xref: /openbmc/qemu/target/arm/kvm.c (revision 6328d8ffa6cb9d750e4bfcfd73ac25d3a39ceb63)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6  * Copyright Alex Bennée 2014, Linaro
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or later.
9  * See the COPYING file in the top-level directory.
10  *
11  */
12 
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15 
16 #include <linux/kvm.h>
17 
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/runstate.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "trace.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "exec/address-spaces.h"
34 #include "exec/gdbstub.h"
35 #include "hw/boards.h"
36 #include "hw/irq.h"
37 #include "qapi/visitor.h"
38 #include "qemu/log.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
41 #include "target/arm/gtimer.h"
42 
43 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
44     KVM_CAP_LAST_INFO
45 };
46 
47 static bool cap_has_mp_state;
48 static bool cap_has_inject_serror_esr;
49 static bool cap_has_inject_ext_dabt;
50 
51 /**
52  * ARMHostCPUFeatures: information about the host CPU (identified
53  * by asking the host kernel)
54  */
55 typedef struct ARMHostCPUFeatures {
56     ARMISARegisters isar;
57     uint64_t features;
58     uint32_t target;
59     const char *dtb_compatible;
60 } ARMHostCPUFeatures;
61 
62 static ARMHostCPUFeatures arm_host_cpu_features;
63 
64 /**
65  * kvm_arm_vcpu_init:
66  * @cpu: ARMCPU
67  *
68  * Initialize (or reinitialize) the VCPU by invoking the
69  * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
70  * bitmask specified in the CPUState.
71  *
72  * Returns: 0 if success else < 0 error code
73  */
74 static int kvm_arm_vcpu_init(ARMCPU *cpu)
75 {
76     struct kvm_vcpu_init init;
77 
78     init.target = cpu->kvm_target;
79     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
80 
81     return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
82 }
83 
84 /**
85  * kvm_arm_vcpu_finalize:
86  * @cpu: ARMCPU
87  * @feature: feature to finalize
88  *
89  * Finalizes the configuration of the specified VCPU feature by
90  * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
91  * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
92  * KVM's API documentation.
93  *
94  * Returns: 0 if success else < 0 error code
95  */
96 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
97 {
98     return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
99 }
100 
101 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
102                                       int *fdarray,
103                                       struct kvm_vcpu_init *init)
104 {
105     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
106     int max_vm_pa_size;
107 
108     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
109     if (kvmfd < 0) {
110         goto err;
111     }
112     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
113     if (max_vm_pa_size < 0) {
114         max_vm_pa_size = 0;
115     }
116     do {
117         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
118     } while (vmfd == -1 && errno == EINTR);
119     if (vmfd < 0) {
120         goto err;
121     }
122     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
123     if (cpufd < 0) {
124         goto err;
125     }
126 
127     if (!init) {
128         /* Caller doesn't want the VCPU to be initialized, so skip it */
129         goto finish;
130     }
131 
132     if (init->target == -1) {
133         struct kvm_vcpu_init preferred;
134 
135         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
136         if (!ret) {
137             init->target = preferred.target;
138         }
139     }
140     if (ret >= 0) {
141         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
142         if (ret < 0) {
143             goto err;
144         }
145     } else if (cpus_to_try) {
146         /* Old kernel which doesn't know about the
147          * PREFERRED_TARGET ioctl: we know it will only support
148          * creating one kind of guest CPU which is its preferred
149          * CPU type.
150          */
151         struct kvm_vcpu_init try;
152 
153         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
154             try.target = *cpus_to_try++;
155             memcpy(try.features, init->features, sizeof(init->features));
156             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
157             if (ret >= 0) {
158                 break;
159             }
160         }
161         if (ret < 0) {
162             goto err;
163         }
164         init->target = try.target;
165     } else {
166         /* Treat a NULL cpus_to_try argument the same as an empty
167          * list, which means we will fail the call since this must
168          * be an old kernel which doesn't support PREFERRED_TARGET.
169          */
170         goto err;
171     }
172 
173 finish:
174     fdarray[0] = kvmfd;
175     fdarray[1] = vmfd;
176     fdarray[2] = cpufd;
177 
178     return true;
179 
180 err:
181     if (cpufd >= 0) {
182         close(cpufd);
183     }
184     if (vmfd >= 0) {
185         close(vmfd);
186     }
187     if (kvmfd >= 0) {
188         close(kvmfd);
189     }
190 
191     return false;
192 }
193 
194 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
195 {
196     int i;
197 
198     for (i = 2; i >= 0; i--) {
199         close(fdarray[i]);
200     }
201 }
202 
203 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
204 {
205     uint64_t ret;
206     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
207     int err;
208 
209     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
210     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
211     if (err < 0) {
212         return -1;
213     }
214     *pret = ret;
215     return 0;
216 }
217 
218 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
219 {
220     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
221 
222     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
223     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
224 }
225 
226 static bool kvm_arm_pauth_supported(void)
227 {
228     return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
229             kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
230 }
231 
232 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
233 {
234     /* Identify the feature bits corresponding to the host CPU, and
235      * fill out the ARMHostCPUClass fields accordingly. To do this
236      * we have to create a scratch VM, create a single CPU inside it,
237      * and then query that CPU for the relevant ID registers.
238      */
239     int fdarray[3];
240     bool sve_supported;
241     bool pmu_supported = false;
242     uint64_t features = 0;
243     int err;
244 
245     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
246      * we know these will only support creating one kind of guest CPU,
247      * which is its preferred CPU type. Fortunately these old kernels
248      * support only a very limited number of CPUs.
249      */
250     static const uint32_t cpus_to_try[] = {
251         KVM_ARM_TARGET_AEM_V8,
252         KVM_ARM_TARGET_FOUNDATION_V8,
253         KVM_ARM_TARGET_CORTEX_A57,
254         QEMU_KVM_ARM_TARGET_NONE
255     };
256     /*
257      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
258      * to use the preferred target
259      */
260     struct kvm_vcpu_init init = { .target = -1, };
261 
262     /*
263      * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
264      * which is otherwise RAZ.
265      */
266     sve_supported = kvm_arm_sve_supported();
267     if (sve_supported) {
268         init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
269     }
270 
271     /*
272      * Ask for Pointer Authentication if supported, so that we get
273      * the unsanitized field values for AA64ISAR1_EL1.
274      */
275     if (kvm_arm_pauth_supported()) {
276         init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
277                              1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
278     }
279 
280     if (kvm_arm_pmu_supported()) {
281         init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
282         pmu_supported = true;
283     }
284 
285     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
286         return false;
287     }
288 
289     ahcf->target = init.target;
290     ahcf->dtb_compatible = "arm,arm-v8";
291 
292     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
293                          ARM64_SYS_REG(3, 0, 0, 4, 0));
294     if (unlikely(err < 0)) {
295         /*
296          * Before v4.15, the kernel only exposed a limited number of system
297          * registers, not including any of the interesting AArch64 ID regs.
298          * For the most part we could leave these fields as zero with minimal
299          * effect, since this does not affect the values seen by the guest.
300          *
301          * However, it could cause problems down the line for QEMU,
302          * so provide a minimal v8.0 default.
303          *
304          * ??? Could read MIDR and use knowledge from cpu64.c.
305          * ??? Could map a page of memory into our temp guest and
306          *     run the tiniest of hand-crafted kernels to extract
307          *     the values seen by the guest.
308          * ??? Either of these sounds like too much effort just
309          *     to work around running a modern host kernel.
310          */
311         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
312         err = 0;
313     } else {
314         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
315                               ARM64_SYS_REG(3, 0, 0, 4, 1));
316         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
317                               ARM64_SYS_REG(3, 0, 0, 4, 5));
318         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
319                               ARM64_SYS_REG(3, 0, 0, 5, 0));
320         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
321                               ARM64_SYS_REG(3, 0, 0, 5, 1));
322         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
323                               ARM64_SYS_REG(3, 0, 0, 6, 0));
324         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
325                               ARM64_SYS_REG(3, 0, 0, 6, 1));
326         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
327                               ARM64_SYS_REG(3, 0, 0, 6, 2));
328         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
329                               ARM64_SYS_REG(3, 0, 0, 7, 0));
330         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
331                               ARM64_SYS_REG(3, 0, 0, 7, 1));
332         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
333                               ARM64_SYS_REG(3, 0, 0, 7, 2));
334 
335         /*
336          * Note that if AArch32 support is not present in the host,
337          * the AArch32 sysregs are present to be read, but will
338          * return UNKNOWN values.  This is neither better nor worse
339          * than skipping the reads and leaving 0, as we must avoid
340          * considering the values in every case.
