3952 tcg_gen_andc_vec(vece, lval, lval, lsh); 3953 tcg_gen_andc_vec(vece, rval, rval, rsh); 3954 } else { 3955 tcg_gen_cmp_vec(TCG_COND_LT, vece, lsh, lsh, max); 3956 tcg_gen_cmp_vec(TCG_COND_LT, vece, rsh, rsh, max); 3957 tcg_gen_and_vec(vece, lval, lval, lsh); 3958 tcg_gen_and_vec(vece, rval, rval, rsh); 3959 } 3960 tcg_gen_or_vec(vece, dst, lval, rval); 3961 } 3962 3963 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 3964 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 3965 { 3966 static const TCGOpcode vecop_list[] = { 3967 INDEX_op_neg_vec, INDEX_op_shlv_vec, 3968 INDEX_op_shrv_vec, INDEX_op_cmp_vec, 0 3969 }; 3970 static const GVecGen3 ops[4] = { 3971 { .fniv = gen_ushl_vec, 3972 .fno = gen_helper_gvec_ushl_b, 3973 .opt_opc = vecop_list, 3974 .vece = MO_8 }, 3975 { .fniv = gen_ushl_vec, 3976 .fno = gen_helper_gvec_ushl_h, 3977 .opt_opc = vecop_list, 3978 .vece = MO_16 }, 3979 { .fni4 = gen_ushl_i32, 3980 .fniv = gen_ushl_vec, 3981 .opt_opc = vecop_list, 3982 .vece = MO_32 }, 3983 { .fni8 = gen_ushl_i64, 3984 .fniv = gen_ushl_vec, 3985 .opt_opc = vecop_list, 3986 .vece = MO_64 }, 3987 }; 3988 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 3989 } 3990 3991 void gen_sshl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift) 3992 { 3993 TCGv_i32 lval = tcg_temp_new_i32(); 3994 TCGv_i32 rval = tcg_temp_new_i32(); 3995 TCGv_i32 lsh = tcg_temp_new_i32(); 3996 TCGv_i32 rsh = tcg_temp_new_i32(); 3997 TCGv_i32 zero = tcg_constant_i32(0); 3998 TCGv_i32 max = tcg_constant_i32(31); 3999 4000 /* 4001 * Rely on the TCG guarantee that out of range shifts produce 4002 * unspecified results, not undefined behaviour (i.e. no trap). 4003 * Discard out-of-range results after the fact. 4004 */ 4005 tcg_gen_ext8s_i32(lsh, shift); 4006 tcg_gen_neg_i32(rsh, lsh); 4007 tcg_gen_shl_i32(lval, src, lsh); 4008 tcg_gen_umin_i32(rsh, rsh, max); 4009 tcg_gen_sar_i32(rval, src, rsh); 4010 tcg_gen_movcond_i32(TCG_COND_LEU, lval, lsh, max, lval, zero); 4011 tcg_gen_movcond_i32(TCG_COND_LT, dst, lsh, zero, rval, lval); 4012 } 4013 4014 void gen_sshl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift) 4015 { 4016 TCGv_i64 lval = tcg_temp_new_i64(); 4017 TCGv_i64 rval = tcg_temp_new_i64(); 4018 TCGv_i64 lsh = tcg_temp_new_i64(); 4019 TCGv_i64 rsh = tcg_temp_new_i64(); 4020 TCGv_i64 zero = tcg_constant_i64(0); 4021 TCGv_i64 max = tcg_constant_i64(63); 4022 4023 /* 4024 * Rely on the TCG guarantee that out of range shifts produce 4025 * unspecified results, not undefined behaviour (i.e. no trap). 4026 * Discard out-of-range results after the fact. 4027 */ 4028 tcg_gen_ext8s_i64(lsh, shift); 4029 tcg_gen_neg_i64(rsh, lsh); 4030 tcg_gen_shl_i64(lval, src, lsh); 4031 tcg_gen_umin_i64(rsh, rsh, max); 4032 tcg_gen_sar_i64(rval, src, rsh); 4033 tcg_gen_movcond_i64(TCG_COND_LEU, lval, lsh, max, lval, zero); 4034 tcg_gen_movcond_i64(TCG_COND_LT, dst, lsh, zero, rval, lval); 4035 } 4036 4037 static void gen_sshl_vec(unsigned vece, TCGv_vec dst, 4038 TCGv_vec src, TCGv_vec shift) 4039 { 4040 TCGv_vec lval = tcg_temp_new_vec_matching(dst); 4041 TCGv_vec rval = tcg_temp_new_vec_matching(dst); 4042 TCGv_vec lsh = tcg_temp_new_vec_matching(dst); 4043 TCGv_vec rsh = tcg_temp_new_vec_matching(dst); 4044 TCGv_vec tmp = tcg_temp_new_vec_matching(dst); 4045 4046 /* 4047 * Rely on the TCG guarantee that out of range shifts produce 4048 * unspecified results, not undefined behaviour (i.e. no trap). 4049 * Discard out-of-range results after the fact. 4050 */ 4051 tcg_gen_neg_vec(vece, rsh, shift); 4052 if (vece == MO_8) { 4053 tcg_gen_mov_vec(lsh, shift); 4054 } else { 4055 tcg_gen_dupi_vec(vece, tmp, 0xff); 4056 tcg_gen_and_vec(vece, lsh, shift, tmp); 4057 tcg_gen_and_vec(vece, rsh, rsh, tmp); 4058 } 4059 4060 /* Bound rsh so out of bound right shift gets -1. */ 4061 tcg_gen_dupi_vec(vece, tmp, (8 << vece) - 1); 4062 tcg_gen_umin_vec(vece, rsh, rsh, tmp); 4063 tcg_gen_cmp_vec(TCG_COND_GT, vece, tmp, lsh, tmp); 4064 4065 tcg_gen_shlv_vec(vece, lval, src, lsh); 4066 tcg_gen_sarv_vec(vece, rval, src, rsh); 4067 4068 /* Select in-bound left shift. */ 4069 tcg_gen_andc_vec(vece, lval, lval, tmp); 4070 4071 /* Select between left and right shift. */ 4072 if (vece == MO_8) { 4073 tcg_gen_dupi_vec(vece, tmp, 0); 4074 tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, rval, lval); 4075 } else { 4076 tcg_gen_dupi_vec(vece, tmp, 0x80); 4077 tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, lval, rval); 4078 } 4079 } 4080 4081 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4082 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4083 { 4084 static const TCGOpcode vecop_list[] = { 4085 INDEX_op_neg_vec, INDEX_op_umin_vec, INDEX_op_shlv_vec, 4086 INDEX_op_sarv_vec, INDEX_op_cmp_vec, INDEX_op_cmpsel_vec, 0 4087 }; 4088 static const GVecGen3 ops[4] = { 4089 { .fniv = gen_sshl_vec, 4090 .fno = gen_helper_gvec_sshl_b, 4091 .opt_opc = vecop_list, 4092 .vece = MO_8 }, 4093 { .fniv = gen_sshl_vec, 4094 .fno = gen_helper_gvec_sshl_h, 4095 .opt_opc = vecop_list, 4096 .vece = MO_16 }, 4097 { .fni4 = gen_sshl_i32, 4098 .fniv = gen_sshl_vec, 4099 .opt_opc = vecop_list, 4100 .vece = MO_32 }, 4101 { .fni8 = gen_sshl_i64, 4102 .fniv = gen_sshl_vec, 4103 .opt_opc = vecop_list, 4104 .vece = MO_64 }, 4105 }; 4106 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4107 } 4108 4109 static void gen_uqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, 4110 TCGv_vec a, TCGv_vec b) 4111 { 4112 TCGv_vec x = tcg_temp_new_vec_matching(t); 4113 tcg_gen_add_vec(vece, x, a, b); 4114 tcg_gen_usadd_vec(vece, t, a, b); 4115 tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); 4116 tcg_gen_or_vec(vece, sat, sat, x); 4117 } 4118 4119 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4120 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4121 { 4122 static const TCGOpcode vecop_list[] = { 4123 INDEX_op_usadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0 4124 }; 4125 static const GVecGen4 ops[4] = { 4126 { .fniv = gen_uqadd_vec, 4127 .fno = gen_helper_gvec_uqadd_b, 4128 .write_aofs = true, 4129 .opt_opc = vecop_list, 4130 .vece = MO_8 }, 4131 { .fniv = gen_uqadd_vec, 4132 .fno = gen_helper_gvec_uqadd_h, 4133 .write_aofs = true, 4134 .opt_opc = vecop_list, 4135 .vece = MO_16 }, 4136 { .fniv = gen_uqadd_vec, 4137 .fno = gen_helper_gvec_uqadd_s, 4138 .write_aofs = true, 4139 .opt_opc = vecop_list, 4140 .vece = MO_32 }, 4141 { .fniv = gen_uqadd_vec, 4142 .fno = gen_helper_gvec_uqadd_d, 4143 .write_aofs = true, 4144 .opt_opc = vecop_list, 4145 .vece = MO_64 }, 4146 }; 4147 tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), 4148 rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4149 } 4150 4151 static void gen_sqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, 4152 TCGv_vec a, TCGv_vec b) 4153 { 4154 TCGv_vec x = tcg_temp_new_vec_matching(t); 4155 tcg_gen_add_vec(vece, x, a, b); 4156 tcg_gen_ssadd_vec(vece, t, a, b); 4157 tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); 4158 tcg_gen_or_vec(vece, sat, sat, x); 4159 } 4160 4161 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4162 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4163 { 4164 static const TCGOpcode vecop_list[] = { 4165 INDEX_op_ssadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0 4166 }; 4167 static const GVecGen4 ops[4] = { 4168 { .fniv = gen_sqadd_vec, 4169 .fno = gen_helper_gvec_sqadd_b, 4170 .opt_opc = vecop_list, 4171 .write_aofs = true, 4172 .vece = MO_8 }, 4173 { .fniv = gen_sqadd_vec, 4174 .fno = gen_helper_gvec_sqadd_h, 4175 .opt_opc = vecop_list, 4176 .write_aofs = true, 4177 .vece = MO_16 }, 4178 { .fniv = gen_sqadd_vec, 4179 .fno = gen_helper_gvec_sqadd_s, 4180 .opt_opc = vecop_list, 4181 .write_aofs = true, 4182 .vece = MO_32 }, 4183 { .fniv = gen_sqadd_vec, 4184 .fno = gen_helper_gvec_sqadd_d, 4185 .opt_opc = vecop_list, 4186 .write_aofs = true, 4187 .vece = MO_64 }, 4188 }; 4189 tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), 4190 rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4191 } 4192 4193 static void gen_uqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, 4194 TCGv_vec a, TCGv_vec b) 4195 { 4196 TCGv_vec x = tcg_temp_new_vec_matching(t); 4197 tcg_gen_sub_vec(vece, x, a, b); 4198 tcg_gen_ussub_vec(vece, t, a, b); 4199 tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); 4200 tcg_gen_or_vec(vece, sat, sat, x); 4201 } 4202 4203 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4204 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4205 { 4206 static const TCGOpcode vecop_list[] = { 4207 INDEX_op_ussub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0 4208 }; 4209 static const GVecGen4 ops[4] = { 4210 { .fniv = gen_uqsub_vec, 4211 .fno = gen_helper_gvec_uqsub_b, 4212 .opt_opc = vecop_list, 4213 .write_aofs = true, 4214 .vece = MO_8 }, 4215 { .fniv = gen_uqsub_vec, 4216 .fno = gen_helper_gvec_uqsub_h, 4217 .opt_opc = vecop_list, 4218 .write_aofs = true, 4219 .vece = MO_16 }, 4220 { .fniv = gen_uqsub_vec, 4221 .fno = gen_helper_gvec_uqsub_s, 4222 .opt_opc = vecop_list, 4223 .write_aofs = true, 4224 .vece = MO_32 }, 4225 { .fniv = gen_uqsub_vec, 4226 .fno = gen_helper_gvec_uqsub_d, 4227 .opt_opc = vecop_list, 4228 .write_aofs = true, 4229 .vece = MO_64 }, 4230 }; 4231 tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), 4232 rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4233 } 4234 4235 static void gen_sqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, 4236 TCGv_vec a, TCGv_vec b) 4237 { 4238 TCGv_vec x = tcg_temp_new_vec_matching(t); 4239 tcg_gen_sub_vec(vece, x, a, b); 4240 tcg_gen_sssub_vec(vece, t, a, b); 4241 tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); 4242 tcg_gen_or_vec(vece, sat, sat, x); 4243 } 4244 4245 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4246 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4247 { 4248 static const TCGOpcode vecop_list[] = { 4249 INDEX_op_sssub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0 4250 }; 4251 static const GVecGen4 ops[4] = { 4252 { .fniv = gen_sqsub_vec, 4253 .fno = gen_helper_gvec_sqsub_b, 4254 .opt_opc = vecop_list, 4255 .write_aofs = true, 4256 .vece = MO_8 }, 4257 { .fniv = gen_sqsub_vec, 4258 .fno = gen_helper_gvec_sqsub_h, 4259 .opt_opc = vecop_list, 4260 .write_aofs = true, 4261 .vece = MO_16 }, 4262 { .fniv = gen_sqsub_vec, 4263 .fno = gen_helper_gvec_sqsub_s, 4264 .opt_opc = vecop_list, 4265 .write_aofs = true, 4266 .vece = MO_32 }, 4267 { .fniv = gen_sqsub_vec, 4268 .fno = gen_helper_gvec_sqsub_d, 4269 .opt_opc = vecop_list, 4270 .write_aofs = true, 4271 .vece = MO_64 }, 4272 }; 4273 tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), 4274 rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4275 } 4276 4277 static void gen_sabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 4278 { 4279 TCGv_i32 t = tcg_temp_new_i32(); 4280 4281 tcg_gen_sub_i32(t, a, b); 4282 tcg_gen_sub_i32(d, b, a); 4283 tcg_gen_movcond_i32(TCG_COND_LT, d, a, b, d, t); 4284 } 4285 4286 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 4287 { 4288 TCGv_i64 t = tcg_temp_new_i64(); 4289 4290 tcg_gen_sub_i64(t, a, b); 4291 tcg_gen_sub_i64(d, b, a); 4292 tcg_gen_movcond_i64(TCG_COND_LT, d, a, b, d, t); 4293 } 4294 4295 static void gen_sabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 4296 { 4297 TCGv_vec t = tcg_temp_new_vec_matching(d); 4298 4299 tcg_gen_smin_vec(vece, t, a, b); 4300 tcg_gen_smax_vec(vece, d, a, b); 4301 tcg_gen_sub_vec(vece, d, d, t); 4302 } 4303 4304 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4305 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4306 { 4307 static const TCGOpcode vecop_list[] = { 4308 INDEX_op_sub_vec, INDEX_op_smin_vec, INDEX_op_smax_vec, 0 4309 }; 4310 static const GVecGen3 ops[4] = { 4311 { .fniv = gen_sabd_vec, 4312 .fno = gen_helper_gvec_sabd_b, 4313 .opt_opc = vecop_list, 4314 .vece = MO_8 }, 4315 { .fniv = gen_sabd_vec, 4316 .fno = gen_helper_gvec_sabd_h, 4317 .opt_opc = vecop_list, 4318 .vece = MO_16 }, 4319 { .fni4 = gen_sabd_i32, 4320 .fniv = gen_sabd_vec, 4321 .fno = gen_helper_gvec_sabd_s, 4322 .opt_opc = vecop_list, 4323 .vece = MO_32 }, 4324 { .fni8 = gen_sabd_i64, 4325 .fniv = gen_sabd_vec, 4326 .fno = gen_helper_gvec_sabd_d, 4327 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 4328 .opt_opc = vecop_list, 4329 .vece = MO_64 }, 4330 }; 4331 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4332 } 4333 4334 static void gen_uabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 4335 { 4336 TCGv_i32 t = tcg_temp_new_i32(); 4337 4338 tcg_gen_sub_i32(t, a, b); 4339 tcg_gen_sub_i32(d, b, a); 4340 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, d, t); 4341 } 4342 4343 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 4344 { 4345 TCGv_i64 t = tcg_temp_new_i64(); 4346 4347 tcg_gen_sub_i64(t, a, b); 4348 tcg_gen_sub_i64(d, b, a); 4349 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, d, t); 4350 } 4351 4352 static void gen_uabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 4353 { 4354 TCGv_vec t = tcg_temp_new_vec_matching(d); 4355 4356 tcg_gen_umin_vec(vece, t, a, b); 4357 tcg_gen_umax_vec(vece, d, a, b); 4358 tcg_gen_sub_vec(vece, d, d, t); 4359 } 4360 4361 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4362 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4363 { 4364 static const TCGOpcode vecop_list[] = { 4365 INDEX_op_sub_vec, INDEX_op_umin_vec, INDEX_op_umax_vec, 0 4366 }; 4367 static const GVecGen3 ops[4] = { 4368 { .fniv = gen_uabd_vec, 4369 .fno = gen_helper_gvec_uabd_b, 4370 .opt_opc = vecop_list, 4371 .vece = MO_8 }, 4372 { .fniv = gen_uabd_vec, 4373 .fno = gen_helper_gvec_uabd_h, 4374 .opt_opc = vecop_list, 4375 .vece = MO_16 }, 4376 { .fni4 = gen_uabd_i32, 4377 .fniv = gen_uabd_vec, 4378 .fno = gen_helper_gvec_uabd_s, 4379 .opt_opc = vecop_list, 4380 .vece = MO_32 }, 4381 { .fni8 = gen_uabd_i64, 4382 .fniv = gen_uabd_vec, 4383 .fno = gen_helper_gvec_uabd_d, 4384 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 4385 .opt_opc = vecop_list, 4386 .vece = MO_64 }, 4387 }; 4388 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4389 } 4390 4391 static void gen_saba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 4392 { 4393 TCGv_i32 t = tcg_temp_new_i32(); 4394 gen_sabd_i32(t, a, b); 4395 tcg_gen_add_i32(d, d, t); 4396 } 4397 4398 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 4399 { 4400 TCGv_i64 t = tcg_temp_new_i64(); 4401 gen_sabd_i64(t, a, b); 4402 tcg_gen_add_i64(d, d, t); 4403 } 4404 4405 static void gen_saba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 4406 { 4407 TCGv_vec t = tcg_temp_new_vec_matching(d); 4408 gen_sabd_vec(vece, t, a, b); 4409 tcg_gen_add_vec(vece, d, d, t); 4410 } 4411 4412 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4413 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4414 { 4415 static const TCGOpcode vecop_list[] = { 4416 INDEX_op_sub_vec, INDEX_op_add_vec, 4417 INDEX_op_smin_vec, INDEX_op_smax_vec, 0 4418 }; 4419 static const GVecGen3 ops[4] = { 4420 { .fniv = gen_saba_vec, 4421 .fno = gen_helper_gvec_saba_b, 4422 .opt_opc = vecop_list, 4423 .load_dest = true, 4424 .vece = MO_8 }, 4425 { .fniv = gen_saba_vec, 4426 .fno = gen_helper_gvec_saba_h, 4427 .opt_opc = vecop_list, 4428 .load_dest = true, 4429 .vece = MO_16 }, 4430 { .fni4 = gen_saba_i32, 4431 .fniv = gen_saba_vec, 4432 .fno = gen_helper_gvec_saba_s, 4433 .opt_opc = vecop_list, 4434 .load_dest = true, 4435 .vece = MO_32 }, 4436 { .fni8 = gen_saba_i64, 4437 .fniv = gen_saba_vec, 4438 .fno = gen_helper_gvec_saba_d, 4439 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 4440 .opt_opc = vecop_list, 4441 .load_dest = true, 4442 .vece = MO_64 }, 4443 }; 4444 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4445 } 4446 4447 static void gen_uaba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 4448 { 4449 TCGv_i32 t = tcg_temp_new_i32(); 4450 gen_uabd_i32(t, a, b); 4451 tcg_gen_add_i32(d, d, t); 4452 } 4453 4454 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 4455 { 4456 TCGv_i64 t = tcg_temp_new_i64(); 4457 gen_uabd_i64(t, a, b); 4458 tcg_gen_add_i64(d, d, t); 4459 } 4460 4461 static void gen_uaba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 4462 { 4463 TCGv_vec t = tcg_temp_new_vec_matching(d); 4464 gen_uabd_vec(vece, t, a, b); 4465 tcg_gen_add_vec(vece, d, d, t); 4466 } 4467 4468 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4469 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4470 { 4471 static const TCGOpcode vecop_list[] = { 4472 INDEX_op_sub_vec, INDEX_op_add_vec, 4473 INDEX_op_umin_vec, INDEX_op_umax_vec, 0 4474 }; 4475 static const GVecGen3 ops[4] = { 4476 { .fniv = gen_uaba_vec, 4477 .fno = gen_helper_gvec_uaba_b, 4478 .opt_opc = vecop_list, 4479 .load_dest = true, 4480 .vece = MO_8 }, 4481 { .fniv = gen_uaba_vec, 4482 .fno = gen_helper_gvec_uaba_h, 4483 .opt_opc = vecop_list, 4484 .load_dest = true, 4485 .vece = MO_16 }, 4486 { .fni4 = gen_uaba_i32, 4487 .fniv = gen_uaba_vec, 4488 .fno = gen_helper_gvec_uaba_s, 4489 .opt_opc = vecop_list, 4490 .load_dest = true, 4491 .vece = MO_32 }, 4492 { .fni8 = gen_uaba_i64, 4493 .fniv = gen_uaba_vec, 4494 .fno = gen_helper_gvec_uaba_d, 4495 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 4496 .opt_opc = vecop_list, 4497 .load_dest = true, 4498 .vece = MO_64 }, 4499 }; 4500 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4501 } 4502 4503 static bool aa32_cpreg_encoding_in_impdef_space(uint8_t crn, uint8_t crm) 4504 { 4505 static const uint16_t mask[3] = { 4506 0b0000000111100111, /* crn == 9, crm == {c0-c2, c5-c8} */ 4507 0b0000000100010011, /* crn == 10, crm == {c0, c1, c4, c8} */ 4508 0b1000000111111111, /* crn == 11, crm == {c0-c8, c15} */ 4509 }; 4510 4511 if (crn >= 9 && crn <= 11) { 4512 return (mask[crn - 9] >> crm) & 1; 4513 } 4514 return false; 4515 } 4516 4517 static void do_coproc_insn(DisasContext *s, int cpnum, int is64, 4518 int opc1, int crn, int crm, int opc2, 4519 bool isread, int rt, int rt2) 4520 { 4521 uint32_t key = ENCODE_CP_REG(cpnum, is64, s->ns, crn, crm, opc1, opc2); 4522 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 4523 TCGv_ptr tcg_ri = NULL; 4524 bool need_exit_tb = false; 4525 uint32_t syndrome; 4526 4527 /* 4528 * Note that since we are an implementation which takes an 4529 * exception on a trapped conditional instruction only if the 4530 * instruction passes its condition code check, we can take 4531 * advantage of the clause in the ARM ARM that allows us to set 4532 * the COND field in the instruction to 0xE in all cases. 4533 * We could fish the actual condition out of the insn (ARM) 4534 * or the condexec bits (Thumb) but it isn't necessary. 4535 */ 4536 switch (cpnum) { 4537 case 14: 4538 if (is64) { 4539 syndrome = syn_cp14_rrt_trap(1, 0xe, opc1, crm, rt, rt2, 4540 isread, false); 4541 } else { 4542 syndrome = syn_cp14_rt_trap(1, 0xe, opc1, opc2, crn, crm, 4543 rt, isread, false); 4544 } 4545 break; 4546 case 15: 4547 if (is64) { 4548 syndrome = syn_cp15_rrt_trap(1, 0xe, opc1, crm, rt, rt2, 4549 isread, false); 4550 } else { 4551 syndrome = syn_cp15_rt_trap(1, 0xe, opc1, opc2, crn, crm, 4552 rt, isread, false); 4553 } 4554 break; 4555 default: 4556 /* 4557 * ARMv8 defines that only coprocessors 14 and 15 exist, 4558 * so this can only happen if this is an ARMv7 or earlier CPU, 4559 * in which case the syndrome information won't actually be 4560 * guest visible. 4561 */ 4562 assert(!arm_dc_feature(s, ARM_FEATURE_V8)); 4563 syndrome = syn_uncategorized(); 4564 break; 4565 } 4566 4567 if (s->hstr_active && cpnum == 15 && s->current_el == 1) { 4568 /* 4569 * At EL1, check for a HSTR_EL2 trap, which must take precedence 4570 * over the UNDEF for "no such register" or the UNDEF for "access 4571 * permissions forbid this EL1 access". HSTR_EL2 traps from EL0 4572 * only happen if the cpreg doesn't UNDEF at EL0, so we do those in 4573 * access_check_cp_reg(), after the checks for whether the access 4574 * configurably trapped to EL1. 4575 */ 4576 uint32_t maskbit = is64 ? crm : crn; 4577 4578 if (maskbit != 4 && maskbit != 14) { 4579 /* T4 and T14 are RES0 so never cause traps */ 4580 TCGv_i32 t; 4581 DisasLabel over = gen_disas_label(s); 4582 4583 t = load_cpu_offset(offsetoflow32(CPUARMState, cp15.hstr_el2)); 4584 tcg_gen_andi_i32(t, t, 1u << maskbit); 4585 tcg_gen_brcondi_i32(TCG_COND_EQ, t, 0, over.label); 4586 4587 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 4588 /* 4589 * gen_exception_insn() will set is_jmp to DISAS_NORETURN, 4590 * but since we're conditionally branching over it, we want 4591 * to assume continue-to-next-instruction. 