xref: /openbmc/qemu/target/arm/ptw.c (revision 4a06a7cc053deae16864359a5149bcb4442f8d2a)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "idau.h"
15 
16 
17 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
18                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
19                                bool s1_is_el0, hwaddr *phys_ptr,
20                                MemTxAttrs *txattrs, int *prot,
21                                target_ulong *page_size_ptr,
22                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
23     __attribute__((nonnull));
24 
25 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
26 static const uint8_t pamax_map[] = {
27     [0] = 32,
28     [1] = 36,
29     [2] = 40,
30     [3] = 42,
31     [4] = 44,
32     [5] = 48,
33     [6] = 52,
34 };
35 
36 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
37 unsigned int arm_pamax(ARMCPU *cpu)
38 {
39     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
40         unsigned int parange =
41             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
42 
43         /*
44          * id_aa64mmfr0 is a read-only register so values outside of the
45          * supported mappings can be considered an implementation error.
46          */
47         assert(parange < ARRAY_SIZE(pamax_map));
48         return pamax_map[parange];
49     }
50 
51     /*
52      * In machvirt_init, we call arm_pamax on a cpu that is not fully
53      * initialized, so we can't rely on the propagation done in realize.
54      */
55     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
56         arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
57         /* v7 with LPAE */
58         return 40;
59     }
60     /* Anything else */
61     return 32;
62 }
63 
64 /*
65  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
66  */
67 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
68 {
69     switch (mmu_idx) {
70     case ARMMMUIdx_SE10_0:
71         return ARMMMUIdx_Stage1_SE0;
72     case ARMMMUIdx_SE10_1:
73         return ARMMMUIdx_Stage1_SE1;
74     case ARMMMUIdx_SE10_1_PAN:
75         return ARMMMUIdx_Stage1_SE1_PAN;
76     case ARMMMUIdx_E10_0:
77         return ARMMMUIdx_Stage1_E0;
78     case ARMMMUIdx_E10_1:
79         return ARMMMUIdx_Stage1_E1;
80     case ARMMMUIdx_E10_1_PAN:
81         return ARMMMUIdx_Stage1_E1_PAN;
82     default:
83         return mmu_idx;
84     }
85 }
86 
87 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
88 {
89     return stage_1_mmu_idx(arm_mmu_idx(env));
90 }
91 
92 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
93 {
94     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
95 }
96 
97 static bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
98 {
99     switch (mmu_idx) {
100     case ARMMMUIdx_SE10_0:
101     case ARMMMUIdx_E20_0:
102     case ARMMMUIdx_SE20_0:
103     case ARMMMUIdx_Stage1_E0:
104     case ARMMMUIdx_Stage1_SE0:
105     case ARMMMUIdx_MUser:
106     case ARMMMUIdx_MSUser:
107     case ARMMMUIdx_MUserNegPri:
108     case ARMMMUIdx_MSUserNegPri:
109         return true;
110     default:
111         return false;
112     case ARMMMUIdx_E10_0:
113     case ARMMMUIdx_E10_1:
114     case ARMMMUIdx_E10_1_PAN:
115         g_assert_not_reached();
116     }
117 }
118 
119 /* Return the TTBR associated with this translation regime */
120 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
121 {
122     if (mmu_idx == ARMMMUIdx_Stage2) {
123         return env->cp15.vttbr_el2;
124     }
125     if (mmu_idx == ARMMMUIdx_Stage2_S) {
126         return env->cp15.vsttbr_el2;
127     }
128     if (ttbrn == 0) {
129         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
130     } else {
131         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
132     }
133 }
134 
135 /* Return true if the specified stage of address translation is disabled */
136 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx)
137 {
138     uint64_t hcr_el2;
139 
140     if (arm_feature(env, ARM_FEATURE_M)) {
141         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
142                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
143         case R_V7M_MPU_CTRL_ENABLE_MASK:
144             /* Enabled, but not for HardFault and NMI */
145             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
146         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
147             /* Enabled for all cases */
148             return false;
149         case 0:
150         default:
151             /*
152              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
153              * we warned about that in armv7m_nvic.c when the guest set it.
154              */
155             return true;
156         }
157     }
158 
159     hcr_el2 = arm_hcr_el2_eff(env);
160 
161     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
162         /* HCR.DC means HCR.VM behaves as 1 */
163         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
164     }
165 
166     if (hcr_el2 & HCR_TGE) {
167         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
168         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
169             return true;
170         }
171     }
172 
173     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
174         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
175         return true;
176     }
177 
178     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
179 }
180 
181 static bool ptw_attrs_are_device(CPUARMState *env, ARMCacheAttrs cacheattrs)
182 {
183     /*
184      * For an S1 page table walk, the stage 1 attributes are always
185      * some form of "this is Normal memory". The combined S1+S2
186      * attributes are therefore only Device if stage 2 specifies Device.
187      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
188      * ie when cacheattrs.attrs bits [3:2] are 0b00.
189      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
190      * when cacheattrs.attrs bit [2] is 0.
191      */
192     assert(cacheattrs.is_s2_format);
193     if (arm_hcr_el2_eff(env) & HCR_FWB) {
194         return (cacheattrs.attrs & 0x4) == 0;
195     } else {
196         return (cacheattrs.attrs & 0xc) == 0;
197     }
198 }
199 
200 /* Translate a S1 pagetable walk through S2 if needed.  */
201 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
202                                hwaddr addr, bool *is_secure,
203                                ARMMMUFaultInfo *fi)
204 {
205     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
206         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
207         target_ulong s2size;
208         hwaddr s2pa;
209         int s2prot;
210         int ret;
211         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
212                                           : ARMMMUIdx_Stage2;
213         ARMCacheAttrs cacheattrs = {};
214         MemTxAttrs txattrs = {};
215 
216         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
217                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
218                                  &cacheattrs);
219         if (ret) {
220             assert(fi->type != ARMFault_None);
221             fi->s2addr = addr;
222             fi->stage2 = true;
223             fi->s1ptw = true;
224             fi->s1ns = !*is_secure;
225             return ~0;
226         }
227         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
228             ptw_attrs_are_device(env, cacheattrs)) {
229             /*
230              * PTW set and S1 walk touched S2 Device memory:
231              * generate Permission fault.
232              */
233             fi->type = ARMFault_Permission;
234             fi->s2addr = addr;
235             fi->stage2 = true;
236             fi->s1ptw = true;
237             fi->s1ns = !*is_secure;
238             return ~0;
239         }
240 
241         if (arm_is_secure_below_el3(env)) {
242             /* Check if page table walk is to secure or non-secure PA space. */
243             if (*is_secure) {
244                 *is_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
245             } else {
246                 *is_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
247             }
248         } else {
249             assert(!*is_secure);
250         }
251 
252         addr = s2pa;
253     }
254     return addr;
255 }
256 
257 /* All loads done in the course of a page table walk go through here. */
258 static uint32_t arm_ldl_ptw(CPUARMState *env, hwaddr addr, bool is_secure,
259                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
260 {
261     CPUState *cs = env_cpu(env);
262     MemTxAttrs attrs = {};
263     MemTxResult result = MEMTX_OK;
264     AddressSpace *as;
265     uint32_t data;
266 
267     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
268     attrs.secure = is_secure;
269     as = arm_addressspace(cs, attrs);
270     if (fi->s1ptw) {
271         return 0;
272     }
273     if (regime_translation_big_endian(env, mmu_idx)) {
274         data = address_space_ldl_be(as, addr, attrs, &result);
275     } else {
276         data = address_space_ldl_le(as, addr, attrs, &result);
277     }
278     if (result == MEMTX_OK) {
279         return data;
280     }
281     fi->type = ARMFault_SyncExternalOnWalk;
282     fi->ea = arm_extabort_type(result);
283     return 0;
284 }
285 
286 static uint64_t arm_ldq_ptw(CPUARMState *env, hwaddr addr, bool is_secure,
287                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
288 {
289     CPUState *cs = env_cpu(env);
290     MemTxAttrs attrs = {};
291     MemTxResult result = MEMTX_OK;
292     AddressSpace *as;
293     uint64_t data;
294 
295     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
296     attrs.secure = is_secure;
297     as = arm_addressspace(cs, attrs);
298     if (fi->s1ptw) {
299         return 0;
300     }
301     if (regime_translation_big_endian(env, mmu_idx)) {
302         data = address_space_ldq_be(as, addr, attrs, &result);
303     } else {
304         data = address_space_ldq_le(as, addr, attrs, &result);
305     }
306     if (result == MEMTX_OK) {
307         return data;
308     }
309     fi->type = ARMFault_SyncExternalOnWalk;
310     fi->ea = arm_extabort_type(result);
311     return 0;
312 }
313 
314 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
315                                      uint32_t *table, uint32_t address)
316 {
317     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
318     uint64_t tcr = regime_tcr(env, mmu_idx);
319     int maskshift = extract32(tcr, 0, 3);
320     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
321     uint32_t base_mask;
322 
323     if (address & mask) {
324         if (tcr & TTBCR_PD1) {
325             /* Translation table walk disabled for TTBR1 */
326             return false;
327         }
328         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
329     } else {
330         if (tcr & TTBCR_PD0) {
331             /* Translation table walk disabled for TTBR0 */
332             return false;
333         }
334         base_mask = ~((uint32_t)0x3fffu >> maskshift);
335         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
336     }
337     *table |= (address >> 18) & 0x3ffc;
338     return true;
339 }
340 
341 /*
342  * Translate section/page access permissions to page R/W protection flags
343  * @env:         CPUARMState
344  * @mmu_idx:     MMU index indicating required translation regime
345  * @ap:          The 3-bit access permissions (AP[2:0])
346  * @domain_prot: The 2-bit domain access permissions
347  */
348 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
349                          int ap, int domain_prot)
350 {
351     bool is_user = regime_is_user(env, mmu_idx);
352 
353     if (domain_prot == 3) {
354         return PAGE_READ | PAGE_WRITE;
355     }
356 
357     switch (ap) {
358     case 0:
359         if (arm_feature(env, ARM_FEATURE_V7)) {
360             return 0;
361         }
362         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
363         case SCTLR_S:
364             return is_user ? 0 : PAGE_READ;
365         case SCTLR_R:
366             return PAGE_READ;
367         default:
368             return 0;
369         }
370     case 1:
371         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
372     case 2:
373         if (is_user) {
374             return PAGE_READ;
375         } else {
376             return PAGE_READ | PAGE_WRITE;
377         }
378     case 3:
379         return PAGE_READ | PAGE_WRITE;
380     case 4: /* Reserved.  */
381         return 0;
382     case 5:
383         return is_user ? 0 : PAGE_READ;
384     case 6:
385         return PAGE_READ;
386     case 7:
387         if (!arm_feature(env, ARM_FEATURE_V6K)) {
388             return 0;
389         }
390         return PAGE_READ;
391     default:
392         g_assert_not_reached();
393     }
394 }
395 
396 /*
397  * Translate section/page access permissions to page R/W protection flags.
