xref: /openbmc/qemu/target/arm/machine.c (revision 623d7e3551a6fc5693c06ea938c60fe281b52e27)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "qemu/error-report.h"
4 #include "sysemu/kvm.h"
5 #include "sysemu/tcg.h"
6 #include "kvm_arm.h"
7 #include "internals.h"
8 #include "migration/cpu.h"
9 
10 static bool vfp_needed(void *opaque)
11 {
12     ARMCPU *cpu = opaque;
13 
14     return (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
15             ? cpu_isar_feature(aa64_fp_simd, cpu)
16             : cpu_isar_feature(aa32_vfp_simd, cpu));
17 }
18 
19 static int get_fpscr(QEMUFile *f, void *opaque, size_t size,
20                      const VMStateField *field)
21 {
22     ARMCPU *cpu = opaque;
23     CPUARMState *env = &cpu->env;
24     uint32_t val = qemu_get_be32(f);
25 
26     vfp_set_fpscr(env, val);
27     return 0;
28 }
29 
30 static int put_fpscr(QEMUFile *f, void *opaque, size_t size,
31                      const VMStateField *field, JSONWriter *vmdesc)
32 {
33     ARMCPU *cpu = opaque;
34     CPUARMState *env = &cpu->env;
35 
36     qemu_put_be32(f, vfp_get_fpscr(env));
37     return 0;
38 }
39 
40 static const VMStateInfo vmstate_fpscr = {
41     .name = "fpscr",
42     .get = get_fpscr,
43     .put = put_fpscr,
44 };
45 
46 static const VMStateDescription vmstate_vfp = {
47     .name = "cpu/vfp",
48     .version_id = 3,
49     .minimum_version_id = 3,
50     .needed = vfp_needed,
51     .fields = (VMStateField[]) {
52         /* For compatibility, store Qn out of Zn here.  */
53         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[0].d, ARMCPU, 0, 2),
54         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[1].d, ARMCPU, 0, 2),
55         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[2].d, ARMCPU, 0, 2),
56         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[3].d, ARMCPU, 0, 2),
57         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[4].d, ARMCPU, 0, 2),
58         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[5].d, ARMCPU, 0, 2),
59         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[6].d, ARMCPU, 0, 2),
60         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[7].d, ARMCPU, 0, 2),
61         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[8].d, ARMCPU, 0, 2),
62         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[9].d, ARMCPU, 0, 2),
63         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[10].d, ARMCPU, 0, 2),
64         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[11].d, ARMCPU, 0, 2),
65         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[12].d, ARMCPU, 0, 2),
66         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[13].d, ARMCPU, 0, 2),
67         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[14].d, ARMCPU, 0, 2),
68         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[15].d, ARMCPU, 0, 2),
69         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[16].d, ARMCPU, 0, 2),
70         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[17].d, ARMCPU, 0, 2),
71         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[18].d, ARMCPU, 0, 2),
72         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[19].d, ARMCPU, 0, 2),
73         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[20].d, ARMCPU, 0, 2),
74         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[21].d, ARMCPU, 0, 2),
75         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[22].d, ARMCPU, 0, 2),
76         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[23].d, ARMCPU, 0, 2),
77         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[24].d, ARMCPU, 0, 2),
78         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[25].d, ARMCPU, 0, 2),
79         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[26].d, ARMCPU, 0, 2),
80         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[27].d, ARMCPU, 0, 2),
81         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[28].d, ARMCPU, 0, 2),
82         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[29].d, ARMCPU, 0, 2),
83         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[30].d, ARMCPU, 0, 2),
84         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[31].d, ARMCPU, 0, 2),
85 
86         /* The xregs array is a little awkward because element 1 (FPSCR)
87          * requires a specific accessor, so we have to split it up in
88          * the vmstate:
89          */
90         VMSTATE_UINT32(env.vfp.xregs[0], ARMCPU),
91         VMSTATE_UINT32_SUB_ARRAY(env.vfp.xregs, ARMCPU, 2, 14),
92         {
93             .name = "fpscr",
94             .version_id = 0,
95             .size = sizeof(uint32_t),
96             .info = &vmstate_fpscr,
97             .flags = VMS_SINGLE,
98             .offset = 0,
99         },
100         VMSTATE_END_OF_LIST()
101     }
102 };
103 
104 static bool iwmmxt_needed(void *opaque)
105 {
106     ARMCPU *cpu = opaque;
107     CPUARMState *env = &cpu->env;
108 
109     return arm_feature(env, ARM_FEATURE_IWMMXT);
110 }
111 
112 static const VMStateDescription vmstate_iwmmxt = {
113     .name = "cpu/iwmmxt",
114     .version_id = 1,
115     .minimum_version_id = 1,
116     .needed = iwmmxt_needed,
117     .fields = (VMStateField[]) {
118         VMSTATE_UINT64_ARRAY(env.iwmmxt.regs, ARMCPU, 16),
119         VMSTATE_UINT32_ARRAY(env.iwmmxt.cregs, ARMCPU, 16),
120         VMSTATE_END_OF_LIST()
121     }
122 };
123 
124 #ifdef TARGET_AARCH64
125 /* The expression ARM_MAX_VQ - 2 is 0 for pure AArch32 build,
126  * and ARMPredicateReg is actively empty.  This triggers errors
127  * in the expansion of the VMSTATE macros.
