xref: /openbmc/qemu/target/arm/tcg/translate-mve.c (revision 6ce21abd40b11cb6e2e016841871f6e3f5221f92)
1 /*
2  *  ARM translation: M-profile MVE instructions
3  *
4  *  Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "tcg/tcg-op.h"
22 #include "tcg/tcg-op-gvec.h"
23 #include "exec/exec-all.h"
24 #include "exec/gen-icount.h"
25 #include "translate.h"
26 #include "translate-a32.h"
27 
28 static inline int vidup_imm(DisasContext *s, int x)
29 {
30     return 1 << x;
31 }
32 
33 /* Include the generated decoder */
34 #include "decode-mve.c.inc"
35 
36 typedef void MVEGenLdStFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
37 typedef void MVEGenLdStSGFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
38 typedef void MVEGenLdStIlFn(TCGv_ptr, TCGv_i32, TCGv_i32);
39 typedef void MVEGenOneOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
40 typedef void MVEGenTwoOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_ptr);
41 typedef void MVEGenTwoOpScalarFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
42 typedef void MVEGenTwoOpShiftFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
43 typedef void MVEGenLongDualAccOpFn(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64);
44 typedef void MVEGenVADDVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32);
45 typedef void MVEGenOneOpImmFn(TCGv_ptr, TCGv_ptr, TCGv_i64);
46 typedef void MVEGenVIDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32);
47 typedef void MVEGenVIWDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
48 typedef void MVEGenCmpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
49 typedef void MVEGenScalarCmpFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
50 typedef void MVEGenVABAVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
51 typedef void MVEGenDualAccOpFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
52 typedef void MVEGenVCVTRmodeFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
53 
54 /* Return the offset of a Qn register (same semantics as aa32_vfp_qreg()) */
55 static inline long mve_qreg_offset(unsigned reg)
56 {
57     return offsetof(CPUARMState, vfp.zregs[reg].d[0]);
58 }
59 
60 static TCGv_ptr mve_qreg_ptr(unsigned reg)
61 {
62     TCGv_ptr ret = tcg_temp_new_ptr();
63     tcg_gen_addi_ptr(ret, cpu_env, mve_qreg_offset(reg));
64     return ret;
65 }
66 
67 static bool mve_no_predication(DisasContext *s)
68 {
69     /*
70      * Return true if we are executing the entire MVE instruction
71      * with no predication or partial-execution, and so we can safely
72      * use an inline TCG vector implementation.
73      */
74     return s->eci == 0 && s->mve_no_pred;
75 }
76 
77 static bool mve_check_qreg_bank(DisasContext *s, int qmask)
78 {
79     /*
80      * Check whether Qregs are in range. For v8.1M only Q0..Q7
81      * are supported, see VFPSmallRegisterBank().
82      */
83     return qmask < 8;
84 }
85 
86 bool mve_eci_check(DisasContext *s)
87 {
88     /*
89      * This is a beatwise insn: check that ECI is valid (not a
90      * reserved value) and note that we are handling it.
91      * Return true if OK, false if we generated an exception.
92      */
93     s->eci_handled = true;
94     switch (s->eci) {
95     case ECI_NONE:
96     case ECI_A0:
97     case ECI_A0A1:
98     case ECI_A0A1A2:
99     case ECI_A0A1A2B0:
100         return true;
101     default:
102         /* Reserved value: INVSTATE UsageFault */
103         gen_exception_insn(s, 0, EXCP_INVSTATE, syn_uncategorized());
104         return false;
105     }
106 }
107 
108 void mve_update_eci(DisasContext *s)
109 {
110     /*
111      * The helper function will always update the CPUState field,
112      * so we only need to update the DisasContext field.
113      */
114     if (s->eci) {
115         s->eci = (s->eci == ECI_A0A1A2B0) ? ECI_A0 : ECI_NONE;
116     }
117 }
118 
119 void mve_update_and_store_eci(DisasContext *s)
120 {
121     /*
122      * For insns which don't call a helper function that will call
123      * mve_advance_vpt(), this version updates s->eci and also stores
124      * it out to the CPUState field.
125      */
126     if (s->eci) {
127         mve_update_eci(s);
128         store_cpu_field(tcg_constant_i32(s->eci << 4), condexec_bits);
129     }
130 }
131 
132 static bool mve_skip_first_beat(DisasContext *s)
133 {
134     /* Return true if PSR.ECI says we must skip the first beat of this insn */
135     switch (s->eci) {
136     case ECI_NONE:
137         return false;
138     case ECI_A0:
139     case ECI_A0A1:
140     case ECI_A0A1A2:
141     case ECI_A0A1A2B0:
142         return true;
143     default:
144         g_assert_not_reached();
145     }
146 }
147 
148 static bool do_ldst(DisasContext *s, arg_VLDR_VSTR *a, MVEGenLdStFn *fn,
149                     unsigned msize)
150 {
151     TCGv_i32 addr;
152     uint32_t offset;
153     TCGv_ptr qreg;
154 
155     if (!dc_isar_feature(aa32_mve, s) ||
156         !mve_check_qreg_bank(s, a->qd) ||
157         !fn) {
158         return false;
159     }
160 
161     /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */
162     if (a->rn == 15 || (a->rn == 13 && a->w)) {
163         return false;
164     }
165 
166     if (!mve_eci_check(s) || !vfp_access_check(s)) {
167         return true;
168     }
169 
170     offset = a->imm << msize;
171     if (!a->a) {
172         offset = -offset;
173     }
174     addr = load_reg(s, a->rn);
175     if (a->p) {
176         tcg_gen_addi_i32(addr, addr, offset);
177     }
178 
179     qreg = mve_qreg_ptr(a->qd);
180     fn(cpu_env, qreg, addr);
181 
182     /*
183      * Writeback always happens after the last beat of the insn,
184      * regardless of predication
185      */
186     if (a->w) {
187         if (!a->p) {
188             tcg_gen_addi_i32(addr, addr, offset);
189         }
190         store_reg(s, a->rn, addr);
191     }
192     mve_update_eci(s);
193     return true;
194 }
195 
196 static bool trans_VLDR_VSTR(DisasContext *s, arg_VLDR_VSTR *a)
197 {
198     static MVEGenLdStFn * const ldstfns[4][2] = {
199         { gen_helper_mve_vstrb, gen_helper_mve_vldrb },
200         { gen_helper_mve_vstrh, gen_helper_mve_vldrh },
201         { gen_helper_mve_vstrw, gen_helper_mve_vldrw },
202         { NULL, NULL }
203     };
204     return do_ldst(s, a, ldstfns[a->size][a->l], a->size);
205 }
206 
207 #define DO_VLDST_WIDE_NARROW(OP, SLD, ULD, ST, MSIZE)           \
208     static bool trans_##OP(DisasContext *s, arg_VLDR_VSTR *a)   \
209     {                                                           \
210         static MVEGenLdStFn * const ldstfns[2][2] = {           \
211             { gen_helper_mve_##ST, gen_helper_mve_##SLD },      \
212             { NULL, gen_helper_mve_##ULD },                     \
213         };                                                      \
214         return do_ldst(s, a, ldstfns[a->u][a->l], MSIZE);       \
215     }
216 
217 DO_VLDST_WIDE_NARROW(VLDSTB_H, vldrb_sh, vldrb_uh, vstrb_h, MO_8)
218 DO_VLDST_WIDE_NARROW(VLDSTB_W, vldrb_sw, vldrb_uw, vstrb_w, MO_8)
219 DO_VLDST_WIDE_NARROW(VLDSTH_W, vldrh_sw, vldrh_uw, vstrh_w, MO_16)
220 
221 static bool do_ldst_sg(DisasContext *s, arg_vldst_sg *a, MVEGenLdStSGFn fn)
222 {
223     TCGv_i32 addr;
224     TCGv_ptr qd, qm;
225 
226     if (!dc_isar_feature(aa32_mve, s) ||
227         !mve_check_qreg_bank(s, a->qd | a->qm) ||
228         !fn || a->rn == 15) {
229         /* Rn case is UNPREDICTABLE */
230         return false;
231     }
232 
233     if (!mve_eci_check(s) || !vfp_access_check(s)) {
234         return true;
235     }
236 
237     addr = load_reg(s, a->rn);
238 
239     qd = mve_qreg_ptr(a->qd);
240     qm = mve_qreg_ptr(a->qm);
241     fn(cpu_env, qd, qm, addr);
242     mve_update_eci(s);
243     return true;
244 }
245 
246 /*
247  * The naming scheme here is "vldrb_sg_sh == in-memory byte loads
248  * signextended to halfword elements in register". _os_ indicates that
249  * the offsets in Qm should be scaled by the element size.