398  * @ap:      The 2-bit simple AP (AP[2:1])
399  * @is_user: TRUE if accessing from PL0
400  */
401 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
402 {
403     switch (ap) {
404     case 0:
405         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
406     case 1:
407         return PAGE_READ | PAGE_WRITE;
408     case 2:
409         return is_user ? 0 : PAGE_READ;
410     case 3:
411         return PAGE_READ;
412     default:
413         g_assert_not_reached();
414     }
415 }
416 
417 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
418 {
419     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
420 }
421 
422 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
423                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
424                              hwaddr *phys_ptr, int *prot,
425                              target_ulong *page_size,
426                              ARMMMUFaultInfo *fi)
427 {
428     int level = 1;
429     uint32_t table;
430     uint32_t desc;
431     int type;
432     int ap;
433     int domain = 0;
434     int domain_prot;
435     hwaddr phys_addr;
436     uint32_t dacr;
437 
438     /* Pagetable walk.  */
439     /* Lookup l1 descriptor.  */
440     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
441         /* Section translation fault if page walk is disabled by PD0 or PD1 */
442         fi->type = ARMFault_Translation;
443         goto do_fault;
444     }
445     desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
446                        mmu_idx, fi);
447     if (fi->type != ARMFault_None) {
448         goto do_fault;
449     }
450     type = (desc & 3);
451     domain = (desc >> 5) & 0x0f;
452     if (regime_el(env, mmu_idx) == 1) {
453         dacr = env->cp15.dacr_ns;
454     } else {
455         dacr = env->cp15.dacr_s;
456     }
457     domain_prot = (dacr >> (domain * 2)) & 3;
458     if (type == 0) {
459         /* Section translation fault.  */
460         fi->type = ARMFault_Translation;
461         goto do_fault;
462     }
463     if (type != 2) {
464         level = 2;
465     }
466     if (domain_prot == 0 || domain_prot == 2) {
467         fi->type = ARMFault_Domain;
468         goto do_fault;
469     }
470     if (type == 2) {
471         /* 1Mb section.  */
472         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
473         ap = (desc >> 10) & 3;
474         *page_size = 1024 * 1024;
475     } else {
476         /* Lookup l2 entry.  */
477         if (type == 1) {
478             /* Coarse pagetable.  */
479             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
480         } else {
481             /* Fine pagetable.  */
482             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
483         }
484         desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
485                            mmu_idx, fi);
486         if (fi->type != ARMFault_None) {
487             goto do_fault;
488         }
489         switch (desc & 3) {
490         case 0: /* Page translation fault.  */
491             fi->type = ARMFault_Translation;
492             goto do_fault;
493         case 1: /* 64k page.  */
494             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
495             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
496             *page_size = 0x10000;
497             break;
498         case 2: /* 4k page.  */
499             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
500             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
501             *page_size = 0x1000;
502             break;
503         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
504             if (type == 1) {
505                 /* ARMv6/XScale extended small page format */
506                 if (arm_feature(env, ARM_FEATURE_XSCALE)
507                     || arm_feature(env, ARM_FEATURE_V6)) {
508                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
509                     *page_size = 0x1000;
510                 } else {
511                     /*
512                      * UNPREDICTABLE in ARMv5; we choose to take a
513                      * page translation fault.
514                      */
515                     fi->type = ARMFault_Translation;
516                     goto do_fault;
517                 }
518             } else {
519                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
520                 *page_size = 0x400;
521             }
522             ap = (desc >> 4) & 3;
523             break;
524         default:
525             /* Never happens, but compiler isn't smart enough to tell.  */
526             g_assert_not_reached();
527         }
528     }
529     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
530     *prot |= *prot ? PAGE_EXEC : 0;
531     if (!(*prot & (1 << access_type))) {
532         /* Access permission fault.  */
533         fi->type = ARMFault_Permission;
534         goto do_fault;
535     }
536     *phys_ptr = phys_addr;
537     return false;
538 do_fault:
539     fi->domain = domain;
540     fi->level = level;
541     return true;
542 }
543 
544 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
545                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
546                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
547                              target_ulong *page_size, ARMMMUFaultInfo *fi)
548 {
549     ARMCPU *cpu = env_archcpu(env);
550     int level = 1;
551     uint32_t table;
552     uint32_t desc;
553     uint32_t xn;
554     uint32_t pxn = 0;
555     int type;
556     int ap;
557     int domain = 0;
558     int domain_prot;
559     hwaddr phys_addr;
560     uint32_t dacr;
561     bool ns;
562 
563     /* Pagetable walk.  */
564     /* Lookup l1 descriptor.  */
565     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
566         /* Section translation fault if page walk is disabled by PD0 or PD1 */
567         fi->type = ARMFault_Translation;
568         goto do_fault;
569     }
570     desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
571                        mmu_idx, fi);
572     if (fi->type != ARMFault_None) {
573         goto do_fault;
574     }
575     type = (desc & 3);
576     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
577         /* Section translation fault, or attempt to use the encoding
578          * which is Reserved on implementations without PXN.
579          */
580         fi->type = ARMFault_Translation;
581         goto do_fault;
582     }
583     if ((type == 1) || !(desc & (1 << 18))) {
584         /* Page or Section.  */
585         domain = (desc >> 5) & 0x0f;
586     }
587     if (regime_el(env, mmu_idx) == 1) {
588         dacr = env->cp15.dacr_ns;
589     } else {
590         dacr = env->cp15.dacr_s;
591     }
592     if (type == 1) {
593         level = 2;
594     }
595     domain_prot = (dacr >> (domain * 2)) & 3;
596     if (domain_prot == 0 || domain_prot == 2) {
597         /* Section or Page domain fault */
598         fi->type = ARMFault_Domain;
599         goto do_fault;
600     }
601     if (type != 1) {
602         if (desc & (1 << 18)) {
603             /* Supersection.  */
604             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
605             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
606             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
607             *page_size = 0x1000000;
608         } else {
609             /* Section.  */
610             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
611             *page_size = 0x100000;
612         }
613         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
614         xn = desc & (1 << 4);
615         pxn = desc & 1;
616         ns = extract32(desc, 19, 1);
617     } else {
618         if (cpu_isar_feature(aa32_pxn, cpu)) {
619             pxn = (desc >> 2) & 1;
620         }
621         ns = extract32(desc, 3, 1);
622         /* Lookup l2 entry.  */
623         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
624         desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
625                            mmu_idx, fi);
626         if (fi->type != ARMFault_None) {
627             goto do_fault;
628         }
629         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
630         switch (desc & 3) {
631         case 0: /* Page translation fault.  */
632             fi->type = ARMFault_Translation;
633             goto do_fault;
634         case 1: /* 64k page.  */
635             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
636             xn = desc & (1 << 15);
637             *page_size = 0x10000;
638             break;
639         case 2: case 3: /* 4k page.  */
640             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
641             xn = desc & 1;
642             *page_size = 0x1000;
643             break;
644         default:
645             /* Never happens, but compiler isn't smart enough to tell.  */
646             g_assert_not_reached();
647         }
648     }
649     if (domain_prot == 3) {
650         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
651     } else {
652         if (pxn && !regime_is_user(env, mmu_idx)) {
653             xn = 1;
654         }
655         if (xn && access_type == MMU_INST_FETCH) {
656             fi->type = ARMFault_Permission;
657             goto do_fault;
658         }
659 
660         if (arm_feature(env, ARM_FEATURE_V6K) &&
661                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
662             /* The simplified model uses AP[0] as an access control bit.  */
663             if ((ap & 1) == 0) {
664                 /* Access flag fault.  */
665                 fi->type = ARMFault_AccessFlag;
666                 goto do_fault;
667             }
668             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
669         } else {
670             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
671         }
672         if (*prot && !xn) {
673             *prot |= PAGE_EXEC;
674         }
675         if (!(*prot & (1 << access_type))) {
676             /* Access permission fault.  */
677             fi->type = ARMFault_Permission;
678             goto do_fault;
679         }
680     }
681     if (ns) {
682         /* The NS bit will (as required by the architecture) have no effect if
683          * the CPU doesn't support TZ or this is a non-secure translation
684          * regime, because the attribute will already be non-secure.
