xref: /openbmc/qemu/target/arm/kvm.c (revision f3fa412de28ae3cb31d38811d30a77e4e20456cc)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "qom/object.h"
21 #include "qapi/error.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/kvm.h"
24 #include "sysemu/kvm_int.h"
25 #include "kvm_arm.h"
26 #include "cpu.h"
27 #include "trace.h"
28 #include "internals.h"
29 #include "hw/pci/pci.h"
30 #include "exec/memattrs.h"
31 #include "exec/address-spaces.h"
32 #include "hw/boards.h"
33 #include "hw/irq.h"
34 #include "qemu/log.h"
35 
36 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
37     KVM_CAP_LAST_INFO
38 };
39 
40 static bool cap_has_mp_state;
41 static bool cap_has_inject_serror_esr;
42 static bool cap_has_inject_ext_dabt;
43 
44 static ARMHostCPUFeatures arm_host_cpu_features;
45 
46 int kvm_arm_vcpu_init(CPUState *cs)
47 {
48     ARMCPU *cpu = ARM_CPU(cs);
49     struct kvm_vcpu_init init;
50 
51     init.target = cpu->kvm_target;
52     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
53 
54     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
55 }
56 
57 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
58 {
59     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
60 }
61 
62 void kvm_arm_init_serror_injection(CPUState *cs)
63 {
64     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
65                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
66 }
67 
68 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
69                                       int *fdarray,
70                                       struct kvm_vcpu_init *init)
71 {
72     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
73 
74     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
75     if (kvmfd < 0) {
76         goto err;
77     }
78     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
79     if (vmfd < 0) {
80         goto err;
81     }
82     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
83     if (cpufd < 0) {
84         goto err;
85     }
86 
87     if (!init) {
88         /* Caller doesn't want the VCPU to be initialized, so skip it */
89         goto finish;
90     }
91 
92     if (init->target == -1) {
93         struct kvm_vcpu_init preferred;
94 
95         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
96         if (!ret) {
97             init->target = preferred.target;
98         }
99     }
100     if (ret >= 0) {
101         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
102         if (ret < 0) {
103             goto err;
104         }
105     } else if (cpus_to_try) {
106         /* Old kernel which doesn't know about the
107          * PREFERRED_TARGET ioctl: we know it will only support
108          * creating one kind of guest CPU which is its preferred
109          * CPU type.
110          */
111         struct kvm_vcpu_init try;
112 
113         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
114             try.target = *cpus_to_try++;
115             memcpy(try.features, init->features, sizeof(init->features));
116             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
117             if (ret >= 0) {
118                 break;
119             }
120         }
121         if (ret < 0) {
122             goto err;
123         }
124         init->target = try.target;
125     } else {
126         /* Treat a NULL cpus_to_try argument the same as an empty
127          * list, which means we will fail the call since this must
128          * be an old kernel which doesn't support PREFERRED_TARGET.
129          */
130         goto err;
131     }
132 
133 finish:
134     fdarray[0] = kvmfd;
135     fdarray[1] = vmfd;
136     fdarray[2] = cpufd;
137 
138     return true;
139 
140 err:
141     if (cpufd >= 0) {
142         close(cpufd);
143     }
144     if (vmfd >= 0) {
145         close(vmfd);
146     }
147     if (kvmfd >= 0) {
148         close(kvmfd);
149     }
150 
151     return false;
152 }
153 
154 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
155 {
156     int i;
157 
158     for (i = 2; i >= 0; i--) {
159         close(fdarray[i]);
160     }
161 }
162 
163 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
164 {
165     CPUARMState *env = &cpu->env;
166 
167     if (!arm_host_cpu_features.dtb_compatible) {
168         if (!kvm_enabled() ||
169             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
170             /* We can't report this error yet, so flag that we need to
171              * in arm_cpu_realizefn().