250  */
251 /* This macro is just to make the arrays more compact in these functions */
252 #define F(N) gen_helper_mve_##N
253 
254 /* VLDRB/VSTRB (ie msize 1) with OS=1 is UNPREDICTABLE; we UNDEF */
255 static bool trans_VLDR_S_sg(DisasContext *s, arg_vldst_sg *a)
256 {
257     static MVEGenLdStSGFn * const fns[2][4][4] = { {
258             { NULL, F(vldrb_sg_sh), F(vldrb_sg_sw), NULL },
259             { NULL, NULL,           F(vldrh_sg_sw), NULL },
260             { NULL, NULL,           NULL,           NULL },
261             { NULL, NULL,           NULL,           NULL }
262         }, {
263             { NULL, NULL,              NULL,              NULL },
264             { NULL, NULL,              F(vldrh_sg_os_sw), NULL },
265             { NULL, NULL,              NULL,              NULL },
266             { NULL, NULL,              NULL,              NULL }
267         }
268     };
269     if (a->qd == a->qm) {
270         return false; /* UNPREDICTABLE */
271     }
272     return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
273 }
274 
275 static bool trans_VLDR_U_sg(DisasContext *s, arg_vldst_sg *a)
276 {
277     static MVEGenLdStSGFn * const fns[2][4][4] = { {
278             { F(vldrb_sg_ub), F(vldrb_sg_uh), F(vldrb_sg_uw), NULL },
279             { NULL,           F(vldrh_sg_uh), F(vldrh_sg_uw), NULL },
280             { NULL,           NULL,           F(vldrw_sg_uw), NULL },
281             { NULL,           NULL,           NULL,           F(vldrd_sg_ud) }
282         }, {
283             { NULL, NULL,              NULL,              NULL },
284             { NULL, F(vldrh_sg_os_uh), F(vldrh_sg_os_uw), NULL },
285             { NULL, NULL,              F(vldrw_sg_os_uw), NULL },
286             { NULL, NULL,              NULL,              F(vldrd_sg_os_ud) }
287         }
288     };
289     if (a->qd == a->qm) {
290         return false; /* UNPREDICTABLE */
291     }
292     return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
293 }
294 
295 static bool trans_VSTR_sg(DisasContext *s, arg_vldst_sg *a)
296 {
297     static MVEGenLdStSGFn * const fns[2][4][4] = { {
298             { F(vstrb_sg_ub), F(vstrb_sg_uh), F(vstrb_sg_uw), NULL },
299             { NULL,           F(vstrh_sg_uh), F(vstrh_sg_uw), NULL },
300             { NULL,           NULL,           F(vstrw_sg_uw), NULL },
301             { NULL,           NULL,           NULL,           F(vstrd_sg_ud) }
302         }, {
303             { NULL, NULL,              NULL,              NULL },
304             { NULL, F(vstrh_sg_os_uh), F(vstrh_sg_os_uw), NULL },
305             { NULL, NULL,              F(vstrw_sg_os_uw), NULL },
306             { NULL, NULL,              NULL,              F(vstrd_sg_os_ud) }
307         }
308     };
309     return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
310 }
311 
312 #undef F
313 
314 static bool do_ldst_sg_imm(DisasContext *s, arg_vldst_sg_imm *a,
315                            MVEGenLdStSGFn *fn, unsigned msize)
316 {
317     uint32_t offset;
318     TCGv_ptr qd, qm;
319 
320     if (!dc_isar_feature(aa32_mve, s) ||
321         !mve_check_qreg_bank(s, a->qd | a->qm) ||
322         !fn) {
323         return false;
324     }
325 
326     if (!mve_eci_check(s) || !vfp_access_check(s)) {
327         return true;
328     }
329 
330     offset = a->imm << msize;
331     if (!a->a) {
332         offset = -offset;
333     }
334 
335     qd = mve_qreg_ptr(a->qd);
336     qm = mve_qreg_ptr(a->qm);
337     fn(cpu_env, qd, qm, tcg_constant_i32(offset));
338     mve_update_eci(s);
339     return true;
340 }
341 
342 static bool trans_VLDRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
343 {
344     static MVEGenLdStSGFn * const fns[] = {
345         gen_helper_mve_vldrw_sg_uw,
346         gen_helper_mve_vldrw_sg_wb_uw,
347     };
348     if (a->qd == a->qm) {
349         return false; /* UNPREDICTABLE */
350     }
351     return do_ldst_sg_imm(s, a, fns[a->w], MO_32);
352 }
353 
354 static bool trans_VLDRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
355 {
356     static MVEGenLdStSGFn * const fns[] = {
357         gen_helper_mve_vldrd_sg_ud,
358         gen_helper_mve_vldrd_sg_wb_ud,
359     };
360     if (a->qd == a->qm) {
361         return false; /* UNPREDICTABLE */
362     }
363     return do_ldst_sg_imm(s, a, fns[a->w], MO_64);
364 }
365 
366 static bool trans_VSTRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
367 {
368     static MVEGenLdStSGFn * const fns[] = {
369         gen_helper_mve_vstrw_sg_uw,
370         gen_helper_mve_vstrw_sg_wb_uw,
371     };
372     return do_ldst_sg_imm(s, a, fns[a->w], MO_32);
373 }
374 
375 static bool trans_VSTRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
376 {
377     static MVEGenLdStSGFn * const fns[] = {
378         gen_helper_mve_vstrd_sg_ud,
379         gen_helper_mve_vstrd_sg_wb_ud,
380     };
381     return do_ldst_sg_imm(s, a, fns[a->w], MO_64);
382 }
383 
384 static bool do_vldst_il(DisasContext *s, arg_vldst_il *a, MVEGenLdStIlFn *fn,
385                         int addrinc)
386 {
387     TCGv_i32 rn;
388 
389     if (!dc_isar_feature(aa32_mve, s) ||
390         !mve_check_qreg_bank(s, a->qd) ||
391         !fn || (a->rn == 13 && a->w) || a->rn == 15) {
392         /* Variously UNPREDICTABLE or UNDEF or related-encoding */
393         return false;
394     }
395     if (!mve_eci_check(s) || !vfp_access_check(s)) {
396         return true;
397     }
398 
399     rn = load_reg(s, a->rn);
400     /*
401      * We pass the index of Qd, not a pointer, because the helper must
402      * access multiple Q registers starting at Qd and working up.
403      */
404     fn(cpu_env, tcg_constant_i32(a->qd), rn);
405 
406     if (a->w) {
407         tcg_gen_addi_i32(rn, rn, addrinc);
408         store_reg(s, a->rn, rn);
409     }
410     mve_update_and_store_eci(s);
411     return true;
412 }
413 
414 /* This macro is just to make the arrays more compact in these functions */
415 #define F(N) gen_helper_mve_##N
416 
417 static bool trans_VLD2(DisasContext *s, arg_vldst_il *a)
418 {
419     static MVEGenLdStIlFn * const fns[4][4] = {
420         { F(vld20b), F(vld20h), F(vld20w), NULL, },
421         { F(vld21b), F(vld21h), F(vld21w), NULL, },
422         { NULL, NULL, NULL, NULL },
423         { NULL, NULL, NULL, NULL },
424     };
425     if (a->qd > 6) {
426         return false;
427     }
428     return do_vldst_il(s, a, fns[a->pat][a->size], 32);
429 }
430 
431 static bool trans_VLD4(DisasContext *s, arg_vldst_il *a)
432 {
433     static MVEGenLdStIlFn * const fns[4][4] = {
434         { F(vld40b), F(vld40h), F(vld40w), NULL, },
435         { F(vld41b), F(vld41h), F(vld41w), NULL, },
436         { F(vld42b), F(vld42h), F(vld42w), NULL, },
437         { F(vld43b), F(vld43h), F(vld43w), NULL, },
438     };
439     if (a->qd > 4) {
440         return false;
441     }
442     return do_vldst_il(s, a, fns[a->pat][a->size], 64);
443 }
444 
445 static bool trans_VST2(DisasContext *s, arg_vldst_il *a)
446 {
447     static MVEGenLdStIlFn * const fns[4][4] = {
448         { F(vst20b), F(vst20h), F(vst20w), NULL, },
449         { F(vst21b), F(vst21h), F(vst21w), NULL, },
450         { NULL, NULL, NULL, NULL },
451         { NULL, NULL, NULL, NULL },
452     };
453     if (a->qd > 6) {
454         return false;
455     }
456     return do_vldst_il(s, a, fns[a->pat][a->size], 32);
457 }
458 
459 static bool trans_VST4(DisasContext *s, arg_vldst_il *a)
460 {
461     static MVEGenLdStIlFn * const fns[4][4] = {
462         { F(vst40b), F(vst40h), F(vst40w), NULL, },
463         { F(vst41b), F(vst41h), F(vst41w), NULL, },
464         { F(vst42b), F(vst42h), F(vst42w), NULL, },
465         { F(vst43b), F(vst43h), F(vst43w), NULL, },
466     };
467     if (a->qd > 4) {
468         return false;
469     }
470     return do_vldst_il(s, a, fns[a->pat][a->size], 64);
471 }
472 
473 #undef F
474 
475 static bool trans_VDUP(DisasContext *s, arg_VDUP *a)
476 {
477     TCGv_ptr qd;
478     TCGv_i32 rt;
479 
480     if (!dc_isar_feature(aa32_mve, s) ||
481         !mve_check_qreg_bank(s, a->qd)) {
482         return false;
483     }
484     if (a->rt == 13 || a->rt == 15) {
485         /* UNPREDICTABLE; we choose to UNDEF */
486         return false;
487     }
488     if (!mve_eci_check(s) || !vfp_access_check(s)) {
489         return true;
490     }
491 
492     rt = load_reg(s, a->rt);
493     if (mve_no_predication(s)) {
494         tcg_gen_gvec_dup_i32(a->size, mve_qreg_offset(a->qd), 16, 16, rt);
495     } else {
496         qd = mve_qreg_ptr(a->qd);
497         tcg_gen_dup_i32(a->size, rt, rt);
498         gen_helper_mve_vdup(cpu_env, qd, rt);
499     }
500     mve_update_eci(s);
501     return true;
502 }
503 
504 static bool do_1op_vec(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn,
505                        GVecGen2Fn vecfn)
506 {
507     TCGv_ptr qd, qm;
508 
509     if (!dc_isar_feature(aa32_mve, s) ||
510         !mve_check_qreg_bank(s, a->qd | a->qm) ||
511         !fn) {
512         return false;
513     }
514 
515     if (!mve_eci_check(s) || !vfp_access_check(s)) {
516         return true;
517     }
518 
519     if (vecfn && mve_no_predication(s)) {
520         vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qm), 16, 16);
521     } else {
522         qd = mve_qreg_ptr(a->qd);
523         qm = mve_qreg_ptr(a->qm);
524         fn(cpu_env, qd, qm);
525     }
526     mve_update_eci(s);
527     return true;
528 }
529 
530 static bool do_1op(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn)
531 {
532     return do_1op_vec(s, a, fn, NULL);
533 }
534 
535 #define DO_1OP_VEC(INSN, FN, VECFN)                             \
536     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
537     {                                                           \
538         static MVEGenOneOpFn * const fns[] = {                  \
539             gen_helper_mve_##FN##b,                             \
540             gen_helper_mve_##FN##h,                             \
541             gen_helper_mve_##FN##w,                             \
542             NULL,                                               \
543         };                                                      \
544         return do_1op_vec(s, a, fns[a->size], VECFN);           \
545     }
546 
547 #define DO_1OP(INSN, FN) DO_1OP_VEC(INSN, FN, NULL)
548 
549 DO_1OP(VCLZ, vclz)
550 DO_1OP(VCLS, vcls)
551 DO_1OP_VEC(VABS, vabs, tcg_gen_gvec_abs)
552 DO_1OP_VEC(VNEG, vneg, tcg_gen_gvec_neg)
553 DO_1OP(VQABS, vqabs)
554 DO_1OP(VQNEG, vqneg)
555 DO_1OP(VMAXA, vmaxa)
556 DO_1OP(VMINA, vmina)
557 
558 /*
559  * For simple float/int conversions we use the fixed-point
560  * conversion helpers with a zero shift count
561  */
562 #define DO_VCVT(INSN, HFN, SFN)                                         \
563     static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm)   \
564     {                                                                   \
565         gen_helper_mve_##HFN(env, qd, qm, tcg_constant_i32(0));         \
566     }                                                                   \
567     static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm)   \
568     {                                                                   \
569         gen_helper_mve_##SFN(env, qd, qm, tcg_constant_i32(0));         \
570     }                                                                   \
571     static bool trans_##INSN(DisasContext *s, arg_1op *a)               \
572     {                                                                   \
573         static MVEGenOneOpFn * const fns[] = {                          \
574             NULL,                                                       \
575             gen_##INSN##h,                                              \
576             gen_##INSN##s,                                              \
577             NULL,                                                       \
578         };                                                              \
579         if (!dc_isar_feature(aa32_mve_fp, s)) {                         \
580             return false;                                               \
581         }                                                               \
582         return do_1op(s, a, fns[a->size]);                              \
583     }
584 
585 DO_VCVT(VCVT_SF, vcvt_sh, vcvt_sf)
586 DO_VCVT(VCVT_UF, vcvt_uh, vcvt_uf)
587 DO_VCVT(VCVT_FS, vcvt_hs, vcvt_fs)
588 DO_VCVT(VCVT_FU, vcvt_hu, vcvt_fu)
589 
590 static bool do_vcvt_rmode(DisasContext *s, arg_1op *a,
591                           ARMFPRounding rmode, bool u)
592 {
593     /*
594      * Handle VCVT fp to int with specified rounding mode.
595      * This is a 1op fn but we must pass the rounding mode as
596      * an immediate to the helper.