128  */
129 
130 static bool sve_needed(void *opaque)
131 {
132     ARMCPU *cpu = opaque;
133 
134     return cpu_isar_feature(aa64_sve, cpu);
135 }
136 
137 /* The first two words of each Zreg is stored in VFP state.  */
138 static const VMStateDescription vmstate_zreg_hi_reg = {
139     .name = "cpu/sve/zreg_hi",
140     .version_id = 1,
141     .minimum_version_id = 1,
142     .fields = (VMStateField[]) {
143         VMSTATE_UINT64_SUB_ARRAY(d, ARMVectorReg, 2, ARM_MAX_VQ - 2),
144         VMSTATE_END_OF_LIST()
145     }
146 };
147 
148 static const VMStateDescription vmstate_preg_reg = {
149     .name = "cpu/sve/preg",
150     .version_id = 1,
151     .minimum_version_id = 1,
152     .fields = (VMStateField[]) {
153         VMSTATE_UINT64_ARRAY(p, ARMPredicateReg, 2 * ARM_MAX_VQ / 8),
154         VMSTATE_END_OF_LIST()
155     }
156 };
157 
158 static const VMStateDescription vmstate_sve = {
159     .name = "cpu/sve",
160     .version_id = 1,
161     .minimum_version_id = 1,
162     .needed = sve_needed,
163     .fields = (VMStateField[]) {
164         VMSTATE_STRUCT_ARRAY(env.vfp.zregs, ARMCPU, 32, 0,
165                              vmstate_zreg_hi_reg, ARMVectorReg),
166         VMSTATE_STRUCT_ARRAY(env.vfp.pregs, ARMCPU, 17, 0,
167                              vmstate_preg_reg, ARMPredicateReg),
168         VMSTATE_END_OF_LIST()
169     }
170 };
171 
172 static const VMStateDescription vmstate_vreg = {
173     .name = "vreg",
174     .version_id = 1,
175     .minimum_version_id = 1,
176     .fields = (VMStateField[]) {
177         VMSTATE_UINT64_ARRAY(d, ARMVectorReg, ARM_MAX_VQ * 2),
178         VMSTATE_END_OF_LIST()
179     }
180 };
181 
182 static bool za_needed(void *opaque)
183 {
184     ARMCPU *cpu = opaque;
185 
186     /*
187      * When ZA storage is disabled, its contents are discarded.
188      * It will be zeroed when ZA storage is re-enabled.
189      */
190     return FIELD_EX64(cpu->env.svcr, SVCR, ZA);
191 }
192 
193 static const VMStateDescription vmstate_za = {
194     .name = "cpu/sme",
195     .version_id = 1,
196     .minimum_version_id = 1,
197     .needed = za_needed,
198     .fields = (VMStateField[]) {
199         VMSTATE_STRUCT_ARRAY(env.zarray, ARMCPU, ARM_MAX_VQ * 16, 0,
200                              vmstate_vreg, ARMVectorReg),
201         VMSTATE_END_OF_LIST()
202     }
203 };
204 #endif /* AARCH64 */
205 
206 static bool serror_needed(void *opaque)
207 {
208     ARMCPU *cpu = opaque;
209     CPUARMState *env = &cpu->env;
210 
211     return env->serror.pending != 0;
212 }
213 
214 static const VMStateDescription vmstate_serror = {
215     .name = "cpu/serror",
216     .version_id = 1,
217     .minimum_version_id = 1,
218     .needed = serror_needed,
219     .fields = (VMStateField[]) {
220         VMSTATE_UINT8(env.serror.pending, ARMCPU),
221         VMSTATE_UINT8(env.serror.has_esr, ARMCPU),
222         VMSTATE_UINT64(env.serror.esr, ARMCPU),
223         VMSTATE_END_OF_LIST()
224     }
225 };
226 
227 static bool irq_line_state_needed(void *opaque)
228 {
229     return true;
230 }
231 
232 static const VMStateDescription vmstate_irq_line_state = {
233     .name = "cpu/irq-line-state",
234     .version_id = 1,
235     .minimum_version_id = 1,
236     .needed = irq_line_state_needed,
237     .fields = (VMStateField[]) {
238         VMSTATE_UINT32(env.irq_line_state, ARMCPU),
239         VMSTATE_END_OF_LIST()
240     }
241 };
242 
243 static bool m_needed(void *opaque)
244 {
245     ARMCPU *cpu = opaque;
246     CPUARMState *env = &cpu->env;
247 
248     return arm_feature(env, ARM_FEATURE_M);
249 }
250 
251 static const VMStateDescription vmstate_m_faultmask_primask = {
252     .name = "cpu/m/faultmask-primask",
253     .version_id = 1,
254     .minimum_version_id = 1,
255     .needed = m_needed,
256     .fields = (VMStateField[]) {
257         VMSTATE_UINT32(env.v7m.faultmask[M_REG_NS], ARMCPU),
258         VMSTATE_UINT32(env.v7m.primask[M_REG_NS], ARMCPU),
259         VMSTATE_END_OF_LIST()
260     }
261 };
262 
263 /* CSSELR is in a subsection because we didn't implement it previously.