172              */
173             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
174             cpu->host_cpu_probe_failed = true;
175             return;
176         }
177     }
178 
179     cpu->kvm_target = arm_host_cpu_features.target;
180     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
181     cpu->isar = arm_host_cpu_features.isar;
182     env->features = arm_host_cpu_features.features;
183 }
184 
185 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
186 {
187     return !ARM_CPU(obj)->kvm_adjvtime;
188 }
189 
190 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
191 {
192     ARM_CPU(obj)->kvm_adjvtime = !value;
193 }
194 
195 static bool kvm_steal_time_get(Object *obj, Error **errp)
196 {
197     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
198 }
199 
200 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
201 {
202     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
203 }
204 
205 /* KVM VCPU properties should be prefixed with "kvm-". */
206 void kvm_arm_add_vcpu_properties(Object *obj)
207 {
208     ARMCPU *cpu = ARM_CPU(obj);
209     CPUARMState *env = &cpu->env;
210 
211     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
212         cpu->kvm_adjvtime = true;
213         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
214                                  kvm_no_adjvtime_set);
215         object_property_set_description(obj, "kvm-no-adjvtime",
216                                         "Set on to disable the adjustment of "
217                                         "the virtual counter. VM stopped time "
218                                         "will be counted.");
219     }
220 
221     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
222     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
223                              kvm_steal_time_set);
224     object_property_set_description(obj, "kvm-steal-time",
225                                     "Set off to disable KVM steal time.");
226 }
227 
228 bool kvm_arm_pmu_supported(void)
229 {
230     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
231 }
232 
233 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
234 {
235     KVMState *s = KVM_STATE(ms->accelerator);
236     int ret;
237 
238     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
239     *fixed_ipa = ret <= 0;
240 
241     return ret > 0 ? ret : 40;
242 }
243 
244 int kvm_arch_init(MachineState *ms, KVMState *s)
245 {
246     int ret = 0;
247     /* For ARM interrupt delivery is always asynchronous,
248      * whether we are using an in-kernel VGIC or not.
249      */
250     kvm_async_interrupts_allowed = true;
251 
252     /*
253      * PSCI wakes up secondary cores, so we always need to
254      * have vCPUs waiting in kernel space
255      */
256     kvm_halt_in_kernel_allowed = true;
257 
258     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
259 
260     if (ms->smp.cpus > 256 &&
261         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
262         error_report("Using more than 256 vcpus requires a host kernel "
263                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
264         ret = -EINVAL;
265     }
266 
267     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
268         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
269             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
270         } else {
271             /* Set status for supporting the external dabt injection */
272             cap_has_inject_ext_dabt = kvm_check_extension(s,
273                                     KVM_CAP_ARM_INJECT_EXT_DABT);
274         }
275     }
276 
277     return ret;
278 }
279 
280 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
281 {
282     return cpu->cpu_index;
283 }
284 
285 /* We track all the KVM devices which need their memory addresses
286  * passing to the kernel in a list of these structures.
287  * When board init is complete we run through the list and
288  * tell the kernel the base addresses of the memory regions.
289  * We use a MemoryListener to track mapping and unmapping of
290  * the regions during board creation, so the board models don't
291  * need to do anything special for the KVM case.
292  *
293  * Sometimes the address must be OR'ed with some other fields
294  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
295  * @kda_addr_ormask aims at storing the value of those fields.
