xref: /openbmc/qemu/target/arm/internals.h (revision 2d56be5a29eb05e33d9fb74bdf55013c5016d5ba)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 #include "cpu-features.h"
32 
33 /* register banks for CPU modes */
34 #define BANK_USRSYS 0
35 #define BANK_SVC    1
36 #define BANK_ABT    2
37 #define BANK_UND    3
38 #define BANK_IRQ    4
39 #define BANK_FIQ    5
40 #define BANK_HYP    6
41 #define BANK_MON    7
42 
43 static inline bool excp_is_internal(int excp)
44 {
45     /* Return true if this exception number represents a QEMU-internal
46      * exception that will not be passed to the guest.
47      */
48     return excp == EXCP_INTERRUPT
49         || excp == EXCP_HLT
50         || excp == EXCP_DEBUG
51         || excp == EXCP_HALTED
52         || excp == EXCP_EXCEPTION_EXIT
53         || excp == EXCP_KERNEL_TRAP
54         || excp == EXCP_SEMIHOST;
55 }
56 
57 /* Scale factor for generic timers, ie number of ns per tick.
58  * This gives a 62.5MHz timer.
59  */
60 #define GTIMER_SCALE 16
61 
62 /* Bit definitions for the v7M CONTROL register */
63 FIELD(V7M_CONTROL, NPRIV, 0, 1)
64 FIELD(V7M_CONTROL, SPSEL, 1, 1)
65 FIELD(V7M_CONTROL, FPCA, 2, 1)
66 FIELD(V7M_CONTROL, SFPA, 3, 1)
67 
68 /* Bit definitions for v7M exception return payload */
69 FIELD(V7M_EXCRET, ES, 0, 1)
70 FIELD(V7M_EXCRET, RES0, 1, 1)
71 FIELD(V7M_EXCRET, SPSEL, 2, 1)
72 FIELD(V7M_EXCRET, MODE, 3, 1)
73 FIELD(V7M_EXCRET, FTYPE, 4, 1)
74 FIELD(V7M_EXCRET, DCRS, 5, 1)
75 FIELD(V7M_EXCRET, S, 6, 1)
76 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
77 
78 /* Minimum value which is a magic number for exception return */
79 #define EXC_RETURN_MIN_MAGIC 0xff000000
80 /* Minimum number which is a magic number for function or exception return
81  * when using v8M security extension
82  */
83 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
84 
85 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
86 FIELD(DBGWCR, E, 0, 1)
87 FIELD(DBGWCR, PAC, 1, 2)
88 FIELD(DBGWCR, LSC, 3, 2)
89 FIELD(DBGWCR, BAS, 5, 8)
90 FIELD(DBGWCR, HMC, 13, 1)
91 FIELD(DBGWCR, SSC, 14, 2)
92 FIELD(DBGWCR, LBN, 16, 4)
93 FIELD(DBGWCR, WT, 20, 1)
94 FIELD(DBGWCR, MASK, 24, 5)
95 FIELD(DBGWCR, SSCE, 29, 1)
96 
97 /* We use a few fake FSR values for internal purposes in M profile.
98  * M profile cores don't have A/R format FSRs, but currently our
99  * get_phys_addr() code assumes A/R profile and reports failures via
100  * an A/R format FSR value. We then translate that into the proper
101  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
102  * Mostly the FSR values we use for this are those defined for v7PMSA,
103  * since we share some of that codepath. A few kinds of fault are
104  * only for M profile and have no A/R equivalent, though, so we have
105  * to pick a value from the reserved range (which we never otherwise
106  * generate) to use for these.
107  * These values will never be visible to the guest.
108  */
109 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
110 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
111 
112 /**
113  * raise_exception: Raise the specified exception.
114  * Raise a guest exception with the specified value, syndrome register
115  * and target exception level. This should be called from helper functions,
116  * and never returns because we will longjump back up to the CPU main loop.
117  */
118 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
119                                 uint32_t syndrome, uint32_t target_el);
120 
121 /*
122  * Similarly, but also use unwinding to restore cpu state.
123  */
124 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
125                                       uint32_t syndrome, uint32_t target_el,
126                                       uintptr_t ra);
127 
128 /*
129  * For AArch64, map a given EL to an index in the banked_spsr array.
130  * Note that this mapping and the AArch32 mapping defined in bank_number()
131  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
132  * mandated mapping between each other.
133  */
134 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
135 {
136     static const unsigned int map[4] = {
137         [1] = BANK_SVC, /* EL1.  */
138         [2] = BANK_HYP, /* EL2.  */
139         [3] = BANK_MON, /* EL3.  */
140     };
141     assert(el >= 1 && el <= 3);
142     return map[el];
143 }
144 
145 /* Map CPU modes onto saved register banks.  */
146 static inline int bank_number(int mode)
147 {
148     switch (mode) {
149     case ARM_CPU_MODE_USR:
150     case ARM_CPU_MODE_SYS:
151         return BANK_USRSYS;
152     case ARM_CPU_MODE_SVC:
153         return BANK_SVC;
154     case ARM_CPU_MODE_ABT:
155         return BANK_ABT;
156     case ARM_CPU_MODE_UND:
157         return BANK_UND;
158     case ARM_CPU_MODE_IRQ:
159         return BANK_IRQ;
160     case ARM_CPU_MODE_FIQ:
161         return BANK_FIQ;
162     case ARM_CPU_MODE_HYP:
163         return BANK_HYP;
164     case ARM_CPU_MODE_MON:
165         return BANK_MON;
166     }
167     g_assert_not_reached();
168 }
169 
170 /**
171  * r14_bank_number: Map CPU mode onto register bank for r14
172  *
173  * Given an AArch32 CPU mode, return the index into the saved register
174  * banks to use for the R14 (LR) in that mode. This is the same as
175  * bank_number(), except for the special case of Hyp mode, where
176  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
177  * This should be used as the index into env->banked_r14[], and
178  * bank_number() used for the index into env->banked_r13[] and
179  * env->banked_spsr[].