264  * Migration from an old implementation will leave it at zero, which
265  * is OK since the only CPUs in the old implementation make the
266  * register RAZ/WI.
267  * Since there was no version of QEMU which implemented the CSSELR for
268  * just non-secure, we transfer both banks here rather than putting
269  * the secure banked version in the m-security subsection.
270  */
271 static bool csselr_vmstate_validate(void *opaque, int version_id)
272 {
273     ARMCPU *cpu = opaque;
274 
275     return cpu->env.v7m.csselr[M_REG_NS] <= R_V7M_CSSELR_INDEX_MASK
276         && cpu->env.v7m.csselr[M_REG_S] <= R_V7M_CSSELR_INDEX_MASK;
277 }
278 
279 static bool m_csselr_needed(void *opaque)
280 {
281     ARMCPU *cpu = opaque;
282 
283     return !arm_v7m_csselr_razwi(cpu);
284 }
285 
286 static const VMStateDescription vmstate_m_csselr = {
287     .name = "cpu/m/csselr",
288     .version_id = 1,
289     .minimum_version_id = 1,
290     .needed = m_csselr_needed,
291     .fields = (VMStateField[]) {
292         VMSTATE_UINT32_ARRAY(env.v7m.csselr, ARMCPU, M_REG_NUM_BANKS),
293         VMSTATE_VALIDATE("CSSELR is valid", csselr_vmstate_validate),
294         VMSTATE_END_OF_LIST()
295     }
296 };
297 
298 static const VMStateDescription vmstate_m_scr = {
299     .name = "cpu/m/scr",
300     .version_id = 1,
301     .minimum_version_id = 1,
302     .needed = m_needed,
303     .fields = (VMStateField[]) {
304         VMSTATE_UINT32(env.v7m.scr[M_REG_NS], ARMCPU),
305         VMSTATE_END_OF_LIST()
306     }
307 };
308 
309 static const VMStateDescription vmstate_m_other_sp = {
310     .name = "cpu/m/other-sp",
311     .version_id = 1,
312     .minimum_version_id = 1,
313     .needed = m_needed,
314     .fields = (VMStateField[]) {
315         VMSTATE_UINT32(env.v7m.other_sp, ARMCPU),
316         VMSTATE_END_OF_LIST()
317     }
318 };
319 
320 static bool m_v8m_needed(void *opaque)
321 {
322     ARMCPU *cpu = opaque;
323     CPUARMState *env = &cpu->env;
324 
325     return arm_feature(env, ARM_FEATURE_M) && arm_feature(env, ARM_FEATURE_V8);
326 }
327 
328 static const VMStateDescription vmstate_m_v8m = {
329     .name = "cpu/m/v8m",
330     .version_id = 1,
331     .minimum_version_id = 1,
332     .needed = m_v8m_needed,
333     .fields = (VMStateField[]) {
334         VMSTATE_UINT32_ARRAY(env.v7m.msplim, ARMCPU, M_REG_NUM_BANKS),
335         VMSTATE_UINT32_ARRAY(env.v7m.psplim, ARMCPU, M_REG_NUM_BANKS),
336         VMSTATE_END_OF_LIST()
337     }
338 };
339 
340 static const VMStateDescription vmstate_m_fp = {
341     .name = "cpu/m/fp",
342     .version_id = 1,
343     .minimum_version_id = 1,
344     .needed = vfp_needed,
345     .fields = (VMStateField[]) {
346         VMSTATE_UINT32_ARRAY(env.v7m.fpcar, ARMCPU, M_REG_NUM_BANKS),
347         VMSTATE_UINT32_ARRAY(env.v7m.fpccr, ARMCPU, M_REG_NUM_BANKS),
348         VMSTATE_UINT32_ARRAY(env.v7m.fpdscr, ARMCPU, M_REG_NUM_BANKS),
349         VMSTATE_UINT32_ARRAY(env.v7m.cpacr, ARMCPU, M_REG_NUM_BANKS),
350         VMSTATE_UINT32(env.v7m.nsacr, ARMCPU),
351         VMSTATE_END_OF_LIST()
352     }
353 };
354 
355 static bool mve_needed(void *opaque)
356 {
357     ARMCPU *cpu = opaque;
358 
359     return cpu_isar_feature(aa32_mve, cpu);
360 }
361 
362 static const VMStateDescription vmstate_m_mve = {
363     .name = "cpu/m/mve",
364     .version_id = 1,
365     .minimum_version_id = 1,
366     .needed = mve_needed,
367     .fields = (VMStateField[]) {