685          */
686         attrs->secure = false;
687     }
688     *phys_ptr = phys_addr;
689     return false;
690 do_fault:
691     fi->domain = domain;
692     fi->level = level;
693     return true;
694 }
695 
696 /*
697  * Translate S2 section/page access permissions to protection flags
698  * @env:     CPUARMState
699  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
700  * @xn:      XN (execute-never) bits
701  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
702  */
703 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
704 {
705     int prot = 0;
706 
707     if (s2ap & 1) {
708         prot |= PAGE_READ;
709     }
710     if (s2ap & 2) {
711         prot |= PAGE_WRITE;
712     }
713 
714     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
715         switch (xn) {
716         case 0:
717             prot |= PAGE_EXEC;
718             break;
719         case 1:
720             if (s1_is_el0) {
721                 prot |= PAGE_EXEC;
722             }
723             break;
724         case 2:
725             break;
726         case 3:
727             if (!s1_is_el0) {
728                 prot |= PAGE_EXEC;
729             }
730             break;
731         default:
732             g_assert_not_reached();
733         }
734     } else {
735         if (!extract32(xn, 1, 1)) {
736             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
737                 prot |= PAGE_EXEC;
738             }
739         }
740     }
741     return prot;
742 }
743 
744 /*
745  * Translate section/page access permissions to protection flags
746  * @env:     CPUARMState
747  * @mmu_idx: MMU index indicating required translation regime
748  * @is_aa64: TRUE if AArch64
749  * @ap:      The 2-bit simple AP (AP[2:1])
750  * @ns:      NS (non-secure) bit
751  * @xn:      XN (execute-never) bit
752  * @pxn:     PXN (privileged execute-never) bit
753  */
754 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
755                       int ap, int ns, int xn, int pxn)
756 {
757     bool is_user = regime_is_user(env, mmu_idx);
758     int prot_rw, user_rw;
759     bool have_wxn;
760     int wxn = 0;
761 
762     assert(mmu_idx != ARMMMUIdx_Stage2);
763     assert(mmu_idx != ARMMMUIdx_Stage2_S);
764 
765     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
766     if (is_user) {
767         prot_rw = user_rw;
768     } else {
769         if (user_rw && regime_is_pan(env, mmu_idx)) {
770             /* PAN forbids data accesses but doesn't affect insn fetch */
771             prot_rw = 0;
772         } else {
773             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
774         }
775     }
776 
777     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
778         return prot_rw;
779     }
780 
781     /* TODO have_wxn should be replaced with
782      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
783      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
784      * compatible processors have EL2, which is required for [U]WXN.
785      */
786     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
787 
788     if (have_wxn) {
789         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
790     }
791 
792     if (is_aa64) {
793         if (regime_has_2_ranges(mmu_idx) && !is_user) {
794             xn = pxn || (user_rw & PAGE_WRITE);
795         }
796     } else if (arm_feature(env, ARM_FEATURE_V7)) {
797         switch (regime_el(env, mmu_idx)) {
798         case 1:
799         case 3:
800             if (is_user) {
801                 xn = xn || !(user_rw & PAGE_READ);
802             } else {
803                 int uwxn = 0;
804                 if (have_wxn) {
805                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
806                 }
807                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
808                      (uwxn && (user_rw & PAGE_WRITE));
809             }
810             break;
811         case 2:
812             break;
813         }
814     } else {
815         xn = wxn = 0;
816     }
817 
818     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
819         return prot_rw;
820     }
821     return prot_rw | PAGE_EXEC;
822 }
823 
824 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
825                                           ARMMMUIdx mmu_idx)
826 {
827     uint64_t tcr = regime_tcr(env, mmu_idx);
828     uint32_t el = regime_el(env, mmu_idx);
829     int select, tsz;
830     bool epd, hpd;
831 
832     assert(mmu_idx != ARMMMUIdx_Stage2_S);
833 
834     if (mmu_idx == ARMMMUIdx_Stage2) {
835         /* VTCR */
836         bool sext = extract32(tcr, 4, 1);
837         bool sign = extract32(tcr, 3, 1);
838 
839         /*
840          * If the sign-extend bit is not the same as t0sz[3], the result
841          * is unpredictable. Flag this as a guest error.
842          */
843         if (sign != sext) {
844             qemu_log_mask(LOG_GUEST_ERROR,
845                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
846         }
847         tsz = sextract32(tcr, 0, 4) + 8;
848         select = 0;
849         hpd = false;
850         epd = false;
851     } else if (el == 2) {
852         /* HTCR */
853         tsz = extract32(tcr, 0, 3);
854         select = 0;
855         hpd = extract64(tcr, 24, 1);
856         epd = false;
857     } else {
858         int t0sz = extract32(tcr, 0, 3);
859         int t1sz = extract32(tcr, 16, 3);
860 
861         if (t1sz == 0) {
862             select = va > (0xffffffffu >> t0sz);
863         } else {
864             /* Note that we will detect errors later.  */
865             select = va >= ~(0xffffffffu >> t1sz);
866         }
867         if (!select) {
868             tsz = t0sz;
869             epd = extract32(tcr, 7, 1);
870             hpd = extract64(tcr, 41, 1);
871         } else {
872             tsz = t1sz;
873             epd = extract32(tcr, 23, 1);
874             hpd = extract64(tcr, 42, 1);
875         }
876         /* For aarch32, hpd0 is not enabled without t2e as well.  */
877         hpd &= extract32(tcr, 6, 1);
878     }
879 
880     return (ARMVAParameters) {
881         .tsz = tsz,
882         .select = select,
883         .epd = epd,
884         .hpd = hpd,
885     };
886 }
887 
888 /*
889  * check_s2_mmu_setup
890  * @cpu:        ARMCPU
891  * @is_aa64:    True if the translation regime is in AArch64 state
892  * @startlevel: Suggested starting level
893  * @inputsize:  Bitsize of IPAs
894  * @stride:     Page-table stride (See the ARM ARM)
895  *
896  * Returns true if the suggested S2 translation parameters are OK and
897  * false otherwise.
898  */
899 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
900                                int inputsize, int stride, int outputsize)
901 {
902     const int grainsize = stride + 3;
903     int startsizecheck;
904 
905     /*
906      * Negative levels are usually not allowed...
907      * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
908      * begins with level -1.  Note that previous feature tests will have
909      * eliminated this combination if it is not enabled.
910      */
911     if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
912         return false;
913     }
914 
915     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
916     if (startsizecheck < 1 || startsizecheck > stride + 4) {
917         return false;
918     }
919 
920     if (is_aa64) {
921         switch (stride) {
922         case 13: /* 64KB Pages.  */
923             if (level == 0 || (level == 1 && outputsize <= 42)) {
924                 return false;
925             }
926             break;
927         case 11: /* 16KB Pages.  */
928             if (level == 0 || (level == 1 && outputsize <= 40)) {
929                 return false;
930             }
931             break;
932         case 9: /* 4KB Pages.  */
933             if (level == 0 && outputsize <= 42) {
934                 return false;
935             }
936             break;
937         default:
938             g_assert_not_reached();
939         }
940 
941         /* Inputsize checks.  */
942         if (inputsize > outputsize &&
943             (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
944             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
945             return false;
946         }
947     } else {
948         /* AArch32 only supports 4KB pages. Assert on that.  */
949         assert(stride == 9);
950 
951         if (level == 0) {
952             return false;
953         }
954     }
955     return true;
956 }
957 
958 /**
959  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
960  *
961  * Returns false if the translation was successful. Otherwise, phys_ptr,
962  * attrs, prot and page_size may not be filled in, and the populated fsr
963  * value provides information on why the translation aborted, in the format
964  * of a long-format DFSR/IFSR fault register, with the following caveat:
965  * the WnR bit is never set (the caller must do this).
966  *
967  * @env: CPUARMState
968  * @address: virtual address to get physical address for
969  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
970  * @mmu_idx: MMU index indicating required translation regime
971  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page
972  *             table walk), must be true if this is stage 2 of a stage 1+2
973  *             walk for an EL0 access. If @mmu_idx is anything else,
974  *             @s1_is_el0 is ignored.
975  * @phys_ptr: set to the physical address corresponding to the virtual address
976  * @attrs: set to the memory transaction attributes to use
977  * @prot: set to the permissions for the page containing phys_ptr
978  * @page_size_ptr: set to the size of the page containing phys_ptr
979  * @fi: set to fault info if the translation fails
980  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
981  */
982 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
983                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
984                                bool s1_is_el0, hwaddr *phys_ptr,
985                                MemTxAttrs *txattrs, int *prot,
986                                target_ulong *page_size_ptr,
987                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
988 {
989     ARMCPU *cpu = env_archcpu(env);
990     /* Read an LPAE long-descriptor translation table. */
991     ARMFaultType fault_type = ARMFault_Translation;
992     uint32_t level;
993     ARMVAParameters param;
994     uint64_t ttbr;
995     hwaddr descaddr, indexmask, indexmask_grainsize;
996     uint32_t tableattrs;
997     target_ulong page_size;
998     uint32_t attrs;
999     int32_t stride;
1000     int addrsize, inputsize, outputsize;
1001     uint64_t tcr = regime_tcr(env, mmu_idx);
1002     int ap, ns, xn, pxn;
1003     uint32_t el = regime_el(env, mmu_idx);
1004     uint64_t descaddrmask;
1005     bool aarch64 = arm_el_is_aa64(env, el);
1006     bool guarded = false;
1007 
1008     /* TODO: This code does not support shareability levels. */
1009     if (aarch64) {
1010         int ps;
1011 
1012         param = aa64_va_parameters(env, address, mmu_idx,
1013                                    access_type != MMU_INST_FETCH);
1014         level = 0;
1015 
1016         /*
1017          * If TxSZ is programmed to a value larger than the maximum,
1018          * or smaller than the effective minimum, it is IMPLEMENTATION
1019          * DEFINED whether we behave as if the field were programmed
1020          * within bounds, or if a level 0 Translation fault is generated.
1021          *
1022          * With FEAT_LVA, fault on less than minimum becomes required,
1023          * so our choice is to always raise the fault.
1024          */
1025         if (param.tsz_oob) {
1026             fault_type = ARMFault_Translation;
1027             goto do_fault;
1028         }
1029 
1030         addrsize = 64 - 8 * param.tbi;
1031         inputsize = 64 - param.tsz;
1032 
1033         /*
1034          * Bound PS by PARANGE to find the effective output address size.
1035          * ID_AA64MMFR0 is a read-only register so values outside of the
1036          * supported mappings can be considered an implementation error.