180  */
181 static inline int r14_bank_number(int mode)
182 {
183     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
184 }
185 
186 void arm_cpu_register(const ARMCPUInfo *info);
187 void aarch64_cpu_register(const ARMCPUInfo *info);
188 
189 void register_cp_regs_for_features(ARMCPU *cpu);
190 void init_cpreg_list(ARMCPU *cpu);
191 
192 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
193 void arm_translate_init(void);
194 
195 void arm_restore_state_to_opc(CPUState *cs,
196                               const TranslationBlock *tb,
197                               const uint64_t *data);
198 
199 #ifdef CONFIG_TCG
200 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
201 #endif /* CONFIG_TCG */
202 
203 typedef enum ARMFPRounding {
204     FPROUNDING_TIEEVEN,
205     FPROUNDING_POSINF,
206     FPROUNDING_NEGINF,
207     FPROUNDING_ZERO,
208     FPROUNDING_TIEAWAY,
209     FPROUNDING_ODD
210 } ARMFPRounding;
211 
212 extern const FloatRoundMode arm_rmode_to_sf_map[6];
213 
214 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
215 {
216     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
217     return arm_rmode_to_sf_map[rmode];
218 }
219 
220 static inline void aarch64_save_sp(CPUARMState *env, int el)
221 {
222     if (env->pstate & PSTATE_SP) {
223         env->sp_el[el] = env->xregs[31];
224     } else {
225         env->sp_el[0] = env->xregs[31];
226     }
227 }
228 
229 static inline void aarch64_restore_sp(CPUARMState *env, int el)
230 {
231     if (env->pstate & PSTATE_SP) {
232         env->xregs[31] = env->sp_el[el];
233     } else {
234         env->xregs[31] = env->sp_el[0];
235     }
236 }
237 
238 static inline void update_spsel(CPUARMState *env, uint32_t imm)
239 {
240     unsigned int cur_el = arm_current_el(env);
241     /* Update PSTATE SPSel bit; this requires us to update the
242      * working stack pointer in xregs[31].
243      */
244     if (!((imm ^ env->pstate) & PSTATE_SP)) {
245         return;
246     }
247     aarch64_save_sp(env, cur_el);
248     env->pstate = deposit32(env->pstate, 0, 1, imm);
249 
250     /* We rely on illegal updates to SPsel from EL0 to get trapped
251      * at translation time.
252      */
253     assert(cur_el >= 1 && cur_el <= 3);
254     aarch64_restore_sp(env, cur_el);
255 }
256 
257 /*
258  * arm_pamax
259  * @cpu: ARMCPU
260  *
261  * Returns the implementation defined bit-width of physical addresses.
262  * The ARMv8 reference manuals refer to this as PAMax().
263  */
264 unsigned int arm_pamax(ARMCPU *cpu);
265 
266 /* Return true if extended addresses are enabled.
267  * This is always the case if our translation regime is 64 bit,
268  * but depends on TTBCR.EAE for 32 bit.
269  */
270 static inline bool extended_addresses_enabled(CPUARMState *env)
271 {
272     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
273     if (arm_feature(env, ARM_FEATURE_PMSA) &&
274         arm_feature(env, ARM_FEATURE_V8)) {
275         return true;
276     }
277     return arm_el_is_aa64(env, 1) ||
278            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
279 }
280 
281 /* Update a QEMU watchpoint based on the information the guest has set in the
282  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
283  */
284 void hw_watchpoint_update(ARMCPU *cpu, int n);
285 /* Update the QEMU watchpoints for every guest watchpoint. This does a
286  * complete delete-and-reinstate of the QEMU watchpoint list and so is
287  * suitable for use after migration or on reset.
288  */
289 void hw_watchpoint_update_all(ARMCPU *cpu);
290 /* Update a QEMU breakpoint based on the information the guest has set in the
291  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
292  */
293 void hw_breakpoint_update(ARMCPU *cpu, int n);
294 /* Update the QEMU breakpoints for every guest breakpoint. This does a
295  * complete delete-and-reinstate of the QEMU breakpoint list and so is
296  * suitable for use after migration or on reset.
297  */
298 void hw_breakpoint_update_all(ARMCPU *cpu);
299 
300 /* Callback function for checking if a breakpoint should trigger. */
301 bool arm_debug_check_breakpoint(CPUState *cs);
302 
303 /* Callback function for checking if a watchpoint should trigger. */
304 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
305 
306 /* Adjust addresses (in BE32 mode) before testing against watchpoint
307  * addresses.