341          */
342         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
343                               ARM64_SYS_REG(3, 0, 0, 1, 0));
344         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
345                               ARM64_SYS_REG(3, 0, 0, 1, 1));
346         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
347                               ARM64_SYS_REG(3, 0, 0, 1, 2));
348         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
349                               ARM64_SYS_REG(3, 0, 0, 1, 4));
350         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
351                               ARM64_SYS_REG(3, 0, 0, 1, 5));
352         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
353                               ARM64_SYS_REG(3, 0, 0, 1, 6));
354         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
355                               ARM64_SYS_REG(3, 0, 0, 1, 7));
356         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
357                               ARM64_SYS_REG(3, 0, 0, 2, 0));
358         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
359                               ARM64_SYS_REG(3, 0, 0, 2, 1));
360         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
361                               ARM64_SYS_REG(3, 0, 0, 2, 2));
362         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
363                               ARM64_SYS_REG(3, 0, 0, 2, 3));
364         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
365                               ARM64_SYS_REG(3, 0, 0, 2, 4));
366         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
367                               ARM64_SYS_REG(3, 0, 0, 2, 5));
368         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
369                               ARM64_SYS_REG(3, 0, 0, 2, 6));
370         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
371                               ARM64_SYS_REG(3, 0, 0, 2, 7));
372 
373         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
374                               ARM64_SYS_REG(3, 0, 0, 3, 0));
375         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
376                               ARM64_SYS_REG(3, 0, 0, 3, 1));
377         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
378                               ARM64_SYS_REG(3, 0, 0, 3, 2));
379         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
380                               ARM64_SYS_REG(3, 0, 0, 3, 4));
381         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
382                               ARM64_SYS_REG(3, 0, 0, 3, 5));
383         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
384                               ARM64_SYS_REG(3, 0, 0, 3, 6));
385 
386         /*
387          * DBGDIDR is a bit complicated because the kernel doesn't
388          * provide an accessor for it in 64-bit mode, which is what this
389          * scratch VM is in, and there's no architected "64-bit sysreg
390          * which reads the same as the 32-bit register" the way there is
391          * for other ID registers. Instead we synthesize a value from the
392          * AArch64 ID_AA64DFR0, the same way the kernel code in
393          * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
394          * We only do this if the CPU supports AArch32 at EL1.
395          */
396         if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
397             int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
398             int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
399             int ctx_cmps =
400                 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
401             int version = 6; /* ARMv8 debug architecture */
402             bool has_el3 =
403                 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
404             uint32_t dbgdidr = 0;
405 
406             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
407             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
408             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
409             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
410             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
411             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
412             dbgdidr |= (1 << 15); /* RES1 bit */
413             ahcf->isar.dbgdidr = dbgdidr;
414         }
415 
416         if (pmu_supported) {
417             /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
418             err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
419                                   ARM64_SYS_REG(3, 3, 9, 12, 0));
420         }
421 
422         if (sve_supported) {
423             /*
424              * There is a range of kernels between kernel commit 73433762fcae
425              * and f81cb2c3ad41 which have a bug where the kernel doesn't
426              * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
427              * enabled SVE support, which resulted in an error rather than RAZ.
428              * So only read the register if we set KVM_ARM_VCPU_SVE above.
429              */
430             err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
431                                   ARM64_SYS_REG(3, 0, 0, 4, 4));
432         }
433     }
434 
435     kvm_arm_destroy_scratch_host_vcpu(fdarray);
436 
437     if (err < 0) {
438         return false;
439     }
440 
441     /*
442      * We can assume any KVM supporting CPU is at least a v8
443      * with VFPv4+Neon; this in turn implies most of the other
444      * feature bits.
445      */
446     features |= 1ULL << ARM_FEATURE_V8;
447     features |= 1ULL << ARM_FEATURE_NEON;
448     features |= 1ULL << ARM_FEATURE_AARCH64;
449     features |= 1ULL << ARM_FEATURE_PMU;
450     features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
451 
452     ahcf->features = features;
453 
454     return true;
455 }
456 
457 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
458 {
459     CPUARMState *env = &cpu->env;
460 
461     if (!arm_host_cpu_features.dtb_compatible) {
462         if (!kvm_enabled() ||
463             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
464             /* We can't report this error yet, so flag that we need to
465              * in arm_cpu_realizefn().
466              */
467             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
468             cpu->host_cpu_probe_failed = true;
469             return;
470         }
471     }
472 
473     cpu->kvm_target = arm_host_cpu_features.target;
474     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
475     cpu->isar = arm_host_cpu_features.isar;
476     env->features = arm_host_cpu_features.features;
477 }
478 
479 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
480 {
481     return !ARM_CPU(obj)->kvm_adjvtime;
482 }
483 
484 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
485 {
486     ARM_CPU(obj)->kvm_adjvtime = !value;
487 }
488 
489 static bool kvm_steal_time_get(Object *obj, Error **errp)
490 {
491     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
492 }
493 
494 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
495 {
496     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
497 }
498 
499 /* KVM VCPU properties should be prefixed with "kvm-". */
500 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
501 {
502     CPUARMState *env = &cpu->env;
503     Object *obj = OBJECT(cpu);
504 
505     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
506         cpu->kvm_adjvtime = true;
507         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
508                                  kvm_no_adjvtime_set);
509         object_property_set_description(obj, "kvm-no-adjvtime",
510                                         "Set on to disable the adjustment of "
511                                         "the virtual counter. VM stopped time "
512                                         "will be counted.");
513     }
514 
515     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
516     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
517                              kvm_steal_time_set);
518     object_property_set_description(obj, "kvm-steal-time",
519                                     "Set off to disable KVM steal time.");
520 }
521 
522 bool kvm_arm_pmu_supported(void)
523 {
524     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
525 }
526 
527 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
528 {
529     KVMState *s = KVM_STATE(ms->accelerator);
530     int ret;
531 
532     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
533     *fixed_ipa = ret <= 0;
534 
535     return ret > 0 ? ret : 40;
536 }
537 
538 int kvm_arch_get_default_type(MachineState *ms)
539 {
540     bool fixed_ipa;
541     int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
542     return fixed_ipa ? 0 : size;
543 }
544 
545 int kvm_arch_init(MachineState *ms, KVMState *s)
546 {
547     int ret = 0;
548     /* For ARM interrupt delivery is always asynchronous,
549      * whether we are using an in-kernel VGIC or not.
550      */
551     kvm_async_interrupts_allowed = true;
552 
553     /*
554      * PSCI wakes up secondary cores, so we always need to
555      * have vCPUs waiting in kernel space
556      */
557     kvm_halt_in_kernel_allowed = true;
558 
559     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
560 
561     /* Check whether user space can specify guest syndrome value */
562     cap_has_inject_serror_esr =
563         kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
564 
565     if (ms->smp.cpus > 256 &&
566         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
567         error_report("Using more than 256 vcpus requires a host kernel "
568                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
569         ret = -EINVAL;
570     }
571 
572     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
573         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
574             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
575         } else {
576             /* Set status for supporting the external dabt injection */
577             cap_has_inject_ext_dabt = kvm_check_extension(s,
578                                     KVM_CAP_ARM_INJECT_EXT_DABT);
579         }
580     }
581 
582     if (s->kvm_eager_split_size) {
583         uint32_t sizes;
584 
585         sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
586         if (!sizes) {
587             s->kvm_eager_split_size = 0;
588             warn_report("Eager Page Split support not available");
589         } else if (!(s->kvm_eager_split_size & sizes)) {
590             error_report("Eager Page Split requested chunk size not valid");
591             ret = -EINVAL;
592         } else {
593             ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
594                                     s->kvm_eager_split_size);
595             if (ret < 0) {
596                 error_report("Enabling of Eager Page Split failed: %s",
597                              strerror(-ret));
598             }
599         }
600     }
601 
602     max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
603     hw_watchpoints = g_array_sized_new(true, true,
604                                        sizeof(HWWatchpoint), max_hw_wps);
605 
606     max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
607     hw_breakpoints = g_array_sized_new(true, true,
608                                        sizeof(HWBreakpoint), max_hw_bps);
609 
610     return ret;
611 }
612 
613 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
614 {
615     return cpu->cpu_index;
616 }
617 
618 /* We track all the KVM devices which need their memory addresses
619  * passing to the kernel in a list of these structures.