597      */
598     TCGv_ptr qd, qm;
599     static MVEGenVCVTRmodeFn * const fns[4][2] = {
600         { NULL, NULL },
601         { gen_helper_mve_vcvt_rm_sh, gen_helper_mve_vcvt_rm_uh },
602         { gen_helper_mve_vcvt_rm_ss, gen_helper_mve_vcvt_rm_us },
603         { NULL, NULL },
604     };
605     MVEGenVCVTRmodeFn *fn = fns[a->size][u];
606 
607     if (!dc_isar_feature(aa32_mve_fp, s) ||
608         !mve_check_qreg_bank(s, a->qd | a->qm) ||
609         !fn) {
610         return false;
611     }
612 
613     if (!mve_eci_check(s) || !vfp_access_check(s)) {
614         return true;
615     }
616 
617     qd = mve_qreg_ptr(a->qd);
618     qm = mve_qreg_ptr(a->qm);
619     fn(cpu_env, qd, qm, tcg_constant_i32(arm_rmode_to_sf(rmode)));
620     mve_update_eci(s);
621     return true;
622 }
623 
624 #define DO_VCVT_RMODE(INSN, RMODE, U)                           \
625     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
626     {                                                           \
627         return do_vcvt_rmode(s, a, RMODE, U);                   \
628     }                                                           \
629 
630 DO_VCVT_RMODE(VCVTAS, FPROUNDING_TIEAWAY, false)
631 DO_VCVT_RMODE(VCVTAU, FPROUNDING_TIEAWAY, true)
632 DO_VCVT_RMODE(VCVTNS, FPROUNDING_TIEEVEN, false)
633 DO_VCVT_RMODE(VCVTNU, FPROUNDING_TIEEVEN, true)
634 DO_VCVT_RMODE(VCVTPS, FPROUNDING_POSINF, false)
635 DO_VCVT_RMODE(VCVTPU, FPROUNDING_POSINF, true)
636 DO_VCVT_RMODE(VCVTMS, FPROUNDING_NEGINF, false)
637 DO_VCVT_RMODE(VCVTMU, FPROUNDING_NEGINF, true)
638 
639 #define DO_VCVT_SH(INSN, FN)                                    \
640     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
641     {                                                           \
642         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
643             return false;                                       \
644         }                                                       \
645         return do_1op(s, a, gen_helper_mve_##FN);               \
646     }                                                           \
647 
648 DO_VCVT_SH(VCVTB_SH, vcvtb_sh)
649 DO_VCVT_SH(VCVTT_SH, vcvtt_sh)
650 DO_VCVT_SH(VCVTB_HS, vcvtb_hs)
651 DO_VCVT_SH(VCVTT_HS, vcvtt_hs)
652 
653 #define DO_VRINT(INSN, RMODE)                                           \
654     static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm)   \
655     {                                                                   \
656         gen_helper_mve_vrint_rm_h(env, qd, qm,                          \
657                                   tcg_constant_i32(arm_rmode_to_sf(RMODE))); \
658     }                                                                   \
659     static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm)   \
660     {                                                                   \
661         gen_helper_mve_vrint_rm_s(env, qd, qm,                          \
662                                   tcg_constant_i32(arm_rmode_to_sf(RMODE))); \
663     }                                                                   \
664     static bool trans_##INSN(DisasContext *s, arg_1op *a)               \
665     {                                                                   \
666         static MVEGenOneOpFn * const fns[] = {                          \
667             NULL,                                                       \
668             gen_##INSN##h,                                              \
669             gen_##INSN##s,                                              \
670             NULL,                                                       \
671         };                                                              \
672         if (!dc_isar_feature(aa32_mve_fp, s)) {                         \
673             return false;                                               \
674         }                                                               \
675         return do_1op(s, a, fns[a->size]);                              \
676     }
677 
678 DO_VRINT(VRINTN, FPROUNDING_TIEEVEN)
679 DO_VRINT(VRINTA, FPROUNDING_TIEAWAY)
680 DO_VRINT(VRINTZ, FPROUNDING_ZERO)
681 DO_VRINT(VRINTM, FPROUNDING_NEGINF)
682 DO_VRINT(VRINTP, FPROUNDING_POSINF)
683 
684 static bool trans_VRINTX(DisasContext *s, arg_1op *a)
685 {
686     static MVEGenOneOpFn * const fns[] = {
687         NULL,
688         gen_helper_mve_vrintx_h,
689         gen_helper_mve_vrintx_s,
690         NULL,
691     };
692     if (!dc_isar_feature(aa32_mve_fp, s)) {
693         return false;
694     }
695     return do_1op(s, a, fns[a->size]);
696 }
697 
698 /* Narrowing moves: only size 0 and 1 are valid */
699 #define DO_VMOVN(INSN, FN) \
700     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
701     {                                                           \
702         static MVEGenOneOpFn * const fns[] = {                  \
703             gen_helper_mve_##FN##b,                             \
704             gen_helper_mve_##FN##h,                             \
705             NULL,                                               \
706             NULL,                                               \
707         };                                                      \
708         return do_1op(s, a, fns[a->size]);                      \
709     }
710 
711 DO_VMOVN(VMOVNB, vmovnb)
712 DO_VMOVN(VMOVNT, vmovnt)
713 DO_VMOVN(VQMOVUNB, vqmovunb)
714 DO_VMOVN(VQMOVUNT, vqmovunt)
715 DO_VMOVN(VQMOVN_BS, vqmovnbs)
716 DO_VMOVN(VQMOVN_TS, vqmovnts)
717 DO_VMOVN(VQMOVN_BU, vqmovnbu)
718 DO_VMOVN(VQMOVN_TU, vqmovntu)
719 
720 static bool trans_VREV16(DisasContext *s, arg_1op *a)
721 {
722     static MVEGenOneOpFn * const fns[] = {
723         gen_helper_mve_vrev16b,
724         NULL,
725         NULL,
726         NULL,
727     };
728     return do_1op(s, a, fns[a->size]);
729 }
730 
731 static bool trans_VREV32(DisasContext *s, arg_1op *a)
732 {
733     static MVEGenOneOpFn * const fns[] = {
734         gen_helper_mve_vrev32b,
735         gen_helper_mve_vrev32h,
736         NULL,
737         NULL,
738     };
739     return do_1op(s, a, fns[a->size]);
740 }
741 
742 static bool trans_VREV64(DisasContext *s, arg_1op *a)
743 {
744     static MVEGenOneOpFn * const fns[] = {
745         gen_helper_mve_vrev64b,
746         gen_helper_mve_vrev64h,
747         gen_helper_mve_vrev64w,
748         NULL,
749     };
750     return do_1op(s, a, fns[a->size]);
751 }
752 
753 static bool trans_VMVN(DisasContext *s, arg_1op *a)
754 {
755     return do_1op_vec(s, a, gen_helper_mve_vmvn, tcg_gen_gvec_not);
756 }
757 
758 static bool trans_VABS_fp(DisasContext *s, arg_1op *a)
759 {
760     static MVEGenOneOpFn * const fns[] = {
761         NULL,
762         gen_helper_mve_vfabsh,
763         gen_helper_mve_vfabss,
764         NULL,
765     };
766     if (!dc_isar_feature(aa32_mve_fp, s)) {
767         return false;
768     }
769     return do_1op(s, a, fns[a->size]);
770 }
771 
772 static bool trans_VNEG_fp(DisasContext *s, arg_1op *a)
773 {
774     static MVEGenOneOpFn * const fns[] = {
775         NULL,
776         gen_helper_mve_vfnegh,
777         gen_helper_mve_vfnegs,
778         NULL,
779     };
780     if (!dc_isar_feature(aa32_mve_fp, s)) {
781         return false;
782     }
783     return do_1op(s, a, fns[a->size]);
784 }
785 
786 static bool do_2op_vec(DisasContext *s, arg_2op *a, MVEGenTwoOpFn fn,
787                        GVecGen3Fn *vecfn)
788 {
789     TCGv_ptr qd, qn, qm;
790 
791     if (!dc_isar_feature(aa32_mve, s) ||
792         !mve_check_qreg_bank(s, a->qd | a->qn | a->qm) ||
793         !fn) {
794         return false;
795     }
796     if (!mve_eci_check(s) || !vfp_access_check(s)) {
797         return true;
798     }
799 
800     if (vecfn && mve_no_predication(s)) {
801         vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qn),
802               mve_qreg_offset(a->qm), 16, 16);
803     } else {
804         qd = mve_qreg_ptr(a->qd);
805         qn = mve_qreg_ptr(a->qn);
806         qm = mve_qreg_ptr(a->qm);
807         fn(cpu_env, qd, qn, qm);
808     }
809     mve_update_eci(s);
810     return true;
811 }
812 
813 static bool do_2op(DisasContext *s, arg_2op *a, MVEGenTwoOpFn *fn)
814 {
815     return do_2op_vec(s, a, fn, NULL);
816 }
817 
818 #define DO_LOGIC(INSN, HELPER, VECFN)                           \
819     static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
820     {                                                           \
821         return do_2op_vec(s, a, HELPER, VECFN);                 \
822     }
823 
824 DO_LOGIC(VAND, gen_helper_mve_vand, tcg_gen_gvec_and)
825 DO_LOGIC(VBIC, gen_helper_mve_vbic, tcg_gen_gvec_andc)
826 DO_LOGIC(VORR, gen_helper_mve_vorr, tcg_gen_gvec_or)
827 DO_LOGIC(VORN, gen_helper_mve_vorn, tcg_gen_gvec_orc)
828 DO_LOGIC(VEOR, gen_helper_mve_veor, tcg_gen_gvec_xor)
829 
830 static bool trans_VPSEL(DisasContext *s, arg_2op *a)
831 {
832     /* This insn updates predication bits */
833     s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
834     return do_2op(s, a, gen_helper_mve_vpsel);
835 }
836 
837 #define DO_2OP_VEC(INSN, FN, VECFN)                             \
838     static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
839     {                                                           \
840         static MVEGenTwoOpFn * const fns[] = {                  \
841             gen_helper_mve_##FN##b,                             \
842             gen_helper_mve_##FN##h,                             \
843             gen_helper_mve_##FN##w,                             \
844             NULL,                                               \
845         };                                                      \
846         return do_2op_vec(s, a, fns[a->size], VECFN);           \
847     }
848 
849 #define DO_2OP(INSN, FN) DO_2OP_VEC(INSN, FN, NULL)
850 
851 DO_2OP_VEC(VADD, vadd, tcg_gen_gvec_add)
852 DO_2OP_VEC(VSUB, vsub, tcg_gen_gvec_sub)
853 DO_2OP_VEC(VMUL, vmul, tcg_gen_gvec_mul)
854 DO_2OP(VMULH_S, vmulhs)
855 DO_2OP(VMULH_U, vmulhu)
856 DO_2OP(VRMULH_S, vrmulhs)
857 DO_2OP(VRMULH_U, vrmulhu)
858 DO_2OP_VEC(VMAX_S, vmaxs, tcg_gen_gvec_smax)
859 DO_2OP_VEC(VMAX_U, vmaxu, tcg_gen_gvec_umax)
860 DO_2OP_VEC(VMIN_S, vmins, tcg_gen_gvec_smin)
861 DO_2OP_VEC(VMIN_U, vminu, tcg_gen_gvec_umin)
862 DO_2OP(VABD_S, vabds)
863 DO_2OP(VABD_U, vabdu)
864 DO_2OP(VHADD_S, vhadds)
865 DO_2OP(VHADD_U, vhaddu)
866 DO_2OP(VHSUB_S, vhsubs)
867 DO_2OP(VHSUB_U, vhsubu)
868 DO_2OP(VMULL_BS, vmullbs)
869 DO_2OP(VMULL_BU, vmullbu)
870 DO_2OP(VMULL_TS, vmullts)
871 DO_2OP(VMULL_TU, vmulltu)
872 DO_2OP(VQDMULH, vqdmulh)
873 DO_2OP(VQRDMULH, vqrdmulh)
874 DO_2OP(VQADD_S, vqadds)
875 DO_2OP(VQADD_U, vqaddu)
876 DO_2OP(VQSUB_S, vqsubs)
877 DO_2OP(VQSUB_U, vqsubu)
878 DO_2OP(VSHL_S, vshls)
879 DO_2OP(VSHL_U, vshlu)
880 DO_2OP(VRSHL_S, vrshls)
881 DO_2OP(VRSHL_U, vrshlu)
882 DO_2OP(VQSHL_S, vqshls)
883 DO_2OP(VQSHL_U, vqshlu)
884 DO_2OP(VQRSHL_S, vqrshls)
885 DO_2OP(VQRSHL_U, vqrshlu)
886 DO_2OP(VQDMLADH, vqdmladh)
887 DO_2OP(VQDMLADHX, vqdmladhx)
888 DO_2OP(VQRDMLADH, vqrdmladh)
889 DO_2OP(VQRDMLADHX, vqrdmladhx)
890 DO_2OP(VQDMLSDH, vqdmlsdh)
891 DO_2OP(VQDMLSDHX, vqdmlsdhx)
892 DO_2OP(VQRDMLSDH, vqrdmlsdh)
893 DO_2OP(VQRDMLSDHX, vqrdmlsdhx)
894 DO_2OP(VRHADD_S, vrhadds)
895 DO_2OP(VRHADD_U, vrhaddu)
896 /*
897  * VCADD Qd == Qm at size MO_32 is UNPREDICTABLE; we choose not to diagnose
898  * so we can reuse the DO_2OP macro. (Our implementation calculates the
899  * "expected" results in this case.) Similarly for VHCADD.