308  */
309 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
310 
311 /* Callback function for when a watchpoint or breakpoint triggers. */
312 void arm_debug_excp_handler(CPUState *cs);
313 
314 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
315 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
316 {
317     return false;
318 }
319 static inline void arm_handle_psci_call(ARMCPU *cpu)
320 {
321     g_assert_not_reached();
322 }
323 #else
324 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
325 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
326 /* Actually handle a PSCI call */
327 void arm_handle_psci_call(ARMCPU *cpu);
328 #endif
329 
330 /**
331  * arm_clear_exclusive: clear the exclusive monitor
332  * @env: CPU env
333  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
334  */
335 static inline void arm_clear_exclusive(CPUARMState *env)
336 {
337     env->exclusive_addr = -1;
338 }
339 
340 /**
341  * ARMFaultType: type of an ARM MMU fault
342  * This corresponds to the v8A pseudocode's Fault enumeration,
343  * with extensions for QEMU internal conditions.
344  */
345 typedef enum ARMFaultType {
346     ARMFault_None,
347     ARMFault_AccessFlag,
348     ARMFault_Alignment,
349     ARMFault_Background,
350     ARMFault_Domain,
351     ARMFault_Permission,
352     ARMFault_Translation,
353     ARMFault_AddressSize,
354     ARMFault_SyncExternal,
355     ARMFault_SyncExternalOnWalk,
356     ARMFault_SyncParity,
357     ARMFault_SyncParityOnWalk,
358     ARMFault_AsyncParity,
359     ARMFault_AsyncExternal,
360     ARMFault_Debug,
361     ARMFault_TLBConflict,
362     ARMFault_UnsuppAtomicUpdate,
363     ARMFault_Lockdown,
364     ARMFault_Exclusive,
365     ARMFault_ICacheMaint,
366     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
367     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
368     ARMFault_GPCFOnWalk,
369     ARMFault_GPCFOnOutput,
370 } ARMFaultType;
371 
372 typedef enum ARMGPCF {
373     GPCF_None,
374     GPCF_AddressSize,
375     GPCF_Walk,
376     GPCF_EABT,
377     GPCF_Fail,
378 } ARMGPCF;
379 
380 /**
381  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
382  * @type: Type of fault
383  * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
384  * @level: Table walk level (for translation, access flag and permission faults)
385  * @domain: Domain of the fault address (for non-LPAE CPUs only)
386  * @s2addr: Address that caused a fault at stage 2
387  * @paddr: physical address that caused a fault for gpc
388  * @paddr_space: physical address space that caused a fault for gpc
389  * @stage2: True if we faulted at stage 2
390  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
391  * @s1ns: True if we faulted on a non-secure IPA while in secure state
392  * @ea: True if we should set the EA (external abort type) bit in syndrome
393  */
394 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
395 struct ARMMMUFaultInfo {
396     ARMFaultType type;
397     ARMGPCF gpcf;
398     target_ulong s2addr;
399     target_ulong paddr;
400     ARMSecuritySpace paddr_space;
401     int level;
402     int domain;
403     bool stage2;
404     bool s1ptw;
405     bool s1ns;
406     bool ea;
407 };
408 
409 /**
410  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
411  * Compare pseudocode EncodeSDFSC(), though unlike that function
412  * we set up a whole FSR-format code including domain field and
413  * putting the high bit of the FSC into bit 10.
414  */
415 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
416 {
417     uint32_t fsc;
418 
419     switch (fi->type) {
420     case ARMFault_None:
421         return 0;
422     case ARMFault_AccessFlag:
423         fsc = fi->level == 1 ? 0x3 : 0x6;
424         break;
425     case ARMFault_Alignment:
426         fsc = 0x1;
427         break;
428     case ARMFault_Permission:
429         fsc = fi->level == 1 ? 0xd : 0xf;
430         break;
431     case ARMFault_Domain:
432         fsc = fi->level == 1 ? 0x9 : 0xb;
433         break;
434     case ARMFault_Translation:
435         fsc = fi->level == 1 ? 0x5 : 0x7;
436         break;
437     case ARMFault_SyncExternal:
438         fsc = 0x8 | (fi->ea << 12);
439         break;
440     case ARMFault_SyncExternalOnWalk:
441         fsc = fi->level == 1 ? 0xc : 0xe;
442         fsc |= (fi->ea << 12);
443         break;
444     case ARMFault_SyncParity:
445         fsc = 0x409;
446         break;
447     case ARMFault_SyncParityOnWalk:
448         fsc = fi->level == 1 ? 0x40c : 0x40e;
449         break;
450     case ARMFault_AsyncParity:
451         fsc = 0x408;
452         break;
453     case ARMFault_AsyncExternal:
454         fsc = 0x406 | (fi->ea << 12);
455         break;
456     case ARMFault_Debug:
457         fsc = 0x2;
458         break;
459     case ARMFault_TLBConflict:
460         fsc = 0x400;
461         break;
462     case ARMFault_Lockdown:
463         fsc = 0x404;
464         break;
465     case ARMFault_Exclusive:
466         fsc = 0x405;
467         break;
468     case ARMFault_ICacheMaint:
469         fsc = 0x4;
470         break;
471     case ARMFault_Background:
472         fsc = 0x0;
473         break;
474     case ARMFault_QEMU_NSCExec:
475         fsc = M_FAKE_FSR_NSC_EXEC;
476         break;
477     case ARMFault_QEMU_SFault:
478         fsc = M_FAKE_FSR_SFAULT;
479         break;
480     default:
481         /* Other faults can't occur in a context that requires a
482          * short-format status code.