4592 */ 4593 s->base.is_jmp = DISAS_NEXT; 4594 set_disas_label(s, over); 4595 } 4596 } 4597 4598 if (cpnum == 15 && aa32_cpreg_encoding_in_impdef_space(crn, crm)) { 4599 /* 4600 * Check for TIDCP trap, which must take precedence over the UNDEF 4601 * for "no such register" etc. It shares precedence with HSTR, 4602 * but raises the same exception, so order doesn't matter. 4603 */ 4604 switch (s->current_el) { 4605 case 0: 4606 if (arm_dc_feature(s, ARM_FEATURE_AARCH64) 4607 && dc_isar_feature(aa64_tidcp1, s)) { 4608 gen_helper_tidcp_el0(cpu_env, tcg_constant_i32(syndrome)); 4609 } 4610 break; 4611 case 1: 4612 gen_helper_tidcp_el1(cpu_env, tcg_constant_i32(syndrome)); 4613 break; 4614 } 4615 } 4616 4617 if (!ri) { 4618 /* 4619 * Unknown register; this might be a guest error or a QEMU 4620 * unimplemented feature. 4621 */ 4622 if (is64) { 4623 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 " 4624 "64 bit system register cp:%d opc1: %d crm:%d " 4625 "(%s)\n", 4626 isread ? "read" : "write", cpnum, opc1, crm, 4627 s->ns ? "non-secure" : "secure"); 4628 } else { 4629 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 " 4630 "system register cp:%d opc1:%d crn:%d crm:%d " 4631 "opc2:%d (%s)\n", 4632 isread ? "read" : "write", cpnum, opc1, crn, 4633 crm, opc2, s->ns ? "non-secure" : "secure"); 4634 } 4635 unallocated_encoding(s); 4636 return; 4637 } 4638 4639 /* Check access permissions */ 4640 if (!cp_access_ok(s->current_el, ri, isread)) { 4641 unallocated_encoding(s); 4642 return; 4643 } 4644 4645 if ((s->hstr_active && s->current_el == 0) || ri->accessfn || 4646 (ri->fgt && s->fgt_active) || 4647 (arm_dc_feature(s, ARM_FEATURE_XSCALE) && cpnum < 14)) { 4648 /* 4649 * Emit code to perform further access permissions checks at 4650 * runtime; this may result in an exception. 4651 * Note that on XScale all cp0..c13 registers do an access check 4652 * call in order to handle c15_cpar. 4653 */ 4654 gen_set_condexec(s); 4655 gen_update_pc(s, 0); 4656 tcg_ri = tcg_temp_new_ptr(); 4657 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 4658 tcg_constant_i32(key), 4659 tcg_constant_i32(syndrome), 4660 tcg_constant_i32(isread)); 4661 } else if (ri->type & ARM_CP_RAISES_EXC) { 4662 /* 4663 * The readfn or writefn might raise an exception; 4664 * synchronize the CPU state in case it does. 4665 */ 4666 gen_set_condexec(s); 4667 gen_update_pc(s, 0); 4668 } 4669 4670 /* Handle special cases first */ 4671 switch (ri->type & ARM_CP_SPECIAL_MASK) { 4672 case 0: 4673 break; 4674 case ARM_CP_NOP: 4675 return; 4676 case ARM_CP_WFI: 4677 if (isread) { 4678 unallocated_encoding(s); 4679 } else { 4680 gen_update_pc(s, curr_insn_len(s)); 4681 s->base.is_jmp = DISAS_WFI; 4682 } 4683 return; 4684 default: 4685 g_assert_not_reached(); 4686 } 4687 4688 if (ri->type & ARM_CP_IO) { 4689 /* I/O operations must end the TB here (whether read or write) */ 4690 need_exit_tb = translator_io_start(&s->base); 4691 } 4692 4693 if (isread) { 4694 /* Read */ 4695 if (is64) { 4696 TCGv_i64 tmp64; 4697 TCGv_i32 tmp; 4698 if (ri->type & ARM_CP_CONST) { 4699 tmp64 = tcg_constant_i64(ri->resetvalue); 4700 } else if (ri->readfn) { 4701 if (!tcg_ri) { 4702 tcg_ri = gen_lookup_cp_reg(key); 4703 } 4704 tmp64 = tcg_temp_new_i64(); 4705 gen_helper_get_cp_reg64(tmp64, cpu_env, tcg_ri); 4706 } else { 4707 tmp64 = tcg_temp_new_i64(); 4708 tcg_gen_ld_i64(tmp64, cpu_env, ri->fieldoffset); 4709 } 4710 tmp = tcg_temp_new_i32(); 4711 tcg_gen_extrl_i64_i32(tmp, tmp64); 4712 store_reg(s, rt, tmp); 4713 tmp = tcg_temp_new_i32(); 4714 tcg_gen_extrh_i64_i32(tmp, tmp64); 4715 store_reg(s, rt2, tmp); 4716 } else { 4717 TCGv_i32 tmp; 4718 if (ri->type & ARM_CP_CONST) { 4719 tmp = tcg_constant_i32(ri->resetvalue); 4720 } else if (ri->readfn) { 4721 if (!tcg_ri) { 4722 tcg_ri = gen_lookup_cp_reg(key); 4723 } 4724 tmp = tcg_temp_new_i32(); 4725 gen_helper_get_cp_reg(tmp, cpu_env, tcg_ri); 4726 } else { 4727 tmp = load_cpu_offset(ri->fieldoffset); 4728 } 4729 if (rt == 15) { 4730 /* Destination register of r15 for 32 bit loads sets 4731 * the condition codes from the high 4 bits of the value 4732 */ 4733 gen_set_nzcv(tmp); 4734 } else { 4735 store_reg(s, rt, tmp); 4736 } 4737 } 4738 } else { 4739 /* Write */ 4740 if (ri->type & ARM_CP_CONST) { 4741 /* If not forbidden by access permissions, treat as WI */ 4742 return; 4743 } 4744 4745 if (is64) { 4746 TCGv_i32 tmplo, tmphi; 4747 TCGv_i64 tmp64 = tcg_temp_new_i64(); 4748 tmplo = load_reg(s, rt); 4749 tmphi = load_reg(s, rt2); 4750 tcg_gen_concat_i32_i64(tmp64, tmplo, tmphi); 4751 if (ri->writefn) { 4752 if (!tcg_ri) { 4753 tcg_ri = gen_lookup_cp_reg(key); 4754 } 4755 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tmp64); 4756 } else { 4757 tcg_gen_st_i64(tmp64, cpu_env, ri->fieldoffset); 4758 } 4759 } else { 4760 TCGv_i32 tmp = load_reg(s, rt); 4761 if (ri->writefn) { 4762 if (!tcg_ri) { 4763 tcg_ri = gen_lookup_cp_reg(key); 4764 } 4765 gen_helper_set_cp_reg(cpu_env, tcg_ri, tmp); 4766 } else { 4767 store_cpu_offset(tmp, ri->fieldoffset, 4); 4768 } 4769 } 4770 } 4771 4772 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 4773 /* 4774 * A write to any coprocessor register that ends a TB 4775 * must rebuild the hflags for the next TB. 4776 */ 4777 gen_rebuild_hflags(s, ri->type & ARM_CP_NEWEL); 4778 /* 4779 * We default to ending the TB on a coprocessor register write, 4780 * but allow this to be suppressed by the register definition 4781 * (usually only necessary to work around guest bugs). 4782 */ 4783 need_exit_tb = true; 4784 } 4785 if (need_exit_tb) { 4786 gen_lookup_tb(s); 4787 } 4788 } 4789 4790 /* Decode XScale DSP or iWMMXt insn (in the copro space, cp=0 or 1) */ 4791 static void disas_xscale_insn(DisasContext *s, uint32_t insn) 4792 { 4793 int cpnum = (insn >> 8) & 0xf; 4794 4795 if (extract32(s->c15_cpar, cpnum, 1) == 0) { 4796 unallocated_encoding(s); 4797 } else if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) { 4798 if (disas_iwmmxt_insn(s, insn)) { 4799 unallocated_encoding(s); 4800 } 4801 } else if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) { 4802 if (disas_dsp_insn(s, insn)) { 4803 unallocated_encoding(s); 4804 } 4805 } 4806 } 4807 4808 /* Store a 64-bit value to a register pair. Clobbers val. */ 4809 static void gen_storeq_reg(DisasContext *s, int rlow, int rhigh, TCGv_i64 val) 4810 { 4811 TCGv_i32 tmp; 4812 tmp = tcg_temp_new_i32(); 4813 tcg_gen_extrl_i64_i32(tmp, val); 4814 store_reg(s, rlow, tmp); 4815 tmp = tcg_temp_new_i32(); 4816 tcg_gen_extrh_i64_i32(tmp, val); 4817 store_reg(s, rhigh, tmp); 4818 } 4819 4820 /* load and add a 64-bit value from a register pair. */ 4821 static void gen_addq(DisasContext *s, TCGv_i64 val, int rlow, int rhigh) 4822 { 4823 TCGv_i64 tmp; 4824 TCGv_i32 tmpl; 4825 TCGv_i32 tmph; 4826 4827 /* Load 64-bit value rd:rn. */ 4828 tmpl = load_reg(s, rlow); 4829 tmph = load_reg(s, rhigh); 4830 tmp = tcg_temp_new_i64(); 4831 tcg_gen_concat_i32_i64(tmp, tmpl, tmph); 4832 tcg_gen_add_i64(val, val, tmp); 4833 } 4834 4835 /* Set N and Z flags from hi|lo. */ 4836 static void gen_logicq_cc(TCGv_i32 lo, TCGv_i32 hi) 4837 { 4838 tcg_gen_mov_i32(cpu_NF, hi); 4839 tcg_gen_or_i32(cpu_ZF, lo, hi); 4840 } 4841 4842 /* Load/Store exclusive instructions are implemented by remembering 4843 the value/address loaded, and seeing if these are the same 4844 when the store is performed. This should be sufficient to implement 4845 the architecturally mandated semantics, and avoids having to monitor 4846 regular stores. The compare vs the remembered value is done during 4847 the cmpxchg operation, but we must compare the addresses manually. */ 4848 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, 4849 TCGv_i32 addr, int size) 4850 { 4851 TCGv_i32 tmp = tcg_temp_new_i32(); 4852 MemOp opc = size | MO_ALIGN | s->be_data; 4853 4854 s->is_ldex = true; 4855 4856 if (size == 3) { 4857 TCGv_i32 tmp2 = tcg_temp_new_i32(); 4858 TCGv_i64 t64 = tcg_temp_new_i64(); 4859 4860 /* 4861 * For AArch32, architecturally the 32-bit word at the lowest 4862 * address is always Rt and the one at addr+4 is Rt2, even if 4863 * the CPU is big-endian. That means we don't want to do a 4864 * gen_aa32_ld_i64(), which checks SCTLR_B as if for an 4865 * architecturally 64-bit access, but instead do a 64-bit access 4866 * using MO_BE if appropriate and then split the two halves. 4867 */ 4868 TCGv taddr = gen_aa32_addr(s, addr, opc); 4869 4870 tcg_gen_qemu_ld_i64(t64, taddr, get_mem_index(s), opc); 4871 tcg_gen_mov_i64(cpu_exclusive_val, t64); 4872 if (s->be_data == MO_BE) { 4873 tcg_gen_extr_i64_i32(tmp2, tmp, t64); 4874 } else { 4875 tcg_gen_extr_i64_i32(tmp, tmp2, t64); 4876 } 4877 store_reg(s, rt2, tmp2); 4878 } else { 4879 gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), opc); 4880 tcg_gen_extu_i32_i64(cpu_exclusive_val, tmp); 4881 } 4882 4883 store_reg(s, rt, tmp); 4884 tcg_gen_extu_i32_i64(cpu_exclusive_addr, addr); 4885 } 4886 4887 static void gen_clrex(DisasContext *s) 4888 { 4889 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 4890 } 4891 4892 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 4893 TCGv_i32 addr, int size) 4894 { 4895 TCGv_i32 t0, t1, t2; 4896 TCGv_i64 extaddr; 4897 TCGv taddr; 4898 TCGLabel *done_label; 4899 TCGLabel *fail_label; 4900 MemOp opc = size | MO_ALIGN | s->be_data; 4901 4902 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]) { 4903 [addr] = {Rt}; 4904 {Rd} = 0; 4905 } else { 4906 {Rd} = 1; 4907 } */ 4908 fail_label = gen_new_label(); 4909 done_label = gen_new_label(); 4910 extaddr = tcg_temp_new_i64(); 4911 tcg_gen_extu_i32_i64(extaddr, addr); 4912 tcg_gen_brcond_i64(TCG_COND_NE, extaddr, cpu_exclusive_addr, fail_label); 4913 4914 taddr = gen_aa32_addr(s, addr, opc); 4915 t0 = tcg_temp_new_i32(); 4916 t1 = load_reg(s, rt); 4917 if (size == 3) { 4918 TCGv_i64 o64 = tcg_temp_new_i64(); 4919 TCGv_i64 n64 = tcg_temp_new_i64(); 4920 4921 t2 = load_reg(s, rt2); 4922 4923 /* 4924 * For AArch32, architecturally the 32-bit word at the lowest 4925 * address is always Rt and the one at addr+4 is Rt2, even if 4926 * the CPU is big-endian. Since we're going to treat this as a 4927 * single 64-bit BE store, we need to put the two halves in the 4928 * opposite order for BE to LE, so that they end up in the right 4929 * places. We don't want gen_aa32_st_i64, because that checks 4930 * SCTLR_B as if for an architectural 64-bit access. 4931 */ 4932 if (s->be_data == MO_BE) { 4933 tcg_gen_concat_i32_i64(n64, t2, t1); 4934 } else { 4935 tcg_gen_concat_i32_i64(n64, t1, t2); 4936 } 4937 4938 tcg_gen_atomic_cmpxchg_i64(o64, taddr, cpu_exclusive_val, n64, 4939 get_mem_index(s), opc); 4940 4941 tcg_gen_setcond_i64(TCG_COND_NE, o64, o64, cpu_exclusive_val); 4942 tcg_gen_extrl_i64_i32(t0, o64); 4943 } else { 4944 t2 = tcg_temp_new_i32(); 4945 tcg_gen_extrl_i64_i32(t2, cpu_exclusive_val); 4946 tcg_gen_atomic_cmpxchg_i32(t0, taddr, t2, t1, get_mem_index(s), opc); 4947 tcg_gen_setcond_i32(TCG_COND_NE, t0, t0, t2); 4948 } 4949 tcg_gen_mov_i32(cpu_R[rd], t0); 4950 tcg_gen_br(done_label); 4951 4952 gen_set_label(fail_label); 4953 tcg_gen_movi_i32(cpu_R[rd], 1); 4954 gen_set_label(done_label); 4955 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 4956 } 4957 4958 /* gen_srs: 4959 * @env: CPUARMState 4960 * @s: DisasContext 4961 * @mode: mode field from insn (which stack to store to) 4962 * @amode: addressing mode (DA/IA/DB/IB), encoded as per P,U bits in ARM insn 4963 * @writeback: true if writeback bit set 4964 * 4965 * Generate code for the SRS (Store Return State) insn. 4966 */ 4967 static void gen_srs(DisasContext *s, 4968 uint32_t mode, uint32_t amode, bool writeback) 4969 { 4970 int32_t offset; 4971 TCGv_i32 addr, tmp; 4972 bool undef = false; 4973 4974 /* SRS is: 4975 * - trapped to EL3 if EL3 is AArch64 and we are at Secure EL1 4976 * and specified mode is monitor mode 4977 * - UNDEFINED in Hyp mode 4978 * - UNPREDICTABLE in User or System mode 4979 * - UNPREDICTABLE if the specified mode is: 4980 * -- not implemented 4981 * -- not a valid mode number 4982 * -- a mode that's at a higher exception level 4983 * -- Monitor, if we are Non-secure 4984 * For the UNPREDICTABLE cases we choose to UNDEF. 4985 */ 4986 if (s->current_el == 1 && !s->ns && mode == ARM_CPU_MODE_MON) { 4987 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_uncategorized(), 3); 4988 return; 4989 } 4990 4991 if (s->current_el == 0 || s->current_el == 2) { 4992 undef = true; 4993 } 4994 4995 switch (mode) { 4996 case ARM_CPU_MODE_USR: 4997 case ARM_CPU_MODE_FIQ: 4998 case ARM_CPU_MODE_IRQ: 4999 case ARM_CPU_MODE_SVC: 5000 case ARM_CPU_MODE_ABT: 5001 case ARM_CPU_MODE_UND: 5002 case ARM_CPU_MODE_SYS: 5003 break; 5004 case ARM_CPU_MODE_HYP: 5005 if (s->current_el == 1 || !arm_dc_feature(s, ARM_FEATURE_EL2)) { 5006 undef = true; 5007 } 5008 break; 5009 case ARM_CPU_MODE_MON: 5010 /* No need to check specifically for "are we non-secure" because 5011 * we've already made EL0 UNDEF and handled the trap for S-EL1; 5012 * so if this isn't EL3 then we must be non-secure. 5013 */ 5014 if (s->current_el != 3) { 5015 undef = true; 5016 } 5017 break; 5018 default: 5019 undef = true; 5020 } 5021 5022 if (undef) { 5023 unallocated_encoding(s); 5024 return; 5025 } 5026 5027 addr = tcg_temp_new_i32(); 5028 /* get_r13_banked() will raise an exception if called from System mode */ 5029 gen_set_condexec(s); 5030 gen_update_pc(s, 0); 5031 gen_helper_get_r13_banked(addr, cpu_env, tcg_constant_i32(mode)); 5032 switch (amode) { 5033 case 0: /* DA */ 5034 offset = -4; 5035 break; 5036 case 1: /* IA */ 5037 offset = 0; 5038 break; 5039 case 2: /* DB */ 5040 offset = -8; 5041 break; 5042 case 3: /* IB */ 5043 offset = 4; 5044 break; 5045 default: 5046 g_assert_not_reached(); 5047 } 5048 tcg_gen_addi_i32(addr, addr, offset); 5049 tmp = load_reg(s, 14); 5050 gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); 5051 tmp = load_cpu_field(spsr); 5052 tcg_gen_addi_i32(addr, addr, 4); 5053 gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); 5054 if (writeback) { 5055 switch (amode) { 5056 case 0: 5057 offset = -8; 5058 break; 5059 case 1: 5060 offset = 4; 5061 break; 5062 case 2: 5063 offset = -4; 5064 break; 5065 case 3: 5066 offset = 0; 5067 break; 5068 default: 5069 g_assert_not_reached(); 5070 } 5071 tcg_gen_addi_i32(addr, addr, offset); 5072 gen_helper_set_r13_banked(cpu_env, tcg_constant_i32(mode), addr); 5073 } 5074 s->base.is_jmp = DISAS_UPDATE_EXIT; 5075 } 5076 5077 /* Skip this instruction if the ARM condition is false */ 5078 static void arm_skip_unless(DisasContext *s, uint32_t cond) 5079 { 5080 arm_gen_condlabel(s); 5081 arm_gen_test_cc(cond ^ 1, s->condlabel.label); 5082 } 5083 5084 5085 /* 5086 * Constant expanders used by T16/T32 decode 5087 */ 5088 5089 /* Return only the rotation part of T32ExpandImm. */ 5090 static int t32_expandimm_rot(DisasContext *s, int x) 5091 { 5092 return x & 0xc00 ? extract32(x, 7, 5) : 0; 5093 } 5094 5095 /* Return the unrotated immediate from T32ExpandImm. */ 5096 static int t32_expandimm_imm(DisasContext *s, int x) 5097 { 5098 int imm = extract32(x, 0, 8); 5099 5100 switch (extract32(x, 8, 4)) { 5101 case 0: /* XY */ 5102 /* Nothing to do. */ 5103 break; 5104 case 1: /* 00XY00XY */ 5105 imm *= 0x00010001; 5106 break; 5107 case 2: /* XY00XY00 */ 5108 imm *= 0x01000100; 5109 break; 5110 case 3: /* XYXYXYXY */ 5111 imm *= 0x01010101; 5112 break; 5113 default: 5114 /* Rotated constant. */ 5115 imm |= 0x80; 5116 break; 5117 } 5118 return imm; 5119 } 5120 5121 static int t32_branch24(DisasContext *s, int x) 5122 { 5123 /* Convert J1:J2 at x[22:21] to I2:I1, which involves I=J^~S. */ 5124 x ^= !(x < 0) * (3 << 21); 5125 /* Append the final zero. */ 5126 return x << 1; 5127 } 5128 5129 static int t16_setflags(DisasContext *s) 5130 { 5131 return s->condexec_mask == 0; 5132 } 5133 5134 static int t16_push_list(DisasContext *s, int x) 5135 { 5136 return (x & 0xff) | (x & 0x100) << (14 - 8); 5137 } 5138 5139 static int t16_pop_list(DisasContext *s, int x) 5140 { 5141 return (x & 0xff) | (x & 0x100) << (15 - 8); 5142 } 5143 5144 /* 5145 * Include the generated decoders. 5146 */ 5147 5148 #include "decode-a32.c.inc" 5149 #include "decode-a32-uncond.c.inc" 5150 #include "decode-t32.c.inc" 5151 #include "decode-t16.c.inc" 5152 5153 static bool valid_cp(DisasContext *s, int cp) 5154 { 5155 /* 5156 * Return true if this coprocessor field indicates something 5157 * that's really a possible coprocessor. 5158 * For v7 and earlier, coprocessors 8..15 were reserved for Arm use, 5159 * and of those only cp14 and cp15 were used for registers. 5160 * cp10 and cp11 were used for VFP and Neon, whose decode is 5161 * dealt with elsewhere. With the advent of fp16, cp9 is also 5162 * now part of VFP. 5163 * For v8A and later, the encoding has been tightened so that 5164 * only cp14 and cp15 are valid, and other values aren't considered 5165 * to be in the coprocessor-instruction space at all. v8M still 5166 * permits coprocessors 0..7. 5167 * For XScale, we must not decode the XScale cp0, cp1 space as 5168 * a standard coprocessor insn, because we want to fall through to 5169 * the legacy disas_xscale_insn() decoder after decodetree is done. 5170 */ 5171 if (arm_dc_feature(s, ARM_FEATURE_XSCALE) && (cp == 0 || cp == 1)) { 5172 return false; 5173 } 5174 5175 if (arm_dc_feature(s, ARM_FEATURE_V8) && 5176 !arm_dc_feature(s, ARM_FEATURE_M)) { 5177 return cp >= 14; 5178 } 5179 return cp < 8 || cp >= 14; 5180 } 5181 5182 static bool trans_MCR(DisasContext *s, arg_MCR *a) 5183 { 5184 if (!valid_cp(s, a->cp)) { 5185 return false; 5186 } 5187 do_coproc_insn(s, a->cp, false, a->opc1, a->crn, a->crm, a->opc2, 5188 false, a->rt, 0); 5189 return true; 5190 } 5191 5192 static bool trans_MRC(DisasContext *s, arg_MRC *a) 5193 { 5194 if (!valid_cp(s, a->cp)) { 5195 return false; 5196 } 5197 do_coproc_insn(s, a->cp, false, a->opc1, a->crn, a->crm, a->opc2, 5198 true, a->rt, 0); 5199 return true; 5200 } 5201 5202 static bool trans_MCRR(DisasContext *s, arg_MCRR *a) 5203 { 5204 if (!valid_cp(s, a->cp)) { 5205 return false; 5206 } 5207 do_coproc_insn(s, a->cp, true, a->opc1, 0, a->crm, 0, 5208 false, a->rt, a->rt2); 5209 return true; 5210 } 5211 5212 static bool trans_MRRC(DisasContext *s, arg_MRRC *a) 5213 { 5214 if (!valid_cp(s, a->cp)) { 5215 return false; 5216 } 5217 do_coproc_insn(s, a->cp, true, a->opc1, 0, a->crm, 0, 5218 true, a->rt, a->rt2); 5219 return true; 5220 } 5221 5222 /* Helpers to swap operands for reverse-subtract. */ 5223 static void gen_rsb(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b) 5224 { 5225 tcg_gen_sub_i32(dst, b, a); 5226 } 5227 5228 static void gen_rsb_CC(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b) 5229 { 5230 gen_sub_CC(dst, b, a); 5231 } 5232 5233 static void gen_rsc(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b) 5234 { 5235 gen_sub_carry(dest, b, a); 5236 } 5237 5238 static void gen_rsc_CC(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b) 5239 { 5240 gen_sbc_CC(dest, b, a); 5241 } 5242 5243 /* 5244 * Helpers for the data processing routines. 5245 * 5246 * After the computation store the results back. 5247 * This may be suppressed altogether (STREG_NONE), require a runtime 5248 * check against the stack limits (STREG_SP_CHECK), or generate an 5249 * exception return. Oh, or store into a register. 5250 * 5251 * Always return true, indicating success for a trans_* function. 5252 */ 5253 typedef enum { 5254 STREG_NONE, 5255 STREG_NORMAL, 5256 STREG_SP_CHECK, 5257 STREG_EXC_RET, 5258 } StoreRegKind; 5259 5260 static bool store_reg_kind(DisasContext *s, int rd, 5261 TCGv_i32 val, StoreRegKind kind) 5262 { 5263 switch (kind) { 5264 case STREG_NONE: 5265 return true; 5266 case STREG_NORMAL: 5267 /* See ALUWritePC: Interworking only from a32 mode. */ 5268 if (s->thumb) { 5269 store_reg(s, rd, val); 5270 } else { 5271 store_reg_bx(s, rd, val); 5272 } 5273 return true; 5274 case STREG_SP_CHECK: 5275 store_sp_checked(s, val); 5276 return true; 5277 case STREG_EXC_RET: 5278 gen_exception_return(s, val); 5279 return true; 5280 } 5281 g_assert_not_reached(); 5282 } 5283 5284 /* 5285 * Data Processing (register) 5286 * 5287 * Operate, with set flags, one register source, 5288 * one immediate shifted register source, and a destination. 5289 */ 5290 static bool op_s_rrr_shi(DisasContext *s, arg_s_rrr_shi *a, 5291 void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), 5292 int logic_cc, StoreRegKind kind) 5293 { 5294 TCGv_i32 tmp1, tmp2; 5295 5296 tmp2 = load_reg(s, a->rm); 5297 gen_arm_shift_im(tmp2, a->shty, a->shim, logic_cc); 5298 tmp1 = load_reg(s, a->rn); 5299 5300 gen(tmp1, tmp1, tmp2); 5301 5302 if (logic_cc) { 5303 gen_logic_CC(tmp1); 5304 } 5305 return store_reg_kind(s, a->rd, tmp1, kind); 5306 } 5307 5308 static bool op_s_rxr_shi(DisasContext *s, arg_s_rrr_shi *a, 5309 void (*gen)(TCGv_i32, TCGv_i32), 5310 int logic_cc, StoreRegKind kind) 5311 { 5312 TCGv_i32 tmp; 5313 5314 tmp = load_reg(s, a->rm); 5315 gen_arm_shift_im(tmp, a->shty, a->shim, logic_cc); 5316 5317 gen(tmp, tmp); 5318 if (logic_cc) { 5319 gen_logic_CC(tmp); 5320 } 5321 return store_reg_kind(s, a->rd, tmp, kind); 5322 } 5323 5324 /* 5325 * Data-processing (register-shifted register) 5326 * 5327 * Operate, with set flags, one register source, 5328 * one register shifted register source, and a destination. 