900  */
901 DO_2OP(VCADD90, vcadd90)
902 DO_2OP(VCADD270, vcadd270)
903 DO_2OP(VHCADD90, vhcadd90)
904 DO_2OP(VHCADD270, vhcadd270)
905 
906 static bool trans_VQDMULLB(DisasContext *s, arg_2op *a)
907 {
908     static MVEGenTwoOpFn * const fns[] = {
909         NULL,
910         gen_helper_mve_vqdmullbh,
911         gen_helper_mve_vqdmullbw,
912         NULL,
913     };
914     if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
915         /* UNPREDICTABLE; we choose to undef */
916         return false;
917     }
918     return do_2op(s, a, fns[a->size]);
919 }
920 
921 static bool trans_VQDMULLT(DisasContext *s, arg_2op *a)
922 {
923     static MVEGenTwoOpFn * const fns[] = {
924         NULL,
925         gen_helper_mve_vqdmullth,
926         gen_helper_mve_vqdmulltw,
927         NULL,
928     };
929     if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
930         /* UNPREDICTABLE; we choose to undef */
931         return false;
932     }
933     return do_2op(s, a, fns[a->size]);
934 }
935 
936 static bool trans_VMULLP_B(DisasContext *s, arg_2op *a)
937 {
938     /*
939      * Note that a->size indicates the output size, ie VMULL.P8
940      * is the 8x8->16 operation and a->size is MO_16; VMULL.P16
941      * is the 16x16->32 operation and a->size is MO_32.
942      */
943     static MVEGenTwoOpFn * const fns[] = {
944         NULL,
945         gen_helper_mve_vmullpbh,
946         gen_helper_mve_vmullpbw,
947         NULL,
948     };
949     return do_2op(s, a, fns[a->size]);
950 }
951 
952 static bool trans_VMULLP_T(DisasContext *s, arg_2op *a)
953 {
954     /* a->size is as for trans_VMULLP_B */
955     static MVEGenTwoOpFn * const fns[] = {
956         NULL,
957         gen_helper_mve_vmullpth,
958         gen_helper_mve_vmullptw,
959         NULL,
960     };
961     return do_2op(s, a, fns[a->size]);
962 }
963 
964 /*
965  * VADC and VSBC: these perform an add-with-carry or subtract-with-carry
966  * of the 32-bit elements in each lane of the input vectors, where the
967  * carry-out of each add is the carry-in of the next.  The initial carry
968  * input is either fixed (0 for VADCI, 1 for VSBCI) or is from FPSCR.C
969  * (for VADC and VSBC); the carry out at the end is written back to FPSCR.C.
970  * These insns are subject to beat-wise execution.  Partial execution
971  * of an I=1 (initial carry input fixed) insn which does not
972  * execute the first beat must start with the current FPSCR.NZCV
973  * value, not the fixed constant input.
974  */
975 static bool trans_VADC(DisasContext *s, arg_2op *a)
976 {
977     return do_2op(s, a, gen_helper_mve_vadc);
978 }
979 
980 static bool trans_VADCI(DisasContext *s, arg_2op *a)
981 {
982     if (mve_skip_first_beat(s)) {
983         return trans_VADC(s, a);
984     }
985     return do_2op(s, a, gen_helper_mve_vadci);
986 }
987 
988 static bool trans_VSBC(DisasContext *s, arg_2op *a)
989 {
990     return do_2op(s, a, gen_helper_mve_vsbc);
991 }
992 
993 static bool trans_VSBCI(DisasContext *s, arg_2op *a)
994 {
995     if (mve_skip_first_beat(s)) {
996         return trans_VSBC(s, a);
997     }
998     return do_2op(s, a, gen_helper_mve_vsbci);
999 }
1000 
1001 #define DO_2OP_FP(INSN, FN)                                     \
1002     static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
1003     {                                                           \
1004         static MVEGenTwoOpFn * const fns[] = {                  \
1005             NULL,                                               \
1006             gen_helper_mve_##FN##h,                             \
1007             gen_helper_mve_##FN##s,                             \
1008             NULL,                                               \
1009         };                                                      \
1010         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
1011             return false;                                       \
1012         }                                                       \
1013         return do_2op(s, a, fns[a->size]);                      \
1014     }
1015 
1016 DO_2OP_FP(VADD_fp, vfadd)
1017 DO_2OP_FP(VSUB_fp, vfsub)
1018 DO_2OP_FP(VMUL_fp, vfmul)
1019 DO_2OP_FP(VABD_fp, vfabd)
1020 DO_2OP_FP(VMAXNM, vmaxnm)
1021 DO_2OP_FP(VMINNM, vminnm)
1022 DO_2OP_FP(VCADD90_fp, vfcadd90)
1023 DO_2OP_FP(VCADD270_fp, vfcadd270)
1024 DO_2OP_FP(VFMA, vfma)
1025 DO_2OP_FP(VFMS, vfms)
1026 DO_2OP_FP(VCMUL0, vcmul0)
1027 DO_2OP_FP(VCMUL90, vcmul90)
1028 DO_2OP_FP(VCMUL180, vcmul180)
1029 DO_2OP_FP(VCMUL270, vcmul270)
1030 DO_2OP_FP(VCMLA0, vcmla0)
1031 DO_2OP_FP(VCMLA90, vcmla90)
1032 DO_2OP_FP(VCMLA180, vcmla180)
1033 DO_2OP_FP(VCMLA270, vcmla270)
1034 DO_2OP_FP(VMAXNMA, vmaxnma)
1035 DO_2OP_FP(VMINNMA, vminnma)
1036 
1037 static bool do_2op_scalar(DisasContext *s, arg_2scalar *a,
1038                           MVEGenTwoOpScalarFn fn)
1039 {
1040     TCGv_ptr qd, qn;
1041     TCGv_i32 rm;
1042 
1043     if (!dc_isar_feature(aa32_mve, s) ||
1044         !mve_check_qreg_bank(s, a->qd | a->qn) ||
1045         !fn) {
1046         return false;
1047     }
1048     if (a->rm == 13 || a->rm == 15) {
1049         /* UNPREDICTABLE */
1050         return false;
1051     }
1052     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1053         return true;
1054     }
1055 
1056     qd = mve_qreg_ptr(a->qd);
1057     qn = mve_qreg_ptr(a->qn);
1058     rm = load_reg(s, a->rm);
1059     fn(cpu_env, qd, qn, rm);
1060     mve_update_eci(s);
1061     return true;
1062 }
1063 
1064 #define DO_2OP_SCALAR(INSN, FN)                                 \
1065     static bool trans_##INSN(DisasContext *s, arg_2scalar *a)   \
1066     {                                                           \
1067         static MVEGenTwoOpScalarFn * const fns[] = {            \
1068             gen_helper_mve_##FN##b,                             \
1069             gen_helper_mve_##FN##h,                             \
1070             gen_helper_mve_##FN##w,                             \
1071             NULL,                                               \
1072         };                                                      \
1073         return do_2op_scalar(s, a, fns[a->size]);               \
1074     }
1075 
1076 DO_2OP_SCALAR(VADD_scalar, vadd_scalar)
1077 DO_2OP_SCALAR(VSUB_scalar, vsub_scalar)
1078 DO_2OP_SCALAR(VMUL_scalar, vmul_scalar)
1079 DO_2OP_SCALAR(VHADD_S_scalar, vhadds_scalar)
1080 DO_2OP_SCALAR(VHADD_U_scalar, vhaddu_scalar)
1081 DO_2OP_SCALAR(VHSUB_S_scalar, vhsubs_scalar)
1082 DO_2OP_SCALAR(VHSUB_U_scalar, vhsubu_scalar)
1083 DO_2OP_SCALAR(VQADD_S_scalar, vqadds_scalar)
1084 DO_2OP_SCALAR(VQADD_U_scalar, vqaddu_scalar)
1085 DO_2OP_SCALAR(VQSUB_S_scalar, vqsubs_scalar)
1086 DO_2OP_SCALAR(VQSUB_U_scalar, vqsubu_scalar)
1087 DO_2OP_SCALAR(VQDMULH_scalar, vqdmulh_scalar)
1088 DO_2OP_SCALAR(VQRDMULH_scalar, vqrdmulh_scalar)
1089 DO_2OP_SCALAR(VBRSR, vbrsr)
1090 DO_2OP_SCALAR(VMLA, vmla)
1091 DO_2OP_SCALAR(VMLAS, vmlas)
1092 DO_2OP_SCALAR(VQDMLAH, vqdmlah)
1093 DO_2OP_SCALAR(VQRDMLAH, vqrdmlah)
1094 DO_2OP_SCALAR(VQDMLASH, vqdmlash)
1095 DO_2OP_SCALAR(VQRDMLASH, vqrdmlash)
1096 
1097 static bool trans_VQDMULLB_scalar(DisasContext *s, arg_2scalar *a)
1098 {
1099     static MVEGenTwoOpScalarFn * const fns[] = {
1100         NULL,
1101         gen_helper_mve_vqdmullb_scalarh,
1102         gen_helper_mve_vqdmullb_scalarw,
1103         NULL,
1104     };
1105     if (a->qd == a->qn && a->size == MO_32) {
1106         /* UNPREDICTABLE; we choose to undef */
1107         return false;
1108     }
1109     return do_2op_scalar(s, a, fns[a->size]);
1110 }
1111 
1112 static bool trans_VQDMULLT_scalar(DisasContext *s, arg_2scalar *a)
1113 {
1114     static MVEGenTwoOpScalarFn * const fns[] = {
1115         NULL,
1116         gen_helper_mve_vqdmullt_scalarh,
1117         gen_helper_mve_vqdmullt_scalarw,
1118         NULL,
1119     };
1120     if (a->qd == a->qn && a->size == MO_32) {
1121         /* UNPREDICTABLE; we choose to undef */
1122         return false;
1123     }
1124     return do_2op_scalar(s, a, fns[a->size]);
1125 }
1126 
1127 
1128 #define DO_2OP_FP_SCALAR(INSN, FN)                              \
1129     static bool trans_##INSN(DisasContext *s, arg_2scalar *a)   \
1130     {                                                           \
1131         static MVEGenTwoOpScalarFn * const fns[] = {            \
1132             NULL,                                               \
1133             gen_helper_mve_##FN##h,                             \
1134             gen_helper_mve_##FN##s,                             \
1135             NULL,                                               \
1136         };                                                      \
1137         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
1138             return false;                                       \
1139         }                                                       \
1140         return do_2op_scalar(s, a, fns[a->size]);               \
1141     }
1142 
1143 DO_2OP_FP_SCALAR(VADD_fp_scalar, vfadd_scalar)
1144 DO_2OP_FP_SCALAR(VSUB_fp_scalar, vfsub_scalar)
1145 DO_2OP_FP_SCALAR(VMUL_fp_scalar, vfmul_scalar)
1146 DO_2OP_FP_SCALAR(VFMA_scalar, vfma_scalar)
1147 DO_2OP_FP_SCALAR(VFMAS_scalar, vfmas_scalar)
1148 
1149 static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a,
1150                              MVEGenLongDualAccOpFn *fn)
1151 {
1152     TCGv_ptr qn, qm;
1153     TCGv_i64 rda;
1154     TCGv_i32 rdalo, rdahi;
1155 
1156     if (!dc_isar_feature(aa32_mve, s) ||
1157         !mve_check_qreg_bank(s, a->qn | a->qm) ||
1158         !fn) {
1159         return false;
1160     }
1161     /*
1162      * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
1163      * encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
1164      */
1165     if (a->rdahi == 13 || a->rdahi == 15) {
1166         return false;
1167     }
1168     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1169         return true;
1170     }
1171 
1172     qn = mve_qreg_ptr(a->qn);
1173     qm = mve_qreg_ptr(a->qm);
1174 
1175     /*
1176      * This insn is subject to beat-wise execution. Partial execution
1177      * of an A=0 (no-accumulate) insn which does not execute the first
1178      * beat must start with the current rda value, not 0.