296  */
297 typedef struct KVMDevice {
298     struct kvm_arm_device_addr kda;
299     struct kvm_device_attr kdattr;
300     uint64_t kda_addr_ormask;
301     MemoryRegion *mr;
302     QSLIST_ENTRY(KVMDevice) entries;
303     int dev_fd;
304 } KVMDevice;
305 
306 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
307 
308 static void kvm_arm_devlistener_add(MemoryListener *listener,
309                                     MemoryRegionSection *section)
310 {
311     KVMDevice *kd;
312 
313     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
314         if (section->mr == kd->mr) {
315             kd->kda.addr = section->offset_within_address_space;
316         }
317     }
318 }
319 
320 static void kvm_arm_devlistener_del(MemoryListener *listener,
321                                     MemoryRegionSection *section)
322 {
323     KVMDevice *kd;
324 
325     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
326         if (section->mr == kd->mr) {
327             kd->kda.addr = -1;
328         }
329     }
330 }
331 
332 static MemoryListener devlistener = {
333     .region_add = kvm_arm_devlistener_add,
334     .region_del = kvm_arm_devlistener_del,
335 };
336 
337 static void kvm_arm_set_device_addr(KVMDevice *kd)
338 {
339     struct kvm_device_attr *attr = &kd->kdattr;
340     int ret;
341 
342     /* If the device control API is available and we have a device fd on the
343      * KVMDevice struct, let's use the newer API
344      */
345     if (kd->dev_fd >= 0) {
346         uint64_t addr = kd->kda.addr;
347 
348         addr |= kd->kda_addr_ormask;
349         attr->addr = (uintptr_t)&addr;
350         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
351     } else {
352         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
353     }
354 
355     if (ret < 0) {
356         fprintf(stderr, "Failed to set device address: %s\n",
357                 strerror(-ret));
358         abort();
359     }
360 }
361 
362 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
363 {
364     KVMDevice *kd, *tkd;
365 
366     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
367         if (kd->kda.addr != -1) {
368             kvm_arm_set_device_addr(kd);
369         }
370         memory_region_unref(kd->mr);
371         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
372         g_free(kd);
373     }
374     memory_listener_unregister(&devlistener);
375 }
376 
377 static Notifier notify = {
378     .notify = kvm_arm_machine_init_done,
379 };
380 
381 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
382                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
383 {
384     KVMDevice *kd;
385 
386     if (!kvm_irqchip_in_kernel()) {
387         return;
388     }
389 
390     if (QSLIST_EMPTY(&kvm_devices_head)) {
391         memory_listener_register(&devlistener, &address_space_memory);
392         qemu_add_machine_init_done_notifier(&notify);
393     }
394     kd = g_new0(KVMDevice, 1);
395     kd->mr = mr;
396     kd->kda.id = devid;
397     kd->kda.addr = -1;
398     kd->kdattr.flags = 0;
399     kd->kdattr.group = group;
400     kd->kdattr.attr = attr;
401     kd->dev_fd = dev_fd;
402     kd->kda_addr_ormask = addr_ormask;
403     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
404     memory_region_ref(kd->mr);
405 }
406 
407 static int compare_u64(const void *a, const void *b)
408 {
409     if (*(uint64_t *)a > *(uint64_t *)b) {
410         return 1;
411     }
412     if (*(uint64_t *)a < *(uint64_t *)b) {
413         return -1;
414     }
415     return 0;
416 }
417 
418 /*
419  * cpreg_values are sorted in ascending order by KVM register ID
420  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
421  * the storage for a KVM register by ID with a binary search.
422  */
423 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
424 {
425     uint64_t *res;
426 
427     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
428                   sizeof(uint64_t), compare_u64);
429     assert(res);
430 
431     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
432 }
433 
434 /* Initialize the ARMCPU cpreg list according to the kernel's
435  * definition of what CPU registers it knows about (and throw away
436  * the previous TCG-created cpreg list).
437  */
438 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
439 {
440     struct kvm_reg_list rl;
441     struct kvm_reg_list *rlp;
442     int i, ret, arraylen;
443     CPUState *cs = CPU(cpu);
444 
445     rl.n = 0;
446     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
447     if (ret != -E2BIG) {
448         return ret;
449     }
450     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
451     rlp->n = rl.n;
452     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
453     if (ret) {
454         goto out;
455     }
456     /* Sort the list we get back from the kernel, since cpreg_tuples
457      * must be in strictly ascending order.