483          */
484         g_assert_not_reached();
485     }
486 
487     fsc |= (fi->domain << 4);
488     return fsc;
489 }
490 
491 /**
492  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
493  * Compare pseudocode EncodeLDFSC(), though unlike that function
494  * we fill in also the LPAE bit 9 of a DFSR format.
495  */
496 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
497 {
498     uint32_t fsc;
499 
500     switch (fi->type) {
501     case ARMFault_None:
502         return 0;
503     case ARMFault_AddressSize:
504         assert(fi->level >= -1 && fi->level <= 3);
505         if (fi->level < 0) {
506             fsc = 0b101001;
507         } else {
508             fsc = fi->level;
509         }
510         break;
511     case ARMFault_AccessFlag:
512         assert(fi->level >= 0 && fi->level <= 3);
513         fsc = 0b001000 | fi->level;
514         break;
515     case ARMFault_Permission:
516         assert(fi->level >= 0 && fi->level <= 3);
517         fsc = 0b001100 | fi->level;
518         break;
519     case ARMFault_Translation:
520         assert(fi->level >= -1 && fi->level <= 3);
521         if (fi->level < 0) {
522             fsc = 0b101011;
523         } else {
524             fsc = 0b000100 | fi->level;
525         }
526         break;
527     case ARMFault_SyncExternal:
528         fsc = 0x10 | (fi->ea << 12);
529         break;
530     case ARMFault_SyncExternalOnWalk:
531         assert(fi->level >= -1 && fi->level <= 3);
532         if (fi->level < 0) {
533             fsc = 0b010011;
534         } else {
535             fsc = 0b010100 | fi->level;
536         }
537         fsc |= fi->ea << 12;
538         break;
539     case ARMFault_SyncParity:
540         fsc = 0x18;
541         break;
542     case ARMFault_SyncParityOnWalk:
543         assert(fi->level >= -1 && fi->level <= 3);
544         if (fi->level < 0) {
545             fsc = 0b011011;
546         } else {
547             fsc = 0b011100 | fi->level;
548         }
549         break;
550     case ARMFault_AsyncParity:
551         fsc = 0x19;
552         break;
553     case ARMFault_AsyncExternal:
554         fsc = 0x11 | (fi->ea << 12);
555         break;
556     case ARMFault_Alignment:
557         fsc = 0x21;
558         break;
559     case ARMFault_Debug:
560         fsc = 0x22;
561         break;
562     case ARMFault_TLBConflict:
563         fsc = 0x30;
564         break;
565     case ARMFault_UnsuppAtomicUpdate:
566         fsc = 0x31;
567         break;
568     case ARMFault_Lockdown:
569         fsc = 0x34;
570         break;
571     case ARMFault_Exclusive:
572         fsc = 0x35;
573         break;
574     case ARMFault_GPCFOnWalk:
575         assert(fi->level >= -1 && fi->level <= 3);
576         if (fi->level < 0) {
577             fsc = 0b100011;
578         } else {
579             fsc = 0b100100 | fi->level;
580         }
581         break;
582     case ARMFault_GPCFOnOutput:
583         fsc = 0b101000;
584         break;
585     default:
586         /* Other faults can't occur in a context that requires a
587          * long-format status code.
588          */
589         g_assert_not_reached();
590     }
591 
592     fsc |= 1 << 9;
593     return fsc;
594 }
595 
596 static inline bool arm_extabort_type(MemTxResult result)
597 {
598     /* The EA bit in syndromes and fault status registers is an
599      * IMPDEF classification of external aborts. ARM implementations
600      * usually use this to indicate AXI bus Decode error (0) or
601      * Slave error (1); in QEMU we follow that.