5329 */ 5330 static bool op_s_rrr_shr(DisasContext *s, arg_s_rrr_shr *a, 5331 void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), 5332 int logic_cc, StoreRegKind kind) 5333 { 5334 TCGv_i32 tmp1, tmp2; 5335 5336 tmp1 = load_reg(s, a->rs); 5337 tmp2 = load_reg(s, a->rm); 5338 gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc); 5339 tmp1 = load_reg(s, a->rn); 5340 5341 gen(tmp1, tmp1, tmp2); 5342 5343 if (logic_cc) { 5344 gen_logic_CC(tmp1); 5345 } 5346 return store_reg_kind(s, a->rd, tmp1, kind); 5347 } 5348 5349 static bool op_s_rxr_shr(DisasContext *s, arg_s_rrr_shr *a, 5350 void (*gen)(TCGv_i32, TCGv_i32), 5351 int logic_cc, StoreRegKind kind) 5352 { 5353 TCGv_i32 tmp1, tmp2; 5354 5355 tmp1 = load_reg(s, a->rs); 5356 tmp2 = load_reg(s, a->rm); 5357 gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc); 5358 5359 gen(tmp2, tmp2); 5360 if (logic_cc) { 5361 gen_logic_CC(tmp2); 5362 } 5363 return store_reg_kind(s, a->rd, tmp2, kind); 5364 } 5365 5366 /* 5367 * Data-processing (immediate) 5368 * 5369 * Operate, with set flags, one register source, 5370 * one rotated immediate, and a destination. 5371 * 5372 * Note that logic_cc && a->rot setting CF based on the msb of the 5373 * immediate is the reason why we must pass in the unrotated form 5374 * of the immediate. 5375 */ 5376 static bool op_s_rri_rot(DisasContext *s, arg_s_rri_rot *a, 5377 void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), 5378 int logic_cc, StoreRegKind kind) 5379 { 5380 TCGv_i32 tmp1; 5381 uint32_t imm; 5382 5383 imm = ror32(a->imm, a->rot); 5384 if (logic_cc && a->rot) { 5385 tcg_gen_movi_i32(cpu_CF, imm >> 31); 5386 } 5387 tmp1 = load_reg(s, a->rn); 5388 5389 gen(tmp1, tmp1, tcg_constant_i32(imm)); 5390 5391 if (logic_cc) { 5392 gen_logic_CC(tmp1); 5393 } 5394 return store_reg_kind(s, a->rd, tmp1, kind); 5395 } 5396 5397 static bool op_s_rxi_rot(DisasContext *s, arg_s_rri_rot *a, 5398 void (*gen)(TCGv_i32, TCGv_i32), 5399 int logic_cc, StoreRegKind kind) 5400 { 5401 TCGv_i32 tmp; 5402 uint32_t imm; 5403 5404 imm = ror32(a->imm, a->rot); 5405 if (logic_cc && a->rot) { 5406 tcg_gen_movi_i32(cpu_CF, imm >> 31); 5407 } 5408 5409 tmp = tcg_temp_new_i32(); 5410 gen(tmp, tcg_constant_i32(imm)); 5411 5412 if (logic_cc) { 5413 gen_logic_CC(tmp); 5414 } 5415 return store_reg_kind(s, a->rd, tmp, kind); 5416 } 5417 5418 #define DO_ANY3(NAME, OP, L, K) \ 5419 static bool trans_##NAME##_rrri(DisasContext *s, arg_s_rrr_shi *a) \ 5420 { StoreRegKind k = (K); return op_s_rrr_shi(s, a, OP, L, k); } \ 5421 static bool trans_##NAME##_rrrr(DisasContext *s, arg_s_rrr_shr *a) \ 5422 { StoreRegKind k = (K); return op_s_rrr_shr(s, a, OP, L, k); } \ 5423 static bool trans_##NAME##_rri(DisasContext *s, arg_s_rri_rot *a) \ 5424 { StoreRegKind k = (K); return op_s_rri_rot(s, a, OP, L, k); } 5425 5426 #define DO_ANY2(NAME, OP, L, K) \ 5427 static bool trans_##NAME##_rxri(DisasContext *s, arg_s_rrr_shi *a) \ 5428 { StoreRegKind k = (K); return op_s_rxr_shi(s, a, OP, L, k); } \ 5429 static bool trans_##NAME##_rxrr(DisasContext *s, arg_s_rrr_shr *a) \ 5430 { StoreRegKind k = (K); return op_s_rxr_shr(s, a, OP, L, k); } \ 5431 static bool trans_##NAME##_rxi(DisasContext *s, arg_s_rri_rot *a) \ 5432 { StoreRegKind k = (K); return op_s_rxi_rot(s, a, OP, L, k); } 5433 5434 #define DO_CMP2(NAME, OP, L) \ 5435 static bool trans_##NAME##_xrri(DisasContext *s, arg_s_rrr_shi *a) \ 5436 { return op_s_rrr_shi(s, a, OP, L, STREG_NONE); } \ 5437 static bool trans_##NAME##_xrrr(DisasContext *s, arg_s_rrr_shr *a) \ 5438 { return op_s_rrr_shr(s, a, OP, L, STREG_NONE); } \ 5439 static bool trans_##NAME##_xri(DisasContext *s, arg_s_rri_rot *a) \ 5440 { return op_s_rri_rot(s, a, OP, L, STREG_NONE); } 5441 5442 DO_ANY3(AND, tcg_gen_and_i32, a->s, STREG_NORMAL) 5443 DO_ANY3(EOR, tcg_gen_xor_i32, a->s, STREG_NORMAL) 5444 DO_ANY3(ORR, tcg_gen_or_i32, a->s, STREG_NORMAL) 5445 DO_ANY3(BIC, tcg_gen_andc_i32, a->s, STREG_NORMAL) 5446 5447 DO_ANY3(RSB, a->s ? gen_rsb_CC : gen_rsb, false, STREG_NORMAL) 5448 DO_ANY3(ADC, a->s ? gen_adc_CC : gen_add_carry, false, STREG_NORMAL) 5449 DO_ANY3(SBC, a->s ? gen_sbc_CC : gen_sub_carry, false, STREG_NORMAL) 5450 DO_ANY3(RSC, a->s ? gen_rsc_CC : gen_rsc, false, STREG_NORMAL) 5451 5452 DO_CMP2(TST, tcg_gen_and_i32, true) 5453 DO_CMP2(TEQ, tcg_gen_xor_i32, true) 5454 DO_CMP2(CMN, gen_add_CC, false) 5455 DO_CMP2(CMP, gen_sub_CC, false) 5456 5457 DO_ANY3(ADD, a->s ? gen_add_CC : tcg_gen_add_i32, false, 5458 a->rd == 13 && a->rn == 13 ? STREG_SP_CHECK : STREG_NORMAL) 5459 5460 /* 5461 * Note for the computation of StoreRegKind we return out of the 5462 * middle of the functions that are expanded by DO_ANY3, and that 5463 * we modify a->s via that parameter before it is used by OP. 5464 */ 5465 DO_ANY3(SUB, a->s ? gen_sub_CC : tcg_gen_sub_i32, false, 5466 ({ 5467 StoreRegKind ret = STREG_NORMAL; 5468 if (a->rd == 15 && a->s) { 5469 /* 5470 * See ALUExceptionReturn: 5471 * In User mode, UNPREDICTABLE; we choose UNDEF. 5472 * In Hyp mode, UNDEFINED. 5473 */ 5474 if (IS_USER(s) || s->current_el == 2) { 5475 unallocated_encoding(s); 5476 return true; 5477 } 5478 /* There is no writeback of nzcv to PSTATE. */ 5479 a->s = 0; 5480 ret = STREG_EXC_RET; 5481 } else if (a->rd == 13 && a->rn == 13) { 5482 ret = STREG_SP_CHECK; 5483 } 5484 ret; 5485 })) 5486 5487 DO_ANY2(MOV, tcg_gen_mov_i32, a->s, 5488 ({ 5489 StoreRegKind ret = STREG_NORMAL; 5490 if (a->rd == 15 && a->s) { 5491 /* 5492 * See ALUExceptionReturn: 5493 * In User mode, UNPREDICTABLE; we choose UNDEF. 5494 * In Hyp mode, UNDEFINED. 5495 */ 5496 if (IS_USER(s) || s->current_el == 2) { 5497 unallocated_encoding(s); 5498 return true; 5499 } 5500 /* There is no writeback of nzcv to PSTATE. */ 5501 a->s = 0; 5502 ret = STREG_EXC_RET; 5503 } else if (a->rd == 13) { 5504 ret = STREG_SP_CHECK; 5505 } 5506 ret; 5507 })) 5508 5509 DO_ANY2(MVN, tcg_gen_not_i32, a->s, STREG_NORMAL) 5510 5511 /* 5512 * ORN is only available with T32, so there is no register-shifted-register 5513 * form of the insn. Using the DO_ANY3 macro would create an unused function. 5514 */ 5515 static bool trans_ORN_rrri(DisasContext *s, arg_s_rrr_shi *a) 5516 { 5517 return op_s_rrr_shi(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL); 5518 } 5519 5520 static bool trans_ORN_rri(DisasContext *s, arg_s_rri_rot *a) 5521 { 5522 return op_s_rri_rot(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL); 5523 } 5524 5525 #undef DO_ANY3 5526 #undef DO_ANY2 5527 #undef DO_CMP2 5528 5529 static bool trans_ADR(DisasContext *s, arg_ri *a) 5530 { 5531 store_reg_bx(s, a->rd, add_reg_for_lit(s, 15, a->imm)); 5532 return true; 5533 } 5534 5535 static bool trans_MOVW(DisasContext *s, arg_MOVW *a) 5536 { 5537 if (!ENABLE_ARCH_6T2) { 5538 return false; 5539 } 5540 5541 store_reg(s, a->rd, tcg_constant_i32(a->imm)); 5542 return true; 5543 } 5544 5545 static bool trans_MOVT(DisasContext *s, arg_MOVW *a) 5546 { 5547 TCGv_i32 tmp; 5548 5549 if (!ENABLE_ARCH_6T2) { 5550 return false; 5551 } 5552 5553 tmp = load_reg(s, a->rd); 5554 tcg_gen_ext16u_i32(tmp, tmp); 5555 tcg_gen_ori_i32(tmp, tmp, a->imm << 16); 5556 store_reg(s, a->rd, tmp); 5557 return true; 5558 } 5559 5560 /* 5561 * v8.1M MVE wide-shifts 5562 */ 5563 static bool do_mve_shl_ri(DisasContext *s, arg_mve_shl_ri *a, 5564 WideShiftImmFn *fn) 5565 { 5566 TCGv_i64 rda; 5567 TCGv_i32 rdalo, rdahi; 5568 5569 if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { 5570 /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ 5571 return false; 5572 } 5573 if (a->rdahi == 15) { 5574 /* These are a different encoding (SQSHL/SRSHR/UQSHL/URSHR) */ 5575 return false; 5576 } 5577 if (!dc_isar_feature(aa32_mve, s) || 5578 !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || 5579 a->rdahi == 13) { 5580 /* RdaHi == 13 is UNPREDICTABLE; we choose to UNDEF */ 5581 unallocated_encoding(s); 5582 return true; 5583 } 5584 5585 if (a->shim == 0) { 5586 a->shim = 32; 5587 } 5588 5589 rda = tcg_temp_new_i64(); 5590 rdalo = load_reg(s, a->rdalo); 5591 rdahi = load_reg(s, a->rdahi); 5592 tcg_gen_concat_i32_i64(rda, rdalo, rdahi); 5593 5594 fn(rda, rda, a->shim); 5595 5596 tcg_gen_extrl_i64_i32(rdalo, rda); 5597 tcg_gen_extrh_i64_i32(rdahi, rda); 5598 store_reg(s, a->rdalo, rdalo); 5599 store_reg(s, a->rdahi, rdahi); 5600 5601 return true; 5602 } 5603 5604 static bool trans_ASRL_ri(DisasContext *s, arg_mve_shl_ri *a) 5605 { 5606 return do_mve_shl_ri(s, a, tcg_gen_sari_i64); 5607 } 5608 5609 static bool trans_LSLL_ri(DisasContext *s, arg_mve_shl_ri *a) 5610 { 5611 return do_mve_shl_ri(s, a, tcg_gen_shli_i64); 5612 } 5613 5614 static bool trans_LSRL_ri(DisasContext *s, arg_mve_shl_ri *a) 5615 { 5616 return do_mve_shl_ri(s, a, tcg_gen_shri_i64); 5617 } 5618 5619 static void gen_mve_sqshll(TCGv_i64 r, TCGv_i64 n, int64_t shift) 5620 { 5621 gen_helper_mve_sqshll(r, cpu_env, n, tcg_constant_i32(shift)); 5622 } 5623 5624 static bool trans_SQSHLL_ri(DisasContext *s, arg_mve_shl_ri *a) 5625 { 5626 return do_mve_shl_ri(s, a, gen_mve_sqshll); 5627 } 5628 5629 static void gen_mve_uqshll(TCGv_i64 r, TCGv_i64 n, int64_t shift) 5630 { 5631 gen_helper_mve_uqshll(r, cpu_env, n, tcg_constant_i32(shift)); 5632 } 5633 5634 static bool trans_UQSHLL_ri(DisasContext *s, arg_mve_shl_ri *a) 5635 { 5636 return do_mve_shl_ri(s, a, gen_mve_uqshll); 5637 } 5638 5639 static bool trans_SRSHRL_ri(DisasContext *s, arg_mve_shl_ri *a) 5640 { 5641 return do_mve_shl_ri(s, a, gen_srshr64_i64); 5642 } 5643 5644 static bool trans_URSHRL_ri(DisasContext *s, arg_mve_shl_ri *a) 5645 { 5646 return do_mve_shl_ri(s, a, gen_urshr64_i64); 5647 } 5648 5649 static bool do_mve_shl_rr(DisasContext *s, arg_mve_shl_rr *a, WideShiftFn *fn) 5650 { 5651 TCGv_i64 rda; 5652 TCGv_i32 rdalo, rdahi; 5653 5654 if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { 5655 /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ 5656 return false; 5657 } 5658 if (a->rdahi == 15) { 5659 /* These are a different encoding (SQSHL/SRSHR/UQSHL/URSHR) */ 5660 return false; 5661 } 5662 if (!dc_isar_feature(aa32_mve, s) || 5663 !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || 5664 a->rdahi == 13 || a->rm == 13 || a->rm == 15 || 5665 a->rm == a->rdahi || a->rm == a->rdalo) { 5666 /* These rdahi/rdalo/rm cases are UNPREDICTABLE; we choose to UNDEF */ 5667 unallocated_encoding(s); 5668 return true; 5669 } 5670 5671 rda = tcg_temp_new_i64(); 5672 rdalo = load_reg(s, a->rdalo); 5673 rdahi = load_reg(s, a->rdahi); 5674 tcg_gen_concat_i32_i64(rda, rdalo, rdahi); 5675 5676 /* The helper takes care of the sign-extension of the low 8 bits of Rm */ 5677 fn(rda, cpu_env, rda, cpu_R[a->rm]); 5678 5679 tcg_gen_extrl_i64_i32(rdalo, rda); 5680 tcg_gen_extrh_i64_i32(rdahi, rda); 5681 store_reg(s, a->rdalo, rdalo); 5682 store_reg(s, a->rdahi, rdahi); 5683 5684 return true; 5685 } 5686 5687 static bool trans_LSLL_rr(DisasContext *s, arg_mve_shl_rr *a) 5688 { 5689 return do_mve_shl_rr(s, a, gen_helper_mve_ushll); 5690 } 5691 5692 static bool trans_ASRL_rr(DisasContext *s, arg_mve_shl_rr *a) 5693 { 5694 return do_mve_shl_rr(s, a, gen_helper_mve_sshrl); 5695 } 5696 5697 static bool trans_UQRSHLL64_rr(DisasContext *s, arg_mve_shl_rr *a) 5698 { 5699 return do_mve_shl_rr(s, a, gen_helper_mve_uqrshll); 5700 } 5701 5702 static bool trans_SQRSHRL64_rr(DisasContext *s, arg_mve_shl_rr *a) 5703 { 5704 return do_mve_shl_rr(s, a, gen_helper_mve_sqrshrl); 5705 } 5706 5707 static bool trans_UQRSHLL48_rr(DisasContext *s, arg_mve_shl_rr *a) 5708 { 5709 return do_mve_shl_rr(s, a, gen_helper_mve_uqrshll48); 5710 } 5711 5712 static bool trans_SQRSHRL48_rr(DisasContext *s, arg_mve_shl_rr *a) 5713 { 5714 return do_mve_shl_rr(s, a, gen_helper_mve_sqrshrl48); 5715 } 5716 5717 static bool do_mve_sh_ri(DisasContext *s, arg_mve_sh_ri *a, ShiftImmFn *fn) 5718 { 5719 if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { 5720 /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ 5721 return false; 5722 } 5723 if (!dc_isar_feature(aa32_mve, s) || 5724 !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || 5725 a->rda == 13 || a->rda == 15) { 5726 /* These rda cases are UNPREDICTABLE; we choose to UNDEF */ 5727 unallocated_encoding(s); 5728 return true; 5729 } 5730 5731 if (a->shim == 0) { 5732 a->shim = 32; 5733 } 5734 fn(cpu_R[a->rda], cpu_R[a->rda], a->shim); 5735 5736 return true; 5737 } 5738 5739 static bool trans_URSHR_ri(DisasContext *s, arg_mve_sh_ri *a) 5740 { 5741 return do_mve_sh_ri(s, a, gen_urshr32_i32); 5742 } 5743 5744 static bool trans_SRSHR_ri(DisasContext *s, arg_mve_sh_ri *a) 5745 { 5746 return do_mve_sh_ri(s, a, gen_srshr32_i32); 5747 } 5748 5749 static void gen_mve_sqshl(TCGv_i32 r, TCGv_i32 n, int32_t shift) 5750 { 5751 gen_helper_mve_sqshl(r, cpu_env, n, tcg_constant_i32(shift)); 5752 } 5753 5754 static bool trans_SQSHL_ri(DisasContext *s, arg_mve_sh_ri *a) 5755 { 5756 return do_mve_sh_ri(s, a, gen_mve_sqshl); 5757 } 5758 5759 static void gen_mve_uqshl(TCGv_i32 r, TCGv_i32 n, int32_t shift) 5760 { 5761 gen_helper_mve_uqshl(r, cpu_env, n, tcg_constant_i32(shift)); 5762 } 5763 5764 static bool trans_UQSHL_ri(DisasContext *s, arg_mve_sh_ri *a) 5765 { 5766 return do_mve_sh_ri(s, a, gen_mve_uqshl); 5767 } 5768 5769 static bool do_mve_sh_rr(DisasContext *s, arg_mve_sh_rr *a, ShiftFn *fn) 5770 { 5771 if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { 5772 /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ 5773 return false; 5774 } 5775 if (!dc_isar_feature(aa32_mve, s) || 5776 !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || 5777 a->rda == 13 || a->rda == 15 || a->rm == 13 || a->rm == 15 || 5778 a->rm == a->rda) { 5779 /* These rda/rm cases are UNPREDICTABLE; we choose to UNDEF */ 5780 unallocated_encoding(s); 5781 return true; 5782 } 5783 5784 /* The helper takes care of the sign-extension of the low 8 bits of Rm */ 5785 fn(cpu_R[a->rda], cpu_env, cpu_R[a->rda], cpu_R[a->rm]); 5786 return true; 5787 } 5788 5789 static bool trans_SQRSHR_rr(DisasContext *s, arg_mve_sh_rr *a) 5790 { 5791 return do_mve_sh_rr(s, a, gen_helper_mve_sqrshr); 5792 } 5793 5794 static bool trans_UQRSHL_rr(DisasContext *s, arg_mve_sh_rr *a) 5795 { 5796 return do_mve_sh_rr(s, a, gen_helper_mve_uqrshl); 5797 } 5798 5799 /* 5800 * Multiply and multiply accumulate 5801 */ 5802 5803 static bool op_mla(DisasContext *s, arg_s_rrrr *a, bool add) 5804 { 5805 TCGv_i32 t1, t2; 5806 5807 t1 = load_reg(s, a->rn); 5808 t2 = load_reg(s, a->rm); 5809 tcg_gen_mul_i32(t1, t1, t2); 5810 if (add) { 5811 t2 = load_reg(s, a->ra); 5812 tcg_gen_add_i32(t1, t1, t2); 5813 } 5814 if (a->s) { 5815 gen_logic_CC(t1); 5816 } 5817 store_reg(s, a->rd, t1); 5818 return true; 5819 } 5820 5821 static bool trans_MUL(DisasContext *s, arg_MUL *a) 5822 { 5823 return op_mla(s, a, false); 5824 } 5825 5826 static bool trans_MLA(DisasContext *s, arg_MLA *a) 5827 { 5828 return op_mla(s, a, true); 5829 } 5830 5831 static bool trans_MLS(DisasContext *s, arg_MLS *a) 5832 { 5833 TCGv_i32 t1, t2; 5834 5835 if (!ENABLE_ARCH_6T2) { 5836 return false; 5837 } 5838 t1 = load_reg(s, a->rn); 5839 t2 = load_reg(s, a->rm); 5840 tcg_gen_mul_i32(t1, t1, t2); 5841 t2 = load_reg(s, a->ra); 5842 tcg_gen_sub_i32(t1, t2, t1); 5843 store_reg(s, a->rd, t1); 5844 return true; 5845 } 5846 5847 static bool op_mlal(DisasContext *s, arg_s_rrrr *a, bool uns, bool add) 5848 { 5849 TCGv_i32 t0, t1, t2, t3; 5850 5851 t0 = load_reg(s, a->rm); 5852 t1 = load_reg(s, a->rn); 5853 if (uns) { 5854 tcg_gen_mulu2_i32(t0, t1, t0, t1); 5855 } else { 5856 tcg_gen_muls2_i32(t0, t1, t0, t1); 5857 } 5858 if (add) { 5859 t2 = load_reg(s, a->ra); 5860 t3 = load_reg(s, a->rd); 5861 tcg_gen_add2_i32(t0, t1, t0, t1, t2, t3); 5862 } 5863 if (a->s) { 5864 gen_logicq_cc(t0, t1); 5865 } 5866 store_reg(s, a->ra, t0); 5867 store_reg(s, a->rd, t1); 5868 return true; 5869 } 5870 5871 static bool trans_UMULL(DisasContext *s, arg_UMULL *a) 5872 { 5873 return op_mlal(s, a, true, false); 5874 } 5875 5876 static bool trans_SMULL(DisasContext *s, arg_SMULL *a) 5877 { 5878 return op_mlal(s, a, false, false); 5879 } 5880 5881 static bool trans_UMLAL(DisasContext *s, arg_UMLAL *a) 5882 { 5883 return op_mlal(s, a, true, true); 5884 } 5885 5886 static bool trans_SMLAL(DisasContext *s, arg_SMLAL *a) 5887 { 5888 return op_mlal(s, a, false, true); 5889 } 5890 5891 static bool trans_UMAAL(DisasContext *s, arg_UMAAL *a) 5892 { 5893 TCGv_i32 t0, t1, t2, zero; 5894 5895 if (s->thumb 5896 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 5897 : !ENABLE_ARCH_6) { 5898 return false; 5899 } 5900 5901 t0 = load_reg(s, a->rm); 5902 t1 = load_reg(s, a->rn); 5903 tcg_gen_mulu2_i32(t0, t1, t0, t1); 5904 zero = tcg_constant_i32(0); 5905 t2 = load_reg(s, a->ra); 5906 tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero); 5907 t2 = load_reg(s, a->rd); 5908 tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero); 5909 store_reg(s, a->ra, t0); 5910 store_reg(s, a->rd, t1); 5911 return true; 5912 } 5913 5914 /* 5915 * Saturating addition and subtraction 5916 */ 5917 5918 static bool op_qaddsub(DisasContext *s, arg_rrr *a, bool add, bool doub) 5919 { 5920 TCGv_i32 t0, t1; 5921 5922 if (s->thumb 5923 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 5924 : !ENABLE_ARCH_5TE) { 5925 return false; 5926 } 5927 5928 t0 = load_reg(s, a->rm); 5929 t1 = load_reg(s, a->rn); 5930 if (doub) { 5931 gen_helper_add_saturate(t1, cpu_env, t1, t1); 5932 } 5933 if (add) { 5934 gen_helper_add_saturate(t0, cpu_env, t0, t1); 5935 } else { 5936 gen_helper_sub_saturate(t0, cpu_env, t0, t1); 5937 } 5938 store_reg(s, a->rd, t0); 5939 return true; 5940 } 5941 5942 #define DO_QADDSUB(NAME, ADD, DOUB) \ 5943 static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ 5944 { \ 5945 return op_qaddsub(s, a, ADD, DOUB); \ 5946 } 5947 5948 DO_QADDSUB(QADD, true, false) 5949 DO_QADDSUB(QSUB, false, false) 5950 DO_QADDSUB(QDADD, true, true) 5951 DO_QADDSUB(QDSUB, false, true) 5952 5953 #undef DO_QADDSUB 5954 5955 /* 5956 * Halfword multiply and multiply accumulate 5957 */ 5958 5959 static bool op_smlaxxx(DisasContext *s, arg_rrrr *a, 5960 int add_long, bool nt, bool mt) 5961 { 5962 TCGv_i32 t0, t1, tl, th; 5963 5964 if (s->thumb 5965 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 5966 : !ENABLE_ARCH_5TE) { 5967 return false; 5968 } 5969 5970 t0 = load_reg(s, a->rn); 5971 t1 = load_reg(s, a->rm); 5972 gen_mulxy(t0, t1, nt, mt); 5973 5974 switch (add_long) { 5975 case 0: 5976 store_reg(s, a->rd, t0); 5977 break; 5978 case 1: 5979 t1 = load_reg(s, a->ra); 5980 gen_helper_add_setq(t0, cpu_env, t0, t1); 5981 store_reg(s, a->rd, t0); 5982 break; 5983 case 2: 5984 tl = load_reg(s, a->ra); 5985 th = load_reg(s, a->rd); 5986 /* Sign-extend the 32-bit product to 64 bits. */ 5987 t1 = tcg_temp_new_i32(); 5988 tcg_gen_sari_i32(t1, t0, 31); 5989 tcg_gen_add2_i32(tl, th, tl, th, t0, t1); 5990 store_reg(s, a->ra, tl); 5991 store_reg(s, a->rd, th); 5992 break; 5993 default: 5994 g_assert_not_reached(); 5995 } 5996 return true; 5997 } 5998 5999 #define DO_SMLAX(NAME, add, nt, mt) \ 6000 static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \ 6001 { \ 6002 return op_smlaxxx(s, a, add, nt, mt); \ 6003 } 6004 6005 DO_SMLAX(SMULBB, 0, 0, 0) 6006 DO_SMLAX(SMULBT, 0, 0, 1) 6007 DO_SMLAX(SMULTB, 0, 1, 0) 6008 DO_SMLAX(SMULTT, 0, 1, 1) 6009 6010 DO_SMLAX(SMLABB, 1, 0, 0) 6011 DO_SMLAX(SMLABT, 1, 0, 1) 6012 DO_SMLAX(SMLATB, 1, 1, 0) 6013 DO_SMLAX(SMLATT, 1, 1, 1) 6014 6015 DO_SMLAX(SMLALBB, 2, 0, 0) 6016 DO_SMLAX(SMLALBT, 2, 0, 1) 6017 DO_SMLAX(SMLALTB, 2, 1, 0) 6018 DO_SMLAX(SMLALTT, 2, 1, 1) 6019 6020 #undef DO_SMLAX 6021 6022 static bool op_smlawx(DisasContext *s, arg_rrrr *a, bool add, bool mt) 6023 { 6024 TCGv_i32 t0, t1; 6025 6026 if (!ENABLE_ARCH_5TE) { 6027 return false; 6028 } 6029 6030 t0 = load_reg(s, a->rn); 6031 t1 = load_reg(s, a->rm); 6032 /* 6033 * Since the nominal result is product<47:16>, shift the 16-bit 6034 * input up by 16 bits, so that the result is at product<63:32>. 