620  * When board init is complete we run through the list and
621  * tell the kernel the base addresses of the memory regions.
622  * We use a MemoryListener to track mapping and unmapping of
623  * the regions during board creation, so the board models don't
624  * need to do anything special for the KVM case.
625  *
626  * Sometimes the address must be OR'ed with some other fields
627  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
628  * @kda_addr_ormask aims at storing the value of those fields.
629  */
630 typedef struct KVMDevice {
631     struct kvm_arm_device_addr kda;
632     struct kvm_device_attr kdattr;
633     uint64_t kda_addr_ormask;
634     MemoryRegion *mr;
635     QSLIST_ENTRY(KVMDevice) entries;
636     int dev_fd;
637 } KVMDevice;
638 
639 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
640 
641 static void kvm_arm_devlistener_add(MemoryListener *listener,
642                                     MemoryRegionSection *section)
643 {
644     KVMDevice *kd;
645 
646     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
647         if (section->mr == kd->mr) {
648             kd->kda.addr = section->offset_within_address_space;
649         }
650     }
651 }
652 
653 static void kvm_arm_devlistener_del(MemoryListener *listener,
654                                     MemoryRegionSection *section)
655 {
656     KVMDevice *kd;
657 
658     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
659         if (section->mr == kd->mr) {
660             kd->kda.addr = -1;
661         }
662     }
663 }
664 
665 static MemoryListener devlistener = {
666     .name = "kvm-arm",
667     .region_add = kvm_arm_devlistener_add,
668     .region_del = kvm_arm_devlistener_del,
669     .priority = MEMORY_LISTENER_PRIORITY_MIN,
670 };
671 
672 static void kvm_arm_set_device_addr(KVMDevice *kd)
673 {
674     struct kvm_device_attr *attr = &kd->kdattr;
675     int ret;
676 
677     /* If the device control API is available and we have a device fd on the
678      * KVMDevice struct, let's use the newer API
679      */
680     if (kd->dev_fd >= 0) {
681         uint64_t addr = kd->kda.addr;
682 
683         addr |= kd->kda_addr_ormask;
684         attr->addr = (uintptr_t)&addr;
685         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
686     } else {
687         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
688     }
689 
690     if (ret < 0) {
691         fprintf(stderr, "Failed to set device address: %s\n",
692                 strerror(-ret));
693         abort();
694     }
695 }
696 
697 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
698 {
699     KVMDevice *kd, *tkd;
700 
701     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
702         if (kd->kda.addr != -1) {
703             kvm_arm_set_device_addr(kd);
704         }
705         memory_region_unref(kd->mr);
706         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
707         g_free(kd);
708     }
709     memory_listener_unregister(&devlistener);
710 }
711 
712 static Notifier notify = {
713     .notify = kvm_arm_machine_init_done,
714 };
715 
716 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
717                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
718 {
719     KVMDevice *kd;
720 
721     if (!kvm_irqchip_in_kernel()) {
722         return;
723     }
724 
725     if (QSLIST_EMPTY(&kvm_devices_head)) {
726         memory_listener_register(&devlistener, &address_space_memory);
727         qemu_add_machine_init_done_notifier(&notify);
728     }
729     kd = g_new0(KVMDevice, 1);
730     kd->mr = mr;
731     kd->kda.id = devid;
732     kd->kda.addr = -1;
733     kd->kdattr.flags = 0;
734     kd->kdattr.group = group;
735     kd->kdattr.attr = attr;
736     kd->dev_fd = dev_fd;
737     kd->kda_addr_ormask = addr_ormask;
738     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
739     memory_region_ref(kd->mr);
740 }
741 
742 static int compare_u64(const void *a, const void *b)
743 {
744     if (*(uint64_t *)a > *(uint64_t *)b) {
745         return 1;
746     }
747     if (*(uint64_t *)a < *(uint64_t *)b) {
748         return -1;
749     }
750     return 0;
751 }
752 
753 /*
754  * cpreg_values are sorted in ascending order by KVM register ID
755  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
756  * the storage for a KVM register by ID with a binary search.
757  */
758 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
759 {
760     uint64_t *res;
761 
762     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
763                   sizeof(uint64_t), compare_u64);
764     assert(res);
765 
766     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
767 }
768 
769 /**
770  * kvm_arm_reg_syncs_via_cpreg_list:
771  * @regidx: KVM register index
772  *
773  * Return true if this KVM register should be synchronized via the
774  * cpreg list of arbitrary system registers, false if it is synchronized
775  * by hand using code in kvm_arch_get/put_registers().
776  */
777 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
778 {
779     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
780     case KVM_REG_ARM_CORE:
781     case KVM_REG_ARM64_SVE:
782         return false;
783     default:
784         return true;
785     }
786 }
787 
788 /**
789  * kvm_arm_init_cpreg_list:
790  * @cpu: ARMCPU
791  *
792  * Initialize the ARMCPU cpreg list according to the kernel's
793  * definition of what CPU registers it knows about (and throw away
794  * the previous TCG-created cpreg list).
795  *
796  * Returns: 0 if success, else < 0 error code
797  */
798 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
799 {
800     struct kvm_reg_list rl;
801     struct kvm_reg_list *rlp;
802     int i, ret, arraylen;
803     CPUState *cs = CPU(cpu);
804 
805     rl.n = 0;
806     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
807     if (ret != -E2BIG) {
808         return ret;
809     }
810     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
811     rlp->n = rl.n;
812     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
813     if (ret) {
814         goto out;
815     }
816     /* Sort the list we get back from the kernel, since cpreg_tuples
817      * must be in strictly ascending order.
818      */
819     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
820 
821     for (i = 0, arraylen = 0; i < rlp->n; i++) {
822         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
823             continue;
824         }
825         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
826         case KVM_REG_SIZE_U32:
827         case KVM_REG_SIZE_U64:
828             break;
829         default:
830             fprintf(stderr, "Can't handle size of register in kernel list\n");
831             ret = -EINVAL;
832             goto out;
833         }
834 
835         arraylen++;
836     }
837 
838     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
839     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
840     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
841                                          arraylen);
842     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
843                                         arraylen);
844     cpu->cpreg_array_len = arraylen;
845     cpu->cpreg_vmstate_array_len = arraylen;
846 
847     for (i = 0, arraylen = 0; i < rlp->n; i++) {
848         uint64_t regidx = rlp->reg[i];
849         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
850             continue;
851         }
852         cpu->cpreg_indexes[arraylen] = regidx;
853         arraylen++;
854     }
855     assert(cpu->cpreg_array_len == arraylen);
856 
857     if (!write_kvmstate_to_list(cpu)) {
858         /* Shouldn't happen unless kernel is inconsistent about
859          * what registers exist.