602      */
603     return result != MEMTX_DECODE_ERROR;
604 }
605 
606 #ifdef CONFIG_USER_ONLY
607 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
608                             MMUAccessType access_type,
609                             bool maperr, uintptr_t ra);
610 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
611                            MMUAccessType access_type, uintptr_t ra);
612 #else
613 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
614                       MMUAccessType access_type, int mmu_idx,
615                       bool probe, uintptr_t retaddr);
616 #endif
617 
618 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
619 {
620     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
621 }
622 
623 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
624 {
625     if (arm_feature(env, ARM_FEATURE_M)) {
626         return mmu_idx | ARM_MMU_IDX_M;
627     } else {
628         return mmu_idx | ARM_MMU_IDX_A;
629     }
630 }
631 
632 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
633 {
634     /* AArch64 is always a-profile. */
635     return mmu_idx | ARM_MMU_IDX_A;
636 }
637 
638 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
639 
640 /* Return the MMU index for a v7M CPU in the specified security state */
641 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
642 
643 /*
644  * Return true if the stage 1 translation regime is using LPAE
645  * format page tables
646  */
647 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
648 
649 /* Raise a data fault alignment exception for the specified virtual address */
650 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
651                                             MMUAccessType access_type,
652                                             int mmu_idx, uintptr_t retaddr);
653 
654 #ifndef CONFIG_USER_ONLY
655 /* arm_cpu_do_transaction_failed: handle a memory system error response
656  * (eg "no device/memory present at address") by raising an external abort
657  * exception
658  */
659 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
660                                    vaddr addr, unsigned size,
661                                    MMUAccessType access_type,
662                                    int mmu_idx, MemTxAttrs attrs,
663                                    MemTxResult response, uintptr_t retaddr);
664 #endif
665 
666 /* Call any registered EL change hooks */
667 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
668 {
669     ARMELChangeHook *hook, *next;
670     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
671         hook->hook(cpu, hook->opaque);
672     }
673 }
674 static inline void arm_call_el_change_hook(ARMCPU *cpu)
675 {
676     ARMELChangeHook *hook, *next;
677     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
678         hook->hook(cpu, hook->opaque);
679     }
680 }
681 
682 /* Return true if this address translation regime has two ranges.  */
683 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
684 {
685     switch (mmu_idx) {
686     case ARMMMUIdx_Stage1_E0:
687     case ARMMMUIdx_Stage1_E1:
688     case ARMMMUIdx_Stage1_E1_PAN:
689     case ARMMMUIdx_E10_0:
690     case ARMMMUIdx_E10_1:
691     case ARMMMUIdx_E10_1_PAN:
692     case ARMMMUIdx_E20_0:
693     case ARMMMUIdx_E20_2:
694     case ARMMMUIdx_E20_2_PAN:
695         return true;
696     default:
697         return false;
698     }
699 }
700 
701 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
702 {
703     switch (mmu_idx) {
704     case ARMMMUIdx_Stage1_E1_PAN:
705     case ARMMMUIdx_E10_1_PAN:
706     case ARMMMUIdx_E20_2_PAN:
707         return true;
708     default:
709         return false;
710     }
711 }
712 
713 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
714 {
715     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
716 }
717 
718 /* Return the exception level which controls this address translation regime */
719 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
720 {
721     switch (mmu_idx) {
722     case ARMMMUIdx_E20_0:
723     case ARMMMUIdx_E20_2:
724     case ARMMMUIdx_E20_2_PAN:
725     case ARMMMUIdx_Stage2:
726     case ARMMMUIdx_Stage2_S:
727     case ARMMMUIdx_E2:
728         return 2;
729     case ARMMMUIdx_E3:
730         return 3;
731     case ARMMMUIdx_E10_0:
732     case ARMMMUIdx_Stage1_E0:
733         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
734     case ARMMMUIdx_Stage1_E1:
735     case ARMMMUIdx_Stage1_E1_PAN:
736     case ARMMMUIdx_E10_1:
737     case ARMMMUIdx_E10_1_PAN:
738     case ARMMMUIdx_MPrivNegPri:
739     case ARMMMUIdx_MUserNegPri:
740     case ARMMMUIdx_MPriv:
741     case ARMMMUIdx_MUser:
742     case ARMMMUIdx_MSPrivNegPri:
743     case ARMMMUIdx_MSUserNegPri:
744     case ARMMMUIdx_MSPriv:
745     case ARMMMUIdx_MSUser:
746         return 1;
747     default:
748         g_assert_not_reached();
749     }
750 }
751 
752 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
753 {
754     switch (mmu_idx) {
755     case ARMMMUIdx_E20_0:
756     case ARMMMUIdx_Stage1_E0:
757     case ARMMMUIdx_MUser:
758     case ARMMMUIdx_MSUser:
759     case ARMMMUIdx_MUserNegPri:
760     case ARMMMUIdx_MSUserNegPri:
761         return true;
762     default:
763         return false;
764     case ARMMMUIdx_E10_0:
765     case ARMMMUIdx_E10_1:
766     case ARMMMUIdx_E10_1_PAN:
767         g_assert_not_reached();
768     }
769 }
770 
771 /* Return the SCTLR value which controls this address translation regime */
772 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
773 {
774     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
775 }
776 
777 /*
778  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
779  * and the Non-Secure stage 2 translation regimes (and hence which are
780  * not present in VSTCR_EL2).
781  */
782 #define VTCR_SHARED_FIELD_MASK \
783     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
784      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
785      R_VTCR_DS_MASK)
786 
787 /* Return the value of the TCR controlling this translation regime */
788 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
789 {
790     if (mmu_idx == ARMMMUIdx_Stage2) {
791         return env->cp15.vtcr_el2;
792     }
793     if (mmu_idx == ARMMMUIdx_Stage2_S) {
794         /*
795          * Secure stage 2 shares fields from VTCR_EL2. We merge those
796          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
797          * value so the callers don't need to special case this.
798          *
799          * If a future architecture change defines bits in VSTCR_EL2 that
800          * overlap with these VTCR_EL2 fields we may need to revisit this.
801          */
802         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
803         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
804         return v;
805     }
806     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
807 }
808 
809 /* Return true if the translation regime is using LPAE format page tables */
810 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
811 {
812     int el = regime_el(env, mmu_idx);
813     if (el == 2 || arm_el_is_aa64(env, el)) {
814         return true;
815     }
816     if (arm_feature(env, ARM_FEATURE_PMSA) &&
817         arm_feature(env, ARM_FEATURE_V8)) {
818         return true;
819     }
820     if (arm_feature(env, ARM_FEATURE_LPAE)
821         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
822         return true;
823     }
824     return false;
825 }
826 
827 /**
828  * arm_num_brps: Return number of implemented breakpoints.