458      */
459     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
460 
461     for (i = 0, arraylen = 0; i < rlp->n; i++) {
462         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
463             continue;
464         }
465         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
466         case KVM_REG_SIZE_U32:
467         case KVM_REG_SIZE_U64:
468             break;
469         default:
470             fprintf(stderr, "Can't handle size of register in kernel list\n");
471             ret = -EINVAL;
472             goto out;
473         }
474 
475         arraylen++;
476     }
477 
478     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
479     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
480     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
481                                          arraylen);
482     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
483                                         arraylen);
484     cpu->cpreg_array_len = arraylen;
485     cpu->cpreg_vmstate_array_len = arraylen;
486 
487     for (i = 0, arraylen = 0; i < rlp->n; i++) {
488         uint64_t regidx = rlp->reg[i];
489         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
490             continue;
491         }
492         cpu->cpreg_indexes[arraylen] = regidx;
493         arraylen++;
494     }
495     assert(cpu->cpreg_array_len == arraylen);
496 
497     if (!write_kvmstate_to_list(cpu)) {
498         /* Shouldn't happen unless kernel is inconsistent about
499          * what registers exist.
500          */
501         fprintf(stderr, "Initial read of kernel register state failed\n");
502         ret = -EINVAL;
503         goto out;
504     }
505 
506 out:
507     g_free(rlp);
508     return ret;
509 }
510 
511 bool write_kvmstate_to_list(ARMCPU *cpu)
512 {
513     CPUState *cs = CPU(cpu);
514     int i;
515     bool ok = true;
516 
517     for (i = 0; i < cpu->cpreg_array_len; i++) {
518         struct kvm_one_reg r;
519         uint64_t regidx = cpu->cpreg_indexes[i];
520         uint32_t v32;
521         int ret;
522 
523         r.id = regidx;
524 
525         switch (regidx & KVM_REG_SIZE_MASK) {
526         case KVM_REG_SIZE_U32:
527             r.addr = (uintptr_t)&v32;
528             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
529             if (!ret) {
530                 cpu->cpreg_values[i] = v32;
531             }
532             break;
533         case KVM_REG_SIZE_U64:
534             r.addr = (uintptr_t)(cpu->cpreg_values + i);
535             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
536             break;
537         default:
538             abort();
539         }
540         if (ret) {
541             ok = false;
542         }
543     }
544     return ok;
545 }
546 
547 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
548 {
549     CPUState *cs = CPU(cpu);
550     int i;
551     bool ok = true;
552 
553     for (i = 0; i < cpu->cpreg_array_len; i++) {
554         struct kvm_one_reg r;
555         uint64_t regidx = cpu->cpreg_indexes[i];
556         uint32_t v32;
557         int ret;
558 
559         if (kvm_arm_cpreg_level(regidx) > level) {
560             continue;
561         }
562 
563         r.id = regidx;
564         switch (regidx & KVM_REG_SIZE_MASK) {
565         case KVM_REG_SIZE_U32:
566             v32 = cpu->cpreg_values[i];
567             r.addr = (uintptr_t)&v32;
568             break;
569         case KVM_REG_SIZE_U64:
570             r.addr = (uintptr_t)(cpu->cpreg_values + i);
571             break;
572         default:
573             abort();
574         }
575         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
576         if (ret) {
577             /* We might fail for "unknown register" and also for
578              * "you tried to set a register which is constant with
579              * a different value from what it actually contains".
580              */
581             ok = false;
582         }
583     }
584     return ok;
585 }
586 
587 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
588 {
589     /* KVM virtual time adjustment */
590     if (cpu->kvm_vtime_dirty) {
591         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
592     }
593 }
594 
595 void kvm_arm_cpu_post_load(ARMCPU *cpu)
596 {
597     /* KVM virtual time adjustment */
598     if (cpu->kvm_adjvtime) {
599         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
600         cpu->kvm_vtime_dirty = true;
601     }
602 }
603 
604 void kvm_arm_reset_vcpu(ARMCPU *cpu)
605 {
606     int ret;
607 
608     /* Re-init VCPU so that all registers are set to
609      * their respective reset values.
