xref: /openbmc/qemu/target/arm/kvm_arm.h (revision 05a248715cef192336a594afed812871a52efc1f)
1 /*
2  * QEMU KVM support -- ARM specific functions.
3  *
4  * Copyright (c) 2012 Linaro Limited
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #ifndef QEMU_KVM_ARM_H
12 #define QEMU_KVM_ARM_H
13 
14 #include "sysemu/kvm.h"
15 #include "exec/memory.h"
16 #include "qemu/error-report.h"
17 
18 #define KVM_ARM_VGIC_V2   (1 << 0)
19 #define KVM_ARM_VGIC_V3   (1 << 1)
20 
21 /**
22  * kvm_arm_vcpu_init:
23  * @cs: CPUState
24  *
25  * Initialize (or reinitialize) the VCPU by invoking the
26  * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
27  * bitmask specified in the CPUState.
28  *
29  * Returns: 0 if success else < 0 error code
30  */
31 int kvm_arm_vcpu_init(CPUState *cs);
32 
33 /**
34  * kvm_arm_vcpu_finalize:
35  * @cs: CPUState
36  * @feature: feature to finalize
37  *
38  * Finalizes the configuration of the specified VCPU feature by
39  * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
40  * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
41  * KVM's API documentation.
42  *
43  * Returns: 0 if success else < 0 error code
44  */
45 int kvm_arm_vcpu_finalize(CPUState *cs, int feature);
46 
47 /**
48  * kvm_arm_register_device:
49  * @mr: memory region for this device
50  * @devid: the KVM device ID
51  * @group: device control API group for setting addresses
52  * @attr: device control API address type
53  * @dev_fd: device control device file descriptor (or -1 if not supported)
54  * @addr_ormask: value to be OR'ed with resolved address
55  *
56  * Remember the memory region @mr, and when it is mapped by the
57  * machine model, tell the kernel that base address using the
58  * KVM_ARM_SET_DEVICE_ADDRESS ioctl or the newer device control API.  @devid
59  * should be the ID of the device as defined by KVM_ARM_SET_DEVICE_ADDRESS or
60  * the arm-vgic device in the device control API.
61  * The machine model may map
62  * and unmap the device multiple times; the kernel will only be told the final
63  * address at the point where machine init is complete.
64  */
65 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
66                              uint64_t attr, int dev_fd, uint64_t addr_ormask);
67 
68 /**
69  * kvm_arm_init_cpreg_list:
70  * @cpu: ARMCPU
71  *
72  * Initialize the ARMCPU cpreg list according to the kernel's
73  * definition of what CPU registers it knows about (and throw away
74  * the previous TCG-created cpreg list).
75  *
76  * Returns: 0 if success, else < 0 error code
77  */
78 int kvm_arm_init_cpreg_list(ARMCPU *cpu);
79 
80 /**
81  * kvm_arm_reg_syncs_via_cpreg_list:
82  * @regidx: KVM register index
83  *
84  * Return true if this KVM register should be synchronized via the
85  * cpreg list of arbitrary system registers, false if it is synchronized
86  * by hand using code in kvm_arch_get/put_registers().
87  */
88 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx);
89 
90 /**
91  * kvm_arm_cpreg_level:
92  * @regidx: KVM register index
93  *
94  * Return the level of this coprocessor/system register.  Return value is
95  * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
96  */
97 int kvm_arm_cpreg_level(uint64_t regidx);
98 
99 /**
100  * write_list_to_kvmstate:
101  * @cpu: ARMCPU
102  * @level: the state level to sync
103  *
104  * For each register listed in the ARMCPU cpreg_indexes list, write
105  * its value from the cpreg_values list into the kernel (via ioctl).
106  * This updates KVM's working data structures from TCG data or
107  * from incoming migration state.
108  *
109  * Returns: true if all register values were updated correctly,
110  * false if some register was unknown to the kernel or could not
111  * be written (eg constant register with the wrong value).
112  * Note that we do not stop early on failure -- we will attempt
113  * writing all registers in the list.