829  * Note that the ID register BRPS field is "number of bps - 1",
830  * and we return the actual number of breakpoints.
831  */
832 static inline int arm_num_brps(ARMCPU *cpu)
833 {
834     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
835         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
836     } else {
837         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
838     }
839 }
840 
841 /**
842  * arm_num_wrps: Return number of implemented watchpoints.
843  * Note that the ID register WRPS field is "number of wps - 1",
844  * and we return the actual number of watchpoints.
845  */
846 static inline int arm_num_wrps(ARMCPU *cpu)
847 {
848     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
849         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
850     } else {
851         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
852     }
853 }
854 
855 /**
856  * arm_num_ctx_cmps: Return number of implemented context comparators.
857  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
858  * and we return the actual number of comparators.
859  */
860 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
861 {
862     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
863         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
864     } else {
865         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
866     }
867 }
868 
869 /**
870  * v7m_using_psp: Return true if using process stack pointer
871  * Return true if the CPU is currently using the process stack
872  * pointer, or false if it is using the main stack pointer.
873  */
874 static inline bool v7m_using_psp(CPUARMState *env)
875 {
876     /* Handler mode always uses the main stack; for thread mode
877      * the CONTROL.SPSEL bit determines the answer.
878      * Note that in v7M it is not possible to be in Handler mode with
879      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
880      */
881     return !arm_v7m_is_handler_mode(env) &&
882         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
883 }
884 
885 /**
886  * v7m_sp_limit: Return SP limit for current CPU state
887  * Return the SP limit value for the current CPU security state
888  * and stack pointer.
889  */
890 static inline uint32_t v7m_sp_limit(CPUARMState *env)
891 {
892     if (v7m_using_psp(env)) {
893         return env->v7m.psplim[env->v7m.secure];
894     } else {
895         return env->v7m.msplim[env->v7m.secure];
896     }
897 }
898 
899 /**
900  * v7m_cpacr_pass:
901  * Return true if the v7M CPACR permits access to the FPU for the specified
902  * security state and privilege level.
903  */
904 static inline bool v7m_cpacr_pass(CPUARMState *env,
905                                   bool is_secure, bool is_priv)
906 {
907     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
908     case 0:
909     case 2: /* UNPREDICTABLE: we treat like 0 */
910         return false;
911     case 1:
912         return is_priv;
913     case 3:
914         return true;
915     default:
916         g_assert_not_reached();
917     }
918 }
919 
920 /**
921  * aarch32_mode_name(): Return name of the AArch32 CPU mode
922  * @psr: Program Status Register indicating CPU mode
923  *
924  * Returns, for debug logging purposes, a printable representation
925  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
926  * the low bits of the specified PSR.
927  */
928 static inline const char *aarch32_mode_name(uint32_t psr)
929 {
930     static const char cpu_mode_names[16][4] = {
931         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
932         "???", "???", "hyp", "und", "???", "???", "???", "sys"
933     };
934 
935     return cpu_mode_names[psr & 0xf];
936 }
937 
938 /**
939  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
940  *
941  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
942  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
943  * Must be called with the iothread lock held.
944  */
945 void arm_cpu_update_virq(ARMCPU *cpu);
946 
947 /**
948  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
949  *
950  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
951  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
952  * Must be called with the iothread lock held.
953  */
954 void arm_cpu_update_vfiq(ARMCPU *cpu);
955 
956 /**
957  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
958  *
959  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
960  * following a change to the HCR_EL2.VSE bit.
961  */
962 void arm_cpu_update_vserr(ARMCPU *cpu);
963 
964 /**
965  * arm_mmu_idx_el:
966  * @env: The cpu environment
967  * @el: The EL to use.
968  *
969  * Return the full ARMMMUIdx for the translation regime for EL.
970  */
971 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
972 
973 /**
974  * arm_mmu_idx:
975  * @env: The cpu environment
976  *
977  * Return the full ARMMMUIdx for the current translation regime.
978  */
979 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
980 
981 /**
982  * arm_stage1_mmu_idx:
983  * @env: The cpu environment
984  *
985  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
986  */
987 #ifdef CONFIG_USER_ONLY
988 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
989 {
990     return ARMMMUIdx_Stage1_E0;
991 }
992 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
993 {
994     return ARMMMUIdx_Stage1_E0;
995 }
996 #else
997 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
998 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
999 #endif
1000 
1001 /**
1002  * arm_mmu_idx_is_stage1_of_2:
1003  * @mmu_idx: The ARMMMUIdx to test
1004  *
1005  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1006  * first stage of a two stage regime.