1037          */
1038         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1039         ps = MIN(ps, param.ps);
1040         assert(ps < ARRAY_SIZE(pamax_map));
1041         outputsize = pamax_map[ps];
1042     } else {
1043         param = aa32_va_parameters(env, address, mmu_idx);
1044         level = 1;
1045         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1046         inputsize = addrsize - param.tsz;
1047         outputsize = 40;
1048     }
1049 
1050     /*
1051      * We determined the region when collecting the parameters, but we
1052      * have not yet validated that the address is valid for the region.
1053      * Extract the top bits and verify that they all match select.
1054      *
1055      * For aa32, if inputsize == addrsize, then we have selected the
1056      * region by exclusion in aa32_va_parameters and there is no more
1057      * validation to do here.
1058      */
1059     if (inputsize < addrsize) {
1060         target_ulong top_bits = sextract64(address, inputsize,
1061                                            addrsize - inputsize);
1062         if (-top_bits != param.select) {
1063             /* The gap between the two regions is a Translation fault */
1064             fault_type = ARMFault_Translation;
1065             goto do_fault;
1066         }
1067     }
1068 
1069     if (param.using64k) {
1070         stride = 13;
1071     } else if (param.using16k) {
1072         stride = 11;
1073     } else {
1074         stride = 9;
1075     }
1076 
1077     /*
1078      * Note that QEMU ignores shareability and cacheability attributes,
1079      * so we don't need to do anything with the SH, ORGN, IRGN fields
1080      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1081      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1082      * implement any ASID-like capability so we can ignore it (instead
1083      * we will always flush the TLB any time the ASID is changed).
1084      */
1085     ttbr = regime_ttbr(env, mmu_idx, param.select);
1086 
1087     /*
1088      * Here we should have set up all the parameters for the translation:
1089      * inputsize, ttbr, epd, stride, tbi
1090      */
1091 
1092     if (param.epd) {
1093         /*
1094          * Translation table walk disabled => Translation fault on TLB miss
1095          * Note: This is always 0 on 64-bit EL2 and EL3.
1096          */
1097         goto do_fault;
1098     }
1099 
1100     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
1101         /*
1102          * The starting level depends on the virtual address size (which can
1103          * be up to 48 bits) and the translation granule size. It indicates
1104          * the number of strides (stride bits at a time) needed to
1105          * consume the bits of the input address. In the pseudocode this is:
1106          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1107          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1108          * our 'stride + 3' and 'stride' is our 'stride'.
1109          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1110          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1111          * = 4 - (inputsize - 4) / stride;
1112          */
1113         level = 4 - (inputsize - 4) / stride;
1114     } else {
1115         /*
1116          * For stage 2 translations the starting level is specified by the
1117          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
1118          */
1119         uint32_t sl0 = extract32(tcr, 6, 2);
1120         uint32_t sl2 = extract64(tcr, 33, 1);
1121         uint32_t startlevel;
1122         bool ok;
1123 
1124         /* SL2 is RES0 unless DS=1 & 4kb granule. */
1125         if (param.ds && stride == 9 && sl2) {
1126             if (sl0 != 0) {
1127                 level = 0;
1128                 fault_type = ARMFault_Translation;
1129                 goto do_fault;
1130             }
1131             startlevel = -1;
1132         } else if (!aarch64 || stride == 9) {
1133             /* AArch32 or 4KB pages */
1134             startlevel = 2 - sl0;
1135 
1136             if (cpu_isar_feature(aa64_st, cpu)) {
1137                 startlevel &= 3;
1138             }
1139         } else {
1140             /* 16KB or 64KB pages */
1141             startlevel = 3 - sl0;
1142         }
1143 
1144         /* Check that the starting level is valid. */
1145         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1146                                 inputsize, stride, outputsize);
1147         if (!ok) {
1148             fault_type = ARMFault_Translation;
1149             goto do_fault;
1150         }
1151         level = startlevel;
1152     }
1153 
1154     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1155     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1156 
1157     /* Now we can extract the actual base address from the TTBR */
1158     descaddr = extract64(ttbr, 0, 48);
1159 
1160     /*
1161      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1162      *
1163      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1164      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1165      * but we've just cleared the bits above 47, so simplify the test.
1166      */
1167     if (outputsize > 48) {
1168         descaddr |= extract64(ttbr, 2, 4) << 48;
1169     } else if (descaddr >> outputsize) {
1170         level = 0;
1171         fault_type = ARMFault_AddressSize;
1172         goto do_fault;
1173     }
1174 
1175     /*
1176      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1177      * and also to mask out CnP (bit 0) which could validly be non-zero.
1178      */
1179     descaddr &= ~indexmask;
1180 
1181     /*
1182      * For AArch32, the address field in the descriptor goes up to bit 39
1183      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1184      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1185      * bits as part of the address, which will be checked via outputsize.
1186      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1187      * the highest bits of a 52-bit output are placed elsewhere.
1188      */
1189     if (param.ds) {
1190         descaddrmask = MAKE_64BIT_MASK(0, 50);
1191     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1192         descaddrmask = MAKE_64BIT_MASK(0, 48);
1193     } else {
1194         descaddrmask = MAKE_64BIT_MASK(0, 40);
1195     }
1196     descaddrmask &= ~indexmask_grainsize;
1197 
1198     /*
1199      * Secure accesses start with the page table in secure memory and
1200      * can be downgraded to non-secure at any step. Non-secure accesses
1201      * remain non-secure. We implement this by just ORing in the NSTable/NS
1202      * bits at each step.
1203      */
1204     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
1205     for (;;) {
1206         uint64_t descriptor;
1207         bool nstable;
1208 
1209         descaddr |= (address >> (stride * (4 - level))) & indexmask;
1210         descaddr &= ~7ULL;
1211         nstable = extract32(tableattrs, 4, 1);
1212         descriptor = arm_ldq_ptw(env, descaddr, !nstable, mmu_idx, fi);
1213         if (fi->type != ARMFault_None) {
1214             goto do_fault;
1215         }
1216 
1217         if (!(descriptor & 1) ||
1218             (!(descriptor & 2) && (level == 3))) {
1219             /* Invalid, or the Reserved level 3 encoding */
1220             goto do_fault;
1221         }
1222 
1223         descaddr = descriptor & descaddrmask;
1224 
1225         /*
1226          * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1227          * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1228          * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1229          * raise AddressSizeFault.
1230          */
1231         if (outputsize > 48) {
1232             if (param.ds) {
1233                 descaddr |= extract64(descriptor, 8, 2) << 50;
1234             } else {
1235                 descaddr |= extract64(descriptor, 12, 4) << 48;
1236             }
1237         } else if (descaddr >> outputsize) {
1238             fault_type = ARMFault_AddressSize;
1239             goto do_fault;
1240         }
1241 
1242         if ((descriptor & 2) && (level < 3)) {
1243             /*
1244              * Table entry. The top five bits are attributes which may
1245              * propagate down through lower levels of the table (and
1246              * which are all arranged so that 0 means "no effect", so
1247              * we can gather them up by ORing in the bits at each level).
1248              */
1249             tableattrs |= extract64(descriptor, 59, 5);
1250             level++;
1251             indexmask = indexmask_grainsize;
1252             continue;
1253         }
1254         /*
1255          * Block entry at level 1 or 2, or page entry at level 3.
1256          * These are basically the same thing, although the number
1257          * of bits we pull in from the vaddr varies. Note that although
1258          * descaddrmask masks enough of the low bits of the descriptor
1259          * to give a correct page or table address, the address field
1260          * in a block descriptor is smaller; so we need to explicitly
1261          * clear the lower bits here before ORing in the low vaddr bits.
1262          */
1263         page_size = (1ULL << ((stride * (4 - level)) + 3));
1264         descaddr &= ~(hwaddr)(page_size - 1);
1265         descaddr |= (address & (page_size - 1));
1266         /* Extract attributes from the descriptor */
1267         attrs = extract64(descriptor, 2, 10)
1268             | (extract64(descriptor, 52, 12) << 10);
1269 
1270         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1271             /* Stage 2 table descriptors do not include any attribute fields */
1272             break;
1273         }
1274         /* Merge in attributes from table descriptors */
1275         attrs |= nstable << 3; /* NS */
1276         guarded = extract64(descriptor, 50, 1);  /* GP */
1277         if (param.hpd) {
1278             /* HPD disables all the table attributes except NSTable.  */
1279             break;
1280         }
1281         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
1282         /*
1283          * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1284          * means "force PL1 access only", which means forcing AP[1] to 0.
1285          */
1286         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
1287         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
1288         break;
1289     }
1290     /*
1291      * Here descaddr is the final physical address, and attributes
1292      * are all in attrs.
1293      */
1294     fault_type = ARMFault_AccessFlag;
1295     if ((attrs & (1 << 8)) == 0) {
1296         /* Access flag */
1297         goto do_fault;
1298     }
1299 
1300     ap = extract32(attrs, 4, 2);
1301 
1302     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1303         ns = mmu_idx == ARMMMUIdx_Stage2;
1304         xn = extract32(attrs, 11, 2);
1305         *prot = get_S2prot(env, ap, xn, s1_is_el0);
1306     } else {
1307         ns = extract32(attrs, 3, 1);
1308         xn = extract32(attrs, 12, 1);
1309         pxn = extract32(attrs, 11, 1);
1310         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1311     }
1312 
1313     fault_type = ARMFault_Permission;
1314     if (!(*prot & (1 << access_type))) {
1315         goto do_fault;
1316     }
1317 
1318     if (ns) {
1319         /*
1320          * The NS bit will (as required by the architecture) have no effect if
1321          * the CPU doesn't support TZ or this is a non-secure translation
1322          * regime, because the attribute will already be non-secure.
1323          */
1324         txattrs->secure = false;
1325     }
1326     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
1327     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
1328         arm_tlb_bti_gp(txattrs) = true;
1329     }
1330 
1331     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1332         cacheattrs->is_s2_format = true;
1333         cacheattrs->attrs = extract32(attrs, 0, 4);
1334     } else {
1335         /* Index into MAIR registers for cache attributes */
1336         uint8_t attrindx = extract32(attrs, 0, 3);
1337         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1338         assert(attrindx <= 7);
1339         cacheattrs->is_s2_format = false;
1340         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
1341     }
1342 
1343     /*
1344      * For FEAT_LPA2 and effective DS, the SH field in the attributes
1345      * was re-purposed for output address bits.  The SH attribute in
1346      * that case comes from TCR_ELx, which we extracted earlier.