6035 */ 6036 if (mt) { 6037 tcg_gen_andi_i32(t1, t1, 0xffff0000); 6038 } else { 6039 tcg_gen_shli_i32(t1, t1, 16); 6040 } 6041 tcg_gen_muls2_i32(t0, t1, t0, t1); 6042 if (add) { 6043 t0 = load_reg(s, a->ra); 6044 gen_helper_add_setq(t1, cpu_env, t1, t0); 6045 } 6046 store_reg(s, a->rd, t1); 6047 return true; 6048 } 6049 6050 #define DO_SMLAWX(NAME, add, mt) \ 6051 static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \ 6052 { \ 6053 return op_smlawx(s, a, add, mt); \ 6054 } 6055 6056 DO_SMLAWX(SMULWB, 0, 0) 6057 DO_SMLAWX(SMULWT, 0, 1) 6058 DO_SMLAWX(SMLAWB, 1, 0) 6059 DO_SMLAWX(SMLAWT, 1, 1) 6060 6061 #undef DO_SMLAWX 6062 6063 /* 6064 * MSR (immediate) and hints 6065 */ 6066 6067 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 6068 { 6069 /* 6070 * When running single-threaded TCG code, use the helper to ensure that 6071 * the next round-robin scheduled vCPU gets a crack. When running in 6072 * MTTCG we don't generate jumps to the helper as it won't affect the 6073 * scheduling of other vCPUs. 6074 */ 6075 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 6076 gen_update_pc(s, curr_insn_len(s)); 6077 s->base.is_jmp = DISAS_YIELD; 6078 } 6079 return true; 6080 } 6081 6082 static bool trans_WFE(DisasContext *s, arg_WFE *a) 6083 { 6084 /* 6085 * When running single-threaded TCG code, use the helper to ensure that 6086 * the next round-robin scheduled vCPU gets a crack. In MTTCG mode we 6087 * just skip this instruction. Currently the SEV/SEVL instructions, 6088 * which are *one* of many ways to wake the CPU from WFE, are not 6089 * implemented so we can't sleep like WFI does. 6090 */ 6091 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 6092 gen_update_pc(s, curr_insn_len(s)); 6093 s->base.is_jmp = DISAS_WFE; 6094 } 6095 return true; 6096 } 6097 6098 static bool trans_WFI(DisasContext *s, arg_WFI *a) 6099 { 6100 /* For WFI, halt the vCPU until an IRQ. */ 6101 gen_update_pc(s, curr_insn_len(s)); 6102 s->base.is_jmp = DISAS_WFI; 6103 return true; 6104 } 6105 6106 static bool trans_ESB(DisasContext *s, arg_ESB *a) 6107 { 6108 /* 6109 * For M-profile, minimal-RAS ESB can be a NOP. 6110 * Without RAS, we must implement this as NOP. 6111 */ 6112 if (!arm_dc_feature(s, ARM_FEATURE_M) && dc_isar_feature(aa32_ras, s)) { 6113 /* 6114 * QEMU does not have a source of physical SErrors, 6115 * so we are only concerned with virtual SErrors. 6116 * The pseudocode in the ARM for this case is 6117 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 6118 * AArch32.vESBOperation(); 6119 * Most of the condition can be evaluated at translation time. 6120 * Test for EL2 present, and defer test for SEL2 to runtime. 6121 */ 6122 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 6123 gen_helper_vesb(cpu_env); 6124 } 6125 } 6126 return true; 6127 } 6128 6129 static bool trans_NOP(DisasContext *s, arg_NOP *a) 6130 { 6131 return true; 6132 } 6133 6134 static bool trans_MSR_imm(DisasContext *s, arg_MSR_imm *a) 6135 { 6136 uint32_t val = ror32(a->imm, a->rot * 2); 6137 uint32_t mask = msr_mask(s, a->mask, a->r); 6138 6139 if (gen_set_psr_im(s, mask, a->r, val)) { 6140 unallocated_encoding(s); 6141 } 6142 return true; 6143 } 6144 6145 /* 6146 * Cyclic Redundancy Check 6147 */ 6148 6149 static bool op_crc32(DisasContext *s, arg_rrr *a, bool c, MemOp sz) 6150 { 6151 TCGv_i32 t1, t2, t3; 6152 6153 if (!dc_isar_feature(aa32_crc32, s)) { 6154 return false; 6155 } 6156 6157 t1 = load_reg(s, a->rn); 6158 t2 = load_reg(s, a->rm); 6159 switch (sz) { 6160 case MO_8: 6161 gen_uxtb(t2); 6162 break; 6163 case MO_16: 6164 gen_uxth(t2); 6165 break; 6166 case MO_32: 6167 break; 6168 default: 6169 g_assert_not_reached(); 6170 } 6171 t3 = tcg_constant_i32(1 << sz); 6172 if (c) { 6173 gen_helper_crc32c(t1, t1, t2, t3); 6174 } else { 6175 gen_helper_crc32(t1, t1, t2, t3); 6176 } 6177 store_reg(s, a->rd, t1); 6178 return true; 6179 } 6180 6181 #define DO_CRC32(NAME, c, sz) \ 6182 static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ 6183 { return op_crc32(s, a, c, sz); } 6184 6185 DO_CRC32(CRC32B, false, MO_8) 6186 DO_CRC32(CRC32H, false, MO_16) 6187 DO_CRC32(CRC32W, false, MO_32) 6188 DO_CRC32(CRC32CB, true, MO_8) 6189 DO_CRC32(CRC32CH, true, MO_16) 6190 DO_CRC32(CRC32CW, true, MO_32) 6191 6192 #undef DO_CRC32 6193 6194 /* 6195 * Miscellaneous instructions 6196 */ 6197 6198 static bool trans_MRS_bank(DisasContext *s, arg_MRS_bank *a) 6199 { 6200 if (arm_dc_feature(s, ARM_FEATURE_M)) { 6201 return false; 6202 } 6203 gen_mrs_banked(s, a->r, a->sysm, a->rd); 6204 return true; 6205 } 6206 6207 static bool trans_MSR_bank(DisasContext *s, arg_MSR_bank *a) 6208 { 6209 if (arm_dc_feature(s, ARM_FEATURE_M)) { 6210 return false; 6211 } 6212 gen_msr_banked(s, a->r, a->sysm, a->rn); 6213 return true; 6214 } 6215 6216 static bool trans_MRS_reg(DisasContext *s, arg_MRS_reg *a) 6217 { 6218 TCGv_i32 tmp; 6219 6220 if (arm_dc_feature(s, ARM_FEATURE_M)) { 6221 return false; 6222 } 6223 if (a->r) { 6224 if (IS_USER(s)) { 6225 unallocated_encoding(s); 6226 return true; 6227 } 6228 tmp = load_cpu_field(spsr); 6229 } else { 6230 tmp = tcg_temp_new_i32(); 6231 gen_helper_cpsr_read(tmp, cpu_env); 6232 } 6233 store_reg(s, a->rd, tmp); 6234 return true; 6235 } 6236 6237 static bool trans_MSR_reg(DisasContext *s, arg_MSR_reg *a) 6238 { 6239 TCGv_i32 tmp; 6240 uint32_t mask = msr_mask(s, a->mask, a->r); 6241 6242 if (arm_dc_feature(s, ARM_FEATURE_M)) { 6243 return false; 6244 } 6245 tmp = load_reg(s, a->rn); 6246 if (gen_set_psr(s, mask, a->r, tmp)) { 6247 unallocated_encoding(s); 6248 } 6249 return true; 6250 } 6251 6252 static bool trans_MRS_v7m(DisasContext *s, arg_MRS_v7m *a) 6253 { 6254 TCGv_i32 tmp; 6255 6256 if (!arm_dc_feature(s, ARM_FEATURE_M)) { 6257 return false; 6258 } 6259 tmp = tcg_temp_new_i32(); 6260 gen_helper_v7m_mrs(tmp, cpu_env, tcg_constant_i32(a->sysm)); 6261 store_reg(s, a->rd, tmp); 6262 return true; 6263 } 6264 6265 static bool trans_MSR_v7m(DisasContext *s, arg_MSR_v7m *a) 6266 { 6267 TCGv_i32 addr, reg; 6268 6269 if (!arm_dc_feature(s, ARM_FEATURE_M)) { 6270 return false; 6271 } 6272 addr = tcg_constant_i32((a->mask << 10) | a->sysm); 6273 reg = load_reg(s, a->rn); 6274 gen_helper_v7m_msr(cpu_env, addr, reg); 6275 /* If we wrote to CONTROL, the EL might have changed */ 6276 gen_rebuild_hflags(s, true); 6277 gen_lookup_tb(s); 6278 return true; 6279 } 6280 6281 static bool trans_BX(DisasContext *s, arg_BX *a) 6282 { 6283 if (!ENABLE_ARCH_4T) { 6284 return false; 6285 } 6286 gen_bx_excret(s, load_reg(s, a->rm)); 6287 return true; 6288 } 6289 6290 static bool trans_BXJ(DisasContext *s, arg_BXJ *a) 6291 { 6292 if (!ENABLE_ARCH_5J || arm_dc_feature(s, ARM_FEATURE_M)) { 6293 return false; 6294 } 6295 /* 6296 * v7A allows BXJ to be trapped via HSTR.TJDBX. We don't waste a 6297 * TBFLAGS bit on a basically-never-happens case, so call a helper 6298 * function to check for the trap and raise the exception if needed 6299 * (passing it the register number for the syndrome value). 6300 * v8A doesn't have this HSTR bit. 6301 */ 6302 if (!arm_dc_feature(s, ARM_FEATURE_V8) && 6303 arm_dc_feature(s, ARM_FEATURE_EL2) && 6304 s->current_el < 2 && s->ns) { 6305 gen_helper_check_bxj_trap(cpu_env, tcg_constant_i32(a->rm)); 6306 } 6307 /* Trivial implementation equivalent to bx. */ 6308 gen_bx(s, load_reg(s, a->rm)); 6309 return true; 6310 } 6311 6312 static bool trans_BLX_r(DisasContext *s, arg_BLX_r *a) 6313 { 6314 TCGv_i32 tmp; 6315 6316 if (!ENABLE_ARCH_5) { 6317 return false; 6318 } 6319 tmp = load_reg(s, a->rm); 6320 gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | s->thumb); 6321 gen_bx(s, tmp); 6322 return true; 6323 } 6324 6325 /* 6326 * BXNS/BLXNS: only exist for v8M with the security extensions, 6327 * and always UNDEF if NonSecure. We don't implement these in 6328 * the user-only mode either (in theory you can use them from 6329 * Secure User mode but they are too tied in to system emulation). 6330 */ 6331 static bool trans_BXNS(DisasContext *s, arg_BXNS *a) 6332 { 6333 if (!s->v8m_secure || IS_USER_ONLY) { 6334 unallocated_encoding(s); 6335 } else { 6336 gen_bxns(s, a->rm); 6337 } 6338 return true; 6339 } 6340 6341 static bool trans_BLXNS(DisasContext *s, arg_BLXNS *a) 6342 { 6343 if (!s->v8m_secure || IS_USER_ONLY) { 6344 unallocated_encoding(s); 6345 } else { 6346 gen_blxns(s, a->rm); 6347 } 6348 return true; 6349 } 6350 6351 static bool trans_CLZ(DisasContext *s, arg_CLZ *a) 6352 { 6353 TCGv_i32 tmp; 6354 6355 if (!ENABLE_ARCH_5) { 6356 return false; 6357 } 6358 tmp = load_reg(s, a->rm); 6359 tcg_gen_clzi_i32(tmp, tmp, 32); 6360 store_reg(s, a->rd, tmp); 6361 return true; 6362 } 6363 6364 static bool trans_ERET(DisasContext *s, arg_ERET *a) 6365 { 6366 TCGv_i32 tmp; 6367 6368 if (!arm_dc_feature(s, ARM_FEATURE_V7VE)) { 6369 return false; 6370 } 6371 if (IS_USER(s)) { 6372 unallocated_encoding(s); 6373 return true; 6374 } 6375 if (s->current_el == 2) { 6376 /* ERET from Hyp uses ELR_Hyp, not LR */ 6377 tmp = load_cpu_field_low32(elr_el[2]); 6378 } else { 6379 tmp = load_reg(s, 14); 6380 } 6381 gen_exception_return(s, tmp); 6382 return true; 6383 } 6384 6385 static bool trans_HLT(DisasContext *s, arg_HLT *a) 6386 { 6387 gen_hlt(s, a->imm); 6388 return true; 6389 } 6390 6391 static bool trans_BKPT(DisasContext *s, arg_BKPT *a) 6392 { 6393 if (!ENABLE_ARCH_5) { 6394 return false; 6395 } 6396 /* BKPT is OK with ECI set and leaves it untouched */ 6397 s->eci_handled = true; 6398 if (arm_dc_feature(s, ARM_FEATURE_M) && 6399 semihosting_enabled(s->current_el == 0) && 6400 (a->imm == 0xab)) { 6401 gen_exception_internal_insn(s, EXCP_SEMIHOST); 6402 } else { 6403 gen_exception_bkpt_insn(s, syn_aa32_bkpt(a->imm, false)); 6404 } 6405 return true; 6406 } 6407 6408 static bool trans_HVC(DisasContext *s, arg_HVC *a) 6409 { 6410 if (!ENABLE_ARCH_7 || arm_dc_feature(s, ARM_FEATURE_M)) { 6411 return false; 6412 } 6413 if (IS_USER(s)) { 6414 unallocated_encoding(s); 6415 } else { 6416 gen_hvc(s, a->imm); 6417 } 6418 return true; 6419 } 6420 6421 static bool trans_SMC(DisasContext *s, arg_SMC *a) 6422 { 6423 if (!ENABLE_ARCH_6K || arm_dc_feature(s, ARM_FEATURE_M)) { 6424 return false; 6425 } 6426 if (IS_USER(s)) { 6427 unallocated_encoding(s); 6428 } else { 6429 gen_smc(s); 6430 } 6431 return true; 6432 } 6433 6434 static bool trans_SG(DisasContext *s, arg_SG *a) 6435 { 6436 if (!arm_dc_feature(s, ARM_FEATURE_M) || 6437 !arm_dc_feature(s, ARM_FEATURE_V8)) { 6438 return false; 6439 } 6440 /* 6441 * SG (v8M only) 6442 * The bulk of the behaviour for this instruction is implemented 6443 * in v7m_handle_execute_nsc(), which deals with the insn when 6444 * it is executed by a CPU in non-secure state from memory 6445 * which is Secure & NonSecure-Callable. 6446 * Here we only need to handle the remaining cases: 6447 * * in NS memory (including the "security extension not 6448 * implemented" case) : NOP 6449 * * in S memory but CPU already secure (clear IT bits) 6450 * We know that the attribute for the memory this insn is 6451 * in must match the current CPU state, because otherwise 6452 * get_phys_addr_pmsav8 would have generated an exception. 6453 */ 6454 if (s->v8m_secure) { 6455 /* Like the IT insn, we don't need to generate any code */ 6456 s->condexec_cond = 0; 6457 s->condexec_mask = 0; 6458 } 6459 return true; 6460 } 6461 6462 static bool trans_TT(DisasContext *s, arg_TT *a) 6463 { 6464 TCGv_i32 addr, tmp; 6465 6466 if (!arm_dc_feature(s, ARM_FEATURE_M) || 6467 !arm_dc_feature(s, ARM_FEATURE_V8)) { 6468 return false; 6469 } 6470 if (a->rd == 13 || a->rd == 15 || a->rn == 15) { 6471 /* We UNDEF for these UNPREDICTABLE cases */ 6472 unallocated_encoding(s); 6473 return true; 6474 } 6475 if (a->A && !s->v8m_secure) { 6476 /* This case is UNDEFINED. */ 6477 unallocated_encoding(s); 6478 return true; 6479 } 6480 6481 addr = load_reg(s, a->rn); 6482 tmp = tcg_temp_new_i32(); 6483 gen_helper_v7m_tt(tmp, cpu_env, addr, tcg_constant_i32((a->A << 1) | a->T)); 6484 store_reg(s, a->rd, tmp); 6485 return true; 6486 } 6487 6488 /* 6489 * Load/store register index 6490 */ 6491 6492 static ISSInfo make_issinfo(DisasContext *s, int rd, bool p, bool w) 6493 { 6494 ISSInfo ret; 6495 6496 /* ISS not valid if writeback */ 6497 if (p && !w) { 6498 ret = rd; 6499 if (curr_insn_len(s) == 2) { 6500 ret |= ISSIs16Bit; 6501 } 6502 } else { 6503 ret = ISSInvalid; 6504 } 6505 return ret; 6506 } 6507 6508 static TCGv_i32 op_addr_rr_pre(DisasContext *s, arg_ldst_rr *a) 6509 { 6510 TCGv_i32 addr = load_reg(s, a->rn); 6511 6512 if (s->v8m_stackcheck && a->rn == 13 && a->w) { 6513 gen_helper_v8m_stackcheck(cpu_env, addr); 6514 } 6515 6516 if (a->p) { 6517 TCGv_i32 ofs = load_reg(s, a->rm); 6518 gen_arm_shift_im(ofs, a->shtype, a->shimm, 0); 6519 if (a->u) { 6520 tcg_gen_add_i32(addr, addr, ofs); 6521 } else { 6522 tcg_gen_sub_i32(addr, addr, ofs); 6523 } 6524 } 6525 return addr; 6526 } 6527 6528 static void op_addr_rr_post(DisasContext *s, arg_ldst_rr *a, 6529 TCGv_i32 addr, int address_offset) 6530 { 6531 if (!a->p) { 6532 TCGv_i32 ofs = load_reg(s, a->rm); 6533 gen_arm_shift_im(ofs, a->shtype, a->shimm, 0); 6534 if (a->u) { 6535 tcg_gen_add_i32(addr, addr, ofs); 6536 } else { 6537 tcg_gen_sub_i32(addr, addr, ofs); 6538 } 6539 } else if (!a->w) { 6540 return; 6541 } 6542 tcg_gen_addi_i32(addr, addr, address_offset); 6543 store_reg(s, a->rn, addr); 6544 } 6545 6546 static bool op_load_rr(DisasContext *s, arg_ldst_rr *a, 6547 MemOp mop, int mem_idx) 6548 { 6549 ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w); 6550 TCGv_i32 addr, tmp; 6551 6552 addr = op_addr_rr_pre(s, a); 6553 6554 tmp = tcg_temp_new_i32(); 6555 gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop); 6556 disas_set_da_iss(s, mop, issinfo); 6557 6558 /* 6559 * Perform base writeback before the loaded value to 6560 * ensure correct behavior with overlapping index registers. 6561 */ 6562 op_addr_rr_post(s, a, addr, 0); 6563 store_reg_from_load(s, a->rt, tmp); 6564 return true; 6565 } 6566 6567 static bool op_store_rr(DisasContext *s, arg_ldst_rr *a, 6568 MemOp mop, int mem_idx) 6569 { 6570 ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite; 6571 TCGv_i32 addr, tmp; 6572 6573 /* 6574 * In Thumb encodings of stores Rn=1111 is UNDEF; for Arm it 6575 * is either UNPREDICTABLE or has defined behaviour 6576 */ 6577 if (s->thumb && a->rn == 15) { 6578 return false; 6579 } 6580 6581 addr = op_addr_rr_pre(s, a); 6582 6583 tmp = load_reg(s, a->rt); 6584 gen_aa32_st_i32(s, tmp, addr, mem_idx, mop); 6585 disas_set_da_iss(s, mop, issinfo); 6586 6587 op_addr_rr_post(s, a, addr, 0); 6588 return true; 6589 } 6590 6591 static bool trans_LDRD_rr(DisasContext *s, arg_ldst_rr *a) 6592 { 6593 int mem_idx = get_mem_index(s); 6594 TCGv_i32 addr, tmp; 6595 6596 if (!ENABLE_ARCH_5TE) { 6597 return false; 6598 } 6599 if (a->rt & 1) { 6600 unallocated_encoding(s); 6601 return true; 6602 } 6603 addr = op_addr_rr_pre(s, a); 6604 6605 tmp = tcg_temp_new_i32(); 6606 gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6607 store_reg(s, a->rt, tmp); 6608 6609 tcg_gen_addi_i32(addr, addr, 4); 6610 6611 tmp = tcg_temp_new_i32(); 6612 gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6613 store_reg(s, a->rt + 1, tmp); 6614 6615 /* LDRD w/ base writeback is undefined if the registers overlap. */ 6616 op_addr_rr_post(s, a, addr, -4); 6617 return true; 6618 } 6619 6620 static bool trans_STRD_rr(DisasContext *s, arg_ldst_rr *a) 6621 { 6622 int mem_idx = get_mem_index(s); 6623 TCGv_i32 addr, tmp; 6624 6625 if (!ENABLE_ARCH_5TE) { 6626 return false; 6627 } 6628 if (a->rt & 1) { 6629 unallocated_encoding(s); 6630 return true; 6631 } 6632 addr = op_addr_rr_pre(s, a); 6633 6634 tmp = load_reg(s, a->rt); 6635 gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6636 6637 tcg_gen_addi_i32(addr, addr, 4); 6638 6639 tmp = load_reg(s, a->rt + 1); 6640 gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6641 6642 op_addr_rr_post(s, a, addr, -4); 6643 return true; 6644 } 6645 6646 /* 6647 * Load/store immediate index 6648 */ 6649 6650 static TCGv_i32 op_addr_ri_pre(DisasContext *s, arg_ldst_ri *a) 6651 { 6652 int ofs = a->imm; 6653 6654 if (!a->u) { 6655 ofs = -ofs; 6656 } 6657 6658 if (s->v8m_stackcheck && a->rn == 13 && a->w) { 6659 /* 6660 * Stackcheck. Here we know 'addr' is the current SP; 6661 * U is set if we're moving SP up, else down. It is 6662 * UNKNOWN whether the limit check triggers when SP starts 6663 * below the limit and ends up above it; we chose to do so. 6664 */ 6665 if (!a->u) { 6666 TCGv_i32 newsp = tcg_temp_new_i32(); 6667 tcg_gen_addi_i32(newsp, cpu_R[13], ofs); 6668 gen_helper_v8m_stackcheck(cpu_env, newsp); 6669 } else { 6670 gen_helper_v8m_stackcheck(cpu_env, cpu_R[13]); 6671 } 6672 } 6673 6674 return add_reg_for_lit(s, a->rn, a->p ? ofs : 0); 6675 } 6676 6677 static void op_addr_ri_post(DisasContext *s, arg_ldst_ri *a, 6678 TCGv_i32 addr, int address_offset) 6679 { 6680 if (!a->p) { 6681 if (a->u) { 6682 address_offset += a->imm; 6683 } else { 6684 address_offset -= a->imm; 6685 } 6686 } else if (!a->w) { 6687 return; 6688 } 6689 tcg_gen_addi_i32(addr, addr, address_offset); 6690 store_reg(s, a->rn, addr); 6691 } 6692 6693 static bool op_load_ri(DisasContext *s, arg_ldst_ri *a, 6694 MemOp mop, int mem_idx) 6695 { 6696 ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w); 6697 TCGv_i32 addr, tmp; 6698 6699 addr = op_addr_ri_pre(s, a); 6700 6701 tmp = tcg_temp_new_i32(); 6702 gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop); 6703 disas_set_da_iss(s, mop, issinfo); 6704 6705 /* 6706 * Perform base writeback before the loaded value to 6707 * ensure correct behavior with overlapping index registers. 6708 */ 6709 op_addr_ri_post(s, a, addr, 0); 6710 store_reg_from_load(s, a->rt, tmp); 6711 return true; 6712 } 6713 6714 static bool op_store_ri(DisasContext *s, arg_ldst_ri *a, 6715 MemOp mop, int mem_idx) 6716 { 6717 ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite; 6718 TCGv_i32 addr, tmp; 6719 6720 /* 6721 * In Thumb encodings of stores Rn=1111 is UNDEF; for Arm it 6722 * is either UNPREDICTABLE or has defined behaviour 6723 */ 6724 if (s->thumb && a->rn == 15) { 6725 return false; 6726 } 6727 6728 addr = op_addr_ri_pre(s, a); 6729 6730 tmp = load_reg(s, a->rt); 6731 gen_aa32_st_i32(s, tmp, addr, mem_idx, mop); 6732 disas_set_da_iss(s, mop, issinfo); 6733 6734 op_addr_ri_post(s, a, addr, 0); 6735 return true; 6736 } 6737 6738 static bool op_ldrd_ri(DisasContext *s, arg_ldst_ri *a, int rt2) 6739 { 6740 int mem_idx = get_mem_index(s); 6741 TCGv_i32 addr, tmp; 6742 6743 addr = op_addr_ri_pre(s, a); 6744 6745 tmp = tcg_temp_new_i32(); 6746 gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6747 store_reg(s, a->rt, tmp); 6748 6749 tcg_gen_addi_i32(addr, addr, 4); 6750 6751 tmp = tcg_temp_new_i32(); 6752 gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6753 store_reg(s, rt2, tmp); 6754 6755 /* LDRD w/ base writeback is undefined if the registers overlap. */ 6756 op_addr_ri_post(s, a, addr, -4); 6757 return true; 6758 } 6759 6760 static bool trans_LDRD_ri_a32(DisasContext *s, arg_ldst_ri *a) 6761 { 6762 if (!ENABLE_ARCH_5TE || (a->rt & 1)) { 6763 return false; 6764 } 6765 return op_ldrd_ri(s, a, a->rt + 1); 6766 } 6767 6768 static bool trans_LDRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a) 6769 { 6770 arg_ldst_ri b = { 6771 .u = a->u, .w = a->w, .p = a->p, 6772 .rn = a->rn, .rt = a->rt, .imm = a->imm 6773 }; 6774 return op_ldrd_ri(s, &b, a->rt2); 6775 } 6776 6777 static bool op_strd_ri(DisasContext *s, arg_ldst_ri *a, int rt2) 6778 { 6779 int mem_idx = get_mem_index(s); 6780 TCGv_i32 addr, tmp; 6781 6782 addr = op_addr_ri_pre(s, a); 6783 6784 tmp = load_reg(s, a->rt); 6785 gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6786 6787 tcg_gen_addi_i32(addr, addr, 4); 6788 6789 tmp = load_reg(s, rt2); 6790 gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6791 6792 op_addr_ri_post(s, a, addr, -4); 6793 return true; 6794 } 6795 6796 static bool trans_STRD_ri_a32(DisasContext *s, arg_ldst_ri *a) 6797 { 6798 if (!ENABLE_ARCH_5TE || (a->rt & 1)) { 6799 return false; 6800 } 6801 return op_strd_ri(s, a, a->rt + 1); 6802 } 6803 6804 static bool trans_STRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a) 6805 { 6806 arg_ldst_ri b = { 6807 .u = a->u, .w = a->w, .p = a->p, 6808 .rn = a->rn, .rt = a->rt, .imm = a->imm 6809 }; 6810 return op_strd_ri(s, &b, a->rt2); 6811 } 6812 6813 #define DO_LDST(NAME, WHICH, MEMOP) \ 6814 static bool trans_##NAME##_ri(DisasContext *s, arg_ldst_ri *a) \ 6815 { \ 6816 return op_##WHICH##_ri(s, a, MEMOP, get_mem_index(s)); \ 6817 } \ 6818 static bool trans_##NAME##T_ri(DisasContext *s, arg_ldst_ri *a) \ 6819 { \ 6820 return op_##WHICH##_ri(s, a, MEMOP, get_a32_user_mem_index(s)); \ 6821 } \ 6822 static bool trans_##NAME##_rr(DisasContext *s, arg_ldst_rr *a) \ 6823 { \ 6824 return op_##WHICH##_rr(s, a, MEMOP, get_mem_index(s)); \ 6825 } \ 6826 static bool trans_##NAME##T_rr(DisasContext *s, arg_ldst_rr *a) \ 6827 { \ 6828 return op_##WHICH##_rr(s, a, MEMOP, get_a32_user_mem_index(s)); \ 6829 } 6830 6831 DO_LDST(LDR, load, MO_UL) 6832 DO_LDST(LDRB, load, MO_UB) 6833 DO_LDST(LDRH, load, MO_UW) 6834 