114  */
115 bool write_list_to_kvmstate(ARMCPU *cpu, int level);
116 
117 /**
118  * write_kvmstate_to_list:
119  * @cpu: ARMCPU
120  *
121  * For each register listed in the ARMCPU cpreg_indexes list, write
122  * its value from the kernel into the cpreg_values list. This is used to
123  * copy info from KVM's working data structures into TCG or
124  * for outbound migration.
125  *
126  * Returns: true if all register values were read correctly,
127  * false if some register was unknown or could not be read.
128  * Note that we do not stop early on failure -- we will attempt
129  * reading all registers in the list.
130  */
131 bool write_kvmstate_to_list(ARMCPU *cpu);
132 
133 /**
134  * kvm_arm_cpu_pre_save:
135  * @cpu: ARMCPU
136  *
137  * Called after write_kvmstate_to_list() from cpu_pre_save() to update
138  * the cpreg list with KVM CPU state.
139  */
140 void kvm_arm_cpu_pre_save(ARMCPU *cpu);
141 
142 /**
143  * kvm_arm_cpu_post_load:
144  * @cpu: ARMCPU
145  *
146  * Called from cpu_post_load() to update KVM CPU state from the cpreg list.
147  */
148 void kvm_arm_cpu_post_load(ARMCPU *cpu);
149 
150 /**
151  * kvm_arm_reset_vcpu:
152  * @cpu: ARMCPU
153  *
154  * Called at reset time to kernel registers to their initial values.
155  */
156 void kvm_arm_reset_vcpu(ARMCPU *cpu);
157 
158 /**
159  * kvm_arm_init_serror_injection:
160  * @cs: CPUState
161  *
162  * Check whether KVM can set guest SError syndrome.
163  */
164 void kvm_arm_init_serror_injection(CPUState *cs);
165 
166 /**
167  * kvm_get_vcpu_events:
168  * @cpu: ARMCPU
169  *
170  * Get VCPU related state from kvm.
171  *
172  * Returns: 0 if success else < 0 error code
173  */
174 int kvm_get_vcpu_events(ARMCPU *cpu);
175 
176 /**
177  * kvm_put_vcpu_events:
178  * @cpu: ARMCPU
179  *
180  * Put VCPU related state to kvm.
181  *
182  * Returns: 0 if success else < 0 error code
183  */
184 int kvm_put_vcpu_events(ARMCPU *cpu);
185 
186 #ifdef CONFIG_KVM
187 /**
188  * kvm_arm_create_scratch_host_vcpu:
189  * @cpus_to_try: array of QEMU_KVM_ARM_TARGET_* values (terminated with
190  * QEMU_KVM_ARM_TARGET_NONE) to try as fallback if the kernel does not
191  * know the PREFERRED_TARGET ioctl. Passing NULL is the same as passing
192  * an empty array.
193  * @fdarray: filled in with kvmfd, vmfd, cpufd file descriptors in that order
194  * @init: filled in with the necessary values for creating a host
195  * vcpu. If NULL is provided, will not init the vCPU (though the cpufd
196  * will still be set up).
197  *
198  * Create a scratch vcpu in its own VM of the type preferred by the host
199  * kernel (as would be used for '-cpu host'), for purposes of probing it
200  * for capabilities.
201  *
202  * Returns: true on success (and fdarray and init are filled in),
203  * false on failure (and fdarray and init are not valid).
204  */
205 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
206                                       int *fdarray,
207                                       struct kvm_vcpu_init *init);
208 
209 /**
210  * kvm_arm_destroy_scratch_host_vcpu:
211  * @fdarray: array of fds as set up by kvm_arm_create_scratch_host_vcpu
212  *
213  * Tear down the scratch vcpu created by kvm_arm_create_scratch_host_vcpu.
214  */
215 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray);
216 
217 /**
218  * ARMHostCPUFeatures: information about the host CPU (identified
219  * by asking the host kernel)
220  */
221 typedef struct ARMHostCPUFeatures {
222     ARMISARegisters isar;
223     uint64_t features;
224     uint32_t target;
225     const char *dtb_compatible;
226 } ARMHostCPUFeatures;
227 
228 /**
229  * kvm_arm_get_host_cpu_features:
230  * @ahcf: ARMHostCPUClass to fill in
231  *
232  * Probe the capabilities of the host kernel's preferred CPU and fill
233  * in the ARMHostCPUClass struct accordingly.