1347      */
1348     if (param.ds) {
1349         cacheattrs->shareability = param.sh;
1350     } else {
1351         cacheattrs->shareability = extract32(attrs, 6, 2);
1352     }
1353 
1354     *phys_ptr = descaddr;
1355     *page_size_ptr = page_size;
1356     return false;
1357 
1358 do_fault:
1359     fi->type = fault_type;
1360     fi->level = level;
1361     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
1362     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
1363                                mmu_idx == ARMMMUIdx_Stage2_S);
1364     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1365     return true;
1366 }
1367 
1368 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1369                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1370                                  hwaddr *phys_ptr, int *prot,
1371                                  ARMMMUFaultInfo *fi)
1372 {
1373     int n;
1374     uint32_t mask;
1375     uint32_t base;
1376     bool is_user = regime_is_user(env, mmu_idx);
1377 
1378     if (regime_translation_disabled(env, mmu_idx)) {
1379         /* MPU disabled.  */
1380         *phys_ptr = address;
1381         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1382         return false;
1383     }
1384 
1385     *phys_ptr = address;
1386     for (n = 7; n >= 0; n--) {
1387         base = env->cp15.c6_region[n];
1388         if ((base & 1) == 0) {
1389             continue;
1390         }
1391         mask = 1 << ((base >> 1) & 0x1f);
1392         /* Keep this shift separate from the above to avoid an
1393            (undefined) << 32.  */
1394         mask = (mask << 1) - 1;
1395         if (((base ^ address) & ~mask) == 0) {
1396             break;
1397         }
1398     }
1399     if (n < 0) {
1400         fi->type = ARMFault_Background;
1401         return true;
1402     }
1403 
1404     if (access_type == MMU_INST_FETCH) {
1405         mask = env->cp15.pmsav5_insn_ap;
1406     } else {
1407         mask = env->cp15.pmsav5_data_ap;
1408     }
1409     mask = (mask >> (n * 4)) & 0xf;
1410     switch (mask) {
1411     case 0:
1412         fi->type = ARMFault_Permission;
1413         fi->level = 1;
1414         return true;
1415     case 1:
1416         if (is_user) {
1417             fi->type = ARMFault_Permission;
1418             fi->level = 1;
1419             return true;
1420         }
1421         *prot = PAGE_READ | PAGE_WRITE;
1422         break;
1423     case 2:
1424         *prot = PAGE_READ;
1425         if (!is_user) {
1426             *prot |= PAGE_WRITE;
1427         }
1428         break;
1429     case 3:
1430         *prot = PAGE_READ | PAGE_WRITE;
1431         break;
1432     case 5:
1433         if (is_user) {
1434             fi->type = ARMFault_Permission;
1435             fi->level = 1;
1436             return true;
1437         }
1438         *prot = PAGE_READ;
1439         break;
1440     case 6:
1441         *prot = PAGE_READ;
1442         break;
1443     default:
1444         /* Bad permission.  */
1445         fi->type = ARMFault_Permission;
1446         fi->level = 1;
1447         return true;
1448     }
1449     *prot |= PAGE_EXEC;
1450     return false;
1451 }
1452 
1453 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1454                                          int32_t address, int *prot)
1455 {
1456     if (!arm_feature(env, ARM_FEATURE_M)) {
1457         *prot = PAGE_READ | PAGE_WRITE;
1458         switch (address) {
1459         case 0xF0000000 ... 0xFFFFFFFF:
1460             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1461                 /* hivecs execing is ok */
1462                 *prot |= PAGE_EXEC;
1463             }
1464             break;
1465         case 0x00000000 ... 0x7FFFFFFF:
1466             *prot |= PAGE_EXEC;
1467             break;
1468         }
1469     } else {
1470         /* Default system address map for M profile cores.
1471          * The architecture specifies which regions are execute-never;
1472          * at the MPU level no other checks are defined.
1473          */
1474         switch (address) {
1475         case 0x00000000 ... 0x1fffffff: /* ROM */
1476         case 0x20000000 ... 0x3fffffff: /* SRAM */
1477         case 0x60000000 ... 0x7fffffff: /* RAM */
1478         case 0x80000000 ... 0x9fffffff: /* RAM */
1479             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1480             break;
1481         case 0x40000000 ... 0x5fffffff: /* Peripheral */
1482         case 0xa0000000 ... 0xbfffffff: /* Device */
1483         case 0xc0000000 ... 0xdfffffff: /* Device */
1484         case 0xe0000000 ... 0xffffffff: /* System */
1485             *prot = PAGE_READ | PAGE_WRITE;
1486             break;
1487         default:
1488             g_assert_not_reached();
1489         }
1490     }
1491 }
1492 
1493 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1494 {
1495     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1496     return arm_feature(env, ARM_FEATURE_M) &&
1497         extract32(address, 20, 12) == 0xe00;
1498 }
1499 
1500 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1501 {
1502     /*
1503      * True if address is in the M profile system region
1504      * 0xe0000000 - 0xffffffff
1505      */
1506     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1507 }
1508 
1509 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1510                                          bool is_user)
1511 {
1512     /*
1513      * Return true if we should use the default memory map as a
1514      * "background" region if there are no hits against any MPU regions.
1515      */
1516     CPUARMState *env = &cpu->env;
1517 
1518     if (is_user) {
1519         return false;
1520     }
1521 
1522     if (arm_feature(env, ARM_FEATURE_M)) {
1523         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
1524             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1525     } else {
1526         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1527     }
1528 }
1529 
1530 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1531                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1532                                  hwaddr *phys_ptr, int *prot,
1533                                  target_ulong *page_size,
1534                                  ARMMMUFaultInfo *fi)
1535 {
1536     ARMCPU *cpu = env_archcpu(env);
1537     int n;
1538     bool is_user = regime_is_user(env, mmu_idx);
1539 
1540     *phys_ptr = address;
1541     *page_size = TARGET_PAGE_SIZE;
1542     *prot = 0;
1543 
1544     if (regime_translation_disabled(env, mmu_idx) ||
1545         m_is_ppb_region(env, address)) {
1546         /*
1547          * MPU disabled or M profile PPB access: use default memory map.
1548          * The other case which uses the default memory map in the
1549          * v7M ARM ARM pseudocode is exception vector reads from the vector
1550          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1551          * which always does a direct read using address_space_ldl(), rather
1552          * than going via this function, so we don't need to check that here.
1553          */
1554         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
1555     } else { /* MPU enabled */
1556         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1557             /* region search */
1558             uint32_t base = env->pmsav7.drbar[n];
1559             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1560             uint32_t rmask;
1561             bool srdis = false;
1562 
1563             if (!(env->pmsav7.drsr[n] & 0x1)) {
1564                 continue;
1565             }
1566 
1567             if (!rsize) {
1568                 qemu_log_mask(LOG_GUEST_ERROR,
1569                               "DRSR[%d]: Rsize field cannot be 0\n", n);
1570                 continue;
1571             }
1572             rsize++;
1573             rmask = (1ull << rsize) - 1;
1574 
1575             if (base & rmask) {
1576                 qemu_log_mask(LOG_GUEST_ERROR,
1577                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1578                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
1579                               n, base, rmask);
1580                 continue;
1581             }
1582 
1583             if (address < base || address > base + rmask) {
1584                 /*
1585                  * Address not in this region. We must check whether the
1586                  * region covers addresses in the same page as our address.
1587                  * In that case we must not report a size that covers the
1588                  * whole page for a subsequent hit against a different MPU
1589                  * region or the background region, because it would result in
1590                  * incorrect TLB hits for subsequent accesses to addresses that
1591                  * are in this MPU region.
1592                  */
1593                 if (ranges_overlap(base, rmask,
1594                                    address & TARGET_PAGE_MASK,
1595                                    TARGET_PAGE_SIZE)) {
1596                     *page_size = 1;
1597                 }
1598                 continue;
1599             }
1600 
1601             /* Region matched */
1602 
1603             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1604                 int i, snd;
1605                 uint32_t srdis_mask;
1606 
1607                 rsize -= 3; /* sub region size (power of 2) */
1608                 snd = ((address - base) >> rsize) & 0x7;
1609                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1610 
1611                 srdis_mask = srdis ? 0x3 : 0x0;
1612                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1613                     /*
1614                      * This will check in groups of 2, 4 and then 8, whether
1615                      * the subregion bits are consistent. rsize is incremented
1616                      * back up to give the region size, considering consistent
1617                      * adjacent subregions as one region. Stop testing if rsize
1618                      * is already big enough for an entire QEMU page.