DO_LDST(LDRSB, load, MO_SB) 6835 DO_LDST(LDRSH, load, MO_SW) 6836 6837 DO_LDST(STR, store, MO_UL) 6838 DO_LDST(STRB, store, MO_UB) 6839 DO_LDST(STRH, store, MO_UW) 6840 6841 #undef DO_LDST 6842 6843 /* 6844 * Synchronization primitives 6845 */ 6846 6847 static bool op_swp(DisasContext *s, arg_SWP *a, MemOp opc) 6848 { 6849 TCGv_i32 addr, tmp; 6850 TCGv taddr; 6851 6852 opc |= s->be_data; 6853 addr = load_reg(s, a->rn); 6854 taddr = gen_aa32_addr(s, addr, opc); 6855 6856 tmp = load_reg(s, a->rt2); 6857 tcg_gen_atomic_xchg_i32(tmp, taddr, tmp, get_mem_index(s), opc); 6858 6859 store_reg(s, a->rt, tmp); 6860 return true; 6861 } 6862 6863 static bool trans_SWP(DisasContext *s, arg_SWP *a) 6864 { 6865 return op_swp(s, a, MO_UL | MO_ALIGN); 6866 } 6867 6868 static bool trans_SWPB(DisasContext *s, arg_SWP *a) 6869 { 6870 return op_swp(s, a, MO_UB); 6871 } 6872 6873 /* 6874 * Load/Store Exclusive and Load-Acquire/Store-Release 6875 */ 6876 6877 static bool op_strex(DisasContext *s, arg_STREX *a, MemOp mop, bool rel) 6878 { 6879 TCGv_i32 addr; 6880 /* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */ 6881 bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M); 6882 6883 /* We UNDEF for these UNPREDICTABLE cases. */ 6884 if (a->rd == 15 || a->rn == 15 || a->rt == 15 6885 || a->rd == a->rn || a->rd == a->rt 6886 || (!v8a && s->thumb && (a->rd == 13 || a->rt == 13)) 6887 || (mop == MO_64 6888 && (a->rt2 == 15 6889 || a->rd == a->rt2 6890 || (!v8a && s->thumb && a->rt2 == 13)))) { 6891 unallocated_encoding(s); 6892 return true; 6893 } 6894 6895 if (rel) { 6896 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 6897 } 6898 6899 addr = tcg_temp_new_i32(); 6900 load_reg_var(s, addr, a->rn); 6901 tcg_gen_addi_i32(addr, addr, a->imm); 6902 6903 gen_store_exclusive(s, a->rd, a->rt, a->rt2, addr, mop); 6904 return true; 6905 } 6906 6907 static bool trans_STREX(DisasContext *s, arg_STREX *a) 6908 { 6909 if (!ENABLE_ARCH_6) { 6910 return false; 6911 } 6912 return op_strex(s, a, MO_32, false); 6913 } 6914 6915 static bool trans_STREXD_a32(DisasContext *s, arg_STREX *a) 6916 { 6917 if (!ENABLE_ARCH_6K) { 6918 return false; 6919 } 6920 /* We UNDEF for these UNPREDICTABLE cases. */ 6921 if (a->rt & 1) { 6922 unallocated_encoding(s); 6923 return true; 6924 } 6925 a->rt2 = a->rt + 1; 6926 return op_strex(s, a, MO_64, false); 6927 } 6928 6929 static bool trans_STREXD_t32(DisasContext *s, arg_STREX *a) 6930 { 6931 return op_strex(s, a, MO_64, false); 6932 } 6933 6934 static bool trans_STREXB(DisasContext *s, arg_STREX *a) 6935 { 6936 if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { 6937 return false; 6938 } 6939 return op_strex(s, a, MO_8, false); 6940 } 6941 6942 static bool trans_STREXH(DisasContext *s, arg_STREX *a) 6943 { 6944 if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { 6945 return false; 6946 } 6947 return op_strex(s, a, MO_16, false); 6948 } 6949 6950 static bool trans_STLEX(DisasContext *s, arg_STREX *a) 6951 { 6952 if (!ENABLE_ARCH_8) { 6953 return false; 6954 } 6955 return op_strex(s, a, MO_32, true); 6956 } 6957 6958 static bool trans_STLEXD_a32(DisasContext *s, arg_STREX *a) 6959 { 6960 if (!ENABLE_ARCH_8) { 6961 return false; 6962 } 6963 /* We UNDEF for these UNPREDICTABLE cases. */ 6964 if (a->rt & 1) { 6965 unallocated_encoding(s); 6966 return true; 6967 } 6968 a->rt2 = a->rt + 1; 6969 return op_strex(s, a, MO_64, true); 6970 } 6971 6972 static bool trans_STLEXD_t32(DisasContext *s, arg_STREX *a) 6973 { 6974 if (!ENABLE_ARCH_8) { 6975 return false; 6976 } 6977 return op_strex(s, a, MO_64, true); 6978 } 6979 6980 static bool trans_STLEXB(DisasContext *s, arg_STREX *a) 6981 { 6982 if (!ENABLE_ARCH_8) { 6983 return false; 6984 } 6985 return op_strex(s, a, MO_8, true); 6986 } 6987 6988 static bool trans_STLEXH(DisasContext *s, arg_STREX *a) 6989 { 6990 if (!ENABLE_ARCH_8) { 6991 return false; 6992 } 6993 return op_strex(s, a, MO_16, true); 6994 } 6995 6996 static bool op_stl(DisasContext *s, arg_STL *a, MemOp mop) 6997 { 6998 TCGv_i32 addr, tmp; 6999 7000 if (!ENABLE_ARCH_8) { 7001 return false; 7002 } 7003 /* We UNDEF for these UNPREDICTABLE cases. */ 7004 if (a->rn == 15 || a->rt == 15) { 7005 unallocated_encoding(s); 7006 return true; 7007 } 7008 7009 addr = load_reg(s, a->rn); 7010 tmp = load_reg(s, a->rt); 7011 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 7012 gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), mop | MO_ALIGN); 7013 disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel | ISSIsWrite); 7014 7015 return true; 7016 } 7017 7018 static bool trans_STL(DisasContext *s, arg_STL *a) 7019 { 7020 return op_stl(s, a, MO_UL); 7021 } 7022 7023 static bool trans_STLB(DisasContext *s, arg_STL *a) 7024 { 7025 return op_stl(s, a, MO_UB); 7026 } 7027 7028 static bool trans_STLH(DisasContext *s, arg_STL *a) 7029 { 7030 return op_stl(s, a, MO_UW); 7031 } 7032 7033 static bool op_ldrex(DisasContext *s, arg_LDREX *a, MemOp mop, bool acq) 7034 { 7035 TCGv_i32 addr; 7036 /* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */ 7037 bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M); 7038 7039 /* We UNDEF for these UNPREDICTABLE cases. */ 7040 if (a->rn == 15 || a->rt == 15 7041 || (!v8a && s->thumb && a->rt == 13) 7042 || (mop == MO_64 7043 && (a->rt2 == 15 || a->rt == a->rt2 7044 || (!v8a && s->thumb && a->rt2 == 13)))) { 7045 unallocated_encoding(s); 7046 return true; 7047 } 7048 7049 addr = tcg_temp_new_i32(); 7050 load_reg_var(s, addr, a->rn); 7051 tcg_gen_addi_i32(addr, addr, a->imm); 7052 7053 gen_load_exclusive(s, a->rt, a->rt2, addr, mop); 7054 7055 if (acq) { 7056 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 7057 } 7058 return true; 7059 } 7060 7061 static bool trans_LDREX(DisasContext *s, arg_LDREX *a) 7062 { 7063 if (!ENABLE_ARCH_6) { 7064 return false; 7065 } 7066 return op_ldrex(s, a, MO_32, false); 7067 } 7068 7069 static bool trans_LDREXD_a32(DisasContext *s, arg_LDREX *a) 7070 { 7071 if (!ENABLE_ARCH_6K) { 7072 return false; 7073 } 7074 /* We UNDEF for these UNPREDICTABLE cases. */ 7075 if (a->rt & 1) { 7076 unallocated_encoding(s); 7077 return true; 7078 } 7079 a->rt2 = a->rt + 1; 7080 return op_ldrex(s, a, MO_64, false); 7081 } 7082 7083 static bool trans_LDREXD_t32(DisasContext *s, arg_LDREX *a) 7084 { 7085 return op_ldrex(s, a, MO_64, false); 7086 } 7087 7088 static bool trans_LDREXB(DisasContext *s, arg_LDREX *a) 7089 { 7090 if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { 7091 return false; 7092 } 7093 return op_ldrex(s, a, MO_8, false); 7094 } 7095 7096 static bool trans_LDREXH(DisasContext *s, arg_LDREX *a) 7097 { 7098 if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { 7099 return false; 7100 } 7101 return op_ldrex(s, a, MO_16, false); 7102 } 7103 7104 static bool trans_LDAEX(DisasContext *s, arg_LDREX *a) 7105 { 7106 if (!ENABLE_ARCH_8) { 7107 return false; 7108 } 7109 return op_ldrex(s, a, MO_32, true); 7110 } 7111 7112 static bool trans_LDAEXD_a32(DisasContext *s, arg_LDREX *a) 7113 { 7114 if (!ENABLE_ARCH_8) { 7115 return false; 7116 } 7117 /* We UNDEF for these UNPREDICTABLE cases. */ 7118 if (a->rt & 1) { 7119 unallocated_encoding(s); 7120 return true; 7121 } 7122 a->rt2 = a->rt + 1; 7123 return op_ldrex(s, a, MO_64, true); 7124 } 7125 7126 static bool trans_LDAEXD_t32(DisasContext *s, arg_LDREX *a) 7127 { 7128 if (!ENABLE_ARCH_8) { 7129 return false; 7130 } 7131 return op_ldrex(s, a, MO_64, true); 7132 } 7133 7134 static bool trans_LDAEXB(DisasContext *s, arg_LDREX *a) 7135 { 7136 if (!ENABLE_ARCH_8) { 7137 return false; 7138 } 7139 return op_ldrex(s, a, MO_8, true); 7140 } 7141 7142 static bool trans_LDAEXH(DisasContext *s, arg_LDREX *a) 7143 { 7144 if (!ENABLE_ARCH_8) { 7145 return false; 7146 } 7147 return op_ldrex(s, a, MO_16, true); 7148 } 7149 7150 static bool op_lda(DisasContext *s, arg_LDA *a, MemOp mop) 7151 { 7152 TCGv_i32 addr, tmp; 7153 7154 if (!ENABLE_ARCH_8) { 7155 return false; 7156 } 7157 /* We UNDEF for these UNPREDICTABLE cases. */ 7158 if (a->rn == 15 || a->rt == 15) { 7159 unallocated_encoding(s); 7160 return true; 7161 } 7162 7163 addr = load_reg(s, a->rn); 7164 tmp = tcg_temp_new_i32(); 7165 gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), mop | MO_ALIGN); 7166 disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel); 7167 7168 store_reg(s, a->rt, tmp); 7169 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 7170 return true; 7171 } 7172 7173 static bool trans_LDA(DisasContext *s, arg_LDA *a) 7174 { 7175 return op_lda(s, a, MO_UL); 7176 } 7177 7178 static bool trans_LDAB(DisasContext *s, arg_LDA *a) 7179 { 7180 return op_lda(s, a, MO_UB); 7181 } 7182 7183 static bool trans_LDAH(DisasContext *s, arg_LDA *a) 7184 { 7185 return op_lda(s, a, MO_UW); 7186 } 7187 7188 /* 7189 * Media instructions 7190 */ 7191 7192 static bool trans_USADA8(DisasContext *s, arg_USADA8 *a) 7193 { 7194 TCGv_i32 t1, t2; 7195 7196 if (!ENABLE_ARCH_6) { 7197 return false; 7198 } 7199 7200 t1 = load_reg(s, a->rn); 7201 t2 = load_reg(s, a->rm); 7202 gen_helper_usad8(t1, t1, t2); 7203 if (a->ra != 15) { 7204 t2 = load_reg(s, a->ra); 7205 tcg_gen_add_i32(t1, t1, t2); 7206 } 7207 store_reg(s, a->rd, t1); 7208 return true; 7209 } 7210 7211 static bool op_bfx(DisasContext *s, arg_UBFX *a, bool u) 7212 { 7213 TCGv_i32 tmp; 7214 int width = a->widthm1 + 1; 7215 int shift = a->lsb; 7216 7217 if (!ENABLE_ARCH_6T2) { 7218 return false; 7219 } 7220 if (shift + width > 32) { 7221 /* UNPREDICTABLE; we choose to UNDEF */ 7222 unallocated_encoding(s); 7223 return true; 7224 } 7225 7226 tmp = load_reg(s, a->rn); 7227 if (u) { 7228 tcg_gen_extract_i32(tmp, tmp, shift, width); 7229 } else { 7230 tcg_gen_sextract_i32(tmp, tmp, shift, width); 7231 } 7232 store_reg(s, a->rd, tmp); 7233 return true; 7234 } 7235 7236 static bool trans_SBFX(DisasContext *s, arg_SBFX *a) 7237 { 7238 return op_bfx(s, a, false); 7239 } 7240 7241 static bool trans_UBFX(DisasContext *s, arg_UBFX *a) 7242 { 7243 return op_bfx(s, a, true); 7244 } 7245 7246 static bool trans_BFCI(DisasContext *s, arg_BFCI *a) 7247 { 7248 int msb = a->msb, lsb = a->lsb; 7249 TCGv_i32 t_in, t_rd; 7250 int width; 7251 7252 if (!ENABLE_ARCH_6T2) { 7253 return false; 7254 } 7255 if (msb < lsb) { 7256 /* UNPREDICTABLE; we choose to UNDEF */ 7257 unallocated_encoding(s); 7258 return true; 7259 } 7260 7261 width = msb + 1 - lsb; 7262 if (a->rn == 15) { 7263 /* BFC */ 7264 t_in = tcg_constant_i32(0); 7265 } else { 7266 /* BFI */ 7267 t_in = load_reg(s, a->rn); 7268 } 7269 t_rd = load_reg(s, a->rd); 7270 tcg_gen_deposit_i32(t_rd, t_rd, t_in, lsb, width); 7271 store_reg(s, a->rd, t_rd); 7272 return true; 7273 } 7274 7275 static bool trans_UDF(DisasContext *s, arg_UDF *a) 7276 { 7277 unallocated_encoding(s); 7278 return true; 7279 } 7280 7281 /* 7282 * Parallel addition and subtraction 7283 */ 7284 7285 static bool op_par_addsub(DisasContext *s, arg_rrr *a, 7286 void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32)) 7287 { 7288 TCGv_i32 t0, t1; 7289 7290 if (s->thumb 7291 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 7292 : !ENABLE_ARCH_6) { 7293 return false; 7294 } 7295 7296 t0 = load_reg(s, a->rn); 7297 t1 = load_reg(s, a->rm); 7298 7299 gen(t0, t0, t1); 7300 7301 store_reg(s, a->rd, t0); 7302 return true; 7303 } 7304 7305 static bool op_par_addsub_ge(DisasContext *s, arg_rrr *a, 7306 void (*gen)(TCGv_i32, TCGv_i32, 7307 TCGv_i32, TCGv_ptr)) 7308 { 7309 TCGv_i32 t0, t1; 7310 TCGv_ptr ge; 7311 7312 if (s->thumb 7313 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 7314 : !ENABLE_ARCH_6) { 7315 return false; 7316 } 7317 7318 t0 = load_reg(s, a->rn); 7319 t1 = load_reg(s, a->rm); 7320 7321 ge = tcg_temp_new_ptr(); 7322 tcg_gen_addi_ptr(ge, cpu_env, offsetof(CPUARMState, GE)); 7323 gen(t0, t0, t1, ge); 7324 7325 store_reg(s, a->rd, t0); 7326 return true; 7327 } 7328 7329 #define DO_PAR_ADDSUB(NAME, helper) \ 7330 static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ 7331 { \ 7332 return op_par_addsub(s, a, helper); \ 7333 } 7334 7335 #define DO_PAR_ADDSUB_GE(NAME, helper) \ 7336 static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ 7337 { \ 7338 return op_par_addsub_ge(s, a, helper); \ 7339 } 7340 7341 DO_PAR_ADDSUB_GE(SADD16, gen_helper_sadd16) 7342 DO_PAR_ADDSUB_GE(SASX, gen_helper_saddsubx) 7343 DO_PAR_ADDSUB_GE(SSAX, gen_helper_ssubaddx) 7344 DO_PAR_ADDSUB_GE(SSUB16, gen_helper_ssub16) 7345 DO_PAR_ADDSUB_GE(SADD8, gen_helper_sadd8) 7346 DO_PAR_ADDSUB_GE(SSUB8, gen_helper_ssub8) 7347 7348 DO_PAR_ADDSUB_GE(UADD16, gen_helper_uadd16) 7349 DO_PAR_ADDSUB_GE(UASX, gen_helper_uaddsubx) 7350 DO_PAR_ADDSUB_GE(USAX, gen_helper_usubaddx) 7351 DO_PAR_ADDSUB_GE(USUB16, gen_helper_usub16) 7352 DO_PAR_ADDSUB_GE(UADD8, gen_helper_uadd8) 7353 DO_PAR_ADDSUB_GE(USUB8, gen_helper_usub8) 7354 7355 DO_PAR_ADDSUB(QADD16, gen_helper_qadd16) 7356 DO_PAR_ADDSUB(QASX, gen_helper_qaddsubx) 7357 DO_PAR_ADDSUB(QSAX, gen_helper_qsubaddx) 7358 DO_PAR_ADDSUB(QSUB16, gen_helper_qsub16) 7359 DO_PAR_ADDSUB(QADD8, gen_helper_qadd8) 7360 DO_PAR_ADDSUB(QSUB8, gen_helper_qsub8) 7361 7362 DO_PAR_ADDSUB(UQADD16, gen_helper_uqadd16) 7363 DO_PAR_ADDSUB(UQASX, gen_helper_uqaddsubx) 7364 DO_PAR_ADDSUB(UQSAX, gen_helper_uqsubaddx) 7365 DO_PAR_ADDSUB(UQSUB16, gen_helper_uqsub16) 7366 DO_PAR_ADDSUB(UQADD8, gen_helper_uqadd8) 7367 DO_PAR_ADDSUB(UQSUB8, gen_helper_uqsub8) 7368 7369 DO_PAR_ADDSUB(SHADD16, gen_helper_shadd16) 7370 DO_PAR_ADDSUB(SHASX, gen_helper_shaddsubx) 7371 DO_PAR_ADDSUB(SHSAX, gen_helper_shsubaddx) 7372 DO_PAR_ADDSUB(SHSUB16, gen_helper_shsub16) 7373 DO_PAR_ADDSUB(SHADD8, gen_helper_shadd8) 7374 DO_PAR_ADDSUB(SHSUB8, gen_helper_shsub8) 7375 7376 DO_PAR_ADDSUB(UHADD16, gen_helper_uhadd16) 7377 DO_PAR_ADDSUB(UHASX, gen_helper_uhaddsubx) 7378 DO_PAR_ADDSUB(UHSAX, gen_helper_uhsubaddx) 7379 DO_PAR_ADDSUB(UHSUB16, gen_helper_uhsub16) 7380 DO_PAR_ADDSUB(UHADD8, gen_helper_uhadd8) 7381 DO_PAR_ADDSUB(UHSUB8, gen_helper_uhsub8) 7382 7383 #undef DO_PAR_ADDSUB 7384 #undef DO_PAR_ADDSUB_GE 7385 7386 /* 7387 * Packing, unpacking, saturation, and reversal 7388 */ 7389 7390 static bool trans_PKH(DisasContext *s, arg_PKH *a) 7391 { 7392 TCGv_i32 tn, tm; 7393 int shift = a->imm; 7394 7395 if (s->thumb 7396 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 7397 : !ENABLE_ARCH_6) { 7398 return false; 7399 } 7400 7401 tn = load_reg(s, a->rn); 7402 tm = load_reg(s, a->rm); 7403 if (a->tb) { 7404 /* PKHTB */ 7405 if (shift == 0) { 7406 shift = 31; 7407 } 7408 tcg_gen_sari_i32(tm, tm, shift); 7409 tcg_gen_deposit_i32(tn, tn, tm, 0, 16); 7410 } else { 7411 /* PKHBT */ 7412 tcg_gen_shli_i32(tm, tm, shift); 7413 tcg_gen_deposit_i32(tn, tm, tn, 0, 16); 7414 } 7415 store_reg(s, a->rd, tn); 7416 return true; 7417 } 7418 7419 static bool op_sat(DisasContext *s, arg_sat *a, 7420 void (*gen)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32)) 7421 { 7422 TCGv_i32 tmp; 7423 int shift = a->imm; 7424 7425 if (!ENABLE_ARCH_6) { 7426 return false; 7427 } 7428 7429 tmp = load_reg(s, a->rn); 7430 if (a->sh) { 7431 tcg_gen_sari_i32(tmp, tmp, shift ? shift : 31); 7432 } else { 7433 tcg_gen_shli_i32(tmp, tmp, shift); 7434 } 7435 7436 gen(tmp, cpu_env, tmp, tcg_constant_i32(a->satimm)); 7437 7438 store_reg(s, a->rd, tmp); 7439 return true; 7440 } 7441 7442 static bool trans_SSAT(DisasContext *s, arg_sat *a) 7443 { 7444 return op_sat(s, a, gen_helper_ssat); 7445 } 7446 7447 static bool trans_USAT(DisasContext *s, arg_sat *a) 7448 { 7449 return op_sat(s, a, gen_helper_usat); 7450 } 7451 7452 static bool trans_SSAT16(DisasContext *s, arg_sat *a) 7453 { 7454 if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { 7455 return false; 7456 } 7457 return op_sat(s, a, gen_helper_ssat16); 7458 } 7459 7460 static bool trans_USAT16(DisasContext *s, arg_sat *a) 7461 { 7462 if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { 7463 return false; 7464 } 7465 return op_sat(s, a, gen_helper_usat16); 7466 } 7467 7468 static bool op_xta(DisasContext *s, arg_rrr_rot *a, 7469 void (*gen_extract)(TCGv_i32, TCGv_i32), 7470 void (*gen_add)(TCGv_i32, TCGv_i32, TCGv_i32)) 7471 { 7472 TCGv_i32 tmp; 7473 7474 if (!ENABLE_ARCH_6) { 7475 return false; 7476 } 7477 7478 tmp = load_reg(s, a->rm); 7479 /* 7480 * TODO: In many cases we could do a shift instead of a rotate. 7481 * Combined with a simple extend, that becomes an extract. 7482 */ 7483 tcg_gen_rotri_i32(tmp, tmp, a->rot * 8); 7484 gen_extract(tmp, tmp); 7485 7486 if (a->rn != 15) { 7487 TCGv_i32 tmp2 = load_reg(s, a->rn); 7488 gen_add(tmp, tmp, tmp2); 7489 } 7490 store_reg(s, a->rd, tmp); 7491 return true; 7492 } 7493 7494 static bool trans_SXTAB(DisasContext *s, arg_rrr_rot *a) 7495 { 7496 return op_xta(s, a, tcg_gen_ext8s_i32, tcg_gen_add_i32); 7497 } 7498 7499 static bool trans_SXTAH(DisasContext *s, arg_rrr_rot *a) 7500 { 7501 return op_xta(s, a, tcg_gen_ext16s_i32, tcg_gen_add_i32); 7502 } 7503 7504 static bool trans_SXTAB16(DisasContext *s, arg_rrr_rot *a) 7505 { 7506 if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { 7507 return false; 7508 } 7509 return op_xta(s, a, gen_helper_sxtb16, gen_add16); 7510 } 7511 7512 static bool trans_UXTAB(DisasContext *s, arg_rrr_rot *a) 7513 { 7514 return op_xta(s, a, tcg_gen_ext8u_i32, tcg_gen_add_i32); 7515 } 7516 7517 static bool trans_UXTAH(DisasContext *s, arg_rrr_rot *a) 7518 { 7519 return op_xta(s, a, tcg_gen_ext16u_i32, tcg_gen_add_i32); 7520 } 7521 7522 static bool trans_UXTAB16(DisasContext *s, arg_rrr_rot *a) 7523 { 7524 if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { 7525 return false; 7526 } 7527 return op_xta(s, a, gen_helper_uxtb16, gen_add16); 7528 } 7529 7530 static bool trans_SEL(DisasContext *s, arg_rrr *a) 7531 { 7532 TCGv_i32 t1, t2, t3; 7533 7534 if (s->thumb 7535 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 7536 : !ENABLE_ARCH_6) { 7537 return false; 7538 } 7539 7540 t1 = load_reg(s, a->rn); 7541 t2 = load_reg(s, a->rm); 7542 t3 = tcg_temp_new_i32(); 7543 tcg_gen_ld_i32(t3, cpu_env, offsetof(CPUARMState, GE)); 7544 gen_helper_sel_flags(t1, t3, t1, t2); 7545 store_reg(s, a->rd, t1); 7546 return true; 7547 } 7548 7549 static bool op_rr(DisasContext *s, arg_rr *a, 7550 void (*gen)(TCGv_i32, TCGv_i32)) 7551 { 7552 TCGv_i32 tmp; 7553 7554 tmp = load_reg(s, a->rm); 7555 gen(tmp, tmp); 7556 store_reg(s, a->rd, tmp); 7557 return true; 7558 } 7559 7560 static bool trans_REV(DisasContext *s, arg_rr *a) 7561 { 7562 if (!ENABLE_ARCH_6) { 7563 return false; 7564 } 7565 return op_rr(s, a, tcg_gen_bswap32_i32); 7566 } 7567 7568 static bool trans_REV16(DisasContext *s, arg_rr *a) 7569 { 7570 if (!ENABLE_ARCH_6) { 7571 return false; 7572 } 7573 return op_rr(s, a, gen_rev16); 7574 } 7575 7576 static bool trans_REVSH(DisasContext *s, arg_rr *a) 7577 { 7578 if (!ENABLE_ARCH_6) { 7579 return false; 7580 } 7581 return op_rr(s, a, gen_revsh); 7582 } 7583 7584 static bool trans_RBIT(DisasContext *s, arg_rr *a) 7585 { 7586 if (!ENABLE_ARCH_6T2) { 7587 return false; 7588 } 7589 return op_rr(s, a, gen_helper_rbit); 7590 } 7591 7592 /* 7593 * Signed multiply, signed and unsigned divide 7594 */ 7595 7596 static bool op_smlad(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub) 7597 { 7598 TCGv_i32 t1, t2; 7599 7600 if (!ENABLE_ARCH_6) { 7601 return false; 7602 } 7603 7604 t1 = load_reg(s, a->rn); 7605 t2 = load_reg(s, a->rm); 7606 if (m_swap) { 7607 gen_swap_half(t2, t2); 7608 } 7609 gen_smul_dual(t1, t2); 7610 7611 if (sub) { 7612 /* 7613 * This subtraction cannot overflow, so we can do a simple 7614 * 32-bit subtraction and then a possible 32-bit saturating 7615 * addition of Ra. 7616 */ 7617 tcg_gen_sub_i32(t1, t1, t2); 7618 7619 if (a->ra != 15) { 7620 t2 = load_reg(s, a->ra); 7621 gen_helper_add_setq(t1, cpu_env, t1, t2); 7622 } 7623 } else if (a->ra == 15) { 7624 /* Single saturation-checking addition */ 7625 gen_helper_add_setq(t1, cpu_env, t1, t2); 7626 } else { 7627 /* 7628 * We need to add the products and Ra together and then 7629 * determine whether the final result overflowed. Doing 7630 * this as two separate add-and-check-overflow steps incorrectly 7631 * sets Q for cases like (-32768 * -32768) + (-32768 * -32768) + -1. 7632 * Do all the arithmetic at 64-bits and then check for overflow. 7633 */ 7634 TCGv_i64 p64, q64; 7635 TCGv_i32 t3, qf, one; 7636 7637 p64 = tcg_temp_new_i64(); 7638 q64 = tcg_temp_new_i64(); 7639 tcg_gen_ext_i32_i64(p64, t1); 7640 tcg_gen_ext_i32_i64(q64, t2); 7641 tcg_gen_add_i64(p64, p64, q64); 7642 load_reg_var(s, t2, a->ra); 7643 tcg_gen_ext_i32_i64(q64, t2); 7644 tcg_gen_add_i64(p64, p64, q64); 7645 7646 tcg_gen_extr_i64_i32(t1, t2, p64); 7647 /* 7648 * t1 is the low half of the result which goes into Rd. 7649 * We have overflow and must set Q if the high half (t2) 7650 * is different from the sign-extension of t1. 