610      */
611     ret = kvm_arm_vcpu_init(CPU(cpu));
612     if (ret < 0) {
613         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
614         abort();
615     }
616     if (!write_kvmstate_to_list(cpu)) {
617         fprintf(stderr, "write_kvmstate_to_list failed\n");
618         abort();
619     }
620     /*
621      * Sync the reset values also into the CPUState. This is necessary
622      * because the next thing we do will be a kvm_arch_put_registers()
623      * which will update the list values from the CPUState before copying
624      * the list values back to KVM. It's OK to ignore failure returns here
625      * for the same reason we do so in kvm_arch_get_registers().
626      */
627     write_list_to_cpustate(cpu);
628 }
629 
630 /*
631  * Update KVM's MP_STATE based on what QEMU thinks it is
632  */
633 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
634 {
635     if (cap_has_mp_state) {
636         struct kvm_mp_state mp_state = {
637             .mp_state = (cpu->power_state == PSCI_OFF) ?
638             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
639         };
640         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
641         if (ret) {
642             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
643                     __func__, ret, strerror(-ret));
644             return -1;
645         }
646     }
647 
648     return 0;
649 }
650 
651 /*
652  * Sync the KVM MP_STATE into QEMU
653  */
654 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
655 {
656     if (cap_has_mp_state) {
657         struct kvm_mp_state mp_state;
658         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
659         if (ret) {
660             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
661                     __func__, ret, strerror(-ret));
662             abort();
663         }
664         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
665             PSCI_OFF : PSCI_ON;
666     }
667 
668     return 0;
669 }
670 
671 void kvm_arm_get_virtual_time(CPUState *cs)
672 {
673     ARMCPU *cpu = ARM_CPU(cs);
674     struct kvm_one_reg reg = {
675         .id = KVM_REG_ARM_TIMER_CNT,
676         .addr = (uintptr_t)&cpu->kvm_vtime,
677     };
678     int ret;
679 
680     if (cpu->kvm_vtime_dirty) {
681         return;
682     }
683 
684     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
685     if (ret) {
686         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
687         abort();
688     }
689 
690     cpu->kvm_vtime_dirty = true;
691 }
692 
693 void kvm_arm_put_virtual_time(CPUState *cs)
694 {
695     ARMCPU *cpu = ARM_CPU(cs);
696     struct kvm_one_reg reg = {
697         .id = KVM_REG_ARM_TIMER_CNT,
698         .addr = (uintptr_t)&cpu->kvm_vtime,
699     };
700     int ret;
701 
702     if (!cpu->kvm_vtime_dirty) {
703         return;
704     }
705 
706     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
707     if (ret) {
708         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
709         abort();
710     }
711 
712     cpu->kvm_vtime_dirty = false;
713 }
714 
715 int kvm_put_vcpu_events(ARMCPU *cpu)
716 {
717     CPUARMState *env = &cpu->env;
718     struct kvm_vcpu_events events;
719     int ret;
720 
721     if (!kvm_has_vcpu_events()) {
722         return 0;
723     }
724 
725     memset(&events, 0, sizeof(events));
726     events.exception.serror_pending = env->serror.pending;
727 
728     /* Inject SError to guest with specified syndrome if host kernel
729      * supports it, otherwise inject SError without syndrome.