860          */
861         fprintf(stderr, "Initial read of kernel register state failed\n");
862         ret = -EINVAL;
863         goto out;
864     }
865 
866 out:
867     g_free(rlp);
868     return ret;
869 }
870 
871 /**
872  * kvm_arm_cpreg_level:
873  * @regidx: KVM register index
874  *
875  * Return the level of this coprocessor/system register.  Return value is
876  * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
877  */
878 static int kvm_arm_cpreg_level(uint64_t regidx)
879 {
880     /*
881      * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
882      * If a register should be written less often, you must add it here
883      * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
884      */
885     switch (regidx) {
886     case KVM_REG_ARM_TIMER_CNT:
887     case KVM_REG_ARM_PTIMER_CNT:
888         return KVM_PUT_FULL_STATE;
889     }
890     return KVM_PUT_RUNTIME_STATE;
891 }
892 
893 bool write_kvmstate_to_list(ARMCPU *cpu)
894 {
895     CPUState *cs = CPU(cpu);
896     int i;
897     bool ok = true;
898 
899     for (i = 0; i < cpu->cpreg_array_len; i++) {
900         uint64_t regidx = cpu->cpreg_indexes[i];
901         uint32_t v32;
902         int ret;
903 
904         switch (regidx & KVM_REG_SIZE_MASK) {
905         case KVM_REG_SIZE_U32:
906             ret = kvm_get_one_reg(cs, regidx, &v32);
907             if (!ret) {
908                 cpu->cpreg_values[i] = v32;
909             }
910             break;
911         case KVM_REG_SIZE_U64:
912             ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
913             break;
914         default:
915             g_assert_not_reached();
916         }
917         if (ret) {
918             ok = false;
919         }
920     }
921     return ok;
922 }
923 
924 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
925 {
926     CPUState *cs = CPU(cpu);
927     int i;
928     bool ok = true;
929 
930     for (i = 0; i < cpu->cpreg_array_len; i++) {
931         uint64_t regidx = cpu->cpreg_indexes[i];
932         uint32_t v32;
933         int ret;
934 
935         if (kvm_arm_cpreg_level(regidx) > level) {
936             continue;
937         }
938 
939         switch (regidx & KVM_REG_SIZE_MASK) {
940         case KVM_REG_SIZE_U32:
941             v32 = cpu->cpreg_values[i];
942             ret = kvm_set_one_reg(cs, regidx, &v32);
943             break;
944         case KVM_REG_SIZE_U64:
945             ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
946             break;
947         default:
948             g_assert_not_reached();
949         }
950         if (ret) {
951             /* We might fail for "unknown register" and also for
952              * "you tried to set a register which is constant with
953              * a different value from what it actually contains".
954              */
955             ok = false;
956         }
957     }
958     return ok;
959 }
960 
961 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
962 {
963     /* KVM virtual time adjustment */
964     if (cpu->kvm_vtime_dirty) {
965         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
966     }
967 }
968 
969 void kvm_arm_cpu_post_load(ARMCPU *cpu)
970 {
971     /* KVM virtual time adjustment */
972     if (cpu->kvm_adjvtime) {
973         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
974         cpu->kvm_vtime_dirty = true;
975     }
976 }
977 
978 void kvm_arm_reset_vcpu(ARMCPU *cpu)
979 {
980     int ret;
981 
982     /* Re-init VCPU so that all registers are set to
983      * their respective reset values.
984      */
985     ret = kvm_arm_vcpu_init(cpu);
986     if (ret < 0) {
987         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
988         abort();
989     }
990     if (!write_kvmstate_to_list(cpu)) {
991         fprintf(stderr, "write_kvmstate_to_list failed\n");
992         abort();
993     }
994     /*
995      * Sync the reset values also into the CPUState. This is necessary
996      * because the next thing we do will be a kvm_arch_put_registers()
997      * which will update the list values from the CPUState before copying
998      * the list values back to KVM. It's OK to ignore failure returns here
999      * for the same reason we do so in kvm_arch_get_registers().
1000      */
1001     write_list_to_cpustate(cpu);
1002 }
1003 
1004 /*
1005  * Update KVM's MP_STATE based on what QEMU thinks it is
1006  */
1007 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
1008 {
1009     if (cap_has_mp_state) {
1010         struct kvm_mp_state mp_state = {
1011             .mp_state = (cpu->power_state == PSCI_OFF) ?
1012             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1013         };
1014         return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1015     }
1016     return 0;
1017 }
1018 
1019 /*
1020  * Sync the KVM MP_STATE into QEMU
1021  */
1022 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1023 {
1024     if (cap_has_mp_state) {
1025         struct kvm_mp_state mp_state;
1026         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1027         if (ret) {
1028             return ret;
1029         }
1030         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1031             PSCI_OFF : PSCI_ON;
1032     }
1033     return 0;
1034 }
1035 
1036 /**
1037  * kvm_arm_get_virtual_time:
1038  * @cpu: ARMCPU
1039  *
1040  * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1041  */
1042 static void kvm_arm_get_virtual_time(ARMCPU *cpu)
1043 {
1044     int ret;
1045 
1046     if (cpu->kvm_vtime_dirty) {
1047         return;
1048     }
1049 
1050     ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1051     if (ret) {
1052         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1053         abort();
1054     }
1055 
1056     cpu->kvm_vtime_dirty = true;
1057 }
1058 
1059 /**
1060  * kvm_arm_put_virtual_time:
1061  * @cpu: ARMCPU
1062  *
1063  * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1064  */
1065 static void kvm_arm_put_virtual_time(ARMCPU *cpu)
1066 {
1067     int ret;
1068 
1069     if (!cpu->kvm_vtime_dirty) {
1070         return;
1071     }
1072 
1073     ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1074     if (ret) {
1075         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1076         abort();
1077     }
1078 
1079     cpu->kvm_vtime_dirty = false;
1080 }
1081 
1082 /**
1083  * kvm_put_vcpu_events:
1084  * @cpu: ARMCPU
1085  *
1086  * Put VCPU related state to kvm.
1087  *
1088  * Returns: 0 if success else < 0 error code
1089  */
1090 static int kvm_put_vcpu_events(ARMCPU *cpu)
1091 {
1092     CPUARMState *env = &cpu->env;
1093     struct kvm_vcpu_events events;
1094     int ret;
1095 
1096     if (!kvm_has_vcpu_events()) {
1097         return 0;
1098     }
1099 
1100     memset(&events, 0, sizeof(events));
1101     events.exception.serror_pending = env->serror.pending;
1102 
1103     /* Inject SError to guest with specified syndrome if host kernel
1104      * supports it, otherwise inject SError without syndrome.
1105      */
1106     if (cap_has_inject_serror_esr) {
1107         events.exception.serror_has_esr = env->serror.has_esr;
1108         events.exception.serror_esr = env->serror.esr;
1109     }
1110 
1111     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1112     if (ret) {
1113         error_report("failed to put vcpu events");
1114     }
1115 
1116     return ret;
1117 }
1118 
1119 /**
1120  * kvm_get_vcpu_events:
1121  * @cpu: ARMCPU
1122  *
1123  * Get VCPU related state from kvm.
1124  *
1125  * Returns: 0 if success else < 0 error code
1126  */
1127 static int kvm_get_vcpu_events(ARMCPU *cpu)
1128 {
1129     CPUARMState *env = &cpu->env;
1130     struct kvm_vcpu_events events;
1131     int ret;
1132 
1133     if (!kvm_has_vcpu_events()) {
1134         return 0;
1135     }
1136 
1137     memset(&events, 0, sizeof(events));
1138     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1139     if (ret) {
1140         error_report("failed to get vcpu events");
1141         return ret;
1142     }
1143 
1144     env->serror.pending = events.exception.serror_pending;
1145     env->serror.has_esr = events.exception.serror_has_esr;
1146     env->serror.esr = events.exception.serror_esr;
1147 
1148     return 0;
1149 }
1150 
1151 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1152 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1153 
1154 /*
1155  * ESR_EL1
1156  * ISS encoding
1157  * AARCH64: DFSC,   bits [5:0]
1158  * AARCH32:
1159  *      TTBCR.EAE == 0
1160  *          FS[4]   - DFSR[10]
1161  *          FS[3:0] - DFSR[3:0]
1162  *      TTBCR.EAE == 1
1163  *          FS, bits [5:0]
1164  */
1165 #define ESR_DFSC(aarch64, lpae, v)        \
1166     ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
1167                : (((v) >> 6) | ((v) & 0x1F)))
1168 
1169 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1170     ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1171 
1172 /**
1173  * kvm_arm_verify_ext_dabt_pending:
1174  * @cpu: ARMCPU
1175  *
1176  * Verify the fault status code wrt the Ext DABT injection
1177  *
1178  * Returns: true if the fault status code is as expected, false otherwise
1179  */
1180 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
1181 {
1182     CPUState *cs = CPU(cpu);
1183     uint64_t dfsr_val;
1184 
1185     if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1186         CPUARMState *env = &cpu->env;
1187         int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1188         int lpae = 0;
1189 
1190         if (!aarch64_mode) {
1191             uint64_t ttbcr;
1192 
1193             if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1194                 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1195                         && (ttbcr & TTBCR_EAE);
1196             }
1197         }
1198         /*
1199          * The verification here is based on the DFSC bits
1200          * of the ESR_EL1 reg only
1201          */
1202          return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1203                 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1204     }
1205     return false;
1206 }
1207 
1208 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1209 {
1210     ARMCPU *cpu = ARM_CPU(cs);
1211     CPUARMState *env = &cpu->env;
1212 
1213     if (unlikely(env->ext_dabt_raised)) {
1214         /*
1215          * Verifying that the ext DABT has been properly injected,
1216          * otherwise risking indefinitely re-running the faulting instruction
1217          * Covering a very narrow case for kernels 5.5..5.5.4
1218          * when injected abort was misconfigured to be
1219          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1220          */
1221         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1222             unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
1223 
1224             error_report("Data abort exception with no valid ISS generated by "
1225                    "guest memory access. KVM unable to emulate faulting "
1226                    "instruction. Failed to inject an external data abort "
1227                    "into the guest.");
1228             abort();
1229        }
1230        /* Clear the status */
1231        env->ext_dabt_raised = 0;
1232     }
1233 }
1234 
1235 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1236 {
1237     ARMCPU *cpu;
1238     uint32_t switched_level;
1239 
1240     if (kvm_irqchip_in_kernel()) {
1241         /*
1242          * We only need to sync timer states with user-space interrupt
1243          * controllers, so return early and save cycles if we don't.