7651 */ 7652 t3 = tcg_temp_new_i32(); 7653 tcg_gen_sari_i32(t3, t1, 31); 7654 qf = load_cpu_field(QF); 7655 one = tcg_constant_i32(1); 7656 tcg_gen_movcond_i32(TCG_COND_NE, qf, t2, t3, one, qf); 7657 store_cpu_field(qf, QF); 7658 } 7659 store_reg(s, a->rd, t1); 7660 return true; 7661 } 7662 7663 static bool trans_SMLAD(DisasContext *s, arg_rrrr *a) 7664 { 7665 return op_smlad(s, a, false, false); 7666 } 7667 7668 static bool trans_SMLADX(DisasContext *s, arg_rrrr *a) 7669 { 7670 return op_smlad(s, a, true, false); 7671 } 7672 7673 static bool trans_SMLSD(DisasContext *s, arg_rrrr *a) 7674 { 7675 return op_smlad(s, a, false, true); 7676 } 7677 7678 static bool trans_SMLSDX(DisasContext *s, arg_rrrr *a) 7679 { 7680 return op_smlad(s, a, true, true); 7681 } 7682 7683 static bool op_smlald(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub) 7684 { 7685 TCGv_i32 t1, t2; 7686 TCGv_i64 l1, l2; 7687 7688 if (!ENABLE_ARCH_6) { 7689 return false; 7690 } 7691 7692 t1 = load_reg(s, a->rn); 7693 t2 = load_reg(s, a->rm); 7694 if (m_swap) { 7695 gen_swap_half(t2, t2); 7696 } 7697 gen_smul_dual(t1, t2); 7698 7699 l1 = tcg_temp_new_i64(); 7700 l2 = tcg_temp_new_i64(); 7701 tcg_gen_ext_i32_i64(l1, t1); 7702 tcg_gen_ext_i32_i64(l2, t2); 7703 7704 if (sub) { 7705 tcg_gen_sub_i64(l1, l1, l2); 7706 } else { 7707 tcg_gen_add_i64(l1, l1, l2); 7708 } 7709 7710 gen_addq(s, l1, a->ra, a->rd); 7711 gen_storeq_reg(s, a->ra, a->rd, l1); 7712 return true; 7713 } 7714 7715 static bool trans_SMLALD(DisasContext *s, arg_rrrr *a) 7716 { 7717 return op_smlald(s, a, false, false); 7718 } 7719 7720 static bool trans_SMLALDX(DisasContext *s, arg_rrrr *a) 7721 { 7722 return op_smlald(s, a, true, false); 7723 } 7724 7725 static bool trans_SMLSLD(DisasContext *s, arg_rrrr *a) 7726 { 7727 return op_smlald(s, a, false, true); 7728 } 7729 7730 static bool trans_SMLSLDX(DisasContext *s, arg_rrrr *a) 7731 { 7732 return op_smlald(s, a, true, true); 7733 } 7734 7735 static bool op_smmla(DisasContext *s, arg_rrrr *a, bool round, bool sub) 7736 { 7737 TCGv_i32 t1, t2; 7738 7739 if (s->thumb 7740 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 7741 : !ENABLE_ARCH_6) { 7742 return false; 7743 } 7744 7745 t1 = load_reg(s, a->rn); 7746 t2 = load_reg(s, a->rm); 7747 tcg_gen_muls2_i32(t2, t1, t1, t2); 7748 7749 if (a->ra != 15) { 7750 TCGv_i32 t3 = load_reg(s, a->ra); 7751 if (sub) { 7752 /* 7753 * For SMMLS, we need a 64-bit subtract. Borrow caused by 7754 * a non-zero multiplicand lowpart, and the correct result 7755 * lowpart for rounding. 7756 */ 7757 tcg_gen_sub2_i32(t2, t1, tcg_constant_i32(0), t3, t2, t1); 7758 } else { 7759 tcg_gen_add_i32(t1, t1, t3); 7760 } 7761 } 7762 if (round) { 7763 /* 7764 * Adding 0x80000000 to the 64-bit quantity means that we have 7765 * carry in to the high word when the low word has the msb set. 7766 */ 7767 tcg_gen_shri_i32(t2, t2, 31); 7768 tcg_gen_add_i32(t1, t1, t2); 7769 } 7770 store_reg(s, a->rd, t1); 7771 return true; 7772 } 7773 7774 static bool trans_SMMLA(DisasContext *s, arg_rrrr *a) 7775 { 7776 return op_smmla(s, a, false, false); 7777 } 7778 7779 static bool trans_SMMLAR(DisasContext *s, arg_rrrr *a) 7780 { 7781 return op_smmla(s, a, true, false); 7782 } 7783 7784 static bool trans_SMMLS(DisasContext *s, arg_rrrr *a) 7785 { 7786 return op_smmla(s, a, false, true); 7787 } 7788 7789 static bool trans_SMMLSR(DisasContext *s, arg_rrrr *a) 7790 { 7791 return op_smmla(s, a, true, true); 7792 } 7793 7794 static bool op_div(DisasContext *s, arg_rrr *a, bool u) 7795 { 7796 TCGv_i32 t1, t2; 7797 7798 if (s->thumb 7799 ? !dc_isar_feature(aa32_thumb_div, s) 7800 : !dc_isar_feature(aa32_arm_div, s)) { 7801 return false; 7802 } 7803 7804 t1 = load_reg(s, a->rn); 7805 t2 = load_reg(s, a->rm); 7806 if (u) { 7807 gen_helper_udiv(t1, cpu_env, t1, t2); 7808 } else { 7809 gen_helper_sdiv(t1, cpu_env, t1, t2); 7810 } 7811 store_reg(s, a->rd, t1); 7812 return true; 7813 } 7814 7815 static bool trans_SDIV(DisasContext *s, arg_rrr *a) 7816 { 7817 return op_div(s, a, false); 7818 } 7819 7820 static bool trans_UDIV(DisasContext *s, arg_rrr *a) 7821 { 7822 return op_div(s, a, true); 7823 } 7824 7825 /* 7826 * Block data transfer 7827 */ 7828 7829 static TCGv_i32 op_addr_block_pre(DisasContext *s, arg_ldst_block *a, int n) 7830 { 7831 TCGv_i32 addr = load_reg(s, a->rn); 7832 7833 if (a->b) { 7834 if (a->i) { 7835 /* pre increment */ 7836 tcg_gen_addi_i32(addr, addr, 4); 7837 } else { 7838 /* pre decrement */ 7839 tcg_gen_addi_i32(addr, addr, -(n * 4)); 7840 } 7841 } else if (!a->i && n != 1) { 7842 /* post decrement */ 7843 tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); 7844 } 7845 7846 if (s->v8m_stackcheck && a->rn == 13 && a->w) { 7847 /* 7848 * If the writeback is incrementing SP rather than 7849 * decrementing it, and the initial SP is below the 7850 * stack limit but the final written-back SP would 7851 * be above, then we must not perform any memory 7852 * accesses, but it is IMPDEF whether we generate 7853 * an exception. We choose to do so in this case. 7854 * At this point 'addr' is the lowest address, so 7855 * either the original SP (if incrementing) or our 7856 * final SP (if decrementing), so that's what we check. 7857 */ 7858 gen_helper_v8m_stackcheck(cpu_env, addr); 7859 } 7860 7861 return addr; 7862 } 7863 7864 static void op_addr_block_post(DisasContext *s, arg_ldst_block *a, 7865 TCGv_i32 addr, int n) 7866 { 7867 if (a->w) { 7868 /* write back */ 7869 if (!a->b) { 7870 if (a->i) { 7871 /* post increment */ 7872 tcg_gen_addi_i32(addr, addr, 4); 7873 } else { 7874 /* post decrement */ 7875 tcg_gen_addi_i32(addr, addr, -(n * 4)); 7876 } 7877 } else if (!a->i && n != 1) { 7878 /* pre decrement */ 7879 tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); 7880 } 7881 store_reg(s, a->rn, addr); 7882 } 7883 } 7884 7885 static bool op_stm(DisasContext *s, arg_ldst_block *a, int min_n) 7886 { 7887 int i, j, n, list, mem_idx; 7888 bool user = a->u; 7889 TCGv_i32 addr, tmp; 7890 7891 if (user) { 7892 /* STM (user) */ 7893 if (IS_USER(s)) { 7894 /* Only usable in supervisor mode. */ 7895 unallocated_encoding(s); 7896 return true; 7897 } 7898 } 7899 7900 list = a->list; 7901 n = ctpop16(list); 7902 if (n < min_n || a->rn == 15) { 7903 unallocated_encoding(s); 7904 return true; 7905 } 7906 7907 s->eci_handled = true; 7908 7909 addr = op_addr_block_pre(s, a, n); 7910 mem_idx = get_mem_index(s); 7911 7912 for (i = j = 0; i < 16; i++) { 7913 if (!(list & (1 << i))) { 7914 continue; 7915 } 7916 7917 if (user && i != 15) { 7918 tmp = tcg_temp_new_i32(); 7919 gen_helper_get_user_reg(tmp, cpu_env, tcg_constant_i32(i)); 7920 } else { 7921 tmp = load_reg(s, i); 7922 } 7923 gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 7924 7925 /* No need to add after the last transfer. */ 7926 if (++j != n) { 7927 tcg_gen_addi_i32(addr, addr, 4); 7928 } 7929 } 7930 7931 op_addr_block_post(s, a, addr, n); 7932 clear_eci_state(s); 7933 return true; 7934 } 7935 7936 static bool trans_STM(DisasContext *s, arg_ldst_block *a) 7937 { 7938 /* BitCount(list) < 1 is UNPREDICTABLE */ 7939 return op_stm(s, a, 1); 7940 } 7941 7942 static bool trans_STM_t32(DisasContext *s, arg_ldst_block *a) 7943 { 7944 /* Writeback register in register list is UNPREDICTABLE for T32. */ 7945 if (a->w && (a->list & (1 << a->rn))) { 7946 unallocated_encoding(s); 7947 return true; 7948 } 7949 /* BitCount(list) < 2 is UNPREDICTABLE */ 7950 return op_stm(s, a, 2); 7951 } 7952 7953 static bool do_ldm(DisasContext *s, arg_ldst_block *a, int min_n) 7954 { 7955 int i, j, n, list, mem_idx; 7956 bool loaded_base; 7957 bool user = a->u; 7958 bool exc_return = false; 7959 TCGv_i32 addr, tmp, loaded_var; 7960 7961 if (user) { 7962 /* LDM (user), LDM (exception return) */ 7963 if (IS_USER(s)) { 7964 /* Only usable in supervisor mode. */ 7965 unallocated_encoding(s); 7966 return true; 7967 } 7968 if (extract32(a->list, 15, 1)) { 7969 exc_return = true; 7970 user = false; 7971 } else { 7972 /* LDM (user) does not allow writeback. */ 7973 if (a->w) { 7974 unallocated_encoding(s); 7975 return true; 7976 } 7977 } 7978 } 7979 7980 list = a->list; 7981 n = ctpop16(list); 7982 if (n < min_n || a->rn == 15) { 7983 unallocated_encoding(s); 7984 return true; 7985 } 7986 7987 s->eci_handled = true; 7988 7989 addr = op_addr_block_pre(s, a, n); 7990 mem_idx = get_mem_index(s); 7991 loaded_base = false; 7992 loaded_var = NULL; 7993 7994 for (i = j = 0; i < 16; i++) { 7995 if (!(list & (1 << i))) { 7996 continue; 7997 } 7998 7999 tmp = tcg_temp_new_i32(); 8000 gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 8001 if (user) { 8002 gen_helper_set_user_reg(cpu_env, tcg_constant_i32(i), tmp); 8003 } else if (i == a->rn) { 8004 loaded_var = tmp; 8005 loaded_base = true; 8006 } else if (i == 15 && exc_return) { 8007 store_pc_exc_ret(s, tmp); 8008 } else { 8009 store_reg_from_load(s, i, tmp); 8010 } 8011 8012 /* No need to add after the last transfer. */ 8013 if (++j != n) { 8014 tcg_gen_addi_i32(addr, addr, 4); 8015 } 8016 } 8017 8018 op_addr_block_post(s, a, addr, n); 8019 8020 if (loaded_base) { 8021 /* Note that we reject base == pc above. */ 8022 store_reg(s, a->rn, loaded_var); 8023 } 8024 8025 if (exc_return) { 8026 /* Restore CPSR from SPSR. */ 8027 tmp = load_cpu_field(spsr); 8028 translator_io_start(&s->base); 8029 gen_helper_cpsr_write_eret(cpu_env, tmp); 8030 /* Must exit loop to check un-masked IRQs */ 8031 s->base.is_jmp = DISAS_EXIT; 8032 } 8033 clear_eci_state(s); 8034 return true; 8035 } 8036 8037 static bool trans_LDM_a32(DisasContext *s, arg_ldst_block *a) 8038 { 8039 /* 8040 * Writeback register in register list is UNPREDICTABLE 8041 * for ArchVersion() >= 7. Prior to v7, A32 would write 8042 * an UNKNOWN value to the base register. 8043 */ 8044 if (ENABLE_ARCH_7 && a->w && (a->list & (1 << a->rn))) { 8045 unallocated_encoding(s); 8046 return true; 8047 } 8048 /* BitCount(list) < 1 is UNPREDICTABLE */ 8049 return do_ldm(s, a, 1); 8050 } 8051 8052 static bool trans_LDM_t32(DisasContext *s, arg_ldst_block *a) 8053 { 8054 /* Writeback register in register list is UNPREDICTABLE for T32. */ 8055 if (a->w && (a->list & (1 << a->rn))) { 8056 unallocated_encoding(s); 8057 return true; 8058 } 8059 /* BitCount(list) < 2 is UNPREDICTABLE */ 8060 return do_ldm(s, a, 2); 8061 } 8062 8063 static bool trans_LDM_t16(DisasContext *s, arg_ldst_block *a) 8064 { 8065 /* Writeback is conditional on the base register not being loaded. */ 8066 a->w = !(a->list & (1 << a->rn)); 8067 /* BitCount(list) < 1 is UNPREDICTABLE */ 8068 return do_ldm(s, a, 1); 8069 } 8070 8071 static bool trans_CLRM(DisasContext *s, arg_CLRM *a) 8072 { 8073 int i; 8074 TCGv_i32 zero; 8075 8076 if (!dc_isar_feature(aa32_m_sec_state, s)) { 8077 return false; 8078 } 8079 8080 if (extract32(a->list, 13, 1)) { 8081 return false; 8082 } 8083 8084 if (!a->list) { 8085 /* UNPREDICTABLE; we choose to UNDEF */ 8086 return false; 8087 } 8088 8089 s->eci_handled = true; 8090 8091 zero = tcg_constant_i32(0); 8092 for (i = 0; i < 15; i++) { 8093 if (extract32(a->list, i, 1)) { 8094 /* Clear R[i] */ 8095 tcg_gen_mov_i32(cpu_R[i], zero); 8096 } 8097 } 8098 if (extract32(a->list, 15, 1)) { 8099 /* 8100 * Clear APSR (by calling the MSR helper with the same argument 8101 * as for "MSR APSR_nzcvqg, Rn": mask = 0b1100, SYSM=0) 8102 */ 8103 gen_helper_v7m_msr(cpu_env, tcg_constant_i32(0xc00), zero); 8104 } 8105 clear_eci_state(s); 8106 return true; 8107 } 8108 8109 /* 8110 * Branch, branch with link 8111 */ 8112 8113 static bool trans_B(DisasContext *s, arg_i *a) 8114 { 8115 gen_jmp(s, jmp_diff(s, a->imm)); 8116 return true; 8117 } 8118 8119 static bool trans_B_cond_thumb(DisasContext *s, arg_ci *a) 8120 { 8121 /* This has cond from encoding, required to be outside IT block. */ 8122 if (a->cond >= 0xe) { 8123 return false; 8124 } 8125 if (s->condexec_mask) { 8126 unallocated_encoding(s); 8127 return true; 8128 } 8129 arm_skip_unless(s, a->cond); 8130 gen_jmp(s, jmp_diff(s, a->imm)); 8131 return true; 8132 } 8133 8134 static bool trans_BL(DisasContext *s, arg_i *a) 8135 { 8136 gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | s->thumb); 8137 gen_jmp(s, jmp_diff(s, a->imm)); 8138 return true; 8139 } 8140 8141 static bool trans_BLX_i(DisasContext *s, arg_BLX_i *a) 8142 { 8143 /* 8144 * BLX <imm> would be useless on M-profile; the encoding space 8145 * is used for other insns from v8.1M onward, and UNDEFs before that. 8146 */ 8147 if (arm_dc_feature(s, ARM_FEATURE_M)) { 8148 return false; 8149 } 8150 8151 /* For A32, ARM_FEATURE_V5 is checked near the start of the uncond block. */ 8152 if (s->thumb && (a->imm & 2)) { 8153 return false; 8154 } 8155 gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | s->thumb); 8156 store_cpu_field_constant(!s->thumb, thumb); 8157 /* This jump is computed from an aligned PC: subtract off the low bits. */ 8158 gen_jmp(s, jmp_diff(s, a->imm - (s->pc_curr & 3))); 8159 return true; 8160 } 8161 8162 static bool trans_BL_BLX_prefix(DisasContext *s, arg_BL_BLX_prefix *a) 8163 { 8164 assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); 8165 gen_pc_plus_diff(s, cpu_R[14], jmp_diff(s, a->imm << 12)); 8166 return true; 8167 } 8168 8169 static bool trans_BL_suffix(DisasContext *s, arg_BL_suffix *a) 8170 { 8171 TCGv_i32 tmp = tcg_temp_new_i32(); 8172 8173 assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); 8174 tcg_gen_addi_i32(tmp, cpu_R[14], (a->imm << 1) | 1); 8175 gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | 1); 8176 gen_bx(s, tmp); 8177 return true; 8178 } 8179 8180 static bool trans_BLX_suffix(DisasContext *s, arg_BLX_suffix *a) 8181 { 8182 TCGv_i32 tmp; 8183 8184 assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); 8185 if (!ENABLE_ARCH_5) { 8186 return false; 8187 } 8188 tmp = tcg_temp_new_i32(); 8189 tcg_gen_addi_i32(tmp, cpu_R[14], a->imm << 1); 8190 tcg_gen_andi_i32(tmp, tmp, 0xfffffffc); 8191 gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | 1); 8192 gen_bx(s, tmp); 8193 return true; 8194 } 8195 8196 static bool trans_BF(DisasContext *s, arg_BF *a) 8197 { 8198 /* 8199 * M-profile branch future insns. The architecture permits an 8200 * implementation to implement these as NOPs (equivalent to 8201 * discarding the LO_BRANCH_INFO cache immediately), and we 8202 * take that IMPDEF option because for QEMU a "real" implementation 8203 * would be complicated and wouldn't execute any faster. 8204 */ 8205 if (!dc_isar_feature(aa32_lob, s)) { 8206 return false; 8207 } 8208 if (a->boff == 0) { 8209 /* SEE "Related encodings" (loop insns) */ 8210 return false; 8211 } 8212 /* Handle as NOP */ 8213 return true; 8214 } 8215 8216 static bool trans_DLS(DisasContext *s, arg_DLS *a) 8217 { 8218 /* M-profile low-overhead loop start */ 8219 TCGv_i32 tmp; 8220 8221 if (!dc_isar_feature(aa32_lob, s)) { 8222 return false; 8223 } 8224 if (a->rn == 13 || a->rn == 15) { 8225 /* 8226 * For DLSTP rn == 15 is a related encoding (LCTP); the 8227 * other cases caught by this condition are all 8228 * CONSTRAINED UNPREDICTABLE: we choose to UNDEF 8229 */ 8230 return false; 8231 } 8232 8233 if (a->size != 4) { 8234 /* DLSTP */ 8235 if (!dc_isar_feature(aa32_mve, s)) { 8236 return false; 8237 } 8238 if (!vfp_access_check(s)) { 8239 return true; 8240 } 8241 } 8242 8243 /* Not a while loop: set LR to the count, and set LTPSIZE for DLSTP */ 8244 tmp = load_reg(s, a->rn); 8245 store_reg(s, 14, tmp); 8246 if (a->size != 4) { 8247 /* DLSTP: set FPSCR.LTPSIZE */ 8248 store_cpu_field(tcg_constant_i32(a->size), v7m.ltpsize); 8249 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 8250 } 8251 return true; 8252 } 8253 8254 static bool trans_WLS(DisasContext *s, arg_WLS *a) 8255 { 8256 /* M-profile low-overhead while-loop start */ 8257 TCGv_i32 tmp; 8258 DisasLabel nextlabel; 8259 8260 if (!dc_isar_feature(aa32_lob, s)) { 8261 return false; 8262 } 8263 if (a->rn == 13 || a->rn == 15) { 8264 /* 8265 * For WLSTP rn == 15 is a related encoding (LE); the 8266 * other cases caught by this condition are all 8267 * CONSTRAINED UNPREDICTABLE: we choose to UNDEF 8268 */ 8269 return false; 8270 } 8271 if (s->condexec_mask) { 8272 /* 8273 * WLS in an IT block is CONSTRAINED UNPREDICTABLE; 8274 * we choose to UNDEF, because otherwise our use of 8275 * gen_goto_tb(1) would clash with the use of TB exit 1 8276 * in the dc->condjmp condition-failed codepath in 8277 * arm_tr_tb_stop() and we'd get an assertion. 8278 */ 8279 return false; 8280 } 8281 if (a->size != 4) { 8282 /* WLSTP */ 8283 if (!dc_isar_feature(aa32_mve, s)) { 8284 return false; 8285 } 8286 /* 8287 * We need to check that the FPU is enabled here, but mustn't 8288 * call vfp_access_check() to do that because we don't want to 8289 * do the lazy state preservation in the "loop count is zero" case. 8290 * Do the check-and-raise-exception by hand. 8291 */ 8292 if (s->fp_excp_el) { 8293 gen_exception_insn_el(s, 0, EXCP_NOCP, 8294 syn_uncategorized(), s->fp_excp_el); 8295 return true; 8296 } 8297 } 8298 8299 nextlabel = gen_disas_label(s); 8300 tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_R[a->rn], 0, nextlabel.label); 8301 tmp = load_reg(s, a->rn); 8302 store_reg(s, 14, tmp); 8303 if (a->size != 4) { 8304 /* 8305 * WLSTP: set FPSCR.LTPSIZE. This requires that we do the 8306 * lazy state preservation, new FP context creation, etc, 8307 * that vfp_access_check() does. We know that the actual 8308 * access check will succeed (ie it won't generate code that 8309 * throws an exception) because we did that check by hand earlier. 8310 */ 8311 bool ok = vfp_access_check(s); 8312 assert(ok); 8313 store_cpu_field(tcg_constant_i32(a->size), v7m.ltpsize); 8314 /* 8315 * LTPSIZE updated, but MVE_NO_PRED will always be the same thing (0) 8316 * when we take this upcoming exit from this TB, so gen_jmp_tb() is OK. 8317 */ 8318 } 8319 gen_jmp_tb(s, curr_insn_len(s), 1); 8320 8321 set_disas_label(s, nextlabel); 8322 gen_jmp(s, jmp_diff(s, a->imm)); 8323 return true; 8324 } 8325 8326 static bool trans_LE(DisasContext *s, arg_LE *a) 8327 { 8328 /* 8329 * M-profile low-overhead loop end. The architecture permits an 8330 * implementation to discard the LO_BRANCH_INFO cache at any time, 8331 * and we take the IMPDEF option to never set it in the first place 8332 * (equivalent to always discarding it immediately), because for QEMU 8333 * a "real" implementation would be complicated and wouldn't execute 8334 * any faster. 8335 */ 8336 TCGv_i32 tmp; 8337 DisasLabel loopend; 8338 bool fpu_active; 8339 8340 if (!dc_isar_feature(aa32_lob, s)) { 8341 return false; 8342 } 8343 if (a->f && a->tp) { 8344 return false; 8345 } 8346 if (s->condexec_mask) { 8347 /* 8348 * LE in an IT block is CONSTRAINED UNPREDICTABLE; 8349 * we choose to UNDEF, because otherwise our use of 8350 * gen_goto_tb(1) would clash with the use of TB exit 1 8351 * in the dc->condjmp condition-failed codepath in 8352 * arm_tr_tb_stop() and we'd get an assertion. 8353 */ 8354 return false; 8355 } 8356 if (a->tp) { 8357 /* LETP */ 8358 if (!dc_isar_feature(aa32_mve, s)) { 8359 return false; 8360 } 8361 if (!vfp_access_check(s)) { 8362 s->eci_handled = true; 8363 return true; 8364 } 8365 } 8366 8367 /* LE/LETP is OK with ECI set and leaves it untouched */ 8368 s->eci_handled = true; 8369 8370 /* 8371 * With MVE, LTPSIZE might not be 4, and we must emit an INVSTATE 8372 * UsageFault exception for the LE insn in that case. Note that we 8373 * are not directly checking FPSCR.LTPSIZE but instead check the 8374 * pseudocode LTPSIZE() function, which returns 4 if the FPU is 8375 * not currently active (ie ActiveFPState() returns false). We 8376 * can identify not-active purely from our TB state flags, as the 8377 * FPU is active only if: 8378 * the FPU is enabled 8379 * AND lazy state preservation is not active 8380 * AND we do not need a new fp context (this is the ASPEN/FPCA check) 8381 * 8382 * Usually we don't need to care about this distinction between 8383 * LTPSIZE and FPSCR.LTPSIZE, because the code in vfp_access_check() 8384 * will either take an exception or clear the conditions that make 8385 * the FPU not active. But LE is an unusual case of a non-FP insn 8386 * that looks at LTPSIZE. 8387 */ 8388 fpu_active = !s->fp_excp_el && !s->v7m_lspact && !s->v7m_new_fp_ctxt_needed; 8389 8390 if (!a->tp && dc_isar_feature(aa32_mve, s) && fpu_active) { 8391 /* Need to do a runtime check for LTPSIZE != 4 */ 8392 DisasLabel skipexc = gen_disas_label(s); 8393 tmp = load_cpu_field(v7m.ltpsize); 8394 tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 4, skipexc.label); 8395 gen_exception_insn(s, 0, EXCP_INVSTATE, syn_uncategorized()); 8396 set_disas_label(s, skipexc); 8397 } 8398 8399 if (a->f) { 8400 /* Loop-forever: just jump back to the loop start */ 8401 gen_jmp(s, jmp_diff(s, -a->imm)); 8402 return true; 8403 } 8404 8405 /* 8406 * Not loop-forever. If LR <= loop-decrement-value this is the last loop. 8407 * For LE, we know at this point that LTPSIZE must be 4 and the 8408 * loop decrement value is 1. For LETP we need to calculate the decrement 8409 * value from LTPSIZE. 