1619                      */
1620                     int snd_rounded = snd & ~(i - 1);
1621                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1622                                                      snd_rounded + 8, i);
1623                     if (srdis_mask ^ srdis_multi) {
1624                         break;
1625                     }
1626                     srdis_mask = (srdis_mask << i) | srdis_mask;
1627                     rsize++;
1628                 }
1629             }
1630             if (srdis) {
1631                 continue;
1632             }
1633             if (rsize < TARGET_PAGE_BITS) {
1634                 *page_size = 1 << rsize;
1635             }
1636             break;
1637         }
1638 
1639         if (n == -1) { /* no hits */
1640             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
1641                 /* background fault */
1642                 fi->type = ARMFault_Background;
1643                 return true;
1644             }
1645             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
1646         } else { /* a MPU hit! */
1647             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1648             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1649 
1650             if (m_is_system_region(env, address)) {
1651                 /* System space is always execute never */
1652                 xn = 1;
1653             }
1654 
1655             if (is_user) { /* User mode AP bit decoding */
1656                 switch (ap) {
1657                 case 0:
1658                 case 1:
1659                 case 5:
1660                     break; /* no access */
1661                 case 3:
1662                     *prot |= PAGE_WRITE;
1663                     /* fall through */
1664                 case 2:
1665                 case 6:
1666                     *prot |= PAGE_READ | PAGE_EXEC;
1667                     break;
1668                 case 7:
1669                     /* for v7M, same as 6; for R profile a reserved value */
1670                     if (arm_feature(env, ARM_FEATURE_M)) {
1671                         *prot |= PAGE_READ | PAGE_EXEC;
1672                         break;
1673                     }
1674                     /* fall through */
1675                 default:
1676                     qemu_log_mask(LOG_GUEST_ERROR,
1677                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1678                                   PRIx32 "\n", n, ap);
1679                 }
1680             } else { /* Priv. mode AP bits decoding */
1681                 switch (ap) {
1682                 case 0:
1683                     break; /* no access */
1684                 case 1:
1685                 case 2:
1686                 case 3:
1687                     *prot |= PAGE_WRITE;
1688                     /* fall through */
1689                 case 5:
1690                 case 6:
1691                     *prot |= PAGE_READ | PAGE_EXEC;
1692                     break;
1693                 case 7:
1694                     /* for v7M, same as 6; for R profile a reserved value */
1695                     if (arm_feature(env, ARM_FEATURE_M)) {
1696                         *prot |= PAGE_READ | PAGE_EXEC;
1697                         break;
1698                     }
1699                     /* fall through */
1700                 default:
1701                     qemu_log_mask(LOG_GUEST_ERROR,
1702                                   "DRACR[%d]: Bad value for AP bits: 0x%"
1703                                   PRIx32 "\n", n, ap);
1704                 }
1705             }
1706 
1707             /* execute never */
1708             if (xn) {
1709                 *prot &= ~PAGE_EXEC;
1710             }
1711         }
1712     }
1713 
1714     fi->type = ARMFault_Permission;
1715     fi->level = 1;
1716     return !(*prot & (1 << access_type));
1717 }
1718 
1719 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1720                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1721                        hwaddr *phys_ptr, MemTxAttrs *txattrs,
1722                        int *prot, bool *is_subpage,
1723                        ARMMMUFaultInfo *fi, uint32_t *mregion)
1724 {
1725     /*
1726      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
1727      * that a full phys-to-virt translation does).
1728      * mregion is (if not NULL) set to the region number which matched,
1729      * or -1 if no region number is returned (MPU off, address did not
1730      * hit a region, address hit in multiple regions).
1731      * We set is_subpage to true if the region hit doesn't cover the
1732      * entire TARGET_PAGE the address is within.
1733      */
1734     ARMCPU *cpu = env_archcpu(env);
1735     bool is_user = regime_is_user(env, mmu_idx);
1736     uint32_t secure = regime_is_secure(env, mmu_idx);
1737     int n;
1738     int matchregion = -1;
1739     bool hit = false;
1740     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1741     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1742 
1743     *is_subpage = false;
1744     *phys_ptr = address;
1745     *prot = 0;
1746     if (mregion) {
1747         *mregion = -1;
1748     }
1749 
1750     /*
1751      * Unlike the ARM ARM pseudocode, we don't need to check whether this
1752      * was an exception vector read from the vector table (which is always
1753      * done using the default system address map), because those accesses
1754      * are done in arm_v7m_load_vector(), which always does a direct
1755      * read using address_space_ldl(), rather than going via this function.
1756      */
1757     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
1758         hit = true;
1759     } else if (m_is_ppb_region(env, address)) {
1760         hit = true;
1761     } else {
1762         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
1763             hit = true;
1764         }
1765 
1766         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1767             /* region search */
1768             /*
1769              * Note that the base address is bits [31:5] from the register
1770              * with bits [4:0] all zeroes, but the limit address is bits
1771              * [31:5] from the register with bits [4:0] all ones.
1772              */
1773             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
1774             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
1775 
1776             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
1777                 /* Region disabled */
1778                 continue;
1779             }
1780 
1781             if (address < base || address > limit) {
1782                 /*
1783                  * Address not in this region. We must check whether the
1784                  * region covers addresses in the same page as our address.
1785                  * In that case we must not report a size that covers the
1786                  * whole page for a subsequent hit against a different MPU
1787                  * region or the background region, because it would result in
1788                  * incorrect TLB hits for subsequent accesses to addresses that
1789                  * are in this MPU region.
1790                  */
1791                 if (limit >= base &&
1792                     ranges_overlap(base, limit - base + 1,
1793                                    addr_page_base,
1794                                    TARGET_PAGE_SIZE)) {
1795                     *is_subpage = true;
1796                 }
1797                 continue;
1798             }
1799 
1800             if (base > addr_page_base || limit < addr_page_limit) {
1801                 *is_subpage = true;
1802             }
1803 
1804             if (matchregion != -1) {
1805                 /*
1806                  * Multiple regions match -- always a failure (unlike
1807                  * PMSAv7 where highest-numbered-region wins)
1808                  */
1809                 fi->type = ARMFault_Permission;
1810                 fi->level = 1;
1811                 return true;
1812             }
1813 
1814             matchregion = n;
1815             hit = true;
1816         }
1817     }
1818 
1819     if (!hit) {
1820         /* background fault */
1821         fi->type = ARMFault_Background;
1822         return true;
1823     }
1824 
1825     if (matchregion == -1) {
1826         /* hit using the background region */
1827         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
1828     } else {
1829         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
1830         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
1831         bool pxn = false;
1832 
1833         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
1834             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
1835         }
1836 
1837         if (m_is_system_region(env, address)) {
1838             /* System space is always execute never */
1839             xn = 1;
1840         }
1841 
1842         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
1843         if (*prot && !xn && !(pxn && !is_user)) {
1844             *prot |= PAGE_EXEC;
1845         }
1846         /*
1847          * We don't need to look the attribute up in the MAIR0/MAIR1
1848          * registers because that only tells us about cacheability.
1849          */
1850         if (mregion) {
1851             *mregion = matchregion;
1852         }
1853     }
1854 
1855     fi->type = ARMFault_Permission;
1856     fi->level = 1;
1857     return !(*prot & (1 << access_type));
1858 }
1859 
1860 static bool v8m_is_sau_exempt(CPUARMState *env,
1861                               uint32_t address, MMUAccessType access_type)
1862 {
1863     /*
1864      * The architecture specifies that certain address ranges are
1865      * exempt from v8M SAU/IDAU checks.
1866      */
1867     return
1868         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
1869         (address >= 0xe0000000 && address <= 0xe0002fff) ||
1870         (address >= 0xe000e000 && address <= 0xe000efff) ||
1871         (address >= 0xe002e000 && address <= 0xe002efff) ||
1872         (address >= 0xe0040000 && address <= 0xe0041fff) ||
1873         (address >= 0xe00ff000 && address <= 0xe00fffff);
1874 }
1875 
1876 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1877                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1878                                 V8M_SAttributes *sattrs)
1879 {
1880     /*
1881      * Look up the security attributes for this address. Compare the
1882      * pseudocode SecurityCheck() function.
1883      * We assume the caller has zero-initialized *sattrs.
1884      */
1885     ARMCPU *cpu = env_archcpu(env);
1886     int r;
1887     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
1888     int idau_region = IREGION_NOTVALID;
1889     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1890     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1891 
1892     if (cpu->idau) {
1893         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
1894         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
1895 
1896         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
1897                    &idau_nsc);
1898     }
1899 
1900     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
1901         /* 0xf0000000..0xffffffff is always S for insn fetches */
1902         return;
1903     }
1904 
1905     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
1906         sattrs->ns = !regime_is_secure(env, mmu_idx);
1907         return;
1908     }
1909 
1910     if (idau_region != IREGION_NOTVALID) {
1911         sattrs->irvalid = true;
1912         sattrs->iregion = idau_region;
1913     }
1914 
1915     switch (env->sau.ctrl & 3) {
1916     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
1917         break;
1918     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
1919         sattrs->ns = true;
1920         break;
1921     default: /* SAU.ENABLE == 1 */
1922         for (r = 0; r < cpu->sau_sregion; r++) {
1923             if (env->sau.rlar[r] & 1) {
1924                 uint32_t base = env->sau.rbar[r] & ~0x1f;
1925                 uint32_t limit = env->sau.rlar[r] | 0x1f;
1926 
1927                 if (base <= address && limit >= address) {
1928                     if (base > addr_page_base || limit < addr_page_limit) {
1929                         sattrs->subpage = true;
1930                     }
1931                     if (sattrs->srvalid) {
1932                         /*
1933                          * If we hit in more than one region then we must report
1934                          * as Secure, not NS-Callable, with no valid region
1935                          * number info.
1936                          */
1937                         sattrs->ns = false;
1938                         sattrs->nsc = false;
1939                         sattrs->sregion = 0;
1940                         sattrs->srvalid = false;
1941                         break;
1942                     } else {
1943                         if (env->sau.rlar[r] & 2) {
1944                             sattrs->nsc = true;
1945                         } else {
1946                             sattrs->ns = true;
1947                         }
1948                         sattrs->srvalid = true;
1949                         sattrs->sregion = r;
1950                     }
1951                 } else {
1952                     /*
1953                      * Address not in this region. We must check whether the
1954                      * region covers addresses in the same page as our address.
1955                      * In that case we must not report a size that covers the
1956                      * whole page for a subsequent hit against a different MPU
1957                      * region or the background region, because it would result
1958                      * in incorrect TLB hits for subsequent accesses to
1959                      * addresses that are in this MPU region.
1960                      */
1961                     if (limit >= base &&
1962                         ranges_overlap(base, limit - base + 1,
1963                                        addr_page_base,
1964                                        TARGET_PAGE_SIZE)) {
1965                         sattrs->subpage = true;
1966                     }
1967                 }
1968             }
1969         }
1970         break;
1971     }
1972 
1973     /*
1974      * The IDAU will override the SAU lookup results if it specifies
1975      * higher security than the SAU does.