1179      */
1180     if (a->a || mve_skip_first_beat(s)) {
1181         rda = tcg_temp_new_i64();
1182         rdalo = load_reg(s, a->rdalo);
1183         rdahi = load_reg(s, a->rdahi);
1184         tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
1185     } else {
1186         rda = tcg_const_i64(0);
1187     }
1188 
1189     fn(rda, cpu_env, qn, qm, rda);
1190 
1191     rdalo = tcg_temp_new_i32();
1192     rdahi = tcg_temp_new_i32();
1193     tcg_gen_extrl_i64_i32(rdalo, rda);
1194     tcg_gen_extrh_i64_i32(rdahi, rda);
1195     store_reg(s, a->rdalo, rdalo);
1196     store_reg(s, a->rdahi, rdahi);
1197     mve_update_eci(s);
1198     return true;
1199 }
1200 
1201 static bool trans_VMLALDAV_S(DisasContext *s, arg_vmlaldav *a)
1202 {
1203     static MVEGenLongDualAccOpFn * const fns[4][2] = {
1204         { NULL, NULL },
1205         { gen_helper_mve_vmlaldavsh, gen_helper_mve_vmlaldavxsh },
1206         { gen_helper_mve_vmlaldavsw, gen_helper_mve_vmlaldavxsw },
1207         { NULL, NULL },
1208     };
1209     return do_long_dual_acc(s, a, fns[a->size][a->x]);
1210 }
1211 
1212 static bool trans_VMLALDAV_U(DisasContext *s, arg_vmlaldav *a)
1213 {
1214     static MVEGenLongDualAccOpFn * const fns[4][2] = {
1215         { NULL, NULL },
1216         { gen_helper_mve_vmlaldavuh, NULL },
1217         { gen_helper_mve_vmlaldavuw, NULL },
1218         { NULL, NULL },
1219     };
1220     return do_long_dual_acc(s, a, fns[a->size][a->x]);
1221 }
1222 
1223 static bool trans_VMLSLDAV(DisasContext *s, arg_vmlaldav *a)
1224 {
1225     static MVEGenLongDualAccOpFn * const fns[4][2] = {
1226         { NULL, NULL },
1227         { gen_helper_mve_vmlsldavsh, gen_helper_mve_vmlsldavxsh },
1228         { gen_helper_mve_vmlsldavsw, gen_helper_mve_vmlsldavxsw },
1229         { NULL, NULL },
1230     };
1231     return do_long_dual_acc(s, a, fns[a->size][a->x]);
1232 }
1233 
1234 static bool trans_VRMLALDAVH_S(DisasContext *s, arg_vmlaldav *a)
1235 {
1236     static MVEGenLongDualAccOpFn * const fns[] = {
1237         gen_helper_mve_vrmlaldavhsw, gen_helper_mve_vrmlaldavhxsw,
1238     };
1239     return do_long_dual_acc(s, a, fns[a->x]);
1240 }
1241 
1242 static bool trans_VRMLALDAVH_U(DisasContext *s, arg_vmlaldav *a)
1243 {
1244     static MVEGenLongDualAccOpFn * const fns[] = {
1245         gen_helper_mve_vrmlaldavhuw, NULL,
1246     };
1247     return do_long_dual_acc(s, a, fns[a->x]);
1248 }
1249 
1250 static bool trans_VRMLSLDAVH(DisasContext *s, arg_vmlaldav *a)
1251 {
1252     static MVEGenLongDualAccOpFn * const fns[] = {
1253         gen_helper_mve_vrmlsldavhsw, gen_helper_mve_vrmlsldavhxsw,
1254     };
1255     return do_long_dual_acc(s, a, fns[a->x]);
1256 }
1257 
1258 static bool do_dual_acc(DisasContext *s, arg_vmladav *a, MVEGenDualAccOpFn *fn)
1259 {
1260     TCGv_ptr qn, qm;
1261     TCGv_i32 rda;
1262 
1263     if (!dc_isar_feature(aa32_mve, s) ||
1264         !mve_check_qreg_bank(s, a->qn) ||
1265         !fn) {
1266         return false;
1267     }
1268     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1269         return true;
1270     }
1271 
1272     qn = mve_qreg_ptr(a->qn);
1273     qm = mve_qreg_ptr(a->qm);
1274 
1275     /*
1276      * This insn is subject to beat-wise execution. Partial execution
1277      * of an A=0 (no-accumulate) insn which does not execute the first
1278      * beat must start with the current rda value, not 0.
1279      */
1280     if (a->a || mve_skip_first_beat(s)) {
1281         rda = load_reg(s, a->rda);
1282     } else {
1283         rda = tcg_const_i32(0);
1284     }
1285 
1286     fn(rda, cpu_env, qn, qm, rda);
1287     store_reg(s, a->rda, rda);
1288 
1289     mve_update_eci(s);
1290     return true;
1291 }
1292 
1293 #define DO_DUAL_ACC(INSN, FN)                                           \
1294     static bool trans_##INSN(DisasContext *s, arg_vmladav *a)           \
1295     {                                                                   \
1296         static MVEGenDualAccOpFn * const fns[4][2] = {                  \
1297             { gen_helper_mve_##FN##b, gen_helper_mve_##FN##xb },        \
1298             { gen_helper_mve_##FN##h, gen_helper_mve_##FN##xh },        \
1299             { gen_helper_mve_##FN##w, gen_helper_mve_##FN##xw },        \
1300             { NULL, NULL },                                             \
1301         };                                                              \
1302         return do_dual_acc(s, a, fns[a->size][a->x]);                   \
1303     }
1304 
1305 DO_DUAL_ACC(VMLADAV_S, vmladavs)
1306 DO_DUAL_ACC(VMLSDAV, vmlsdav)
1307 
1308 static bool trans_VMLADAV_U(DisasContext *s, arg_vmladav *a)
1309 {
1310     static MVEGenDualAccOpFn * const fns[4][2] = {
1311         { gen_helper_mve_vmladavub, NULL },
1312         { gen_helper_mve_vmladavuh, NULL },
1313         { gen_helper_mve_vmladavuw, NULL },
1314         { NULL, NULL },
1315     };
1316     return do_dual_acc(s, a, fns[a->size][a->x]);
1317 }
1318 
1319 static void gen_vpst(DisasContext *s, uint32_t mask)
1320 {
1321     /*
1322      * Set the VPR mask fields. We take advantage of MASK01 and MASK23
1323      * being adjacent fields in the register.
1324      *
1325      * Updating the masks is not predicated, but it is subject to beat-wise
1326      * execution, and the mask is updated on the odd-numbered beats.
1327      * So if PSR.ECI says we should skip beat 1, we mustn't update the
1328      * 01 mask field.
1329      */
1330     TCGv_i32 vpr = load_cpu_field(v7m.vpr);
1331     switch (s->eci) {
1332     case ECI_NONE:
1333     case ECI_A0:
1334         /* Update both 01 and 23 fields */
1335         tcg_gen_deposit_i32(vpr, vpr,
1336                             tcg_constant_i32(mask | (mask << 4)),
1337                             R_V7M_VPR_MASK01_SHIFT,
1338                             R_V7M_VPR_MASK01_LENGTH + R_V7M_VPR_MASK23_LENGTH);
1339         break;
1340     case ECI_A0A1:
1341     case ECI_A0A1A2:
1342     case ECI_A0A1A2B0:
1343         /* Update only the 23 mask field */
1344         tcg_gen_deposit_i32(vpr, vpr,
1345                             tcg_constant_i32(mask),
1346                             R_V7M_VPR_MASK23_SHIFT, R_V7M_VPR_MASK23_LENGTH);
1347         break;
1348     default:
1349         g_assert_not_reached();
1350     }
1351     store_cpu_field(vpr, v7m.vpr);
1352 }
1353 
1354 static bool trans_VPST(DisasContext *s, arg_VPST *a)
1355 {
1356     /* mask == 0 is a "related encoding" */
1357     if (!dc_isar_feature(aa32_mve, s) || !a->mask) {
1358         return false;
1359     }
1360     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1361         return true;
1362     }
1363     gen_vpst(s, a->mask);
1364     mve_update_and_store_eci(s);
1365     return true;
1366 }
1367 
1368 static bool trans_VPNOT(DisasContext *s, arg_VPNOT *a)
1369 {
1370     /*
1371      * Invert the predicate in VPR.P0. We have call out to
1372      * a helper because this insn itself is beatwise and can
1373      * be predicated.
1374      */
1375     if (!dc_isar_feature(aa32_mve, s)) {
1376         return false;
1377     }
1378     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1379         return true;
1380     }
1381 
1382     gen_helper_mve_vpnot(cpu_env);
1383     /* This insn updates predication bits */
1384     s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1385     mve_update_eci(s);
1386     return true;
1387 }
1388 
1389 static bool trans_VADDV(DisasContext *s, arg_VADDV *a)
1390 {
1391     /* VADDV: vector add across vector */
1392     static MVEGenVADDVFn * const fns[4][2] = {
1393         { gen_helper_mve_vaddvsb, gen_helper_mve_vaddvub },
1394         { gen_helper_mve_vaddvsh, gen_helper_mve_vaddvuh },
1395         { gen_helper_mve_vaddvsw, gen_helper_mve_vaddvuw },
1396         { NULL, NULL }
1397     };
1398     TCGv_ptr qm;
1399     TCGv_i32 rda;
1400 
1401     if (!dc_isar_feature(aa32_mve, s) ||
1402         a->size == 3) {
1403         return false;
1404     }
1405     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1406         return true;
1407     }
1408 
1409     /*
1410      * This insn is subject to beat-wise execution. Partial execution
1411      * of an A=0 (no-accumulate) insn which does not execute the first
1412      * beat must start with the current value of Rda, not zero.
1413      */
1414     if (a->a || mve_skip_first_beat(s)) {
1415         /* Accumulate input from Rda */
1416         rda = load_reg(s, a->rda);
1417     } else {
1418         /* Accumulate starting at zero */
1419         rda = tcg_const_i32(0);
1420     }
1421 
1422     qm = mve_qreg_ptr(a->qm);
1423     fns[a->size][a->u](rda, cpu_env, qm, rda);
1424     store_reg(s, a->rda, rda);
1425 
1426     mve_update_eci(s);
1427     return true;
1428 }
1429 
1430 static bool trans_VADDLV(DisasContext *s, arg_VADDLV *a)
1431 {
1432     /*
1433      * Vector Add Long Across Vector: accumulate the 32-bit
1434      * elements of the vector into a 64-bit result stored in
1435      * a pair of general-purpose registers.