8410 */ 8411 loopend = gen_disas_label(s); 8412 if (!a->tp) { 8413 tcg_gen_brcondi_i32(TCG_COND_LEU, cpu_R[14], 1, loopend.label); 8414 tcg_gen_addi_i32(cpu_R[14], cpu_R[14], -1); 8415 } else { 8416 /* 8417 * Decrement by 1 << (4 - LTPSIZE). We need to use a TCG local 8418 * so that decr stays live after the brcondi. 8419 */ 8420 TCGv_i32 decr = tcg_temp_new_i32(); 8421 TCGv_i32 ltpsize = load_cpu_field(v7m.ltpsize); 8422 tcg_gen_sub_i32(decr, tcg_constant_i32(4), ltpsize); 8423 tcg_gen_shl_i32(decr, tcg_constant_i32(1), decr); 8424 8425 tcg_gen_brcond_i32(TCG_COND_LEU, cpu_R[14], decr, loopend.label); 8426 8427 tcg_gen_sub_i32(cpu_R[14], cpu_R[14], decr); 8428 } 8429 /* Jump back to the loop start */ 8430 gen_jmp(s, jmp_diff(s, -a->imm)); 8431 8432 set_disas_label(s, loopend); 8433 if (a->tp) { 8434 /* Exits from tail-pred loops must reset LTPSIZE to 4 */ 8435 store_cpu_field(tcg_constant_i32(4), v7m.ltpsize); 8436 } 8437 /* End TB, continuing to following insn */ 8438 gen_jmp_tb(s, curr_insn_len(s), 1); 8439 return true; 8440 } 8441 8442 static bool trans_LCTP(DisasContext *s, arg_LCTP *a) 8443 { 8444 /* 8445 * M-profile Loop Clear with Tail Predication. Since our implementation 8446 * doesn't cache branch information, all we need to do is reset 8447 * FPSCR.LTPSIZE to 4. 8448 */ 8449 8450 if (!dc_isar_feature(aa32_lob, s) || 8451 !dc_isar_feature(aa32_mve, s)) { 8452 return false; 8453 } 8454 8455 if (!vfp_access_check(s)) { 8456 return true; 8457 } 8458 8459 store_cpu_field_constant(4, v7m.ltpsize); 8460 return true; 8461 } 8462 8463 static bool trans_VCTP(DisasContext *s, arg_VCTP *a) 8464 { 8465 /* 8466 * M-profile Create Vector Tail Predicate. This insn is itself 8467 * predicated and is subject to beatwise execution. 8468 */ 8469 TCGv_i32 rn_shifted, masklen; 8470 8471 if (!dc_isar_feature(aa32_mve, s) || a->rn == 13 || a->rn == 15) { 8472 return false; 8473 } 8474 8475 if (!mve_eci_check(s) || !vfp_access_check(s)) { 8476 return true; 8477 } 8478 8479 /* 8480 * We pre-calculate the mask length here to avoid having 8481 * to have multiple helpers specialized for size. 8482 * We pass the helper "rn <= (1 << (4 - size)) ? (rn << size) : 16". 8483 */ 8484 rn_shifted = tcg_temp_new_i32(); 8485 masklen = load_reg(s, a->rn); 8486 tcg_gen_shli_i32(rn_shifted, masklen, a->size); 8487 tcg_gen_movcond_i32(TCG_COND_LEU, masklen, 8488 masklen, tcg_constant_i32(1 << (4 - a->size)), 8489 rn_shifted, tcg_constant_i32(16)); 8490 gen_helper_mve_vctp(cpu_env, masklen); 8491 /* This insn updates predication bits */ 8492 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 8493 mve_update_eci(s); 8494 return true; 8495 } 8496 8497 static bool op_tbranch(DisasContext *s, arg_tbranch *a, bool half) 8498 { 8499 TCGv_i32 addr, tmp; 8500 8501 tmp = load_reg(s, a->rm); 8502 if (half) { 8503 tcg_gen_add_i32(tmp, tmp, tmp); 8504 } 8505 addr = load_reg(s, a->rn); 8506 tcg_gen_add_i32(addr, addr, tmp); 8507 8508 gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), half ? MO_UW : MO_UB); 8509 8510 tcg_gen_add_i32(tmp, tmp, tmp); 8511 gen_pc_plus_diff(s, addr, jmp_diff(s, 0)); 8512 tcg_gen_add_i32(tmp, tmp, addr); 8513 store_reg(s, 15, tmp); 8514 return true; 8515 } 8516 8517 static bool trans_TBB(DisasContext *s, arg_tbranch *a) 8518 { 8519 return op_tbranch(s, a, false); 8520 } 8521 8522 static bool trans_TBH(DisasContext *s, arg_tbranch *a) 8523 { 8524 return op_tbranch(s, a, true); 8525 } 8526 8527 static bool trans_CBZ(DisasContext *s, arg_CBZ *a) 8528 { 8529 TCGv_i32 tmp = load_reg(s, a->rn); 8530 8531 arm_gen_condlabel(s); 8532 tcg_gen_brcondi_i32(a->nz ? TCG_COND_EQ : TCG_COND_NE, 8533 tmp, 0, s->condlabel.label); 8534 gen_jmp(s, jmp_diff(s, a->imm)); 8535 return true; 8536 } 8537 8538 /* 8539 * Supervisor call - both T32 & A32 come here so we need to check 8540 * which mode we are in when checking for semihosting. 8541 */ 8542 8543 static bool trans_SVC(DisasContext *s, arg_SVC *a) 8544 { 8545 const uint32_t semihost_imm = s->thumb ? 0xab : 0x123456; 8546 8547 if (!arm_dc_feature(s, ARM_FEATURE_M) && 8548 semihosting_enabled(s->current_el == 0) && 8549 (a->imm == semihost_imm)) { 8550 gen_exception_internal_insn(s, EXCP_SEMIHOST); 8551 } else { 8552 if (s->fgt_svc) { 8553 uint32_t syndrome = syn_aa32_svc(a->imm, s->thumb); 8554 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 8555 } else { 8556 gen_update_pc(s, curr_insn_len(s)); 8557 s->svc_imm = a->imm; 8558 s->base.is_jmp = DISAS_SWI; 8559 } 8560 } 8561 return true; 8562 } 8563 8564 /* 8565 * Unconditional system instructions 8566 */ 8567 8568 static bool trans_RFE(DisasContext *s, arg_RFE *a) 8569 { 8570 static const int8_t pre_offset[4] = { 8571 /* DA */ -4, /* IA */ 0, /* DB */ -8, /* IB */ 4 8572 }; 8573 static const int8_t post_offset[4] = { 8574 /* DA */ -8, /* IA */ 4, /* DB */ -4, /* IB */ 0 8575 }; 8576 TCGv_i32 addr, t1, t2; 8577 8578 if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { 8579 return false; 8580 } 8581 if (IS_USER(s)) { 8582 unallocated_encoding(s); 8583 return true; 8584 } 8585 8586 addr = load_reg(s, a->rn); 8587 tcg_gen_addi_i32(addr, addr, pre_offset[a->pu]); 8588 8589 /* Load PC into tmp and CPSR into tmp2. */ 8590 t1 = tcg_temp_new_i32(); 8591 gen_aa32_ld_i32(s, t1, addr, get_mem_index(s), MO_UL | MO_ALIGN); 8592 tcg_gen_addi_i32(addr, addr, 4); 8593 t2 = tcg_temp_new_i32(); 8594 gen_aa32_ld_i32(s, t2, addr, get_mem_index(s), MO_UL | MO_ALIGN); 8595 8596 if (a->w) { 8597 /* Base writeback. */ 8598 tcg_gen_addi_i32(addr, addr, post_offset[a->pu]); 8599 store_reg(s, a->rn, addr); 8600 } 8601 gen_rfe(s, t1, t2); 8602 return true; 8603 } 8604 8605 static bool trans_SRS(DisasContext *s, arg_SRS *a) 8606 { 8607 if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { 8608 return false; 8609 } 8610 gen_srs(s, a->mode, a->pu, a->w); 8611 return true; 8612 } 8613 8614 static bool trans_CPS(DisasContext *s, arg_CPS *a) 8615 { 8616 uint32_t mask, val; 8617 8618 if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { 8619 return false; 8620 } 8621 if (IS_USER(s)) { 8622 /* Implemented as NOP in user mode. */ 8623 return true; 8624 } 8625 /* TODO: There are quite a lot of UNPREDICTABLE argument combinations. */ 8626 8627 mask = val = 0; 8628 if (a->imod & 2) { 8629 if (a->A) { 8630 mask |= CPSR_A; 8631 } 8632 if (a->I) { 8633 mask |= CPSR_I; 8634 } 8635 if (a->F) { 8636 mask |= CPSR_F; 8637 } 8638 if (a->imod & 1) { 8639 val |= mask; 8640 } 8641 } 8642 if (a->M) { 8643 mask |= CPSR_M; 8644 val |= a->mode; 8645 } 8646 if (mask) { 8647 gen_set_psr_im(s, mask, 0, val); 8648 } 8649 return true; 8650 } 8651 8652 static bool trans_CPS_v7m(DisasContext *s, arg_CPS_v7m *a) 8653 { 8654 TCGv_i32 tmp, addr; 8655 8656 if (!arm_dc_feature(s, ARM_FEATURE_M)) { 8657 return false; 8658 } 8659 if (IS_USER(s)) { 8660 /* Implemented as NOP in user mode. */ 8661 return true; 8662 } 8663 8664 tmp = tcg_constant_i32(a->im); 8665 /* FAULTMASK */ 8666 if (a->F) { 8667 addr = tcg_constant_i32(19); 8668 gen_helper_v7m_msr(cpu_env, addr, tmp); 8669 } 8670 /* PRIMASK */ 8671 if (a->I) { 8672 addr = tcg_constant_i32(16); 8673 gen_helper_v7m_msr(cpu_env, addr, tmp); 8674 } 8675 gen_rebuild_hflags(s, false); 8676 gen_lookup_tb(s); 8677 return true; 8678 } 8679 8680 /* 8681 * Clear-Exclusive, Barriers 8682 */ 8683 8684 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 8685 { 8686 if (s->thumb 8687 ? !ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M) 8688 : !ENABLE_ARCH_6K) { 8689 return false; 8690 } 8691 gen_clrex(s); 8692 return true; 8693 } 8694 8695 static bool trans_DSB(DisasContext *s, arg_DSB *a) 8696 { 8697 if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) { 8698 return false; 8699 } 8700 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 8701 return true; 8702 } 8703 8704 static bool trans_DMB(DisasContext *s, arg_DMB *a) 8705 { 8706 return trans_DSB(s, NULL); 8707 } 8708 8709 static bool trans_ISB(DisasContext *s, arg_ISB *a) 8710 { 8711 if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) { 8712 return false; 8713 } 8714 /* 8715 * We need to break the TB after this insn to execute 8716 * self-modifying code correctly and also to take 8717 * any pending interrupts immediately. 8718 */ 8719 s->base.is_jmp = DISAS_TOO_MANY; 8720 return true; 8721 } 8722 8723 static bool trans_SB(DisasContext *s, arg_SB *a) 8724 { 8725 if (!dc_isar_feature(aa32_sb, s)) { 8726 return false; 8727 } 8728 /* 8729 * TODO: There is no speculation barrier opcode 8730 * for TCG; MB and end the TB instead. 8731 */ 8732 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 8733 s->base.is_jmp = DISAS_TOO_MANY; 8734 return true; 8735 } 8736 8737 static bool trans_SETEND(DisasContext *s, arg_SETEND *a) 8738 { 8739 if (!ENABLE_ARCH_6) { 8740 return false; 8741 } 8742 if (a->E != (s->be_data == MO_BE)) { 8743 gen_helper_setend(cpu_env); 8744 s->base.is_jmp = DISAS_UPDATE_EXIT; 8745 } 8746 return true; 8747 } 8748 8749 /* 8750 * Preload instructions 8751 * All are nops, contingent on the appropriate arch level. 8752 */ 8753 8754 static bool trans_PLD(DisasContext *s, arg_PLD *a) 8755 { 8756 return ENABLE_ARCH_5TE; 8757 } 8758 8759 static bool trans_PLDW(DisasContext *s, arg_PLD *a) 8760 { 8761 return arm_dc_feature(s, ARM_FEATURE_V7MP); 8762 } 8763 8764 static bool trans_PLI(DisasContext *s, arg_PLD *a) 8765 { 8766 return ENABLE_ARCH_7; 8767 } 8768 8769 /* 8770 * If-then 8771 */ 8772 8773 static bool trans_IT(DisasContext *s, arg_IT *a) 8774 { 8775 int cond_mask = a->cond_mask; 8776 8777 /* 8778 * No actual code generated for this insn, just setup state. 8779 * 8780 * Combinations of firstcond and mask which set up an 0b1111 8781 * condition are UNPREDICTABLE; we take the CONSTRAINED 8782 * UNPREDICTABLE choice to treat 0b1111 the same as 0b1110, 8783 * i.e. both meaning "execute always". 8784 */ 8785 s->condexec_cond = (cond_mask >> 4) & 0xe; 8786 s->condexec_mask = cond_mask & 0x1f; 8787 return true; 8788 } 8789 8790 /* v8.1M CSEL/CSINC/CSNEG/CSINV */ 8791 static bool trans_CSEL(DisasContext *s, arg_CSEL *a) 8792 { 8793 TCGv_i32 rn, rm; 8794 DisasCompare c; 8795 8796 if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { 8797 return false; 8798 } 8799 8800 if (a->rm == 13) { 8801 /* SEE "Related encodings" (MVE shifts) */ 8802 return false; 8803 } 8804 8805 if (a->rd == 13 || a->rd == 15 || a->rn == 13 || a->fcond >= 14) { 8806 /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */ 8807 return false; 8808 } 8809 8810 /* In this insn input reg fields of 0b1111 mean "zero", not "PC" */ 8811 rn = tcg_temp_new_i32(); 8812 rm = tcg_temp_new_i32(); 8813 if (a->rn == 15) { 8814 tcg_gen_movi_i32(rn, 0); 8815 } else { 8816 load_reg_var(s, rn, a->rn); 8817 } 8818 if (a->rm == 15) { 8819 tcg_gen_movi_i32(rm, 0); 8820 } else { 8821 load_reg_var(s, rm, a->rm); 8822 } 8823 8824 switch (a->op) { 8825 case 0: /* CSEL */ 8826 break; 8827 case 1: /* CSINC */ 8828 tcg_gen_addi_i32(rm, rm, 1); 8829 break; 8830 case 2: /* CSINV */ 8831 tcg_gen_not_i32(rm, rm); 8832 break; 8833 case 3: /* CSNEG */ 8834 tcg_gen_neg_i32(rm, rm); 8835 break; 8836 default: 8837 g_assert_not_reached(); 8838 } 8839 8840 arm_test_cc(&c, a->fcond); 8841 tcg_gen_movcond_i32(c.cond, rn, c.value, tcg_constant_i32(0), rn, rm); 8842 8843 store_reg(s, a->rd, rn); 8844 return true; 8845 } 8846 8847 /* 8848 * Legacy decoder. 8849 */ 8850 8851 static void disas_arm_insn(DisasContext *s, unsigned int insn) 8852 { 8853 unsigned int cond = insn >> 28; 8854 8855 /* M variants do not implement ARM mode; this must raise the INVSTATE 8856 * UsageFault exception. 8857 */ 8858 if (arm_dc_feature(s, ARM_FEATURE_M)) { 8859 gen_exception_insn(s, 0, EXCP_INVSTATE, syn_uncategorized()); 8860 return; 8861 } 8862 8863 if (s->pstate_il) { 8864 /* 8865 * Illegal execution state. This has priority over BTI 8866 * exceptions, but comes after instruction abort exceptions. 8867 */ 8868 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 8869 return; 8870 } 8871 8872 if (cond == 0xf) { 8873 /* In ARMv3 and v4 the NV condition is UNPREDICTABLE; we 8874 * choose to UNDEF. In ARMv5 and above the space is used 8875 * for miscellaneous unconditional instructions. 8876 */ 8877 if (!arm_dc_feature(s, ARM_FEATURE_V5)) { 8878 unallocated_encoding(s); 8879 return; 8880 } 8881 8882 /* Unconditional instructions. */ 8883 /* TODO: Perhaps merge these into one decodetree output file. */ 8884 if (disas_a32_uncond(s, insn) || 8885 disas_vfp_uncond(s, insn) || 8886 disas_neon_dp(s, insn) || 8887 disas_neon_ls(s, insn) || 8888 disas_neon_shared(s, insn)) { 8889 return; 8890 } 8891 /* fall back to legacy decoder */ 8892 8893 if ((insn & 0x0e000f00) == 0x0c000100) { 8894 if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) { 8895 /* iWMMXt register transfer. */ 8896 if (extract32(s->c15_cpar, 1, 1)) { 8897 if (!disas_iwmmxt_insn(s, insn)) { 8898 return; 8899 } 8900 } 8901 } 8902 } 8903 goto illegal_op; 8904 } 8905 if (cond != 0xe) { 8906 /* if not always execute, we generate a conditional jump to 8907 next instruction */ 8908 arm_skip_unless(s, cond); 8909 } 8910 8911 /* TODO: Perhaps merge these into one decodetree output file. */ 8912 if (disas_a32(s, insn) || 8913 disas_vfp(s, insn)) { 8914 return; 8915 } 8916 /* fall back to legacy decoder */ 8917 /* TODO: convert xscale/iwmmxt decoder to decodetree ?? */ 8918 if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) { 8919 if (((insn & 0x0c000e00) == 0x0c000000) 8920 && ((insn & 0x03000000) != 0x03000000)) { 8921 /* Coprocessor insn, coprocessor 0 or 1 */ 8922 disas_xscale_insn(s, insn); 8923 return; 8924 } 8925 } 8926 8927 illegal_op: 8928 unallocated_encoding(s); 8929 } 8930 8931 static bool thumb_insn_is_16bit(DisasContext *s, uint32_t pc, uint32_t insn) 8932 { 8933 /* 8934 * Return true if this is a 16 bit instruction. We must be precise 8935 * about this (matching the decode). 8936 */ 8937 if ((insn >> 11) < 0x1d) { 8938 /* Definitely a 16-bit instruction */ 8939 return true; 8940 } 8941 8942 /* Top five bits 0b11101 / 0b11110 / 0b11111 : this is the 8943 * first half of a 32-bit Thumb insn. Thumb-1 cores might 8944 * end up actually treating this as two 16-bit insns, though, 8945 * if it's half of a bl/blx pair that might span a page boundary. 8946 */ 8947 if (arm_dc_feature(s, ARM_FEATURE_THUMB2) || 8948 arm_dc_feature(s, ARM_FEATURE_M)) { 8949 /* Thumb2 cores (including all M profile ones) always treat 8950 * 32-bit insns as 32-bit. 8951 */ 8952 return false; 8953 } 8954 8955 if ((insn >> 11) == 0x1e && pc - s->page_start < TARGET_PAGE_SIZE - 3) { 8956 /* 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix, and the suffix 8957 * is not on the next page; we merge this into a 32-bit 8958 * insn. 8959 */ 8960 return false; 8961 } 8962 /* 0b1110_1xxx_xxxx_xxxx : BLX suffix (or UNDEF); 8963 * 0b1111_1xxx_xxxx_xxxx : BL suffix; 8964 * 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix on the end of a page 8965 * -- handle as single 16 bit insn 8966 */ 8967 return true; 8968 } 8969 8970 /* Translate a 32-bit thumb instruction. */ 8971 static void disas_thumb2_insn(DisasContext *s, uint32_t insn) 8972 { 8973 /* 8974 * ARMv6-M supports a limited subset of Thumb2 instructions. 8975 * Other Thumb1 architectures allow only 32-bit 8976 * combined BL/BLX prefix and suffix. 8977 */ 8978 if (arm_dc_feature(s, ARM_FEATURE_M) && 8979 !arm_dc_feature(s, ARM_FEATURE_V7)) { 8980 int i; 8981 bool found = false; 8982 static const uint32_t armv6m_insn[] = {0xf3808000 /* msr */, 8983 0xf3b08040 /* dsb */, 8984 0xf3b08050 /* dmb */, 8985 0xf3b08060 /* isb */, 8986 0xf3e08000 /* mrs */, 8987 0xf000d000 /* bl */}; 8988 static const uint32_t armv6m_mask[] = {0xffe0d000, 8989 0xfff0d0f0, 8990 0xfff0d0f0, 8991 0xfff0d0f0, 8992 0xffe0d000, 8993 0xf800d000}; 8994 8995 for (i = 0; i < ARRAY_SIZE(armv6m_insn); i++) { 8996 if ((insn & armv6m_mask[i]) == armv6m_insn[i]) { 8997 found = true; 8998 break; 8999 } 9000 } 9001 if (!found) { 9002 goto illegal_op; 9003 } 9004 } else if ((insn & 0xf800e800) != 0xf000e800) { 9005 if (!arm_dc_feature(s, ARM_FEATURE_THUMB2)) { 9006 unallocated_encoding(s); 9007 return; 9008 } 9009 } 9010 9011 if (arm_dc_feature(s, ARM_FEATURE_M)) { 9012 /* 9013 * NOCP takes precedence over any UNDEF for (almost) the 9014 * entire wide range of coprocessor-space encodings, so check 9015 * for it first before proceeding to actually decode eg VFP 9016 * insns. This decode also handles the few insns which are 9017 * in copro space but do not have NOCP checks (eg VLLDM, VLSTM). 9018 */ 9019 if (disas_m_nocp(s, insn)) { 9020 return; 9021 } 9022 } 9023 9024 if ((insn & 0xef000000) == 0xef000000) { 9025 /* 9026 * T32 encodings 0b111p_1111_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq 9027 * transform into 9028 * A32 encodings 0b1111_001p_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq 9029 */ 9030 uint32_t a32_insn = (insn & 0xe2ffffff) | 9031 ((insn & (1 << 28)) >> 4) | (1 << 28); 9032 9033 if (disas_neon_dp(s, a32_insn)) { 9034 return; 9035 } 9036 } 9037 9038 if ((insn & 0xff100000) == 0xf9000000) { 9039 /* 9040 * T32 encodings 0b1111_1001_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq 9041 * transform into 9042 * A32 encodings 0b1111_0100_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq 9043 */ 9044 uint32_t a32_insn = (insn & 0x00ffffff) | 0xf4000000; 9045 9046 if (disas_neon_ls(s, a32_insn)) { 9047 return; 9048 } 9049 } 9050 9051 /* 9052 * TODO: Perhaps merge these into one decodetree output file. 9053 * Note disas_vfp is written for a32 with cond field in the 9054 * top nibble. The t32 encoding requires 0xe in the top nibble. 9055 */ 9056 if (disas_t32(s, insn) || 9057 disas_vfp_uncond(s, insn) || 9058 disas_neon_shared(s, insn) || 9059 disas_mve(s, insn) || 9060 ((insn >> 28) == 0xe && disas_vfp(s, insn))) { 9061 return; 9062 } 9063 9064 illegal_op: 9065 unallocated_encoding(s); 9066 } 9067 9068 static void disas_thumb_insn(DisasContext *s, uint32_t insn) 9069 { 9070 if (!disas_t16(s, insn)) { 9071 unallocated_encoding(s); 9072 } 9073 } 9074 9075 static bool insn_crosses_page(CPUARMState *env, DisasContext *s) 9076 { 9077 /* Return true if the insn at dc->base.pc_next might cross a page boundary. 9078 * (False positives are OK, false negatives are not.) 9079 * We know this is a Thumb insn, and our caller ensures we are 9080 * only called if dc->base.pc_next is less than 4 bytes from the page 9081 * boundary, so we cross the page if the first 16 bits indicate 9082 * that this is a 32 bit insn. 9083 */ 9084 uint16_t insn = arm_lduw_code(env, &s->base, s->base.pc_next, s->sctlr_b); 9085 9086 return !thumb_insn_is_16bit(s, s->base.pc_next, insn); 9087 } 9088 9089 static void arm_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) 9090 { 9091 DisasContext *dc = container_of(dcbase, DisasContext, base); 9092 CPUARMState *env = cs->env_ptr; 9093 ARMCPU *cpu = env_archcpu(env); 9094 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 9095 uint32_t condexec, core_mmu_idx; 9096 9097 dc->isar = &cpu->isar; 9098 dc->condjmp = 0; 9099 dc->pc_save = dc->base.pc_first; 9100 dc->aarch64 = false; 9101 dc->thumb = EX_TBFLAG_AM32(tb_flags, THUMB); 9102 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 9103 condexec = EX_TBFLAG_AM32(tb_flags, CONDEXEC); 9104 /* 9105 * the CONDEXEC TB flags are CPSR bits [15:10][26:25]. On A-profile this 9106 * is always the IT bits. On M-profile, some of the reserved encodings 9107 * of IT are used instead to indicate either ICI or ECI, which 9108 * indicate partial progress of a restartable insn that was interrupted 9109 * partway through by an exception: 9110 * * if CONDEXEC[3:0] != 0b0000 : CONDEXEC is IT bits 9111 * * if CONDEXEC[3:0] == 0b0000 : CONDEXEC is ICI or ECI bits 9112 * In all cases CONDEXEC == 0 means "not in IT block or restartable 9113 * insn, behave normally". 