730      */
731     if (cap_has_inject_serror_esr) {
732         events.exception.serror_has_esr = env->serror.has_esr;
733         events.exception.serror_esr = env->serror.esr;
734     }
735 
736     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
737     if (ret) {
738         error_report("failed to put vcpu events");
739     }
740 
741     return ret;
742 }
743 
744 int kvm_get_vcpu_events(ARMCPU *cpu)
745 {
746     CPUARMState *env = &cpu->env;
747     struct kvm_vcpu_events events;
748     int ret;
749 
750     if (!kvm_has_vcpu_events()) {
751         return 0;
752     }
753 
754     memset(&events, 0, sizeof(events));
755     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
756     if (ret) {
757         error_report("failed to get vcpu events");
758         return ret;
759     }
760 
761     env->serror.pending = events.exception.serror_pending;
762     env->serror.has_esr = events.exception.serror_has_esr;
763     env->serror.esr = events.exception.serror_esr;
764 
765     return 0;
766 }
767 
768 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
769 {
770     ARMCPU *cpu = ARM_CPU(cs);
771     CPUARMState *env = &cpu->env;
772 
773     if (unlikely(env->ext_dabt_raised)) {
774         /*
775          * Verifying that the ext DABT has been properly injected,
776          * otherwise risking indefinitely re-running the faulting instruction
777          * Covering a very narrow case for kernels 5.5..5.5.4
778          * when injected abort was misconfigured to be
779          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
780          */
781         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
782             unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
783 
784             error_report("Data abort exception with no valid ISS generated by "
785                    "guest memory access. KVM unable to emulate faulting "
786                    "instruction. Failed to inject an external data abort "
787                    "into the guest.");
788             abort();
789        }
790        /* Clear the status */
791        env->ext_dabt_raised = 0;
792     }
793 }
794 
795 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
796 {
797     ARMCPU *cpu;
798     uint32_t switched_level;
799 
800     if (kvm_irqchip_in_kernel()) {
801         /*
802          * We only need to sync timer states with user-space interrupt
803          * controllers, so return early and save cycles if we don't.
804          */
805         return MEMTXATTRS_UNSPECIFIED;
806     }
807 
808     cpu = ARM_CPU(cs);
809 
810     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
811     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
812         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
813 
814         qemu_mutex_lock_iothread();
815 
816         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
817             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
818                          !!(run->s.regs.device_irq_level &
819                             KVM_ARM_DEV_EL1_VTIMER));
820             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
821         }
822 
823         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
824             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
825                          !!(run->s.regs.device_irq_level &
826                             KVM_ARM_DEV_EL1_PTIMER));
827             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
828         }
829 
830         if (switched_level & KVM_ARM_DEV_PMU) {
831             qemu_set_irq(cpu->pmu_interrupt,
832                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
833             switched_level &= ~KVM_ARM_DEV_PMU;
834         }
835 
836         if (switched_level) {
837             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
838                           __func__, switched_level);
839         }
840 
841         /* We also mark unknown levels as processed to not waste cycles */
842         cpu->device_irq_level = run->s.regs.device_irq_level;
843         qemu_mutex_unlock_iothread();
844     }
845 
846     return MEMTXATTRS_UNSPECIFIED;
847 }
848 
849 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
850 {
851     CPUState *cs = opaque;
852     ARMCPU *cpu = ARM_CPU(cs);
853 
854     if (running) {
855         if (cpu->kvm_adjvtime) {
856             kvm_arm_put_virtual_time(cs);
857         }
858     } else {
859         if (cpu->kvm_adjvtime) {
860             kvm_arm_get_virtual_time(cs);
861         }
862     }
863 }
864 
865 /**
866  * kvm_arm_handle_dabt_nisv:
867  * @cs: CPUState
868  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
869  *           ISV bit set to '0b0' -> no valid instruction syndrome
870  * @fault_ipa: faulting address for the synchronous data abort
871  *
872  * Returns: 0 if the exception has been handled, < 0 otherwise
873  */
874 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
875                                     uint64_t fault_ipa)
876 {
877     ARMCPU *cpu = ARM_CPU(cs);
878     CPUARMState *env = &cpu->env;
879     /*
880      * Request KVM to inject the external data abort into the guest
881      */
882     if (cap_has_inject_ext_dabt) {
883         struct kvm_vcpu_events events = { };
884         /*
885          * The external data abort event will be handled immediately by KVM
886          * using the address fault that triggered the exit on given VCPU.
887          * Requesting injection of the external data abort does not rely
888          * on any other VCPU state. Therefore, in this particular case, the VCPU
889          * synchronization can be exceptionally skipped.