368         VMSTATE_UINT32(env.v7m.vpr, ARMCPU),
369         VMSTATE_UINT32(env.v7m.ltpsize, ARMCPU),
370         VMSTATE_END_OF_LIST()
371     },
372 };
373 
374 static const VMStateDescription vmstate_m = {
375     .name = "cpu/m",
376     .version_id = 4,
377     .minimum_version_id = 4,
378     .needed = m_needed,
379     .fields = (VMStateField[]) {
380         VMSTATE_UINT32(env.v7m.vecbase[M_REG_NS], ARMCPU),
381         VMSTATE_UINT32(env.v7m.basepri[M_REG_NS], ARMCPU),
382         VMSTATE_UINT32(env.v7m.control[M_REG_NS], ARMCPU),
383         VMSTATE_UINT32(env.v7m.ccr[M_REG_NS], ARMCPU),
384         VMSTATE_UINT32(env.v7m.cfsr[M_REG_NS], ARMCPU),
385         VMSTATE_UINT32(env.v7m.hfsr, ARMCPU),
386         VMSTATE_UINT32(env.v7m.dfsr, ARMCPU),
387         VMSTATE_UINT32(env.v7m.mmfar[M_REG_NS], ARMCPU),
388         VMSTATE_UINT32(env.v7m.bfar, ARMCPU),
389         VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_NS], ARMCPU),
390         VMSTATE_INT32(env.v7m.exception, ARMCPU),
391         VMSTATE_END_OF_LIST()
392     },
393     .subsections = (const VMStateDescription*[]) {
394         &vmstate_m_faultmask_primask,
395         &vmstate_m_csselr,
396         &vmstate_m_scr,
397         &vmstate_m_other_sp,
398         &vmstate_m_v8m,
399         &vmstate_m_fp,
400         &vmstate_m_mve,
401         NULL
402     }
403 };
404 
405 static bool thumb2ee_needed(void *opaque)
406 {
407     ARMCPU *cpu = opaque;
408     CPUARMState *env = &cpu->env;
409 
410     return arm_feature(env, ARM_FEATURE_THUMB2EE);
411 }
412 
413 static const VMStateDescription vmstate_thumb2ee = {
414     .name = "cpu/thumb2ee",
415     .version_id = 1,
416     .minimum_version_id = 1,
417     .needed = thumb2ee_needed,
418     .fields = (VMStateField[]) {
419         VMSTATE_UINT32(env.teecr, ARMCPU),
420         VMSTATE_UINT32(env.teehbr, ARMCPU),
421         VMSTATE_END_OF_LIST()
422     }
423 };
424 
425 static bool pmsav7_needed(void *opaque)
426 {
427     ARMCPU *cpu = opaque;
428     CPUARMState *env = &cpu->env;
429 
430     return arm_feature(env, ARM_FEATURE_PMSA) &&
431            arm_feature(env, ARM_FEATURE_V7) &&
432            !arm_feature(env, ARM_FEATURE_V8);
433 }
434 
435 static bool pmsav7_rgnr_vmstate_validate(void *opaque, int version_id)
436 {
437     ARMCPU *cpu = opaque;
438 
439     return cpu->env.pmsav7.rnr[M_REG_NS] < cpu->pmsav7_dregion;
440 }
441 
442 static const VMStateDescription vmstate_pmsav7 = {
443     .name = "cpu/pmsav7",
444     .version_id = 1,
445     .minimum_version_id = 1,
446     .needed = pmsav7_needed,
447     .fields = (VMStateField[]) {
448         VMSTATE_VARRAY_UINT32(env.pmsav7.drbar, ARMCPU, pmsav7_dregion, 0,
449                               vmstate_info_uint32, uint32_t),
450         VMSTATE_VARRAY_UINT32(env.pmsav7.drsr, ARMCPU, pmsav7_dregion, 0,
451                               vmstate_info_uint32, uint32_t),
452         VMSTATE_VARRAY_UINT32(env.pmsav7.dracr, ARMCPU, pmsav7_dregion, 0,
453                               vmstate_info_uint32, uint32_t),
454         VMSTATE_VALIDATE("rgnr is valid", pmsav7_rgnr_vmstate_validate),
455         VMSTATE_END_OF_LIST()
456     }
457 };
458 
459 static bool pmsav7_rnr_needed(void *opaque)
460 {
461     ARMCPU *cpu = opaque;
462     CPUARMState *env = &cpu->env;
463 
464     /* For R profile cores pmsav7.rnr is migrated via the cpreg
465      * "RGNR" definition in helper.h. For M profile we have to
466      * migrate it separately.