1244          */
1245         return MEMTXATTRS_UNSPECIFIED;
1246     }
1247 
1248     cpu = ARM_CPU(cs);
1249 
1250     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1251     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1252         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1253 
1254         bql_lock();
1255 
1256         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1257             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1258                          !!(run->s.regs.device_irq_level &
1259                             KVM_ARM_DEV_EL1_VTIMER));
1260             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1261         }
1262 
1263         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1264             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1265                          !!(run->s.regs.device_irq_level &
1266                             KVM_ARM_DEV_EL1_PTIMER));
1267             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1268         }
1269 
1270         if (switched_level & KVM_ARM_DEV_PMU) {
1271             qemu_set_irq(cpu->pmu_interrupt,
1272                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1273             switched_level &= ~KVM_ARM_DEV_PMU;
1274         }
1275 
1276         if (switched_level) {
1277             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1278                           __func__, switched_level);
1279         }
1280 
1281         /* We also mark unknown levels as processed to not waste cycles */
1282         cpu->device_irq_level = run->s.regs.device_irq_level;
1283         bql_unlock();
1284     }
1285 
1286     return MEMTXATTRS_UNSPECIFIED;
1287 }
1288 
1289 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1290 {
1291     ARMCPU *cpu = opaque;
1292 
1293     if (running) {
1294         if (cpu->kvm_adjvtime) {
1295             kvm_arm_put_virtual_time(cpu);
1296         }
1297     } else {
1298         if (cpu->kvm_adjvtime) {
1299             kvm_arm_get_virtual_time(cpu);
1300         }
1301     }
1302 }
1303 
1304 /**
1305  * kvm_arm_handle_dabt_nisv:
1306  * @cpu: ARMCPU
1307  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1308  *           ISV bit set to '0b0' -> no valid instruction syndrome
1309  * @fault_ipa: faulting address for the synchronous data abort
1310  *
1311  * Returns: 0 if the exception has been handled, < 0 otherwise
1312  */
1313 static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
1314                                     uint64_t fault_ipa)
1315 {
1316     CPUARMState *env = &cpu->env;
1317     /*
1318      * Request KVM to inject the external data abort into the guest
1319      */
1320     if (cap_has_inject_ext_dabt) {
1321         struct kvm_vcpu_events events = { };
1322         /*
1323          * The external data abort event will be handled immediately by KVM
1324          * using the address fault that triggered the exit on given VCPU.
1325          * Requesting injection of the external data abort does not rely
1326          * on any other VCPU state. Therefore, in this particular case, the VCPU
1327          * synchronization can be exceptionally skipped.
1328          */
1329         events.exception.ext_dabt_pending = 1;
1330         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1331         if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
1332             env->ext_dabt_raised = 1;
1333             return 0;
1334         }
1335     } else {
1336         error_report("Data abort exception triggered by guest memory access "
1337                      "at physical address: 0x"  TARGET_FMT_lx,
1338                      (target_ulong)fault_ipa);
1339         error_printf("KVM unable to emulate faulting instruction.\n");
1340     }
1341     return -1;
1342 }
1343 
1344 /**
1345  * kvm_arm_handle_debug:
1346  * @cpu: ARMCPU
1347  * @debug_exit: debug part of the KVM exit structure
1348  *
1349  * Returns: TRUE if the debug exception was handled.
1350  *
1351  * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1352  *
1353  * To minimise translating between kernel and user-space the kernel
1354  * ABI just provides user-space with the full exception syndrome
1355  * register value to be decoded in QEMU.
1356  */
1357 static bool kvm_arm_handle_debug(ARMCPU *cpu,
1358                                  struct kvm_debug_exit_arch *debug_exit)
1359 {
1360     int hsr_ec = syn_get_ec(debug_exit->hsr);
1361     CPUState *cs = CPU(cpu);
1362     CPUARMState *env = &cpu->env;
1363 
1364     /* Ensure PC is synchronised */
1365     kvm_cpu_synchronize_state(cs);
1366 
1367     switch (hsr_ec) {
1368     case EC_SOFTWARESTEP:
1369         if (cs->singlestep_enabled) {
1370             return true;
1371         } else {
1372             /*
1373              * The kernel should have suppressed the guest's ability to
1374              * single step at this point so something has gone wrong.
1375              */
1376             error_report("%s: guest single-step while debugging unsupported"
1377                          " (%"PRIx64", %"PRIx32")",
1378                          __func__, env->pc, debug_exit->hsr);
1379             return false;
1380         }
1381         break;
1382     case EC_AA64_BKPT:
1383         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1384             return true;
1385         }
1386         break;
1387     case EC_BREAKPOINT:
1388         if (find_hw_breakpoint(cs, env->pc)) {
1389             return true;
1390         }
1391         break;
1392     case EC_WATCHPOINT:
1393     {
1394         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1395         if (wp) {
1396             cs->watchpoint_hit = wp;
1397             return true;
1398         }
1399         break;
1400     }
1401     default:
1402         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1403                      __func__, debug_exit->hsr, env->pc);
1404     }
1405 
1406     /* If we are not handling the debug exception it must belong to
1407      * the guest. Let's re-use the existing TCG interrupt code to set
1408      * everything up properly.
1409      */
1410     cs->exception_index = EXCP_BKPT;
1411     env->exception.syndrome = debug_exit->hsr;
1412     env->exception.vaddress = debug_exit->far;
1413     env->exception.target_el = 1;
1414     bql_lock();
1415     arm_cpu_do_interrupt(cs);
1416     bql_unlock();
1417 
1418     return false;
1419 }
1420 
1421 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1422 {
1423     ARMCPU *cpu = ARM_CPU(cs);
1424     int ret = 0;
1425 
1426     switch (run->exit_reason) {
1427     case KVM_EXIT_DEBUG:
1428         if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
1429             ret = EXCP_DEBUG;
1430         } /* otherwise return to guest */
1431         break;
1432     case KVM_EXIT_ARM_NISV:
1433         /* External DABT with no valid iss to decode */
1434         ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
1435                                        run->arm_nisv.fault_ipa);
1436         break;
1437     default:
1438         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1439                       __func__, run->exit_reason);
1440         break;
1441     }
1442     return ret;
1443 }
1444 
1445 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1446 {
1447     return true;
1448 }
1449 
1450 int kvm_arch_process_async_events(CPUState *cs)
1451 {
1452     return 0;
1453 }
1454 
1455 /**
1456  * kvm_arm_hw_debug_active:
1457  * @cpu: ARMCPU
1458  *
1459  * Return: TRUE if any hardware breakpoints in use.
1460  */
1461 static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
1462 {
1463     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1464 }
1465 
1466 /**
1467  * kvm_arm_copy_hw_debug_data:
1468  * @ptr: kvm_guest_debug_arch structure
1469  *
1470  * Copy the architecture specific debug registers into the
1471  * kvm_guest_debug ioctl structure.