234  *
235  * Returns true on success and false otherwise.
236  */
237 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf);
238 
239 /**
240  * kvm_arm_sve_get_vls:
241  * @cs: CPUState
242  * @map: bitmap to fill in
243  *
244  * Get all the SVE vector lengths supported by the KVM host, setting
245  * the bits corresponding to their length in quadwords minus one
246  * (vq - 1) in @map up to ARM_MAX_VQ.
247  */
248 void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map);
249 
250 /**
251  * kvm_arm_set_cpu_features_from_host:
252  * @cpu: ARMCPU to set the features for
253  *
254  * Set up the ARMCPU struct fields up to match the information probed
255  * from the host CPU.
256  */
257 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu);
258 
259 /**
260  * kvm_arm_add_vcpu_properties:
261  * @obj: The CPU object to add the properties to
262  *
263  * Add all KVM specific CPU properties to the CPU object. These
264  * are the CPU properties with "kvm-" prefixed names.
265  */
266 void kvm_arm_add_vcpu_properties(Object *obj);
267 
268 /**
269  * kvm_arm_steal_time_finalize:
270  * @cpu: ARMCPU for which to finalize kvm-steal-time
271  * @errp: Pointer to Error* for error propagation
272  *
273  * Validate the kvm-steal-time property selection and set its default
274  * based on KVM support and guest configuration.
275  */
276 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp);
277 
278 /**
279  * kvm_arm_steal_time_supported:
280  *
281  * Returns: true if KVM can enable steal time reporting
282  * and false otherwise.
283  */
284 bool kvm_arm_steal_time_supported(void);
285 
286 /**
287  * kvm_arm_aarch32_supported:
288  *
289  * Returns: true if KVM can enable AArch32 mode
290  * and false otherwise.
291  */
292 bool kvm_arm_aarch32_supported(void);
293 
294 /**
295  * kvm_arm_pmu_supported:
296  *
297  * Returns: true if KVM can enable the PMU
298  * and false otherwise.
299  */
300 bool kvm_arm_pmu_supported(void);
301 
302 /**
303  * kvm_arm_sve_supported:
304  *
305  * Returns true if KVM can enable SVE and false otherwise.
306  */
307 bool kvm_arm_sve_supported(void);
308 
309 /**
310  * kvm_arm_get_max_vm_ipa_size:
311  * @ms: Machine state handle
312  * @fixed_ipa: True when the IPA limit is fixed at 40. This is the case
313  * for legacy KVM.
314  *
315  * Returns the number of bits in the IPA address space supported by KVM
316  */
317 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa);
318 
319 /**
320  * kvm_arm_sync_mpstate_to_kvm:
321  * @cpu: ARMCPU
322  *
323  * If supported set the KVM MP_STATE based on QEMU's model.
324  *
325  * Returns 0 on success and -1 on failure.
326  */
327 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu);
328 
329 /**
330  * kvm_arm_sync_mpstate_to_qemu:
331  * @cpu: ARMCPU
332  *
333  * If supported get the MP_STATE from KVM and store in QEMU's model.
334  *
335  * Returns 0 on success and aborts on failure.
336  */
337 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu);
338 
339 /**
340  * kvm_arm_get_virtual_time:
341  * @cs: CPUState
342  *
343  * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
344  */
345 void kvm_arm_get_virtual_time(CPUState *cs);
346 
347 /**
348  * kvm_arm_put_virtual_time:
349  * @cs: CPUState
350  *
351  * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
352  */
353 void kvm_arm_put_virtual_time(CPUState *cs);
354 
355 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state);
356 
357 int kvm_arm_vgic_probe(void);
358 
359 void kvm_arm_pmu_set_irq(CPUState *cs, int irq);
360 void kvm_arm_pmu_init(CPUState *cs);
361 
362 /**
363  * kvm_arm_pvtime_init:
364  * @cs: CPUState
365  * @ipa: Per-vcpu guest physical base address of the pvtime structures
366  *
367  * Initializes PVTIME for the VCPU, setting the PVTIME IPA to @ipa.