1436      * No need to check Qm's bank: it is only 3 bits in decode.
1437      */
1438     TCGv_ptr qm;
1439     TCGv_i64 rda;
1440     TCGv_i32 rdalo, rdahi;
1441 
1442     if (!dc_isar_feature(aa32_mve, s)) {
1443         return false;
1444     }
1445     /*
1446      * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
1447      * encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
1448      */
1449     if (a->rdahi == 13 || a->rdahi == 15) {
1450         return false;
1451     }
1452     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1453         return true;
1454     }
1455 
1456     /*
1457      * This insn is subject to beat-wise execution. Partial execution
1458      * of an A=0 (no-accumulate) insn which does not execute the first
1459      * beat must start with the current value of RdaHi:RdaLo, not zero.
1460      */
1461     if (a->a || mve_skip_first_beat(s)) {
1462         /* Accumulate input from RdaHi:RdaLo */
1463         rda = tcg_temp_new_i64();
1464         rdalo = load_reg(s, a->rdalo);
1465         rdahi = load_reg(s, a->rdahi);
1466         tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
1467     } else {
1468         /* Accumulate starting at zero */
1469         rda = tcg_const_i64(0);
1470     }
1471 
1472     qm = mve_qreg_ptr(a->qm);
1473     if (a->u) {
1474         gen_helper_mve_vaddlv_u(rda, cpu_env, qm, rda);
1475     } else {
1476         gen_helper_mve_vaddlv_s(rda, cpu_env, qm, rda);
1477     }
1478 
1479     rdalo = tcg_temp_new_i32();
1480     rdahi = tcg_temp_new_i32();
1481     tcg_gen_extrl_i64_i32(rdalo, rda);
1482     tcg_gen_extrh_i64_i32(rdahi, rda);
1483     store_reg(s, a->rdalo, rdalo);
1484     store_reg(s, a->rdahi, rdahi);
1485     mve_update_eci(s);
1486     return true;
1487 }
1488 
1489 static bool do_1imm(DisasContext *s, arg_1imm *a, MVEGenOneOpImmFn *fn,
1490                     GVecGen2iFn *vecfn)
1491 {
1492     TCGv_ptr qd;
1493     uint64_t imm;
1494 
1495     if (!dc_isar_feature(aa32_mve, s) ||
1496         !mve_check_qreg_bank(s, a->qd) ||
1497         !fn) {
1498         return false;
1499     }
1500     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1501         return true;
1502     }
1503 
1504     imm = asimd_imm_const(a->imm, a->cmode, a->op);
1505 
1506     if (vecfn && mve_no_predication(s)) {
1507         vecfn(MO_64, mve_qreg_offset(a->qd), mve_qreg_offset(a->qd),
1508               imm, 16, 16);
1509     } else {
1510         qd = mve_qreg_ptr(a->qd);
1511         fn(cpu_env, qd, tcg_constant_i64(imm));
1512     }
1513     mve_update_eci(s);
1514     return true;
1515 }
1516 
1517 static void gen_gvec_vmovi(unsigned vece, uint32_t dofs, uint32_t aofs,
1518                            int64_t c, uint32_t oprsz, uint32_t maxsz)
1519 {
1520     tcg_gen_gvec_dup_imm(vece, dofs, oprsz, maxsz, c);
1521 }
1522 
1523 static bool trans_Vimm_1r(DisasContext *s, arg_1imm *a)
1524 {
1525     /* Handle decode of cmode/op here between VORR/VBIC/VMOV */
1526     MVEGenOneOpImmFn *fn;
1527     GVecGen2iFn *vecfn;
1528 
1529     if ((a->cmode & 1) && a->cmode < 12) {
1530         if (a->op) {
1531             /*
1532              * For op=1, the immediate will be inverted by asimd_imm_const(),
1533              * so the VBIC becomes a logical AND operation.
1534              */
1535             fn = gen_helper_mve_vandi;
1536             vecfn = tcg_gen_gvec_andi;
1537         } else {
1538             fn = gen_helper_mve_vorri;
1539             vecfn = tcg_gen_gvec_ori;
1540         }
1541     } else {
1542         /* There is one unallocated cmode/op combination in this space */
1543         if (a->cmode == 15 && a->op == 1) {
1544             return false;
1545         }
1546         /* asimd_imm_const() sorts out VMVNI vs VMOVI for us */
1547         fn = gen_helper_mve_vmovi;
1548         vecfn = gen_gvec_vmovi;
1549     }
1550     return do_1imm(s, a, fn, vecfn);
1551 }
1552 
1553 static bool do_2shift_vec(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn,
1554                           bool negateshift, GVecGen2iFn vecfn)
1555 {
1556     TCGv_ptr qd, qm;
1557     int shift = a->shift;
1558 
1559     if (!dc_isar_feature(aa32_mve, s) ||
1560         !mve_check_qreg_bank(s, a->qd | a->qm) ||
1561         !fn) {
1562         return false;
1563     }
1564     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1565         return true;
1566     }
1567 
1568     /*
1569      * When we handle a right shift insn using a left-shift helper
1570      * which permits a negative shift count to indicate a right-shift,
1571      * we must negate the shift count.
1572      */
1573     if (negateshift) {
1574         shift = -shift;
1575     }
1576 
1577     if (vecfn && mve_no_predication(s)) {
1578         vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qm),
1579               shift, 16, 16);
1580     } else {
1581         qd = mve_qreg_ptr(a->qd);
1582         qm = mve_qreg_ptr(a->qm);
1583         fn(cpu_env, qd, qm, tcg_constant_i32(shift));
1584     }
1585     mve_update_eci(s);
1586     return true;
1587 }
1588 
1589 static bool do_2shift(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn,
1590                       bool negateshift)
1591 {
1592     return do_2shift_vec(s, a, fn, negateshift, NULL);
1593 }
1594 
1595 #define DO_2SHIFT_VEC(INSN, FN, NEGATESHIFT, VECFN)                     \
1596     static bool trans_##INSN(DisasContext *s, arg_2shift *a)            \
1597     {                                                                   \
1598         static MVEGenTwoOpShiftFn * const fns[] = {                     \
1599             gen_helper_mve_##FN##b,                                     \
1600             gen_helper_mve_##FN##h,                                     \
1601             gen_helper_mve_##FN##w,                                     \
1602             NULL,                                                       \
1603         };                                                              \
1604         return do_2shift_vec(s, a, fns[a->size], NEGATESHIFT, VECFN);   \
1605     }
1606 
1607 #define DO_2SHIFT(INSN, FN, NEGATESHIFT)        \
1608     DO_2SHIFT_VEC(INSN, FN, NEGATESHIFT, NULL)
1609 
1610 static void do_gvec_shri_s(unsigned vece, uint32_t dofs, uint32_t aofs,
1611                            int64_t shift, uint32_t oprsz, uint32_t maxsz)
1612 {
1613     /*
1614      * We get here with a negated shift count, and we must handle
1615      * shifts by the element size, which tcg_gen_gvec_sari() does not do.
1616      */
1617     shift = -shift;
1618     if (shift == (8 << vece)) {
1619         shift--;
1620     }
1621     tcg_gen_gvec_sari(vece, dofs, aofs, shift, oprsz, maxsz);
1622 }
1623 
1624 static void do_gvec_shri_u(unsigned vece, uint32_t dofs, uint32_t aofs,
1625                            int64_t shift, uint32_t oprsz, uint32_t maxsz)
1626 {
1627     /*
1628      * We get here with a negated shift count, and we must handle
1629      * shifts by the element size, which tcg_gen_gvec_shri() does not do.
1630      */
1631     shift = -shift;
1632     if (shift == (8 << vece)) {
1633         tcg_gen_gvec_dup_imm(vece, dofs, oprsz, maxsz, 0);
1634     } else {
1635         tcg_gen_gvec_shri(vece, dofs, aofs, shift, oprsz, maxsz);
1636     }
1637 }
1638 
1639 DO_2SHIFT_VEC(VSHLI, vshli_u, false, tcg_gen_gvec_shli)
1640 DO_2SHIFT(VQSHLI_S, vqshli_s, false)
1641 DO_2SHIFT(VQSHLI_U, vqshli_u, false)
1642 DO_2SHIFT(VQSHLUI, vqshlui_s, false)
1643 /* These right shifts use a left-shift helper with negated shift count */
1644 DO_2SHIFT_VEC(VSHRI_S, vshli_s, true, do_gvec_shri_s)
1645 DO_2SHIFT_VEC(VSHRI_U, vshli_u, true, do_gvec_shri_u)
1646 DO_2SHIFT(VRSHRI_S, vrshli_s, true)
1647 DO_2SHIFT(VRSHRI_U, vrshli_u, true)
1648 
1649 DO_2SHIFT_VEC(VSRI, vsri, false, gen_gvec_sri)
1650 DO_2SHIFT_VEC(VSLI, vsli, false, gen_gvec_sli)
1651 
1652 #define DO_2SHIFT_FP(INSN, FN)                                  \
1653     static bool trans_##INSN(DisasContext *s, arg_2shift *a)    \
1654     {                                                           \
1655         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
1656             return false;                                       \
1657         }                                                       \
1658         return do_2shift(s, a, gen_helper_mve_##FN, false);     \
1659     }
1660 
1661 DO_2SHIFT_FP(VCVT_SH_fixed, vcvt_sh)
1662 DO_2SHIFT_FP(VCVT_UH_fixed, vcvt_uh)
1663 DO_2SHIFT_FP(VCVT_HS_fixed, vcvt_hs)
1664 DO_2SHIFT_FP(VCVT_HU_fixed, vcvt_hu)
1665 DO_2SHIFT_FP(VCVT_SF_fixed, vcvt_sf)
1666 DO_2SHIFT_FP(VCVT_UF_fixed, vcvt_uf)
1667 DO_2SHIFT_FP(VCVT_FS_fixed, vcvt_fs)
1668 DO_2SHIFT_FP(VCVT_FU_fixed, vcvt_fu)
1669 
1670 static bool do_2shift_scalar(DisasContext *s, arg_shl_scalar *a,
1671                              MVEGenTwoOpShiftFn *fn)
1672 {
1673     TCGv_ptr qda;
1674     TCGv_i32 rm;
1675 
1676     if (!dc_isar_feature(aa32_mve, s) ||
1677         !mve_check_qreg_bank(s, a->qda) ||
1678         a->rm == 13 || a->rm == 15 || !fn) {
1679         /* Rm cases are UNPREDICTABLE */
1680         return false;
1681     }
1682     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1683         return true;
1684     }
1685 
1686     qda = mve_qreg_ptr(a->qda);
1687     rm = load_reg(s, a->rm);
1688     fn(cpu_env, qda, qda, rm);
1689     mve_update_eci(s);
1690     return true;
1691 }
1692 
1693 #define DO_2SHIFT_SCALAR(INSN, FN)                                      \
1694     static bool trans_##INSN(DisasContext *s, arg_shl_scalar *a)        \
1695     {                                                                   \
1696         static MVEGenTwoOpShiftFn * const fns[] = {                     \
1697             gen_helper_mve_##FN##b,                                     \
1698             gen_helper_mve_##FN##h,                                     \
1699             gen_helper_mve_##FN##w,                                     \
1700             NULL,                                                       \
1701         };                                                              \
1702         return do_2shift_scalar(s, a, fns[a->size]);                    \
1703     }
1704 
1705 DO_2SHIFT_SCALAR(VSHL_S_scalar, vshli_s)
1706 DO_2SHIFT_SCALAR(VSHL_U_scalar, vshli_u)
1707 DO_2SHIFT_SCALAR(VRSHL_S_scalar, vrshli_s)
1708 DO_2SHIFT_SCALAR(VRSHL_U_scalar, vrshli_u)
1709 DO_2SHIFT_SCALAR(VQSHL_S_scalar, vqshli_s)
1710 DO_2SHIFT_SCALAR(VQSHL_U_scalar, vqshli_u)
1711 DO_2SHIFT_SCALAR(VQRSHL_S_scalar, vqrshli_s)
1712 DO_2SHIFT_SCALAR(VQRSHL_U_scalar, vqrshli_u)
1713 
1714 #define DO_VSHLL(INSN, FN)                                              \
1715     static bool trans_##INSN(DisasContext *s, arg_2shift *a)            \
1716     {                                                                   \
1717         static MVEGenTwoOpShiftFn * const fns[] = {                     \
1718             gen_helper_mve_##FN##b,                                     \
1719             gen_helper_mve_##FN##h,                                     \
1720         };                                                              \
1721         return do_2shift_vec(s, a, fns[a->size], false, do_gvec_##FN);  \
1722     }
1723 
1724 /*
1725  * For the VSHLL vector helpers, the vece is the size of the input
1726  * (ie MO_8 or MO_16); the helpers want to work in the output size.