467      */
468     return arm_feature(env, ARM_FEATURE_M);
469 }
470 
471 static const VMStateDescription vmstate_pmsav7_rnr = {
472     .name = "cpu/pmsav7-rnr",
473     .version_id = 1,
474     .minimum_version_id = 1,
475     .needed = pmsav7_rnr_needed,
476     .fields = (VMStateField[]) {
477         VMSTATE_UINT32(env.pmsav7.rnr[M_REG_NS], ARMCPU),
478         VMSTATE_END_OF_LIST()
479     }
480 };
481 
482 static bool pmsav8_needed(void *opaque)
483 {
484     ARMCPU *cpu = opaque;
485     CPUARMState *env = &cpu->env;
486 
487     return arm_feature(env, ARM_FEATURE_PMSA) &&
488         arm_feature(env, ARM_FEATURE_V8);
489 }
490 
491 static bool pmsav8r_needed(void *opaque)
492 {
493     ARMCPU *cpu = opaque;
494     CPUARMState *env = &cpu->env;
495 
496     return arm_feature(env, ARM_FEATURE_PMSA) &&
497         arm_feature(env, ARM_FEATURE_V8) &&
498         !arm_feature(env, ARM_FEATURE_M);
499 }
500 
501 static const VMStateDescription vmstate_pmsav8r = {
502     .name = "cpu/pmsav8/pmsav8r",
503     .version_id = 1,
504     .minimum_version_id = 1,
505     .needed = pmsav8r_needed,
506     .fields = (VMStateField[]) {
507         VMSTATE_VARRAY_UINT32(env.pmsav8.hprbar, ARMCPU,
508                         pmsav8r_hdregion, 0, vmstate_info_uint32, uint32_t),
509         VMSTATE_VARRAY_UINT32(env.pmsav8.hprlar, ARMCPU,
510                         pmsav8r_hdregion, 0, vmstate_info_uint32, uint32_t),
511         VMSTATE_END_OF_LIST()
512     },
513 };
514 
515 static const VMStateDescription vmstate_pmsav8 = {
516     .name = "cpu/pmsav8",
517     .version_id = 1,
518     .minimum_version_id = 1,
519     .needed = pmsav8_needed,
520     .fields = (VMStateField[]) {
521         VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_NS], ARMCPU, pmsav7_dregion,
522                               0, vmstate_info_uint32, uint32_t),
523         VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_NS], ARMCPU, pmsav7_dregion,
524                               0, vmstate_info_uint32, uint32_t),
525         VMSTATE_UINT32(env.pmsav8.mair0[M_REG_NS], ARMCPU),
526         VMSTATE_UINT32(env.pmsav8.mair1[M_REG_NS], ARMCPU),
527         VMSTATE_END_OF_LIST()
528     },
529     .subsections = (const VMStateDescription * []) {
530         &vmstate_pmsav8r,
531         NULL
532     }
533 };
534 
535 static bool s_rnr_vmstate_validate(void *opaque, int version_id)
536 {
537     ARMCPU *cpu = opaque;
538 
539     return cpu->env.pmsav7.rnr[M_REG_S] < cpu->pmsav7_dregion;
540 }
541 
542 static bool sau_rnr_vmstate_validate(void *opaque, int version_id)
543 {
544     ARMCPU *cpu = opaque;
545 
546     return cpu->env.sau.rnr < cpu->sau_sregion;
547 }
548 
549 static bool m_security_needed(void *opaque)
550 {
551     ARMCPU *cpu = opaque;
552     CPUARMState *env = &cpu->env;
553 
554     return arm_feature(env, ARM_FEATURE_M_SECURITY);
555 }
556 
557 static const VMStateDescription vmstate_m_security = {
558     .name = "cpu/m-security",
559     .version_id = 1,
560     .minimum_version_id = 1,
561     .needed = m_security_needed,
562     .fields = (VMStateField[]) {
563         VMSTATE_UINT32(env.v7m.secure, ARMCPU),
564         VMSTATE_UINT32(env.v7m.other_ss_msp, ARMCPU),
565         VMSTATE_UINT32(env.v7m.other_ss_psp, ARMCPU),
566         VMSTATE_UINT32(env.v7m.basepri[M_REG_S], ARMCPU),
567         VMSTATE_UINT32(env.v7m.primask[M_REG_S], ARMCPU),
568         VMSTATE_UINT32(env.v7m.faultmask[M_REG_S], ARMCPU),
569         VMSTATE_UINT32(env.v7m.control[M_REG_S], ARMCPU),
570         VMSTATE_UINT32(env.v7m.vecbase[M_REG_S], ARMCPU),
571         VMSTATE_UINT32(env.pmsav8.mair0[M_REG_S], ARMCPU),
572         VMSTATE_UINT32(env.pmsav8.mair1[M_REG_S], ARMCPU),
573         VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_S], ARMCPU, pmsav7_dregion,
574                               0, vmstate_info_uint32, uint32_t),
575         VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_S], ARMCPU, pmsav7_dregion,
576                               0, vmstate_info_uint32, uint32_t),
577         VMSTATE_UINT32(env.pmsav7.rnr[M_REG_S], ARMCPU),
578         VMSTATE_VALIDATE("secure MPU_RNR is valid", s_rnr_vmstate_validate),
579         VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_S], ARMCPU),
580         VMSTATE_UINT32(env.v7m.ccr[M_REG_S], ARMCPU),
581         VMSTATE_UINT32(env.v7m.mmfar[M_REG_S], ARMCPU),
582         VMSTATE_UINT32(env.v7m.cfsr[M_REG_S], ARMCPU),
583         VMSTATE_UINT32(env.v7m.sfsr, ARMCPU),
584         VMSTATE_UINT32(env.v7m.sfar, ARMCPU),
585         VMSTATE_VARRAY_UINT32(env.sau.rbar, ARMCPU, sau_sregion, 0,
586                               vmstate_info_uint32, uint32_t),
587         VMSTATE_VARRAY_UINT32(env.sau.rlar, ARMCPU, sau_sregion, 0,
588                               vmstate_info_uint32, uint32_t),
589         VMSTATE_UINT32(env.sau.rnr, ARMCPU),
590         VMSTATE_VALIDATE("SAU_RNR is valid", sau_rnr_vmstate_validate),
591         VMSTATE_UINT32(env.sau.ctrl, ARMCPU),
592         VMSTATE_UINT32(env.v7m.scr[M_REG_S], ARMCPU),
593         /* AIRCR is not secure-only, but our implementation is R/O if the
594          * security extension is unimplemented, so we migrate it here.