1007  */
1008 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1009 {
1010     switch (mmu_idx) {
1011     case ARMMMUIdx_Stage1_E0:
1012     case ARMMMUIdx_Stage1_E1:
1013     case ARMMMUIdx_Stage1_E1_PAN:
1014         return true;
1015     default:
1016         return false;
1017     }
1018 }
1019 
1020 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1021                                                const ARMISARegisters *id)
1022 {
1023     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1024 
1025     if ((features >> ARM_FEATURE_V4T) & 1) {
1026         valid |= CPSR_T;
1027     }
1028     if ((features >> ARM_FEATURE_V5) & 1) {
1029         valid |= CPSR_Q; /* V5TE in reality*/
1030     }
1031     if ((features >> ARM_FEATURE_V6) & 1) {
1032         valid |= CPSR_E | CPSR_GE;
1033     }
1034     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1035         valid |= CPSR_IT;
1036     }
1037     if (isar_feature_aa32_jazelle(id)) {
1038         valid |= CPSR_J;
1039     }
1040     if (isar_feature_aa32_pan(id)) {
1041         valid |= CPSR_PAN;
1042     }
1043     if (isar_feature_aa32_dit(id)) {
1044         valid |= CPSR_DIT;
1045     }
1046     if (isar_feature_aa32_ssbs(id)) {
1047         valid |= CPSR_SSBS;
1048     }
1049 
1050     return valid;
1051 }
1052 
1053 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1054 {
1055     uint32_t valid;
1056 
1057     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1058     if (isar_feature_aa64_bti(id)) {
1059         valid |= PSTATE_BTYPE;
1060     }
1061     if (isar_feature_aa64_pan(id)) {
1062         valid |= PSTATE_PAN;
1063     }
1064     if (isar_feature_aa64_uao(id)) {
1065         valid |= PSTATE_UAO;
1066     }
1067     if (isar_feature_aa64_dit(id)) {
1068         valid |= PSTATE_DIT;
1069     }
1070     if (isar_feature_aa64_ssbs(id)) {
1071         valid |= PSTATE_SSBS;
1072     }
1073     if (isar_feature_aa64_mte(id)) {
1074         valid |= PSTATE_TCO;
1075     }
1076 
1077     return valid;
1078 }
1079 
1080 /* Granule size (i.e. page size) */
1081 typedef enum ARMGranuleSize {
1082     /* Same order as TG0 encoding */
1083     Gran4K,
1084     Gran64K,
1085     Gran16K,
1086     GranInvalid,
1087 } ARMGranuleSize;
1088 
1089 /**
1090  * arm_granule_bits: Return address size of the granule in bits
1091  *
1092  * Return the address size of the granule in bits. This corresponds
1093  * to the pseudocode TGxGranuleBits().
1094  */
1095 static inline int arm_granule_bits(ARMGranuleSize gran)
1096 {
1097     switch (gran) {
1098     case Gran64K:
1099         return 16;
1100     case Gran16K:
1101         return 14;
1102     case Gran4K:
1103         return 12;
1104     default:
1105         g_assert_not_reached();
1106     }
1107 }
1108 
1109 /*
1110  * Parameters of a given virtual address, as extracted from the
1111  * translation control register (TCR) for a given regime.
1112  */
1113 typedef struct ARMVAParameters {
1114     unsigned tsz    : 8;
1115     unsigned ps     : 3;
1116     unsigned sh     : 2;
1117     unsigned select : 1;
1118     bool tbi        : 1;
1119     bool epd        : 1;
1120     bool hpd        : 1;
1121     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1122     bool ds         : 1;
1123     bool ha         : 1;
1124     bool hd         : 1;
1125     ARMGranuleSize gran : 2;
1126 } ARMVAParameters;
1127 
1128 /**
1129  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1130  * @env: CPU
1131  * @va: virtual address to look up
1132  * @mmu_idx: determines translation regime to use
1133  * @data: true if this is a data access
1134  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1135  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1136  */
1137 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1138                                    ARMMMUIdx mmu_idx, bool data,
1139                                    bool el1_is_aa32);
1140 
1141 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1142 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1143 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1144 
1145 /* Determine if allocation tags are available.  */
1146 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1147                                                  uint64_t sctlr)
1148 {
1149     if (el < 3
1150         && arm_feature(env, ARM_FEATURE_EL3)
1151         && !(env->cp15.scr_el3 & SCR_ATA)) {
1152         return false;
1153     }
1154     if (el < 2 && arm_is_el2_enabled(env)) {
1155         uint64_t hcr = arm_hcr_el2_eff(env);
1156         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1157             return false;
1158         }
1159     }
1160     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1161     return sctlr != 0;
1162 }
1163 
1164 #ifndef CONFIG_USER_ONLY
1165 
1166 /* Security attributes for an address, as returned by v8m_security_lookup. */
1167 typedef struct V8M_SAttributes {
1168     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1169     bool ns;
1170     bool nsc;
1171     uint8_t sregion;
1172     bool srvalid;
1173     uint8_t iregion;
1174     bool irvalid;
1175 } V8M_SAttributes;
1176 
1177 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1178                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1179                          bool secure, V8M_SAttributes *sattrs);
1180 
1181 /* Cacheability and shareability attributes for a memory access */
1182 typedef struct ARMCacheAttrs {
1183     /*
1184      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1185      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1186      */
1187     unsigned int attrs:8;
1188     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1189     bool is_s2_format:1;
1190 } ARMCacheAttrs;
1191 
1192 /* Fields that are valid upon success. */
1193 typedef struct GetPhysAddrResult {
1194     CPUTLBEntryFull f;
1195     ARMCacheAttrs cacheattrs;
1196 } GetPhysAddrResult;
1197 
1198 /**
1199  * get_phys_addr: get the physical address for a virtual address
1200  * @env: CPUARMState
1201  * @address: virtual address to get physical address for
1202  * @access_type: 0 for read, 1 for write, 2 for execute
1203  * @mmu_idx: MMU index indicating required translation regime
1204  * @result: set on translation success.