890          */
891         events.exception.ext_dabt_pending = 1;
892         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
893         if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
894             env->ext_dabt_raised = 1;
895             return 0;
896         }
897     } else {
898         error_report("Data abort exception triggered by guest memory access "
899                      "at physical address: 0x"  TARGET_FMT_lx,
900                      (target_ulong)fault_ipa);
901         error_printf("KVM unable to emulate faulting instruction.\n");
902     }
903     return -1;
904 }
905 
906 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
907 {
908     int ret = 0;
909 
910     switch (run->exit_reason) {
911     case KVM_EXIT_DEBUG:
912         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
913             ret = EXCP_DEBUG;
914         } /* otherwise return to guest */
915         break;
916     case KVM_EXIT_ARM_NISV:
917         /* External DABT with no valid iss to decode */
918         ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
919                                        run->arm_nisv.fault_ipa);
920         break;
921     default:
922         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
923                       __func__, run->exit_reason);
924         break;
925     }
926     return ret;
927 }
928 
929 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
930 {
931     return true;
932 }
933 
934 int kvm_arch_process_async_events(CPUState *cs)
935 {
936     return 0;
937 }
938 
939 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
940 {
941     if (kvm_sw_breakpoints_active(cs)) {
942         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
943     }
944     if (kvm_arm_hw_debug_active(cs)) {
945         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
946         kvm_arm_copy_hw_debug_data(&dbg->arch);
947     }
948 }
949 
950 void kvm_arch_init_irq_routing(KVMState *s)
951 {
952 }
953 
954 int kvm_arch_irqchip_create(KVMState *s)
955 {
956     if (kvm_kernel_irqchip_split()) {
957         perror("-machine kernel_irqchip=split is not supported on ARM.");
958         exit(1);
959     }
960 
961     /* If we can create the VGIC using the newer device control API, we
962      * let the device do this when it initializes itself, otherwise we
963      * fall back to the old API */
964     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
965 }
966 
967 int kvm_arm_vgic_probe(void)
968 {
969     int val = 0;
970 
971     if (kvm_create_device(kvm_state,
972                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
973         val |= KVM_ARM_VGIC_V3;
974     }
975     if (kvm_create_device(kvm_state,
976                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
977         val |= KVM_ARM_VGIC_V2;
978     }
979     return val;
980 }
981 
982 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
983 {
984     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
985     int cpu_idx1 = cpu % 256;
986     int cpu_idx2 = cpu / 256;
987 
988     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
989                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
990 
991     return kvm_set_irq(kvm_state, kvm_irq, !!level);
992 }
993 
994 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
995                              uint64_t address, uint32_t data, PCIDevice *dev)
996 {
997     AddressSpace *as = pci_device_iommu_address_space(dev);
998     hwaddr xlat, len, doorbell_gpa;
999     MemoryRegionSection mrs;
1000     MemoryRegion *mr;
1001     int ret = 1;
1002 
1003     if (as == &address_space_memory) {
1004         return 0;
1005     }
1006 
1007     /* MSI doorbell address is translated by an IOMMU */
1008 
1009     rcu_read_lock();
1010     mr = address_space_translate(as, address, &xlat, &len, true,
1011                                  MEMTXATTRS_UNSPECIFIED);
1012     if (!mr) {
1013         goto unlock;
1014     }
1015     mrs = memory_region_find(mr, xlat, 1);
1016     if (!mrs.mr) {
1017         goto unlock;
1018     }
1019 
1020     doorbell_gpa = mrs.offset_within_address_space;
1021     memory_region_unref(mrs.mr);
1022 
1023     route->u.msi.address_lo = doorbell_gpa;
1024     route->u.msi.address_hi = doorbell_gpa >> 32;
1025 
1026     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1027 
1028     ret = 0;
1029 
1030 unlock:
1031     rcu_read_unlock();
1032     return ret;
1033 }
1034 
1035 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1036                                 int vector, PCIDevice *dev)
1037 {
1038     return 0;
1039 }
1040 
1041 int kvm_arch_release_virq_post(int virq)
1042 {
1043     return 0;
1044 }
1045 
1046 int kvm_arch_msi_data_to_gsi(uint32_t data)
1047 {
1048     return (data - 32) & 0xffff;
1049 }
1050 
1051 bool kvm_arch_cpu_check_are_resettable(void)
1052 {
1053     return true;
1054 }
1055