595          */
596         VMSTATE_UINT32(env.v7m.aircr, ARMCPU),
597         VMSTATE_END_OF_LIST()
598     }
599 };
600 
601 static int get_cpsr(QEMUFile *f, void *opaque, size_t size,
602                     const VMStateField *field)
603 {
604     ARMCPU *cpu = opaque;
605     CPUARMState *env = &cpu->env;
606     uint32_t val = qemu_get_be32(f);
607 
608     if (arm_feature(env, ARM_FEATURE_M)) {
609         if (val & XPSR_EXCP) {
610             /* This is a CPSR format value from an older QEMU. (We can tell
611              * because values transferred in XPSR format always have zero
612              * for the EXCP field, and CPSR format will always have bit 4
613              * set in CPSR_M.) Rearrange it into XPSR format. The significant
614              * differences are that the T bit is not in the same place, the
615              * primask/faultmask info may be in the CPSR I and F bits, and
616              * we do not want the mode bits.
617              * We know that this cleanup happened before v8M, so there
618              * is no complication with banked primask/faultmask.
619              */
620             uint32_t newval = val;
621 
622             assert(!arm_feature(env, ARM_FEATURE_M_SECURITY));
623 
624             newval &= (CPSR_NZCV | CPSR_Q | CPSR_IT | CPSR_GE);
625             if (val & CPSR_T) {
626                 newval |= XPSR_T;
627             }
628             /* If the I or F bits are set then this is a migration from
629              * an old QEMU which still stored the M profile FAULTMASK
630              * and PRIMASK in env->daif. For a new QEMU, the data is
631              * transferred using the vmstate_m_faultmask_primask subsection.
632              */
633             if (val & CPSR_F) {
634                 env->v7m.faultmask[M_REG_NS] = 1;
635             }
636             if (val & CPSR_I) {
637                 env->v7m.primask[M_REG_NS] = 1;
638             }
639             val = newval;
640         }
641         /* Ignore the low bits, they are handled by vmstate_m. */
642         xpsr_write(env, val, ~XPSR_EXCP);
643         return 0;
644     }
645 
646     env->aarch64 = ((val & PSTATE_nRW) == 0);
647 
648     if (is_a64(env)) {
649         pstate_write(env, val);
650         return 0;
651     }
652 
653     cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
654     return 0;
655 }
656 
657 static int put_cpsr(QEMUFile *f, void *opaque, size_t size,
658                     const VMStateField *field, JSONWriter *vmdesc)
659 {
660     ARMCPU *cpu = opaque;
661     CPUARMState *env = &cpu->env;
662     uint32_t val;
663 
664     if (arm_feature(env, ARM_FEATURE_M)) {
665         /* The low 9 bits are v7m.exception, which is handled by vmstate_m. */
666         val = xpsr_read(env) & ~XPSR_EXCP;
667     } else if (is_a64(env)) {
668         val = pstate_read(env);
669     } else {
670         val = cpsr_read(env);
671     }
672 
673     qemu_put_be32(f, val);
674     return 0;
675 }
676 
677 static const VMStateInfo vmstate_cpsr = {
678     .name = "cpsr",
679     .get = get_cpsr,
680     .put = put_cpsr,
681 };
682 
683 static int get_power(QEMUFile *f, void *opaque, size_t size,
684                     const VMStateField *field)
685 {
686     ARMCPU *cpu = opaque;
687     bool powered_off = qemu_get_byte(f);
688     cpu->power_state = powered_off ? PSCI_OFF : PSCI_ON;
689     return 0;
690 }
691 
692 static int put_power(QEMUFile *f, void *opaque, size_t size,
693                     const VMStateField *field, JSONWriter *vmdesc)
694 {
695     ARMCPU *cpu = opaque;
696 
697     /* Migration should never happen while we transition power states */
698 
699     if (cpu->power_state == PSCI_ON ||
700         cpu->power_state == PSCI_OFF) {
701         bool powered_off = (cpu->power_state == PSCI_OFF) ? true : false;
702         qemu_put_byte(f, powered_off);
703         return 0;
704     } else {
705         return 1;
706     }
707 }
708 
709 static const VMStateInfo vmstate_powered_off = {
710     .name = "powered_off",
711     .get = get_power,
712     .put = put_power,
713 };
714 
715 static int cpu_pre_save(void *opaque)
716 {
717     ARMCPU *cpu = opaque;
718 
719     if (!kvm_enabled()) {
720         pmu_op_start(&cpu->env);
721     }
722 
723     if (kvm_enabled()) {
724         if (!write_kvmstate_to_list(cpu)) {