1976      */
1977     if (!idau_ns) {
1978         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
1979             sattrs->ns = false;
1980             sattrs->nsc = idau_nsc;
1981         }
1982     }
1983 }
1984 
1985 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
1986                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
1987                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
1988                                  int *prot, target_ulong *page_size,
1989                                  ARMMMUFaultInfo *fi)
1990 {
1991     uint32_t secure = regime_is_secure(env, mmu_idx);
1992     V8M_SAttributes sattrs = {};
1993     bool ret;
1994     bool mpu_is_subpage;
1995 
1996     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1997         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
1998         if (access_type == MMU_INST_FETCH) {
1999             /*
2000              * Instruction fetches always use the MMU bank and the
2001              * transaction attribute determined by the fetch address,
2002              * regardless of CPU state. This is painful for QEMU
2003              * to handle, because it would mean we need to encode
2004              * into the mmu_idx not just the (user, negpri) information
2005              * for the current security state but also that for the
2006              * other security state, which would balloon the number
2007              * of mmu_idx values needed alarmingly.
2008              * Fortunately we can avoid this because it's not actually
2009              * possible to arbitrarily execute code from memory with
2010              * the wrong security attribute: it will always generate
2011              * an exception of some kind or another, apart from the
2012              * special case of an NS CPU executing an SG instruction
2013              * in S&NSC memory. So we always just fail the translation
2014              * here and sort things out in the exception handler
2015              * (including possibly emulating an SG instruction).
2016              */
2017             if (sattrs.ns != !secure) {
2018                 if (sattrs.nsc) {
2019                     fi->type = ARMFault_QEMU_NSCExec;
2020                 } else {
2021                     fi->type = ARMFault_QEMU_SFault;
2022                 }
2023                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
2024                 *phys_ptr = address;
2025                 *prot = 0;
2026                 return true;
2027             }
2028         } else {
2029             /*
2030              * For data accesses we always use the MMU bank indicated
2031              * by the current CPU state, but the security attributes
2032              * might downgrade a secure access to nonsecure.
2033              */
2034             if (sattrs.ns) {
2035                 txattrs->secure = false;
2036             } else if (!secure) {
2037                 /*
2038                  * NS access to S memory must fault.
2039                  * Architecturally we should first check whether the
2040                  * MPU information for this address indicates that we
2041                  * are doing an unaligned access to Device memory, which
2042                  * should generate a UsageFault instead. QEMU does not
2043                  * currently check for that kind of unaligned access though.
2044                  * If we added it we would need to do so as a special case
2045                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2046                  */
2047                 fi->type = ARMFault_QEMU_SFault;
2048                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
2049                 *phys_ptr = address;
2050                 *prot = 0;
2051                 return true;
2052             }
2053         }
2054     }
2055 
2056     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
2057                             txattrs, prot, &mpu_is_subpage, fi, NULL);
2058     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
2059     return ret;
2060 }
2061 
2062 /*
2063  * Translate from the 4-bit stage 2 representation of
2064  * memory attributes (without cache-allocation hints) to
2065  * the 8-bit representation of the stage 1 MAIR registers
2066  * (which includes allocation hints).
2067  *
2068  * ref: shared/translation/attrs/S2AttrDecode()
2069  *      .../S2ConvertAttrsHints()
2070  */
2071 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
2072 {
2073     uint8_t hiattr = extract32(s2attrs, 2, 2);
2074     uint8_t loattr = extract32(s2attrs, 0, 2);
2075     uint8_t hihint = 0, lohint = 0;
2076 
2077     if (hiattr != 0) { /* normal memory */
2078         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
2079             hiattr = loattr = 1; /* non-cacheable */
2080         } else {
2081             if (hiattr != 1) { /* Write-through or write-back */
2082                 hihint = 3; /* RW allocate */
2083             }
2084             if (loattr != 1) { /* Write-through or write-back */
2085                 lohint = 3; /* RW allocate */
2086             }
2087         }
2088     }
2089 
2090     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2091 }
2092 
2093 /*
2094  * Combine either inner or outer cacheability attributes for normal
2095  * memory, according to table D4-42 and pseudocode procedure
2096  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2097  *
2098  * NB: only stage 1 includes allocation hints (RW bits), leading to
2099  * some asymmetry.
2100  */
2101 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2102 {
2103     if (s1 == 4 || s2 == 4) {
2104         /* non-cacheable has precedence */
2105         return 4;
2106     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2107         /* stage 1 write-through takes precedence */
2108         return s1;
2109     } else if (extract32(s2, 2, 2) == 2) {
2110         /* stage 2 write-through takes precedence, but the allocation hint
2111          * is still taken from stage 1
2112          */
2113         return (2 << 2) | extract32(s1, 0, 2);
2114     } else { /* write-back */
2115         return s1;
2116     }
2117 }
2118 
2119 /*
2120  * Combine the memory type and cacheability attributes of
2121  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2122  * combined attributes in MAIR_EL1 format.
2123  */
2124 static uint8_t combined_attrs_nofwb(CPUARMState *env,
2125                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
2126 {
2127     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2128 
2129     s2_mair_attrs = convert_stage2_attrs(env, s2.attrs);
2130 
2131     s1lo = extract32(s1.attrs, 0, 4);
2132     s2lo = extract32(s2_mair_attrs, 0, 4);
2133     s1hi = extract32(s1.attrs, 4, 4);
2134     s2hi = extract32(s2_mair_attrs, 4, 4);
2135 
2136     /* Combine memory type and cacheability attributes */
2137     if (s1hi == 0 || s2hi == 0) {
2138         /* Device has precedence over normal */
2139         if (s1lo == 0 || s2lo == 0) {
2140             /* nGnRnE has precedence over anything */
2141             ret_attrs = 0;
2142         } else if (s1lo == 4 || s2lo == 4) {
2143             /* non-Reordering has precedence over Reordering */
2144             ret_attrs = 4;  /* nGnRE */
2145         } else if (s1lo == 8 || s2lo == 8) {
2146             /* non-Gathering has precedence over Gathering */
2147             ret_attrs = 8;  /* nGRE */
2148         } else {
2149             ret_attrs = 0xc; /* GRE */
2150         }
2151     } else { /* Normal memory */
2152         /* Outer/inner cacheability combine independently */
2153         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2154                   | combine_cacheattr_nibble(s1lo, s2lo);
2155     }
2156     return ret_attrs;
2157 }
2158 
2159 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2160 {
2161     /*
2162      * Given the 4 bits specifying the outer or inner cacheability
2163      * in MAIR format, return a value specifying Normal Write-Back,
2164      * with the allocation and transient hints taken from the input
2165      * if the input specified some kind of cacheable attribute.
2166      */
2167     if (attr == 0 || attr == 4) {
2168         /*
2169          * 0 == an UNPREDICTABLE encoding
2170          * 4 == Non-cacheable
2171          * Either way, force Write-Back RW allocate non-transient
2172          */
2173         return 0xf;
2174     }
2175     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2176     return attr | 4;
2177 }
2178 
2179 /*
2180  * Combine the memory type and cacheability attributes of
2181  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2182  * combined attributes in MAIR_EL1 format.
2183  */
2184 static uint8_t combined_attrs_fwb(CPUARMState *env,
2185                                   ARMCacheAttrs s1, ARMCacheAttrs s2)
2186 {
2187     switch (s2.attrs) {
2188     case 7:
2189         /* Use stage 1 attributes */
2190         return s1.attrs;
2191     case 6:
2192         /*
2193          * Force Normal Write-Back. Note that if S1 is Normal cacheable
2194          * then we take the allocation hints from it; otherwise it is
2195          * RW allocate, non-transient.
2196          */
2197         if ((s1.attrs & 0xf0) == 0) {
2198             /* S1 is Device */
2199             return 0xff;
2200         }
2201         /* Need to check the Inner and Outer nibbles separately */
2202         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2203             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2204     case 5:
2205         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2206         if ((s1.attrs & 0xf0) == 0) {
2207             return s1.attrs;
2208         }
2209         return 0x44;
2210     case 0 ... 3:
2211         /* Force Device, of subtype specified by S2 */
2212         return s2.attrs << 2;
2213     default:
2214         /*
2215          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2216          * arbitrarily force Device.
2217          */
2218         return 0;
2219     }
2220 }
2221 
2222 /*
2223  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2224  * and CombineS1S2Desc()
2225  *
2226  * @env:     CPUARMState
2227  * @s1:      Attributes from stage 1 walk
2228  * @s2:      Attributes from stage 2 walk
2229  */
2230 static ARMCacheAttrs combine_cacheattrs(CPUARMState *env,
2231                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
2232 {
2233     ARMCacheAttrs ret;
2234     bool tagged = false;
2235 
2236     assert(s2.is_s2_format && !s1.is_s2_format);
2237     ret.is_s2_format = false;
2238 
2239     if (s1.attrs == 0xf0) {
2240         tagged = true;
2241         s1.attrs = 0xff;
2242     }
2243 
2244     /* Combine shareability attributes (table D4-43) */
2245     if (s1.shareability == 2 || s2.shareability == 2) {
2246         /* if either are outer-shareable, the result is outer-shareable */
2247         ret.shareability = 2;
2248     } else if (s1.shareability == 3 || s2.shareability == 3) {
2249         /* if either are inner-shareable, the result is inner-shareable */
2250         ret.shareability = 3;
2251     } else {
2252         /* both non-shareable */
2253         ret.shareability = 0;
2254     }
2255 
2256     /* Combine memory type and cacheability attributes */
2257     if (arm_hcr_el2_eff(env) & HCR_FWB) {
2258         ret.attrs = combined_attrs_fwb(env, s1, s2);
2259     } else {
2260         ret.attrs = combined_attrs_nofwb(env, s1, s2);
2261     }
2262 
2263     /*
2264      * Any location for which the resultant memory type is any
2265      * type of Device memory is always treated as Outer Shareable.
2266      * Any location for which the resultant memory type is Normal
2267      * Inner Non-cacheable, Outer Non-cacheable is always treated
2268      * as Outer Shareable.