9114 */ 9115 dc->eci = dc->condexec_mask = dc->condexec_cond = 0; 9116 dc->eci_handled = false; 9117 if (condexec & 0xf) { 9118 dc->condexec_mask = (condexec & 0xf) << 1; 9119 dc->condexec_cond = condexec >> 4; 9120 } else { 9121 if (arm_feature(env, ARM_FEATURE_M)) { 9122 dc->eci = condexec >> 4; 9123 } 9124 } 9125 9126 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 9127 dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx); 9128 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 9129 #if !defined(CONFIG_USER_ONLY) 9130 dc->user = (dc->current_el == 0); 9131 #endif 9132 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 9133 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 9134 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 9135 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 9136 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 9137 9138 if (arm_feature(env, ARM_FEATURE_M)) { 9139 dc->vfp_enabled = 1; 9140 dc->be_data = MO_TE; 9141 dc->v7m_handler_mode = EX_TBFLAG_M32(tb_flags, HANDLER); 9142 dc->v8m_secure = EX_TBFLAG_M32(tb_flags, SECURE); 9143 dc->v8m_stackcheck = EX_TBFLAG_M32(tb_flags, STACKCHECK); 9144 dc->v8m_fpccr_s_wrong = EX_TBFLAG_M32(tb_flags, FPCCR_S_WRONG); 9145 dc->v7m_new_fp_ctxt_needed = 9146 EX_TBFLAG_M32(tb_flags, NEW_FP_CTXT_NEEDED); 9147 dc->v7m_lspact = EX_TBFLAG_M32(tb_flags, LSPACT); 9148 dc->mve_no_pred = EX_TBFLAG_M32(tb_flags, MVE_NO_PRED); 9149 } else { 9150 dc->sctlr_b = EX_TBFLAG_A32(tb_flags, SCTLR__B); 9151 dc->hstr_active = EX_TBFLAG_A32(tb_flags, HSTR_ACTIVE); 9152 dc->ns = EX_TBFLAG_A32(tb_flags, NS); 9153 dc->vfp_enabled = EX_TBFLAG_A32(tb_flags, VFPEN); 9154 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9155 dc->c15_cpar = EX_TBFLAG_A32(tb_flags, XSCALE_CPAR); 9156 } else { 9157 dc->vec_len = EX_TBFLAG_A32(tb_flags, VECLEN); 9158 dc->vec_stride = EX_TBFLAG_A32(tb_flags, VECSTRIDE); 9159 } 9160 dc->sme_trap_nonstreaming = 9161 EX_TBFLAG_A32(tb_flags, SME_TRAP_NONSTREAMING); 9162 } 9163 dc->lse2 = false; /* applies only to aarch64 */ 9164 dc->cp_regs = cpu->cp_regs; 9165 dc->features = env->features; 9166 9167 /* Single step state. The code-generation logic here is: 9168 * SS_ACTIVE == 0: 9169 * generate code with no special handling for single-stepping (except 9170 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 9171 * this happens anyway because those changes are all system register or 9172 * PSTATE writes). 9173 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 9174 * emit code for one insn 9175 * emit code to clear PSTATE.SS 9176 * emit code to generate software step exception for completed step 9177 * end TB (as usual for having generated an exception) 9178 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 9179 * emit code to generate a software step exception 9180 * end the TB 9181 */ 9182 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 9183 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 9184 dc->is_ldex = false; 9185 9186 dc->page_start = dc->base.pc_first & TARGET_PAGE_MASK; 9187 9188 /* If architectural single step active, limit to 1. */ 9189 if (dc->ss_active) { 9190 dc->base.max_insns = 1; 9191 } 9192 9193 /* ARM is a fixed-length ISA. Bound the number of insns to execute 9194 to those left on the page. */ 9195 if (!dc->thumb) { 9196 int bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 9197 dc->base.max_insns = MIN(dc->base.max_insns, bound); 9198 } 9199 9200 cpu_V0 = tcg_temp_new_i64(); 9201 cpu_V1 = tcg_temp_new_i64(); 9202 cpu_M0 = tcg_temp_new_i64(); 9203 } 9204 9205 static void arm_tr_tb_start(DisasContextBase *dcbase, CPUState *cpu) 9206 { 9207 DisasContext *dc = container_of(dcbase, DisasContext, base); 9208 9209 /* A note on handling of the condexec (IT) bits: 9210 * 9211 * We want to avoid the overhead of having to write the updated condexec 9212 * bits back to the CPUARMState for every instruction in an IT block. So: 9213 * (1) if the condexec bits are not already zero then we write 9214 * zero back into the CPUARMState now. This avoids complications trying 9215 * to do it at the end of the block. (For example if we don't do this 9216 * it's hard to identify whether we can safely skip writing condexec 9217 * at the end of the TB, which we definitely want to do for the case 9218 * where a TB doesn't do anything with the IT state at all.) 9219 * (2) if we are going to leave the TB then we call gen_set_condexec() 9220 * which will write the correct value into CPUARMState if zero is wrong. 9221 * This is done both for leaving the TB at the end, and for leaving 9222 * it because of an exception we know will happen, which is done in 9223 * gen_exception_insn(). The latter is necessary because we need to 9224 * leave the TB with the PC/IT state just prior to execution of the 9225 * instruction which caused the exception. 9226 * (3) if we leave the TB unexpectedly (eg a data abort on a load) 9227 * then the CPUARMState will be wrong and we need to reset it. 9228 * This is handled in the same way as restoration of the 9229 * PC in these situations; we save the value of the condexec bits 9230 * for each PC via tcg_gen_insn_start(), and restore_state_to_opc() 9231 * then uses this to restore them after an exception. 9232 * 9233 * Note that there are no instructions which can read the condexec 9234 * bits, and none which can write non-static values to them, so 9235 * we don't need to care about whether CPUARMState is correct in the 9236 * middle of a TB. 9237 */ 9238 9239 /* Reset the conditional execution bits immediately. This avoids 9240 complications trying to do it at the end of the block. */ 9241 if (dc->condexec_mask || dc->condexec_cond) { 9242 store_cpu_field_constant(0, condexec_bits); 9243 } 9244 } 9245 9246 static void arm_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 9247 { 9248 DisasContext *dc = container_of(dcbase, DisasContext, base); 9249 /* 9250 * The ECI/ICI bits share PSR bits with the IT bits, so we 9251 * need to reconstitute the bits from the split-out DisasContext 9252 * fields here. 9253 */ 9254 uint32_t condexec_bits; 9255 target_ulong pc_arg = dc->base.pc_next; 9256 9257 if (tb_cflags(dcbase->tb) & CF_PCREL) { 9258 pc_arg &= ~TARGET_PAGE_MASK; 9259 } 9260 if (dc->eci) { 9261 condexec_bits = dc->eci << 4; 9262 } else { 9263 condexec_bits = (dc->condexec_cond << 4) | (dc->condexec_mask >> 1); 9264 } 9265 tcg_gen_insn_start(pc_arg, condexec_bits, 0); 9266 dc->insn_start = tcg_last_op(); 9267 } 9268 9269 static bool arm_check_kernelpage(DisasContext *dc) 9270 { 9271 #ifdef CONFIG_USER_ONLY 9272 /* Intercept jump to the magic kernel page. */ 9273 if (dc->base.pc_next >= 0xffff0000) { 9274 /* We always get here via a jump, so know we are not in a 9275 conditional execution block. */ 9276 gen_exception_internal(EXCP_KERNEL_TRAP); 9277 dc->base.is_jmp = DISAS_NORETURN; 9278 return true; 9279 } 9280 #endif 9281 return false; 9282 } 9283 9284 static bool arm_check_ss_active(DisasContext *dc) 9285 { 9286 if (dc->ss_active && !dc->pstate_ss) { 9287 /* Singlestep state is Active-pending. 9288 * If we're in this state at the start of a TB then either 9289 * a) we just took an exception to an EL which is being debugged 9290 * and this is the first insn in the exception handler 9291 * b) debug exceptions were masked and we just unmasked them 9292 * without changing EL (eg by clearing PSTATE.D) 9293 * In either case we're going to take a swstep exception in the 9294 * "did not step an insn" case, and so the syndrome ISV and EX 9295 * bits should be zero. 9296 */ 9297 assert(dc->base.num_insns == 1); 9298 gen_swstep_exception(dc, 0, 0); 9299 dc->base.is_jmp = DISAS_NORETURN; 9300 return true; 9301 } 9302 9303 return false; 9304 } 9305 9306 static void arm_post_translate_insn(DisasContext *dc) 9307 { 9308 if (dc->condjmp && dc->base.is_jmp == DISAS_NEXT) { 9309 if (dc->pc_save != dc->condlabel.pc_save) { 9310 gen_update_pc(dc, dc->condlabel.pc_save - dc->pc_save); 9311 } 9312 gen_set_label(dc->condlabel.label); 9313 dc->condjmp = 0; 9314 } 9315 } 9316 9317 static void arm_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 9318 { 9319 DisasContext *dc = container_of(dcbase, DisasContext, base); 9320 CPUARMState *env = cpu->env_ptr; 9321 uint32_t pc = dc->base.pc_next; 9322 unsigned int insn; 9323 9324 /* Singlestep exceptions have the highest priority. */ 9325 if (arm_check_ss_active(dc)) { 9326 dc->base.pc_next = pc + 4; 9327 return; 9328 } 9329 9330 if (pc & 3) { 9331 /* 9332 * PC alignment fault. This has priority over the instruction abort 9333 * that we would receive from a translation fault via arm_ldl_code 9334 * (or the execution of the kernelpage entrypoint). This should only 9335 * be possible after an indirect branch, at the start of the TB. 9336 */ 9337 assert(dc->base.num_insns == 1); 9338 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 9339 dc->base.is_jmp = DISAS_NORETURN; 9340 dc->base.pc_next = QEMU_ALIGN_UP(pc, 4); 9341 return; 9342 } 9343 9344 if (arm_check_kernelpage(dc)) { 9345 dc->base.pc_next = pc + 4; 9346 return; 9347 } 9348 9349 dc->pc_curr = pc; 9350 insn = arm_ldl_code(env, &dc->base, pc, dc->sctlr_b); 9351 dc->insn = insn; 9352 dc->base.pc_next = pc + 4; 9353 disas_arm_insn(dc, insn); 9354 9355 arm_post_translate_insn(dc); 9356 9357 /* ARM is a fixed-length ISA. We performed the cross-page check 9358 in init_disas_context by adjusting max_insns. */ 9359 } 9360 9361 static bool thumb_insn_is_unconditional(DisasContext *s, uint32_t insn) 9362 { 9363 /* Return true if this Thumb insn is always unconditional, 9364 * even inside an IT block. This is true of only a very few 9365 * instructions: BKPT, HLT, and SG. 9366 * 9367 * A larger class of instructions are UNPREDICTABLE if used 9368 * inside an IT block; we do not need to detect those here, because 9369 * what we do by default (perform the cc check and update the IT 9370 * bits state machine) is a permitted CONSTRAINED UNPREDICTABLE 9371 * choice for those situations. 9372 * 9373 * insn is either a 16-bit or a 32-bit instruction; the two are 9374 * distinguishable because for the 16-bit case the top 16 bits 9375 * are zeroes, and that isn't a valid 32-bit encoding. 9376 */ 9377 if ((insn & 0xffffff00) == 0xbe00) { 9378 /* BKPT */ 9379 return true; 9380 } 9381 9382 if ((insn & 0xffffffc0) == 0xba80 && arm_dc_feature(s, ARM_FEATURE_V8) && 9383 !arm_dc_feature(s, ARM_FEATURE_M)) { 9384 /* HLT: v8A only. This is unconditional even when it is going to 9385 * UNDEF; see the v8A ARM ARM DDI0487B.a H3.3. 9386 * For v7 cores this was a plain old undefined encoding and so 9387 * honours its cc check. (We might be using the encoding as 9388 * a semihosting trap, but we don't change the cc check behaviour 9389 * on that account, because a debugger connected to a real v7A 9390 * core and emulating semihosting traps by catching the UNDEF 9391 * exception would also only see cases where the cc check passed. 9392 * No guest code should be trying to do a HLT semihosting trap 9393 * in an IT block anyway. 9394 */ 9395 return true; 9396 } 9397 9398 if (insn == 0xe97fe97f && arm_dc_feature(s, ARM_FEATURE_V8) && 9399 arm_dc_feature(s, ARM_FEATURE_M)) { 9400 /* SG: v8M only */ 9401 return true; 9402 } 9403 9404 return false; 9405 } 9406 9407 static void thumb_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 9408 { 9409 DisasContext *dc = container_of(dcbase, DisasContext, base); 9410 CPUARMState *env = cpu->env_ptr; 9411 uint32_t pc = dc->base.pc_next; 9412 uint32_t insn; 9413 bool is_16bit; 9414 /* TCG op to rewind to if this turns out to be an invalid ECI state */ 9415 TCGOp *insn_eci_rewind = NULL; 9416 target_ulong insn_eci_pc_save = -1; 9417 9418 /* Misaligned thumb PC is architecturally impossible. */ 9419 assert((dc->base.pc_next & 1) == 0); 9420 9421 if (arm_check_ss_active(dc) || arm_check_kernelpage(dc)) { 9422 dc->base.pc_next = pc + 2; 9423 return; 9424 } 9425 9426 dc->pc_curr = pc; 9427 insn = arm_lduw_code(env, &dc->base, pc, dc->sctlr_b); 9428 is_16bit = thumb_insn_is_16bit(dc, dc->base.pc_next, insn); 9429 pc += 2; 9430 if (!is_16bit) { 9431 uint32_t insn2 = arm_lduw_code(env, &dc->base, pc, dc->sctlr_b); 9432 insn = insn << 16 | insn2; 9433 pc += 2; 9434 } 9435 dc->base.pc_next = pc; 9436 dc->insn = insn; 9437 9438 if (dc->pstate_il) { 9439 /* 9440 * Illegal execution state. This has priority over BTI 9441 * exceptions, but comes after instruction abort exceptions. 9442 */ 9443 gen_exception_insn(dc, 0, EXCP_UDEF, syn_illegalstate()); 9444 return; 9445 } 9446 9447 if (dc->eci) { 9448 /* 9449 * For M-profile continuable instructions, ECI/ICI handling 9450 * falls into these cases: 9451 * - interrupt-continuable instructions 9452 * These are the various load/store multiple insns (both 9453 * integer and fp). The ICI bits indicate the register 9454 * where the load/store can resume. We make the IMPDEF 9455 * choice to always do "instruction restart", ie ignore 9456 * the ICI value and always execute the ldm/stm from the 9457 * start. So all we need to do is zero PSR.ICI if the 9458 * insn executes. 9459 * - MVE instructions subject to beat-wise execution 9460 * Here the ECI bits indicate which beats have already been 9461 * executed, and we must honour this. Each insn of this 9462 * type will handle it correctly. We will update PSR.ECI 9463 * in the helper function for the insn (some ECI values 9464 * mean that the following insn also has been partially 9465 * executed). 9466 * - Special cases which don't advance ECI 9467 * The insns LE, LETP and BKPT leave the ECI/ICI state 9468 * bits untouched. 9469 * - all other insns (the common case) 9470 * Non-zero ECI/ICI means an INVSTATE UsageFault. 9471 * We place a rewind-marker here. Insns in the previous 9472 * three categories will set a flag in the DisasContext. 9473 * If the flag isn't set after we call disas_thumb_insn() 9474 * or disas_thumb2_insn() then we know we have a "some other 9475 * insn" case. We will rewind to the marker (ie throwing away 9476 * all the generated code) and instead emit "take exception". 9477 */ 9478 insn_eci_rewind = tcg_last_op(); 9479 insn_eci_pc_save = dc->pc_save; 9480 } 9481 9482 if (dc->condexec_mask && !thumb_insn_is_unconditional(dc, insn)) { 9483 uint32_t cond = dc->condexec_cond; 9484 9485 /* 9486 * Conditionally skip the insn. Note that both 0xe and 0xf mean 9487 * "always"; 0xf is not "never". 9488 */ 9489 if (cond < 0x0e) { 9490 arm_skip_unless(dc, cond); 9491 } 9492 } 9493 9494 if (is_16bit) { 9495 disas_thumb_insn(dc, insn); 9496 } else { 9497 disas_thumb2_insn(dc, insn); 9498 } 9499 9500 /* Advance the Thumb condexec condition. */ 9501 if (dc->condexec_mask) { 9502 dc->condexec_cond = ((dc->condexec_cond & 0xe) | 9503 ((dc->condexec_mask >> 4) & 1)); 9504 dc->condexec_mask = (dc->condexec_mask << 1) & 0x1f; 9505 if (dc->condexec_mask == 0) { 9506 dc->condexec_cond = 0; 9507 } 9508 } 9509 9510 if (dc->eci && !dc->eci_handled) { 9511 /* 9512 * Insn wasn't valid for ECI/ICI at all: undo what we 9513 * just generated and instead emit an exception 9514 */ 9515 tcg_remove_ops_after(insn_eci_rewind); 9516 dc->pc_save = insn_eci_pc_save; 9517 dc->condjmp = 0; 9518 gen_exception_insn(dc, 0, EXCP_INVSTATE, syn_uncategorized()); 9519 } 9520 9521 arm_post_translate_insn(dc); 9522 9523 /* Thumb is a variable-length ISA. Stop translation when the next insn 9524 * will touch a new page. This ensures that prefetch aborts occur at 9525 * the right place. 9526 * 9527 * We want to stop the TB if the next insn starts in a new page, 9528 * or if it spans between this page and the next. This means that 9529 * if we're looking at the last halfword in the page we need to 9530 * see if it's a 16-bit Thumb insn (which will fit in this TB) 9531 * or a 32-bit Thumb insn (which won't). 9532 * This is to avoid generating a silly TB with a single 16-bit insn 9533 * in it at the end of this page (which would execute correctly 9534 * but isn't very efficient). 9535 */ 9536 if (dc->base.is_jmp == DISAS_NEXT 9537 && (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE 9538 || (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE - 3 9539 && insn_crosses_page(env, dc)))) { 9540 dc->base.is_jmp = DISAS_TOO_MANY; 9541 } 9542 } 9543 9544 static void arm_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 9545 { 9546 DisasContext *dc = container_of(dcbase, DisasContext, base); 9547 9548 /* At this stage dc->condjmp will only be set when the skipped 9549 instruction was a conditional branch or trap, and the PC has 9550 already been written. */ 9551 gen_set_condexec(dc); 9552 if (dc->base.is_jmp == DISAS_BX_EXCRET) { 9553 /* Exception return branches need some special case code at the 9554 * end of the TB, which is complex enough that it has to 9555 * handle the single-step vs not and the condition-failed 9556 * insn codepath itself. 9557 */ 9558 gen_bx_excret_final_code(dc); 9559 } else if (unlikely(dc->ss_active)) { 9560 /* Unconditional and "condition passed" instruction codepath. */ 9561 switch (dc->base.is_jmp) { 9562 case DISAS_SWI: 9563 gen_ss_advance(dc); 9564 gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb)); 9565 break; 9566 case DISAS_HVC: 9567 gen_ss_advance(dc); 9568 gen_exception_el(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2); 9569 break; 9570 case DISAS_SMC: 9571 gen_ss_advance(dc); 9572 gen_exception_el(EXCP_SMC, syn_aa32_smc(), 3); 9573 break; 9574 case DISAS_NEXT: 9575 case DISAS_TOO_MANY: 9576 case DISAS_UPDATE_EXIT: 9577 case DISAS_UPDATE_NOCHAIN: 9578 gen_update_pc(dc, curr_insn_len(dc)); 9579 /* fall through */ 9580 default: 9581 /* FIXME: Single stepping a WFI insn will not halt the CPU. */ 9582 gen_singlestep_exception(dc); 9583 break; 9584 case DISAS_NORETURN: 9585 break; 9586 } 9587 } else { 9588 /* While branches must always occur at the end of an IT block, 9589 there are a few other things that can cause us to terminate 9590 the TB in the middle of an IT block: 9591 - Exception generating instructions (bkpt, swi, undefined). 9592 - Page boundaries. 9593 - Hardware watchpoints. 9594 Hardware breakpoints have already been handled and skip this code. 9595 */ 9596 switch (dc->base.is_jmp) { 9597 case DISAS_NEXT: 9598 case DISAS_TOO_MANY: 9599 gen_goto_tb(dc, 1, curr_insn_len(dc)); 9600 break; 9601 case DISAS_UPDATE_NOCHAIN: 9602 gen_update_pc(dc, curr_insn_len(dc)); 9603 /* fall through */ 9604 case DISAS_JUMP: 9605 gen_goto_ptr(); 9606 break; 9607 case DISAS_UPDATE_EXIT: 9608 gen_update_pc(dc, curr_insn_len(dc)); 9609 /* fall through */ 9610 default: 9611 /* indicate that the hash table must be used to find the next TB */ 9612 tcg_gen_exit_tb(NULL, 0); 9613 break; 9614 case DISAS_NORETURN: 9615 /* nothing more to generate */ 9616 break; 9617 case DISAS_WFI: 9618 gen_helper_wfi(cpu_env, tcg_constant_i32(curr_insn_len(dc))); 9619 /* 9620 * The helper doesn't necessarily throw an exception, but we 9621 * must go back to the main loop to check for interrupts anyway. 9622 */ 9623 tcg_gen_exit_tb(NULL, 0); 9624 break; 9625 case DISAS_WFE: 9626 gen_helper_wfe(cpu_env); 9627 break; 9628 case DISAS_YIELD: 9629 gen_helper_yield(cpu_env); 9630 break; 9631 case DISAS_SWI: 9632 gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb)); 9633 break; 9634 case DISAS_HVC: 9635 gen_exception_el(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2); 9636 break; 9637 case DISAS_SMC: 9638 gen_exception_el(EXCP_SMC, syn_aa32_smc(), 3); 9639 break; 9640 } 9641 } 9642 9643 if (dc->condjmp) { 9644 /* "Condition failed" instruction codepath for the branch/trap insn */ 9645 set_disas_label(dc, dc->condlabel); 9646 gen_set_condexec(dc); 9647 if (unlikely(dc->ss_active)) { 9648 gen_update_pc(dc, curr_insn_len(dc)); 9649 gen_singlestep_exception(dc); 9650 } else { 9651 gen_goto_tb(dc, 1, curr_insn_len(dc)); 9652 } 9653 } 9654 } 9655 9656 static void arm_tr_disas_log(const DisasContextBase *dcbase, 9657 CPUState *cpu, FILE *logfile) 9658 { 9659 DisasContext *dc = container_of(dcbase, DisasContext, base); 9660 9661 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 9662 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 9663 } 9664 9665 static const TranslatorOps arm_translator_ops = { 9666 .init_disas_context = arm_tr_init_disas_context, 9667 .tb_start = arm_tr_tb_start, 9668 .insn_start = arm_tr_insn_start, 9669 .translate_insn = arm_tr_translate_insn, 9670 .tb_stop = arm_tr_tb_stop, 9671 .disas_log = arm_tr_disas_log, 9672 }; 9673 9674 static const TranslatorOps thumb_translator_ops = { 9675 .init_disas_context = arm_tr_init_disas_context, 9676 .tb_start = arm_tr_tb_start, 9677 .insn_start = arm_tr_insn_start, 9678 .translate_insn = thumb_tr_translate_insn, 9679 .tb_stop = arm_tr_tb_stop, 9680 .disas_log = arm_tr_disas_log, 9681 }; 9682 9683 /* generate intermediate code for basic block 'tb'. */ 9684 void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int *max_insns, 9685 target_ulong pc, void *host_pc) 9686 { 9687 DisasContext dc = { }; 9688 const TranslatorOps *ops = &arm_translator_ops; 9689 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(tb); 9690 9691 if (EX_TBFLAG_AM32(tb_flags, THUMB)) { 9692 ops = &thumb_translator_ops; 9693 } 9694 #ifdef TARGET_AARCH64 9695 if (EX_TBFLAG_ANY(tb_flags, AARCH64_STATE)) { 9696 ops = &aarch64_translator_ops; 9697 } 9698 #endif 9699 9700 translator_loop(cpu, tb, max_insns, pc, host_pc, ops, &dc.base); 9701 } 9702