1472  */
1473 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1474 {
1475     int i;
1476     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1477 
1478     for (i = 0; i < max_hw_wps; i++) {
1479         HWWatchpoint *wp = get_hw_wp(i);
1480         ptr->dbg_wcr[i] = wp->wcr;
1481         ptr->dbg_wvr[i] = wp->wvr;
1482     }
1483     for (i = 0; i < max_hw_bps; i++) {
1484         HWBreakpoint *bp = get_hw_bp(i);
1485         ptr->dbg_bcr[i] = bp->bcr;
1486         ptr->dbg_bvr[i] = bp->bvr;
1487     }
1488 }
1489 
1490 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1491 {
1492     if (kvm_sw_breakpoints_active(cs)) {
1493         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1494     }
1495     if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
1496         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1497         kvm_arm_copy_hw_debug_data(&dbg->arch);
1498     }
1499 }
1500 
1501 void kvm_arch_init_irq_routing(KVMState *s)
1502 {
1503 }
1504 
1505 int kvm_arch_irqchip_create(KVMState *s)
1506 {
1507     if (kvm_kernel_irqchip_split()) {
1508         error_report("-machine kernel_irqchip=split is not supported on ARM.");
1509         exit(1);
1510     }
1511 
1512     /* If we can create the VGIC using the newer device control API, we
1513      * let the device do this when it initializes itself, otherwise we
1514      * fall back to the old API */
1515     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1516 }
1517 
1518 int kvm_arm_vgic_probe(void)
1519 {
1520     int val = 0;
1521 
1522     if (kvm_create_device(kvm_state,
1523                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1524         val |= KVM_ARM_VGIC_V3;
1525     }
1526     if (kvm_create_device(kvm_state,
1527                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1528         val |= KVM_ARM_VGIC_V2;
1529     }
1530     return val;
1531 }
1532 
1533 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1534 {
1535     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1536     int cpu_idx1 = cpu % 256;
1537     int cpu_idx2 = cpu / 256;
1538 
1539     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1540                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1541 
1542     return kvm_set_irq(kvm_state, kvm_irq, !!level);
1543 }
1544 
1545 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1546                              uint64_t address, uint32_t data, PCIDevice *dev)
1547 {
1548     AddressSpace *as = pci_device_iommu_address_space(dev);
1549     hwaddr xlat, len, doorbell_gpa;
1550     MemoryRegionSection mrs;
1551     MemoryRegion *mr;
1552 
1553     if (as == &address_space_memory) {
1554         return 0;
1555     }
1556 
1557     /* MSI doorbell address is translated by an IOMMU */
1558 
1559     RCU_READ_LOCK_GUARD();
1560 
1561     mr = address_space_translate(as, address, &xlat, &len, true,
1562                                  MEMTXATTRS_UNSPECIFIED);
1563 
1564     if (!mr) {
1565         return 1;
1566     }
1567 
1568     mrs = memory_region_find(mr, xlat, 1);
1569 
1570     if (!mrs.mr) {
1571         return 1;
1572     }
1573 
1574     doorbell_gpa = mrs.offset_within_address_space;
1575     memory_region_unref(mrs.mr);
1576 
1577     route->u.msi.address_lo = doorbell_gpa;
1578     route->u.msi.address_hi = doorbell_gpa >> 32;
1579 
1580     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1581 
1582     return 0;
1583 }
1584 
1585 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1586                                 int vector, PCIDevice *dev)
1587 {
1588     return 0;
1589 }
1590 
1591 int kvm_arch_release_virq_post(int virq)
1592 {
1593     return 0;
1594 }
1595 
1596 int kvm_arch_msi_data_to_gsi(uint32_t data)
1597 {
1598     return (data - 32) & 0xffff;
1599 }
1600 
1601 bool kvm_arch_cpu_check_are_resettable(void)
1602 {
1603     return true;
1604 }
1605 
1606 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1607                                           const char *name, void *opaque,
1608                                           Error **errp)
1609 {
1610     KVMState *s = KVM_STATE(obj);
1611     uint64_t value = s->kvm_eager_split_size;
1612 
1613     visit_type_size(v, name, &value, errp);
1614 }
1615 
1616 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1617                                           const char *name, void *opaque,
1618                                           Error **errp)
1619 {
1620     KVMState *s = KVM_STATE(obj);
1621     uint64_t value;
1622 
1623     if (s->fd != -1) {
1624         error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1625         return;
1626     }
1627 
1628     if (!visit_type_size(v, name, &value, errp)) {
1629         return;
1630     }
1631 
1632     if (value && !is_power_of_2(value)) {
1633         error_setg(errp, "early-split-size must be a power of two");
1634         return;
1635     }
1636 
1637     s->kvm_eager_split_size = value;
1638 }
1639 
1640 void kvm_arch_accel_class_init(ObjectClass *oc)
1641 {
1642     object_class_property_add(oc, "eager-split-size", "size",
1643                               kvm_arch_get_eager_split_size,
1644                               kvm_arch_set_eager_split_size, NULL, NULL);
1645 
1646     object_class_property_set_description(oc, "eager-split-size",
1647         "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1648 }
1649 
1650 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1651 {
1652     switch (type) {
1653     case GDB_BREAKPOINT_HW:
1654         return insert_hw_breakpoint(addr);
1655         break;
1656     case GDB_WATCHPOINT_READ:
1657     case GDB_WATCHPOINT_WRITE:
1658     case GDB_WATCHPOINT_ACCESS:
1659         return insert_hw_watchpoint(addr, len, type);
1660     default:
1661         return -ENOSYS;
1662     }
1663 }
1664 
1665 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1666 {
1667     switch (type) {
1668     case GDB_BREAKPOINT_HW:
1669         return delete_hw_breakpoint(addr);
1670     case GDB_WATCHPOINT_READ:
1671     case GDB_WATCHPOINT_WRITE:
1672     case GDB_WATCHPOINT_ACCESS:
1673         return delete_hw_watchpoint(addr, len, type);
1674     default:
1675         return -ENOSYS;
1676     }
1677 }
1678 
1679 void kvm_arch_remove_all_hw_breakpoints(void)
1680 {
1681     if (cur_hw_wps > 0) {
1682         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1683     }
1684     if (cur_hw_bps > 0) {
1685         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1686     }
1687 }
1688 
1689 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1690                                     const char *name)
1691 {
1692     int err;
1693 
1694     err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1695     if (err != 0) {
1696         error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1697         return false;
1698     }
1699 
1700     err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1701     if (err != 0) {
1702         error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1703         return false;
1704     }
1705 
1706     return true;
1707 }
1708 
1709 void kvm_arm_pmu_init(ARMCPU *cpu)
1710 {
1711     struct kvm_device_attr attr = {
1712         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1713         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1714     };
1715 
1716     if (!cpu->has_pmu) {
1717         return;
1718     }
1719     if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1720         error_report("failed to init PMU");
1721         abort();
1722     }
1723 }
1724 
1725 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1726 {
1727     struct kvm_device_attr attr = {
1728         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1729         .addr = (intptr_t)&irq,
1730         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1731     };
1732 
1733     if (!cpu->has_pmu) {
1734         return;
1735     }
1736     if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1737         error_report("failed to set irq for PMU");
1738         abort();
1739     }
1740 }
1741 
1742 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1743 {
1744     struct kvm_device_attr attr = {
1745         .group = KVM_ARM_VCPU_PVTIME_CTRL,
1746         .attr = KVM_ARM_VCPU_PVTIME_IPA,
1747         .addr = (uint64_t)&ipa,
1748     };
1749 
1750     if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1751         return;
1752     }
1753     if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1754         error_report("failed to init PVTIME IPA");
1755         abort();
1756     }
1757 }
1758 
1759 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1760 {
1761     bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1762 
1763     if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1764         if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1765             cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1766         } else {
1767             cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1768         }
1769     } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1770         if (!has_steal_time) {
1771             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1772                              "on this host");
1773             return;
1774         } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1775             /*
1776              * DEN0057A chapter 2 says "This specification only covers
1777              * systems in which the Execution state of the hypervisor
1778              * as well as EL1 of virtual machines is AArch64.". And,
1779              * to ensure that, the smc/hvc calls are only specified as
1780              * smc64/hvc64.