1727  * The shift count can be 0..<input size>, inclusive. (0 is VMOVL.)
1728  */
1729 static void do_gvec_vshllbs(unsigned vece, uint32_t dofs, uint32_t aofs,
1730                             int64_t shift, uint32_t oprsz, uint32_t maxsz)
1731 {
1732     unsigned ovece = vece + 1;
1733     unsigned ibits = vece == MO_8 ? 8 : 16;
1734     tcg_gen_gvec_shli(ovece, dofs, aofs, ibits, oprsz, maxsz);
1735     tcg_gen_gvec_sari(ovece, dofs, dofs, ibits - shift, oprsz, maxsz);
1736 }
1737 
1738 static void do_gvec_vshllbu(unsigned vece, uint32_t dofs, uint32_t aofs,
1739                             int64_t shift, uint32_t oprsz, uint32_t maxsz)
1740 {
1741     unsigned ovece = vece + 1;
1742     tcg_gen_gvec_andi(ovece, dofs, aofs,
1743                       ovece == MO_16 ? 0xff : 0xffff, oprsz, maxsz);
1744     tcg_gen_gvec_shli(ovece, dofs, dofs, shift, oprsz, maxsz);
1745 }
1746 
1747 static void do_gvec_vshllts(unsigned vece, uint32_t dofs, uint32_t aofs,
1748                             int64_t shift, uint32_t oprsz, uint32_t maxsz)
1749 {
1750     unsigned ovece = vece + 1;
1751     unsigned ibits = vece == MO_8 ? 8 : 16;
1752     if (shift == 0) {
1753         tcg_gen_gvec_sari(ovece, dofs, aofs, ibits, oprsz, maxsz);
1754     } else {
1755         tcg_gen_gvec_andi(ovece, dofs, aofs,
1756                           ovece == MO_16 ? 0xff00 : 0xffff0000, oprsz, maxsz);
1757         tcg_gen_gvec_sari(ovece, dofs, dofs, ibits - shift, oprsz, maxsz);
1758     }
1759 }
1760 
1761 static void do_gvec_vshlltu(unsigned vece, uint32_t dofs, uint32_t aofs,
1762                             int64_t shift, uint32_t oprsz, uint32_t maxsz)
1763 {
1764     unsigned ovece = vece + 1;
1765     unsigned ibits = vece == MO_8 ? 8 : 16;
1766     if (shift == 0) {
1767         tcg_gen_gvec_shri(ovece, dofs, aofs, ibits, oprsz, maxsz);
1768     } else {
1769         tcg_gen_gvec_andi(ovece, dofs, aofs,
1770                           ovece == MO_16 ? 0xff00 : 0xffff0000, oprsz, maxsz);
1771         tcg_gen_gvec_shri(ovece, dofs, dofs, ibits - shift, oprsz, maxsz);
1772     }
1773 }
1774 
1775 DO_VSHLL(VSHLL_BS, vshllbs)
1776 DO_VSHLL(VSHLL_BU, vshllbu)
1777 DO_VSHLL(VSHLL_TS, vshllts)
1778 DO_VSHLL(VSHLL_TU, vshlltu)
1779 
1780 #define DO_2SHIFT_N(INSN, FN)                                   \
1781     static bool trans_##INSN(DisasContext *s, arg_2shift *a)    \
1782     {                                                           \
1783         static MVEGenTwoOpShiftFn * const fns[] = {             \
1784             gen_helper_mve_##FN##b,                             \
1785             gen_helper_mve_##FN##h,                             \
1786         };                                                      \
1787         return do_2shift(s, a, fns[a->size], false);            \
1788     }
1789 
1790 DO_2SHIFT_N(VSHRNB, vshrnb)
1791 DO_2SHIFT_N(VSHRNT, vshrnt)
1792 DO_2SHIFT_N(VRSHRNB, vrshrnb)
1793 DO_2SHIFT_N(VRSHRNT, vrshrnt)
1794 DO_2SHIFT_N(VQSHRNB_S, vqshrnb_s)
1795 DO_2SHIFT_N(VQSHRNT_S, vqshrnt_s)
1796 DO_2SHIFT_N(VQSHRNB_U, vqshrnb_u)
1797 DO_2SHIFT_N(VQSHRNT_U, vqshrnt_u)
1798 DO_2SHIFT_N(VQSHRUNB, vqshrunb)
1799 DO_2SHIFT_N(VQSHRUNT, vqshrunt)
1800 DO_2SHIFT_N(VQRSHRNB_S, vqrshrnb_s)
1801 DO_2SHIFT_N(VQRSHRNT_S, vqrshrnt_s)
1802 DO_2SHIFT_N(VQRSHRNB_U, vqrshrnb_u)
1803 DO_2SHIFT_N(VQRSHRNT_U, vqrshrnt_u)
1804 DO_2SHIFT_N(VQRSHRUNB, vqrshrunb)
1805 DO_2SHIFT_N(VQRSHRUNT, vqrshrunt)
1806 
1807 static bool trans_VSHLC(DisasContext *s, arg_VSHLC *a)
1808 {
1809     /*
1810      * Whole Vector Left Shift with Carry. The carry is taken
1811      * from a general purpose register and written back there.
1812      * An imm of 0 means "shift by 32".
1813      */
1814     TCGv_ptr qd;
1815     TCGv_i32 rdm;
1816 
1817     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1818         return false;
1819     }
1820     if (a->rdm == 13 || a->rdm == 15) {
1821         /* CONSTRAINED UNPREDICTABLE: we UNDEF */
1822         return false;
1823     }
1824     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1825         return true;
1826     }
1827 
1828     qd = mve_qreg_ptr(a->qd);
1829     rdm = load_reg(s, a->rdm);
1830     gen_helper_mve_vshlc(rdm, cpu_env, qd, rdm, tcg_constant_i32(a->imm));
1831     store_reg(s, a->rdm, rdm);
1832     mve_update_eci(s);
1833     return true;
1834 }
1835 
1836 static bool do_vidup(DisasContext *s, arg_vidup *a, MVEGenVIDUPFn *fn)
1837 {
1838     TCGv_ptr qd;
1839     TCGv_i32 rn;
1840 
1841     /*
1842      * Vector increment/decrement with wrap and duplicate (VIDUP, VDDUP).
1843      * This fills the vector with elements of successively increasing
1844      * or decreasing values, starting from Rn.
1845      */
1846     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1847         return false;
1848     }
1849     if (a->size == MO_64) {
1850         /* size 0b11 is another encoding */
1851         return false;
1852     }
1853     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1854         return true;
1855     }
1856 
1857     qd = mve_qreg_ptr(a->qd);
1858     rn = load_reg(s, a->rn);
1859     fn(rn, cpu_env, qd, rn, tcg_constant_i32(a->imm));
1860     store_reg(s, a->rn, rn);
1861     mve_update_eci(s);
1862     return true;
1863 }
1864 
1865 static bool do_viwdup(DisasContext *s, arg_viwdup *a, MVEGenVIWDUPFn *fn)
1866 {
1867     TCGv_ptr qd;
1868     TCGv_i32 rn, rm;
1869 
1870     /*
1871      * Vector increment/decrement with wrap and duplicate (VIWDUp, VDWDUP)
1872      * This fills the vector with elements of successively increasing
1873      * or decreasing values, starting from Rn. Rm specifies a point where
1874      * the count wraps back around to 0. The updated offset is written back
1875      * to Rn.
1876      */
1877     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1878         return false;
1879     }
1880     if (!fn || a->rm == 13 || a->rm == 15) {
1881         /*
1882          * size 0b11 is another encoding; Rm == 13 is UNPREDICTABLE;
1883          * Rm == 13 is VIWDUP, VDWDUP.