725             /* This should never fail */
726             g_assert_not_reached();
727         }
728 
729         /*
730          * kvm_arm_cpu_pre_save() must be called after
731          * write_kvmstate_to_list()
732          */
733         kvm_arm_cpu_pre_save(cpu);
734     } else {
735         if (!write_cpustate_to_list(cpu, false)) {
736             /* This should never fail. */
737             g_assert_not_reached();
738         }
739     }
740 
741     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
742     memcpy(cpu->cpreg_vmstate_indexes, cpu->cpreg_indexes,
743            cpu->cpreg_array_len * sizeof(uint64_t));
744     memcpy(cpu->cpreg_vmstate_values, cpu->cpreg_values,
745            cpu->cpreg_array_len * sizeof(uint64_t));
746 
747     return 0;
748 }
749 
750 static int cpu_post_save(void *opaque)
751 {
752     ARMCPU *cpu = opaque;
753 
754     if (!kvm_enabled()) {
755         pmu_op_finish(&cpu->env);
756     }
757 
758     return 0;
759 }
760 
761 static int cpu_pre_load(void *opaque)
762 {
763     ARMCPU *cpu = opaque;
764     CPUARMState *env = &cpu->env;
765 
766     /*
767      * Pre-initialize irq_line_state to a value that's never valid as
768      * real data, so cpu_post_load() can tell whether we've seen the
769      * irq-line-state subsection in the incoming migration state.
770      */
771     env->irq_line_state = UINT32_MAX;
772 
773     if (!kvm_enabled()) {
774         pmu_op_start(&cpu->env);
775     }
776 
777     return 0;
778 }
779 
780 static int cpu_post_load(void *opaque, int version_id)
781 {
782     ARMCPU *cpu = opaque;
783     CPUARMState *env = &cpu->env;
784     int i, v;
785 
786     /*
787      * Handle migration compatibility from old QEMU which didn't
788      * send the irq-line-state subsection. A QEMU without it did not
789      * implement the HCR_EL2.{VI,VF} bits as generating interrupts,
790      * so for TCG the line state matches the bits set in cs->interrupt_request.
791      * For KVM the line state is not stored in cs->interrupt_request
792      * and so this will leave irq_line_state as 0, but this is OK because
793      * we only need to care about it for TCG.
794      */
795     if (env->irq_line_state == UINT32_MAX) {
796         CPUState *cs = CPU(cpu);
797 
798         env->irq_line_state = cs->interrupt_request &
799             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ |
800              CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VFIQ);
801     }
802 
803     /* Update the values list from the incoming migration data.
804      * Anything in the incoming data which we don't know about is
805      * a migration failure; anything we know about but the incoming
806      * data doesn't specify retains its current (reset) value.
807      * The indexes list remains untouched -- we only inspect the
808      * incoming migration index list so we can match the values array
809      * entries with the right slots in our own values array.
810      */
811 
812     for (i = 0, v = 0; i < cpu->cpreg_array_len
813              && v < cpu->cpreg_vmstate_array_len; i++) {
814         if (cpu->cpreg_vmstate_indexes[v] > cpu->cpreg_indexes[i]) {
815             /* register in our list but not incoming : skip it */
816             continue;
817         }
818         if (cpu->cpreg_vmstate_indexes[v] < cpu->cpreg_indexes[i]) {
819             /* register in their list but not ours: fail migration */
820             return -1;
821         }
822         /* matching register, copy the value over */
823         cpu->cpreg_values[i] = cpu->cpreg_vmstate_values[v];
824         v++;
825     }
826 
827     if (kvm_enabled()) {
828         if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
829             return -1;
830         }
831         /* Note that it's OK for the TCG side not to know about
832          * every register in the list; KVM is authoritative if
833          * we're using it.
834          */
835         write_list_to_cpustate(cpu);
836         kvm_arm_cpu_post_load(cpu);
837     } else {
838         if (!write_list_to_cpustate(cpu)) {
839             return -1;
840         }
841     }
842 
843     /*
844      * Misaligned thumb pc is architecturally impossible. Fail the
845      * incoming migration. For TCG it would trigger the assert in
846      * thumb_tr_translate_insn().