1781              */
1782             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1783                              "for AArch32 guests");
1784             return;
1785         }
1786     }
1787 }
1788 
1789 bool kvm_arm_aarch32_supported(void)
1790 {
1791     return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1792 }
1793 
1794 bool kvm_arm_sve_supported(void)
1795 {
1796     return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1797 }
1798 
1799 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1800 
1801 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1802 {
1803     /* Only call this function if kvm_arm_sve_supported() returns true. */
1804     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1805     static bool probed;
1806     uint32_t vq = 0;
1807     int i;
1808 
1809     /*
1810      * KVM ensures all host CPUs support the same set of vector lengths.
1811      * So we only need to create the scratch VCPUs once and then cache
1812      * the results.
1813      */
1814     if (!probed) {
1815         struct kvm_vcpu_init init = {
1816             .target = -1,
1817             .features[0] = (1 << KVM_ARM_VCPU_SVE),
1818         };
1819         struct kvm_one_reg reg = {
1820             .id = KVM_REG_ARM64_SVE_VLS,
1821             .addr = (uint64_t)&vls[0],
1822         };
1823         int fdarray[3], ret;
1824 
1825         probed = true;
1826 
1827         if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
1828             error_report("failed to create scratch VCPU with SVE enabled");
1829             abort();
1830         }
1831         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1832         kvm_arm_destroy_scratch_host_vcpu(fdarray);
1833         if (ret) {
1834             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1835                          strerror(errno));
1836             abort();
1837         }
1838 
1839         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1840             if (vls[i]) {
1841                 vq = 64 - clz64(vls[i]) + i * 64;
1842                 break;
1843             }
1844         }
1845         if (vq > ARM_MAX_VQ) {
1846             warn_report("KVM supports vector lengths larger than "
1847                         "QEMU can enable");
1848             vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1849         }
1850     }
1851 
1852     return vls[0];
1853 }
1854 
1855 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1856 {
1857     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1858 
1859     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1860 
1861     return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1862 }
1863 
1864 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
1865 
1866 int kvm_arch_init_vcpu(CPUState *cs)
1867 {
1868     int ret;
1869     uint64_t mpidr;
1870     ARMCPU *cpu = ARM_CPU(cs);
1871     CPUARMState *env = &cpu->env;
1872     uint64_t psciver;
1873 
1874     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
1875         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
1876         error_report("KVM is not supported for this guest CPU type");
1877         return -EINVAL;
1878     }
1879 
1880     qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
1881 
1882     /* Determine init features for this CPU */
1883     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1884     if (cs->start_powered_off) {
1885         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1886     }
1887     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1888         cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1889         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1890     }
1891     if (!arm_feature(env, ARM_FEATURE_AARCH64)) {
1892         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1893     }
1894     if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
1895         cpu->has_pmu = false;
1896     }
1897     if (cpu->has_pmu) {
1898         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1899     } else {
1900         env->features &= ~(1ULL << ARM_FEATURE_PMU);
1901     }
1902     if (cpu_isar_feature(aa64_sve, cpu)) {
1903         assert(kvm_arm_sve_supported());
1904         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1905     }
1906     if (cpu_isar_feature(aa64_pauth, cpu)) {
1907         cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1908                                       1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1909     }
1910 
1911     /* Do KVM_ARM_VCPU_INIT ioctl */
1912     ret = kvm_arm_vcpu_init(cpu);
1913     if (ret) {
1914         return ret;
1915     }
1916 
1917     if (cpu_isar_feature(aa64_sve, cpu)) {
1918         ret = kvm_arm_sve_set_vls(cpu);
1919         if (ret) {
1920             return ret;
1921         }
1922         ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1923         if (ret) {
1924             return ret;
1925         }
1926     }
1927 
1928     /*
1929      * KVM reports the exact PSCI version it is implementing via a
1930      * special sysreg. If it is present, use its contents to determine
1931      * what to report to the guest in the dtb (it is the PSCI version,
1932      * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1933      * returns).
1934      */
1935     if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1936         cpu->psci_version = psciver;
1937     }
1938 
1939     /*
1940      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1941      * Currently KVM has its own idea about MPIDR assignment, so we
1942      * override our defaults with what we get from KVM.
1943      */
1944     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1945     if (ret) {
1946         return ret;
1947     }
1948     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1949 
1950     return kvm_arm_init_cpreg_list(cpu);
1951 }
1952 
1953 int kvm_arch_destroy_vcpu(CPUState *cs)
1954 {
1955     return 0;
1956 }
1957 
1958 /* Callers must hold the iothread mutex lock */
1959 static void kvm_inject_arm_sea(CPUState *c)
1960 {
1961     ARMCPU *cpu = ARM_CPU(c);
1962     CPUARMState *env = &cpu->env;
1963     uint32_t esr;
1964     bool same_el;
1965 
1966     c->exception_index = EXCP_DATA_ABORT;
1967     env->exception.target_el = 1;
1968 
1969     /*
1970      * Set the DFSC to synchronous external abort and set FnV to not valid,
1971      * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1972      */
1973     same_el = arm_current_el(env) == env->exception.target_el;
1974     esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1975 
1976     env->exception.syndrome = esr;
1977 
1978     arm_cpu_do_interrupt(c);
1979 }
1980 
1981 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1982                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1983 
1984 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1985                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1986 
1987 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1988                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1989 
1990 static int kvm_arch_put_fpsimd(CPUState *cs)
1991 {
1992     CPUARMState *env = &ARM_CPU(cs)->env;
1993     int i, ret;
1994 
1995     for (i = 0; i < 32; i++) {
1996         uint64_t *q = aa64_vfp_qreg(env, i);
1997 #if HOST_BIG_ENDIAN
1998         uint64_t fp_val[2] = { q[1], q[0] };
1999         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
2000                                                         fp_val);
2001 #else
2002         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2003 #endif
2004         if (ret) {
2005             return ret;
2006         }
2007     }
2008 
2009     return 0;
2010 }
2011 
2012 /*
2013  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2014  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2015  * code the slice index to zero for now as it's unlikely we'll need more than
2016  * one slice for quite some time.
2017  */
2018 static int kvm_arch_put_sve(CPUState *cs)
2019 {
2020     ARMCPU *cpu = ARM_CPU(cs);
2021     CPUARMState *env = &cpu->env;
2022     uint64_t tmp[ARM_MAX_VQ * 2];
2023     uint64_t *r;
2024     int n, ret;
2025 
2026     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2027         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2028         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2029         if (ret) {
2030             return ret;
2031         }
2032     }
2033 
2034     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2035         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2036                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2037         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2038         if (ret) {
2039             return ret;
2040         }
2041     }
2042 
2043     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2044                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2045     ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2046     if (ret) {
2047         return ret;
2048     }
2049 
2050     return 0;
2051 }
2052 
2053 int kvm_arch_put_registers(CPUState *cs, int level)
2054 {
2055     uint64_t val;
2056     uint32_t fpr;
2057     int i, ret;
2058     unsigned int el;
2059 
2060     ARMCPU *cpu = ARM_CPU(cs);
2061     CPUARMState *env = &cpu->env;
2062 
2063     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2064      * AArch64 registers before pushing them out to 64-bit KVM.
2065      */
2066     if (!is_a64(env)) {
2067         aarch64_sync_32_to_64(env);
2068     }
2069 
2070     for (i = 0; i < 31; i++) {
2071         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2072                               &env->xregs[i]);
2073         if (ret) {
2074             return ret;
2075         }
2076     }
2077 
2078     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2079      * QEMU side we keep the current SP in xregs[31] as well.
2080      */
2081     aarch64_save_sp(env, 1);
2082 
2083     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2084     if (ret) {
2085         return ret;
2086     }
2087 
2088     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2089     if (ret) {
2090         return ret;
2091     }
2092 
2093     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2094     if (is_a64(env)) {
2095         val = pstate_read(env);
2096     } else {
2097         val = cpsr_read(env);
2098     }
2099     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2100     if (ret) {
2101         return ret;
2102     }
2103 
2104     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2105     if (ret) {
2106         return ret;
2107     }
2108 
2109     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2110     if (ret) {
2111         return ret;
2112     }
2113 
2114     /* Saved Program State Registers
2115      *
2116      * Before we restore from the banked_spsr[] array we need to
2117      * ensure that any modifications to env->spsr are correctly
2118      * reflected in the banks.