368  */
369 void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa);
370 
371 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level);
372 
373 #else
374 
375 /*
376  * It's safe to call these functions without KVM support.
377  * They should either do nothing or return "not supported".
378  */
379 static inline bool kvm_arm_aarch32_supported(void)
380 {
381     return false;
382 }
383 
384 static inline bool kvm_arm_pmu_supported(void)
385 {
386     return false;
387 }
388 
389 static inline bool kvm_arm_sve_supported(void)
390 {
391     return false;
392 }
393 
394 static inline bool kvm_arm_steal_time_supported(void)
395 {
396     return false;
397 }
398 
399 /*
400  * These functions should never actually be called without KVM support.
401  */
402 static inline void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
403 {
404     g_assert_not_reached();
405 }
406 
407 static inline void kvm_arm_add_vcpu_properties(Object *obj)
408 {
409     g_assert_not_reached();
410 }
411 
412 static inline int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
413 {
414     g_assert_not_reached();
415 }
416 
417 static inline int kvm_arm_vgic_probe(void)
418 {
419     g_assert_not_reached();
420 }
421 
422 static inline void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
423 {
424     g_assert_not_reached();
425 }
426 
427 static inline void kvm_arm_pmu_init(CPUState *cs)
428 {
429     g_assert_not_reached();
430 }
431 
432 static inline void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
433 {
434     g_assert_not_reached();
435 }
436 
437 static inline void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
438 {
439     g_assert_not_reached();
440 }
441 
442 static inline void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
443 {
444     g_assert_not_reached();
445 }
446 
447 #endif
448 
449 static inline const char *gic_class_name(void)
450 {
451     return kvm_irqchip_in_kernel() ? "kvm-arm-gic" : "arm_gic";
452 }
453 
454 /**
455  * gicv3_class_name
456  *
457  * Return name of GICv3 class to use depending on whether KVM acceleration is
458  * in use. May throw an error if the chosen implementation is not available.
459  *
460  * Returns: class name to use
461  */
462 static inline const char *gicv3_class_name(void)
463 {
464     if (kvm_irqchip_in_kernel()) {
465         return "kvm-arm-gicv3";
466     } else {
467         if (kvm_enabled()) {
468             error_report("Userspace GICv3 is not supported with KVM");
469             exit(1);
470         }
471         return "arm-gicv3";
472     }
473 }
474 
475 /**
476  * kvm_arm_handle_debug:
477  * @cs: CPUState
478  * @debug_exit: debug part of the KVM exit structure
479  *
480  * Returns: TRUE if the debug exception was handled.
481  */
482 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit);
483 
484 /**
485  * kvm_arm_hw_debug_active:
486  * @cs: CPU State
487  *
488  * Return: TRUE if any hardware breakpoints in use.
489  */
490 bool kvm_arm_hw_debug_active(CPUState *cs);
491 
492 /**
493  * kvm_arm_copy_hw_debug_data:
494  * @ptr: kvm_guest_debug_arch structure
495  *
496  * Copy the architecture specific debug registers into the
497  * kvm_guest_debug ioctl structure.
498  */
499 struct kvm_guest_debug_arch;
500 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr);
501 
502 /**
503  * kvm_arm_verify_ext_dabt_pending:
504  * @cs: CPUState
505  *
506  * Verify the fault status code wrt the Ext DABT injection
507  *
508  * Returns: true if the fault status code is as expected, false otherwise
509  */
510 bool kvm_arm_verify_ext_dabt_pending(CPUState *cs);
511 
512 /**
513  * its_class_name:
514  *
515  * Return the ITS class name to use depending on whether KVM acceleration
516  * and KVM CAP_SIGNAL_MSI are supported
517  *
518  * Returns: class name to use or NULL
519  */
520 static inline const char *its_class_name(void)
521 {
522     if (kvm_irqchip_in_kernel()) {
523         /* KVM implementation requires this capability */
524         return kvm_direct_msi_enabled() ? "arm-its-kvm" : NULL;
525     } else {
526         /* Software emulation based model */
527         return "arm-gicv3-its";
528     }
529 }
530 
531 #endif
532