2269      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2270      */
2271     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2272         ret.shareability = 2;
2273     }
2274 
2275     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2276     if (tagged && ret.attrs == 0xff) {
2277         ret.attrs = 0xf0;
2278     }
2279 
2280     return ret;
2281 }
2282 
2283 /**
2284  * get_phys_addr - get the physical address for this virtual address
2285  *
2286  * Find the physical address corresponding to the given virtual address,
2287  * by doing a translation table walk on MMU based systems or using the
2288  * MPU state on MPU based systems.
2289  *
2290  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
2291  * prot and page_size may not be filled in, and the populated fsr value provides
2292  * information on why the translation aborted, in the format of a
2293  * DFSR/IFSR fault register, with the following caveats:
2294  *  * we honour the short vs long DFSR format differences.
2295  *  * the WnR bit is never set (the caller must do this).
2296  *  * for PSMAv5 based systems we don't bother to return a full FSR format
2297  *    value.
2298  *
2299  * @env: CPUARMState
2300  * @address: virtual address to get physical address for
2301  * @access_type: 0 for read, 1 for write, 2 for execute
2302  * @mmu_idx: MMU index indicating required translation regime
2303  * @phys_ptr: set to the physical address corresponding to the virtual address
2304  * @attrs: set to the memory transaction attributes to use
2305  * @prot: set to the permissions for the page containing phys_ptr
2306  * @page_size: set to the size of the page containing phys_ptr
2307  * @fi: set to fault info if the translation fails
2308  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
2309  */
2310 bool get_phys_addr(CPUARMState *env, target_ulong address,
2311                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
2312                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
2313                    target_ulong *page_size,
2314                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
2315 {
2316     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
2317 
2318     if (mmu_idx != s1_mmu_idx) {
2319         /*
2320          * Call ourselves recursively to do the stage 1 and then stage 2
2321          * translations if mmu_idx is a two-stage regime.
2322          */
2323         if (arm_feature(env, ARM_FEATURE_EL2)) {
2324             hwaddr ipa;
2325             int s2_prot;
2326             int ret;
2327             bool ipa_secure;
2328             ARMCacheAttrs cacheattrs2 = {};
2329             ARMMMUIdx s2_mmu_idx;
2330             bool is_el0;
2331 
2332             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
2333                                 attrs, prot, page_size, fi, cacheattrs);
2334 
2335             /* If S1 fails or S2 is disabled, return early.  */
2336             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
2337                 *phys_ptr = ipa;
2338                 return ret;
2339             }
2340 
2341             ipa_secure = attrs->secure;
2342             if (arm_is_secure_below_el3(env)) {
2343                 if (ipa_secure) {
2344                     attrs->secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
2345                 } else {
2346                     attrs->secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
2347                 }
2348             } else {
2349                 assert(!ipa_secure);
2350             }
2351 
2352             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2353             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
2354 
2355             /* S1 is done. Now do S2 translation.  */
2356             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
2357                                      phys_ptr, attrs, &s2_prot,
2358                                      page_size, fi, &cacheattrs2);
2359             fi->s2addr = ipa;
2360             /* Combine the S1 and S2 perms.  */
2361             *prot &= s2_prot;
2362 
2363             /* If S2 fails, return early.  */
2364             if (ret) {
2365                 return ret;
2366             }
2367 
2368             /* Combine the S1 and S2 cache attributes. */
2369             if (arm_hcr_el2_eff(env) & HCR_DC) {
2370                 /*
2371                  * HCR.DC forces the first stage attributes to
2372                  *  Normal Non-Shareable,
2373                  *  Inner Write-Back Read-Allocate Write-Allocate,
2374                  *  Outer Write-Back Read-Allocate Write-Allocate.
2375                  * Do not overwrite Tagged within attrs.
2376                  */
2377                 if (cacheattrs->attrs != 0xf0) {
2378                     cacheattrs->attrs = 0xff;
2379                 }
2380                 cacheattrs->shareability = 0;
2381             }
2382             *cacheattrs = combine_cacheattrs(env, *cacheattrs, cacheattrs2);
2383 
2384             /* Check if IPA translates to secure or non-secure PA space. */
2385             if (arm_is_secure_below_el3(env)) {
2386                 if (ipa_secure) {
2387                     attrs->secure =
2388                         !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW));
2389                 } else {
2390                     attrs->secure =
2391                         !((env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))
2392                         || (env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)));
2393                 }
2394             }
2395             return 0;
2396         } else {
2397             /*
2398              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
2399              */
2400             mmu_idx = stage_1_mmu_idx(mmu_idx);
2401         }
2402     }
2403 
2404     /*
2405      * The page table entries may downgrade secure to non-secure, but
2406      * cannot upgrade an non-secure translation regime's attributes
2407      * to secure.
2408      */
2409     attrs->secure = regime_is_secure(env, mmu_idx);
2410     attrs->user = regime_is_user(env, mmu_idx);
2411 
2412     /*
2413      * Fast Context Switch Extension. This doesn't exist at all in v8.
2414      * In v7 and earlier it affects all stage 1 translations.
2415      */
2416     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2417         && !arm_feature(env, ARM_FEATURE_V8)) {
2418         if (regime_el(env, mmu_idx) == 3) {
2419             address += env->cp15.fcseidr_s;
2420         } else {
2421             address += env->cp15.fcseidr_ns;
2422         }
2423     }
2424 
2425     if (arm_feature(env, ARM_FEATURE_PMSA)) {
2426         bool ret;
2427         *page_size = TARGET_PAGE_SIZE;
2428 
2429         if (arm_feature(env, ARM_FEATURE_V8)) {
2430             /* PMSAv8 */
2431             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2432                                        phys_ptr, attrs, prot, page_size, fi);
2433         } else if (arm_feature(env, ARM_FEATURE_V7)) {
2434             /* PMSAv7 */
2435             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2436                                        phys_ptr, prot, page_size, fi);
2437         } else {
2438             /* Pre-v7 MPU */
2439             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2440                                        phys_ptr, prot, fi);
2441         }
2442         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2443                       " mmu_idx %u -> %s (prot %c%c%c)\n",
2444                       access_type == MMU_DATA_LOAD ? "reading" :
2445                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2446                       (uint32_t)address, mmu_idx,
2447                       ret ? "Miss" : "Hit",
2448                       *prot & PAGE_READ ? 'r' : '-',
2449                       *prot & PAGE_WRITE ? 'w' : '-',
2450                       *prot & PAGE_EXEC ? 'x' : '-');
2451 
2452         return ret;
2453     }
2454 
2455     /* Definitely a real MMU, not an MPU */
2456 
2457     if (regime_translation_disabled(env, mmu_idx)) {
2458         uint64_t hcr;
2459         uint8_t memattr;
2460 
2461         /*
2462          * MMU disabled.  S1 addresses within aa64 translation regimes are
2463          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
2464          */
2465         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
2466             int r_el = regime_el(env, mmu_idx);
2467             if (arm_el_is_aa64(env, r_el)) {
2468                 int pamax = arm_pamax(env_archcpu(env));
2469                 uint64_t tcr = env->cp15.tcr_el[r_el];
2470                 int addrtop, tbi;
2471 
2472                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2473                 if (access_type == MMU_INST_FETCH) {
2474                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2475                 }
2476                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2477                 addrtop = (tbi ? 55 : 63);
2478 
2479                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2480                     fi->type = ARMFault_AddressSize;
2481                     fi->level = 0;
2482                     fi->stage2 = false;
2483                     return 1;
2484                 }
2485 
2486                 /*
2487                  * When TBI is disabled, we've just validated that all of the
2488                  * bits above PAMax are zero, so logically we only need to
2489                  * clear the top byte for TBI.  But it's clearer to follow
2490                  * the pseudocode set of addrdesc.paddress.
2491                  */
2492                 address = extract64(address, 0, 52);
2493             }
2494         }
2495         *phys_ptr = address;
2496         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2497         *page_size = TARGET_PAGE_SIZE;
2498 
2499         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2500         hcr = arm_hcr_el2_eff(env);
2501         cacheattrs->shareability = 0;
2502         cacheattrs->is_s2_format = false;
2503         if (hcr & HCR_DC) {
2504             if (hcr & HCR_DCT) {
2505                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
2506             } else {
2507                 memattr = 0xff;  /* Normal, WB, RWA */
2508             }
2509         } else if (access_type == MMU_INST_FETCH) {
2510             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2511                 memattr = 0xee;  /* Normal, WT, RA, NT */
2512             } else {
2513                 memattr = 0x44;  /* Normal, NC, No */
2514             }
2515             cacheattrs->shareability = 2; /* outer sharable */
2516         } else {
2517             memattr = 0x00;      /* Device, nGnRnE */
2518         }
2519         cacheattrs->attrs = memattr;
2520         return 0;
2521     }
2522 
2523     if (regime_using_lpae_format(env, mmu_idx)) {
2524         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
2525                                   phys_ptr, attrs, prot, page_size,
2526                                   fi, cacheattrs);
2527     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2528         return get_phys_addr_v6(env, address, access_type, mmu_idx,
2529                                 phys_ptr, attrs, prot, page_size, fi);
2530     } else {
2531         return get_phys_addr_v5(env, address, access_type, mmu_idx,
2532                                     phys_ptr, prot, page_size, fi);
2533     }
2534 }
2535 
2536 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2537                                          MemTxAttrs *attrs)
2538 {
2539     ARMCPU *cpu = ARM_CPU(cs);
2540     CPUARMState *env = &cpu->env;
2541     hwaddr phys_addr;
2542     target_ulong page_size;
2543     int prot;
2544     bool ret;
2545     ARMMMUFaultInfo fi = {};
2546     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
2547     ARMCacheAttrs cacheattrs = {};
2548 
2549     *attrs = (MemTxAttrs) {};
2550 
2551     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
2552                         attrs, &prot, &page_size, &fi, &cacheattrs);
2553 
2554     if (ret) {
2555         return -1;
2556     }
2557     return phys_addr;
2558 }
2559