2119      */
2120     el = arm_current_el(env);
2121     if (el > 0 && !is_a64(env)) {
2122         i = bank_number(env->uncached_cpsr & CPSR_M);
2123         env->banked_spsr[i] = env->spsr;
2124     }
2125 
2126     /* KVM 0-4 map to QEMU banks 1-5 */
2127     for (i = 0; i < KVM_NR_SPSR; i++) {
2128         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2129                               &env->banked_spsr[i + 1]);
2130         if (ret) {
2131             return ret;
2132         }
2133     }
2134 
2135     if (cpu_isar_feature(aa64_sve, cpu)) {
2136         ret = kvm_arch_put_sve(cs);
2137     } else {
2138         ret = kvm_arch_put_fpsimd(cs);
2139     }
2140     if (ret) {
2141         return ret;
2142     }
2143 
2144     fpr = vfp_get_fpsr(env);
2145     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2146     if (ret) {
2147         return ret;
2148     }
2149 
2150     fpr = vfp_get_fpcr(env);
2151     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2152     if (ret) {
2153         return ret;
2154     }
2155 
2156     write_cpustate_to_list(cpu, true);
2157 
2158     if (!write_list_to_kvmstate(cpu, level)) {
2159         return -EINVAL;
2160     }
2161 
2162    /*
2163     * Setting VCPU events should be triggered after syncing the registers
2164     * to avoid overwriting potential changes made by KVM upon calling
2165     * KVM_SET_VCPU_EVENTS ioctl
2166     */
2167     ret = kvm_put_vcpu_events(cpu);
2168     if (ret) {
2169         return ret;
2170     }
2171 
2172     return kvm_arm_sync_mpstate_to_kvm(cpu);
2173 }
2174 
2175 static int kvm_arch_get_fpsimd(CPUState *cs)
2176 {
2177     CPUARMState *env = &ARM_CPU(cs)->env;
2178     int i, ret;
2179 
2180     for (i = 0; i < 32; i++) {
2181         uint64_t *q = aa64_vfp_qreg(env, i);
2182         ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2183         if (ret) {
2184             return ret;
2185         } else {
2186 #if HOST_BIG_ENDIAN
2187             uint64_t t;
2188             t = q[0], q[0] = q[1], q[1] = t;
2189 #endif
2190         }
2191     }
2192 
2193     return 0;
2194 }
2195 
2196 /*
2197  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2198  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2199  * code the slice index to zero for now as it's unlikely we'll need more than
2200  * one slice for quite some time.
2201  */
2202 static int kvm_arch_get_sve(CPUState *cs)
2203 {
2204     ARMCPU *cpu = ARM_CPU(cs);
2205     CPUARMState *env = &cpu->env;
2206     uint64_t *r;
2207     int n, ret;
2208 
2209     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2210         r = &env->vfp.zregs[n].d[0];
2211         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2212         if (ret) {
2213             return ret;
2214         }
2215         sve_bswap64(r, r, cpu->sve_max_vq * 2);
2216     }
2217 
2218     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2219         r = &env->vfp.pregs[n].p[0];
2220         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2221         if (ret) {
2222             return ret;
2223         }
2224         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2225     }
2226 
2227     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2228     ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2229     if (ret) {
2230         return ret;
2231     }
2232     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2233 
2234     return 0;
2235 }
2236 
2237 int kvm_arch_get_registers(CPUState *cs)
2238 {
2239     uint64_t val;
2240     unsigned int el;
2241     uint32_t fpr;
2242     int i, ret;
2243 
2244     ARMCPU *cpu = ARM_CPU(cs);
2245     CPUARMState *env = &cpu->env;
2246 
2247     for (i = 0; i < 31; i++) {
2248         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2249                               &env->xregs[i]);
2250         if (ret) {
2251             return ret;
2252         }
2253     }
2254 
2255     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2256     if (ret) {
2257         return ret;
2258     }
2259 
2260     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2261     if (ret) {
2262         return ret;
2263     }
2264 
2265     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2266     if (ret) {
2267         return ret;
2268     }
2269 
2270     env->aarch64 = ((val & PSTATE_nRW) == 0);
2271     if (is_a64(env)) {
2272         pstate_write(env, val);
2273     } else {
2274         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2275     }
2276 
2277     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2278      * QEMU side we keep the current SP in xregs[31] as well.
2279      */
2280     aarch64_restore_sp(env, 1);
2281 
2282     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2283     if (ret) {
2284         return ret;
2285     }
2286 
2287     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2288      * incoming AArch64 regs received from 64-bit KVM.
2289      * We must perform this after all of the registers have been acquired from
2290      * the kernel.
2291      */
2292     if (!is_a64(env)) {
2293         aarch64_sync_64_to_32(env);
2294     }
2295 
2296     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2297     if (ret) {
2298         return ret;
2299     }
2300 
2301     /* Fetch the SPSR registers
2302      *
2303      * KVM SPSRs 0-4 map to QEMU banks 1-5
2304      */
2305     for (i = 0; i < KVM_NR_SPSR; i++) {
2306         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2307                               &env->banked_spsr[i + 1]);
2308         if (ret) {
2309             return ret;
2310         }
2311     }
2312 
2313     el = arm_current_el(env);
2314     if (el > 0 && !is_a64(env)) {
2315         i = bank_number(env->uncached_cpsr & CPSR_M);
2316         env->spsr = env->banked_spsr[i];
2317     }
2318 
2319     if (cpu_isar_feature(aa64_sve, cpu)) {
2320         ret = kvm_arch_get_sve(cs);
2321     } else {
2322         ret = kvm_arch_get_fpsimd(cs);
2323     }
2324     if (ret) {
2325         return ret;
2326     }
2327 
2328     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2329     if (ret) {
2330         return ret;
2331     }
2332     vfp_set_fpsr(env, fpr);
2333 
2334     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2335     if (ret) {
2336         return ret;
2337     }
2338     vfp_set_fpcr(env, fpr);
2339 
2340     ret = kvm_get_vcpu_events(cpu);
2341     if (ret) {
2342         return ret;
2343     }
2344 
2345     if (!write_kvmstate_to_list(cpu)) {
2346         return -EINVAL;
2347     }
2348     /* Note that it's OK to have registers which aren't in CPUState,
2349      * so we can ignore a failure return here.
2350      */
2351     write_list_to_cpustate(cpu);
2352 
2353     ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2354 
2355     /* TODO: other registers */
2356     return ret;
2357 }
2358 
2359 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2360 {
2361     ram_addr_t ram_addr;
2362     hwaddr paddr;
2363 
2364     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2365 
2366     if (acpi_ghes_present() && addr) {
2367         ram_addr = qemu_ram_addr_from_host(addr);
2368         if (ram_addr != RAM_ADDR_INVALID &&
2369             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2370             kvm_hwpoison_page_add(ram_addr);
2371             /*
2372              * If this is a BUS_MCEERR_AR, we know we have been called
2373              * synchronously from the vCPU thread, so we can easily
2374              * synchronize the state and inject an error.
2375              *
2376              * TODO: we currently don't tell the guest at all about
2377              * BUS_MCEERR_AO. In that case we might either be being
2378              * called synchronously from the vCPU thread, or a bit
2379              * later from the main thread, so doing the injection of
2380              * the error would be more complicated.
2381              */
2382             if (code == BUS_MCEERR_AR) {
2383                 kvm_cpu_synchronize_state(c);
2384                 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2385                     kvm_inject_arm_sea(c);
2386                 } else {
2387                     error_report("failed to record the error");
2388                     abort();
2389                 }
2390             }
2391             return;
2392         }
2393         if (code == BUS_MCEERR_AO) {
2394             error_report("Hardware memory error at addr %p for memory used by "
2395                 "QEMU itself instead of guest system!", addr);
2396         }
2397     }
2398 
2399     if (code == BUS_MCEERR_AR) {
2400         error_report("Hardware memory error!");
2401         exit(1);
2402     }
2403 }
2404 
2405 /* C6.6.29 BRK instruction */
2406 static const uint32_t brk_insn = 0xd4200000;
2407 
2408 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2409 {
2410     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2411         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2412         return -EINVAL;
2413     }
2414     return 0;
2415 }
2416 
2417 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2418 {
2419     static uint32_t brk;
2420 
2421     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2422         brk != brk_insn ||
2423         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2424         return -EINVAL;
2425     }
2426     return 0;
2427 }
2428