847      */
848     if (!is_a64(env) && env->thumb && (env->regs[15] & 1)) {
849         return -1;
850     }
851 
852     if (tcg_enabled()) {
853         hw_breakpoint_update_all(cpu);
854         hw_watchpoint_update_all(cpu);
855     }
856 
857     /*
858      * TCG gen_update_fp_context() relies on the invariant that
859      * FPDSCR.LTPSIZE is constant 4 for M-profile with the LOB extension;
860      * forbid bogus incoming data with some other value.
861      */
862     if (arm_feature(env, ARM_FEATURE_M) && cpu_isar_feature(aa32_lob, cpu)) {
863         if (extract32(env->v7m.fpdscr[M_REG_NS],
864                       FPCR_LTPSIZE_SHIFT, FPCR_LTPSIZE_LENGTH) != 4 ||
865             extract32(env->v7m.fpdscr[M_REG_S],
866                       FPCR_LTPSIZE_SHIFT, FPCR_LTPSIZE_LENGTH) != 4) {
867             return -1;
868         }
869     }
870 
871     if (!kvm_enabled()) {
872         pmu_op_finish(&cpu->env);
873     }
874 
875     if (tcg_enabled()) {
876         arm_rebuild_hflags(&cpu->env);
877     }
878 
879     return 0;
880 }
881 
882 const VMStateDescription vmstate_arm_cpu = {
883     .name = "cpu",
884     .version_id = 22,
885     .minimum_version_id = 22,
886     .pre_save = cpu_pre_save,
887     .post_save = cpu_post_save,
888     .pre_load = cpu_pre_load,
889     .post_load = cpu_post_load,
890     .fields = (VMStateField[]) {
891         VMSTATE_UINT32_ARRAY(env.regs, ARMCPU, 16),
892         VMSTATE_UINT64_ARRAY(env.xregs, ARMCPU, 32),
893         VMSTATE_UINT64(env.pc, ARMCPU),
894         {
895             .name = "cpsr",
896             .version_id = 0,
897             .size = sizeof(uint32_t),
898             .info = &vmstate_cpsr,
899             .flags = VMS_SINGLE,
900             .offset = 0,
901         },
902         VMSTATE_UINT32(env.spsr, ARMCPU),
903         VMSTATE_UINT64_ARRAY(env.banked_spsr, ARMCPU, 8),
904         VMSTATE_UINT32_ARRAY(env.banked_r13, ARMCPU, 8),
905         VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 8),
906         VMSTATE_UINT32_ARRAY(env.usr_regs, ARMCPU, 5),
907         VMSTATE_UINT32_ARRAY(env.fiq_regs, ARMCPU, 5),
908         VMSTATE_UINT64_ARRAY(env.elr_el, ARMCPU, 4),
909         VMSTATE_UINT64_ARRAY(env.sp_el, ARMCPU, 4),
910         /* The length-check must come before the arrays to avoid
911          * incoming data possibly overflowing the array.
912          */
913         VMSTATE_INT32_POSITIVE_LE(cpreg_vmstate_array_len, ARMCPU),
914         VMSTATE_VARRAY_INT32(cpreg_vmstate_indexes, ARMCPU,
915                              cpreg_vmstate_array_len,
916                              0, vmstate_info_uint64, uint64_t),
917         VMSTATE_VARRAY_INT32(cpreg_vmstate_values, ARMCPU,
918                              cpreg_vmstate_array_len,
919                              0, vmstate_info_uint64, uint64_t),
920         VMSTATE_UINT64(env.exclusive_addr, ARMCPU),
921         VMSTATE_UINT64(env.exclusive_val, ARMCPU),
922         VMSTATE_UINT64(env.exclusive_high, ARMCPU),
923         VMSTATE_UNUSED(sizeof(uint64_t)),
924         VMSTATE_UINT32(env.exception.syndrome, ARMCPU),
925         VMSTATE_UINT32(env.exception.fsr, ARMCPU),
926         VMSTATE_UINT64(env.exception.vaddress, ARMCPU),
927         VMSTATE_TIMER_PTR(gt_timer[GTIMER_PHYS], ARMCPU),
928         VMSTATE_TIMER_PTR(gt_timer[GTIMER_VIRT], ARMCPU),
929         {
930             .name = "power_state",
931             .version_id = 0,
932             .size = sizeof(bool),
933             .info = &vmstate_powered_off,
934             .flags = VMS_SINGLE,
935             .offset = 0,
936         },
937         VMSTATE_END_OF_LIST()
938     },
939     .subsections = (const VMStateDescription*[]) {
940         &vmstate_vfp,
941         &vmstate_iwmmxt,
942         &vmstate_m,
943         &vmstate_thumb2ee,
944         /* pmsav7_rnr must come before pmsav7 so that we have the
945          * region number before we test it in the VMSTATE_VALIDATE
946          * in vmstate_pmsav7.
947          */
948         &vmstate_pmsav7_rnr,
949         &vmstate_pmsav7,
950         &vmstate_pmsav8,
951         &vmstate_m_security,
952 #ifdef TARGET_AARCH64
953         &vmstate_sve,
954         &vmstate_za,
955 #endif
956         &vmstate_serror,
957         &vmstate_irq_line_state,
958         NULL
959     }
960 };
961