1884          */
1885         return false;
1886     }
1887     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1888         return true;
1889     }
1890 
1891     qd = mve_qreg_ptr(a->qd);
1892     rn = load_reg(s, a->rn);
1893     rm = load_reg(s, a->rm);
1894     fn(rn, cpu_env, qd, rn, rm, tcg_constant_i32(a->imm));
1895     store_reg(s, a->rn, rn);
1896     mve_update_eci(s);
1897     return true;
1898 }
1899 
1900 static bool trans_VIDUP(DisasContext *s, arg_vidup *a)
1901 {
1902     static MVEGenVIDUPFn * const fns[] = {
1903         gen_helper_mve_vidupb,
1904         gen_helper_mve_viduph,
1905         gen_helper_mve_vidupw,
1906         NULL,
1907     };
1908     return do_vidup(s, a, fns[a->size]);
1909 }
1910 
1911 static bool trans_VDDUP(DisasContext *s, arg_vidup *a)
1912 {
1913     static MVEGenVIDUPFn * const fns[] = {
1914         gen_helper_mve_vidupb,
1915         gen_helper_mve_viduph,
1916         gen_helper_mve_vidupw,
1917         NULL,
1918     };
1919     /* VDDUP is just like VIDUP but with a negative immediate */
1920     a->imm = -a->imm;
1921     return do_vidup(s, a, fns[a->size]);
1922 }
1923 
1924 static bool trans_VIWDUP(DisasContext *s, arg_viwdup *a)
1925 {
1926     static MVEGenVIWDUPFn * const fns[] = {
1927         gen_helper_mve_viwdupb,
1928         gen_helper_mve_viwduph,
1929         gen_helper_mve_viwdupw,
1930         NULL,
1931     };
1932     return do_viwdup(s, a, fns[a->size]);
1933 }
1934 
1935 static bool trans_VDWDUP(DisasContext *s, arg_viwdup *a)
1936 {
1937     static MVEGenVIWDUPFn * const fns[] = {
1938         gen_helper_mve_vdwdupb,
1939         gen_helper_mve_vdwduph,
1940         gen_helper_mve_vdwdupw,
1941         NULL,
1942     };
1943     return do_viwdup(s, a, fns[a->size]);
1944 }
1945 
1946 static bool do_vcmp(DisasContext *s, arg_vcmp *a, MVEGenCmpFn *fn)
1947 {
1948     TCGv_ptr qn, qm;
1949 
1950     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) ||
1951         !fn) {
1952         return false;
1953     }
1954     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1955         return true;
1956     }
1957 
1958     qn = mve_qreg_ptr(a->qn);
1959     qm = mve_qreg_ptr(a->qm);
1960     fn(cpu_env, qn, qm);
1961     if (a->mask) {
1962         /* VPT */
1963         gen_vpst(s, a->mask);
1964     }
1965     /* This insn updates predication bits */
1966     s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1967     mve_update_eci(s);
1968     return true;
1969 }
1970 
1971 static bool do_vcmp_scalar(DisasContext *s, arg_vcmp_scalar *a,
1972                            MVEGenScalarCmpFn *fn)
1973 {
1974     TCGv_ptr qn;
1975     TCGv_i32 rm;
1976 
1977     if (!dc_isar_feature(aa32_mve, s) || !fn || a->rm == 13) {
1978         return false;
1979     }
1980     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1981         return true;
1982     }
1983 
1984     qn = mve_qreg_ptr(a->qn);
1985     if (a->rm == 15) {
1986         /* Encoding Rm=0b1111 means "constant zero" */
1987         rm = tcg_constant_i32(0);
1988     } else {
1989         rm = load_reg(s, a->rm);
1990     }
1991     fn(cpu_env, qn, rm);
1992     if (a->mask) {
1993         /* VPT */
1994         gen_vpst(s, a->mask);
1995     }
1996     /* This insn updates predication bits */
1997     s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1998     mve_update_eci(s);
1999     return true;
2000 }
2001 
2002 #define DO_VCMP(INSN, FN)                                       \
2003     static bool trans_##INSN(DisasContext *s, arg_vcmp *a)      \
2004     {                                                           \
2005         static MVEGenCmpFn * const fns[] = {                    \
2006             gen_helper_mve_##FN##b,                             \
2007             gen_helper_mve_##FN##h,                             \
2008             gen_helper_mve_##FN##w,                             \
2009             NULL,                                               \
2010         };                                                      \
2011         return do_vcmp(s, a, fns[a->size]);                     \
2012     }                                                           \
2013     static bool trans_##INSN##_scalar(DisasContext *s,          \
2014                                       arg_vcmp_scalar *a)       \
2015     {                                                           \
2016         static MVEGenScalarCmpFn * const fns[] = {              \
2017             gen_helper_mve_##FN##_scalarb,                      \
2018             gen_helper_mve_##FN##_scalarh,                      \
2019             gen_helper_mve_##FN##_scalarw,                      \
2020             NULL,                                               \
2021         };                                                      \
2022         return do_vcmp_scalar(s, a, fns[a->size]);              \
2023     }
2024 
2025 DO_VCMP(VCMPEQ, vcmpeq)
2026 DO_VCMP(VCMPNE, vcmpne)
2027 DO_VCMP(VCMPCS, vcmpcs)
2028 DO_VCMP(VCMPHI, vcmphi)
2029 DO_VCMP(VCMPGE, vcmpge)
2030 DO_VCMP(VCMPLT, vcmplt)
2031 DO_VCMP(VCMPGT, vcmpgt)
2032 DO_VCMP(VCMPLE, vcmple)
2033 
2034 #define DO_VCMP_FP(INSN, FN)                                    \
2035     static bool trans_##INSN(DisasContext *s, arg_vcmp *a)      \
2036     {                                                           \
2037         static MVEGenCmpFn * const fns[] = {                    \
2038             NULL,                                               \
2039             gen_helper_mve_##FN##h,                             \
2040             gen_helper_mve_##FN##s,                             \
2041             NULL,                                               \
2042         };                                                      \
2043         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
2044             return false;                                       \
2045         }                                                       \
2046         return do_vcmp(s, a, fns[a->size]);                     \
2047     }                                                           \
2048     static bool trans_##INSN##_scalar(DisasContext *s,          \
2049                                       arg_vcmp_scalar *a)       \
2050     {                                                           \
2051         static MVEGenScalarCmpFn * const fns[] = {              \
2052             NULL,                                               \
2053             gen_helper_mve_##FN##_scalarh,                      \
2054             gen_helper_mve_##FN##_scalars,                      \
2055             NULL,                                               \
2056         };                                                      \
2057         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
2058             return false;                                       \
2059         }                                                       \
2060         return do_vcmp_scalar(s, a, fns[a->size]);              \
2061     }
2062 
2063 DO_VCMP_FP(VCMPEQ_fp, vfcmpeq)
2064 DO_VCMP_FP(VCMPNE_fp, vfcmpne)
2065 DO_VCMP_FP(VCMPGE_fp, vfcmpge)
2066 DO_VCMP_FP(VCMPLT_fp, vfcmplt)
2067 DO_VCMP_FP(VCMPGT_fp, vfcmpgt)
2068 DO_VCMP_FP(VCMPLE_fp, vfcmple)
2069 
2070 static bool do_vmaxv(DisasContext *s, arg_vmaxv *a, MVEGenVADDVFn fn)
2071 {
2072     /*
2073      * MIN/MAX operations across a vector: compute the min or
2074      * max of the initial value in a general purpose register
2075      * and all the elements in the vector, and store it back
2076      * into the general purpose register.
2077      */
2078     TCGv_ptr qm;
2079     TCGv_i32 rda;
2080 
2081     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) ||
2082         !fn || a->rda == 13 || a->rda == 15) {
2083         /* Rda cases are UNPREDICTABLE */
2084         return false;
2085     }
2086     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2087         return true;
2088     }
2089 
2090     qm = mve_qreg_ptr(a->qm);
2091     rda = load_reg(s, a->rda);
2092     fn(rda, cpu_env, qm, rda);
2093     store_reg(s, a->rda, rda);
2094     mve_update_eci(s);
2095     return true;
2096 }
2097 
2098 #define DO_VMAXV(INSN, FN)                                      \
2099     static bool trans_##INSN(DisasContext *s, arg_vmaxv *a)     \
2100     {                                                           \
2101         static MVEGenVADDVFn * const fns[] = {                  \
2102             gen_helper_mve_##FN##b,                             \
2103             gen_helper_mve_##FN##h,                             \
2104             gen_helper_mve_##FN##w,                             \
2105             NULL,                                               \
2106         };                                                      \
2107         return do_vmaxv(s, a, fns[a->size]);                    \
2108     }
2109 
2110 DO_VMAXV(VMAXV_S, vmaxvs)
2111 DO_VMAXV(VMAXV_U, vmaxvu)
2112 DO_VMAXV(VMAXAV, vmaxav)
2113 DO_VMAXV(VMINV_S, vminvs)
2114 DO_VMAXV(VMINV_U, vminvu)
2115 DO_VMAXV(VMINAV, vminav)
2116 
2117 #define DO_VMAXV_FP(INSN, FN)                                   \
2118     static bool trans_##INSN(DisasContext *s, arg_vmaxv *a)     \
2119     {                                                           \
2120         static MVEGenVADDVFn * const fns[] = {                  \
2121             NULL,                                               \
2122             gen_helper_mve_##FN##h,                             \
2123             gen_helper_mve_##FN##s,                             \
2124             NULL,                                               \
2125         };                                                      \
2126         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
2127             return false;                                       \
2128         }                                                       \
2129         return do_vmaxv(s, a, fns[a->size]);                    \
2130     }
2131 
2132 DO_VMAXV_FP(VMAXNMV, vmaxnmv)
2133 DO_VMAXV_FP(VMINNMV, vminnmv)
2134 DO_VMAXV_FP(VMAXNMAV, vmaxnmav)
2135 DO_VMAXV_FP(VMINNMAV, vminnmav)
2136 
2137 static bool do_vabav(DisasContext *s, arg_vabav *a, MVEGenVABAVFn *fn)
2138 {
2139     /* Absolute difference accumulated across vector */
2140     TCGv_ptr qn, qm;
2141     TCGv_i32 rda;
2142 
2143     if (!dc_isar_feature(aa32_mve, s) ||
2144         !mve_check_qreg_bank(s, a->qm | a->qn) ||
2145         !fn || a->rda == 13 || a->rda == 15) {
2146         /* Rda cases are UNPREDICTABLE */
2147         return false;
2148     }
2149     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2150         return true;
2151     }
2152 
2153     qm = mve_qreg_ptr(a->qm);
2154     qn = mve_qreg_ptr(a->qn);
2155     rda = load_reg(s, a->rda);
2156     fn(rda, cpu_env, qn, qm, rda);
2157     store_reg(s, a->rda, rda);
2158     mve_update_eci(s);
2159     return true;
2160 }
2161 
2162 #define DO_VABAV(INSN, FN)                                      \
2163     static bool trans_##INSN(DisasContext *s, arg_vabav *a)     \
2164     {                                                           \
2165         static MVEGenVABAVFn * const fns[] = {                  \
2166             gen_helper_mve_##FN##b,                             \
2167             gen_helper_mve_##FN##h,                             \
2168             gen_helper_mve_##FN##w,                             \
2169             NULL,                                               \
2170         };                                                      \
2171         return do_vabav(s, a, fns[a->size]);                    \
2172     }
2173 
2174 DO_VABAV(VABAV_S, vabavs)
2175 DO_VABAV(VABAV_U, vabavu)
2176 
2177 static bool trans_VMOV_to_2gp(DisasContext *s, arg_VMOV_to_2gp *a)
2178 {
2179     /*
2180      * VMOV two 32-bit vector lanes to two general-purpose registers.
2181      * This insn is not predicated but it is subject to beat-wise
2182      * execution if it is not in an IT block. For us this means
2183      * only that if PSR.ECI says we should not be executing the beat
2184      * corresponding to the lane of the vector register being accessed
2185      * then we should skip perfoming the move, and that we need to do
2186      * the usual check for bad ECI state and advance of ECI state.
2187      * (If PSR.ECI is non-zero then we cannot be in an IT block.)
2188      */
2189     TCGv_i32 tmp;
2190     int vd;
2191 
2192     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) ||
2193         a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15 ||
2194         a->rt == a->rt2) {
2195         /* Rt/Rt2 cases are UNPREDICTABLE */
2196         return false;
2197     }
2198     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2199         return true;
2200     }
2201 
2202     /* Convert Qreg index to Dreg for read_neon_element32() etc */
2203     vd = a->qd * 2;
2204 
2205     if (!mve_skip_vmov(s, vd, a->idx, MO_32)) {
2206         tmp = tcg_temp_new_i32();
2207         read_neon_element32(tmp, vd, a->idx, MO_32);
2208         store_reg(s, a->rt, tmp);
2209     }
2210     if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) {
2211         tmp = tcg_temp_new_i32();
2212         read_neon_element32(tmp, vd + 1, a->idx, MO_32);
2213         store_reg(s, a->rt2, tmp);
2214     }
2215 
2216     mve_update_and_store_eci(s);
2217     return true;
2218 }
2219 
2220 static bool trans_VMOV_from_2gp(DisasContext *s, arg_VMOV_to_2gp *a)
2221 {
2222     /*
2223      * VMOV two general-purpose registers to two 32-bit vector lanes.
2224      * This insn is not predicated but it is subject to beat-wise
2225      * execution if it is not in an IT block. For us this means
2226      * only that if PSR.ECI says we should not be executing the beat
2227      * corresponding to the lane of the vector register being accessed
2228      * then we should skip perfoming the move, and that we need to do
2229      * the usual check for bad ECI state and advance of ECI state.
2230      * (If PSR.ECI is non-zero then we cannot be in an IT block.)
2231      */
2232     TCGv_i32 tmp;
2233     int vd;
2234 
2235     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) ||
2236         a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15) {
2237         /* Rt/Rt2 cases are UNPREDICTABLE */
2238         return false;
2239     }
2240     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2241         return true;
2242     }
2243 
2244     /* Convert Qreg idx to Dreg for read_neon_element32() etc */
2245     vd = a->qd * 2;
2246 
2247     if (!mve_skip_vmov(s, vd, a->idx, MO_32)) {
2248         tmp = load_reg(s, a->rt);
2249         write_neon_element32(tmp, vd, a->idx, MO_32);
2250     }
2251     if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) {
2252         tmp = load_reg(s, a->rt2);
2253         write_neon_element32(tmp, vd + 1, a->idx, MO_32);
2254     }
2255 
2256     mve_update_and_store_eci(s);
2257     return true;
2258 }
2259