1205  * @fi: set to fault info if the translation fails
1206  *
1207  * Find the physical address corresponding to the given virtual address,
1208  * by doing a translation table walk on MMU based systems or using the
1209  * MPU state on MPU based systems.
1210  *
1211  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1212  * prot and page_size may not be filled in, and the populated fsr value provides
1213  * information on why the translation aborted, in the format of a
1214  * DFSR/IFSR fault register, with the following caveats:
1215  *  * we honour the short vs long DFSR format differences.
1216  *  * the WnR bit is never set (the caller must do this).
1217  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1218  *    value.
1219  */
1220 bool get_phys_addr(CPUARMState *env, target_ulong address,
1221                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1222                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1223     __attribute__((nonnull));
1224 
1225 /**
1226  * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1227  *                                 address
1228  * @env: CPUARMState
1229  * @address: virtual address to get physical address for
1230  * @access_type: 0 for read, 1 for write, 2 for execute
1231  * @mmu_idx: MMU index indicating required translation regime
1232  * @space: security space for the access
1233  * @result: set on translation success.
1234  * @fi: set to fault info if the translation fails
1235  *
1236  * Similar to get_phys_addr, but use the given security space and don't perform
1237  * a Granule Protection Check on the resulting address.
1238  */
1239 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
1240                                     MMUAccessType access_type,
1241                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1242                                     GetPhysAddrResult *result,
1243                                     ARMMMUFaultInfo *fi)
1244     __attribute__((nonnull));
1245 
1246 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1247                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1248                        bool is_secure, GetPhysAddrResult *result,
1249                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1250 
1251 void arm_log_exception(CPUState *cs);
1252 
1253 #endif /* !CONFIG_USER_ONLY */
1254 
1255 /*
1256  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1257  * the same simd_desc() encoding due to restrictions on size.
1258  * Use these instead.
1259  */
1260 FIELD(PREDDESC, OPRSZ, 0, 6)
1261 FIELD(PREDDESC, ESZ, 6, 2)
1262 FIELD(PREDDESC, DATA, 8, 24)
1263 
1264 /*
1265  * The SVE simd_data field, for memory ops, contains either
1266  * rd (5 bits) or a shift count (2 bits).
1267  */
1268 #define SVE_MTEDESC_SHIFT 5
1269 
1270 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1271 FIELD(MTEDESC, MIDX,  0, 4)
1272 FIELD(MTEDESC, TBI,   4, 2)
1273 FIELD(MTEDESC, TCMA,  6, 2)
1274 FIELD(MTEDESC, WRITE, 8, 1)
1275 FIELD(MTEDESC, ALIGN, 9, 3)
1276 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12)  /* size - 1 */
1277 
1278 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1279 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1280 
1281 /**
1282  * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1283  * @env: CPU env
1284  * @ptr: start address of memory region (dirty pointer)
1285  * @size: length of region (guaranteed not to cross a page boundary)
1286  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1287  * Returns: the size of the region that can be copied without hitting
1288  *          an MTE tag failure
1289  *
1290  * Note that we assume that the caller has already checked the TBI
1291  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1292  * required.
1293  */
1294 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1295                         uint32_t desc);
1296 
1297 /**
1298  * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1299  *                     operation going in the reverse direction
1300  * @env: CPU env
1301  * @ptr: *end* address of memory region (dirty pointer)
1302  * @size: length of region (guaranteed not to cross a page boundary)
1303  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1304  * Returns: the size of the region that can be copied without hitting
1305  *          an MTE tag failure
1306  *
1307  * Note that we assume that the caller has already checked the TBI
1308  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1309  * required.
1310  */
1311 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1312                             uint32_t desc);
1313 
1314 /**
1315  * mte_check_fail: Record an MTE tag check failure
1316  * @env: CPU env
1317  * @desc: MTEDESC descriptor word
1318  * @dirty_ptr: Failing dirty address
1319  * @ra: TCG retaddr
1320  *
1321  * This may never return (if the MTE tag checks are configured to fault).
1322  */
1323 void mte_check_fail(CPUARMState *env, uint32_t desc,
1324                     uint64_t dirty_ptr, uintptr_t ra);
1325 
1326 /**
1327  * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1328  * @env: CPU env
1329  * @dirty_ptr: Start address of memory region (dirty pointer)
1330  * @size: length of region (guaranteed not to cross page boundary)
1331  * @desc: MTEDESC descriptor word
1332  */
1333 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1334                        uint32_t desc);
1335 
1336 static inline int allocation_tag_from_addr(uint64_t ptr)
1337 {
1338     return extract64(ptr, 56, 4);
1339 }
1340 
1341 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1342 {
1343     return deposit64(ptr, 56, 4, rtag);
1344 }
1345 
1346 /* Return true if tbi bits mean that the access is checked.  */
1347 static inline bool tbi_check(uint32_t desc, int bit55)
1348 {
1349     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1350 }
1351 
1352 /* Return true if tcma bits mean that the access is unchecked.  */
1353 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1354 {
1355     /*
1356      * We had extracted bit55 and ptr_tag for other reasons, so fold
1357      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1358      */
1359     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1360     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1361     return tcma && match;
1362 }
1363 
1364 /*
1365  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1366  * for the tag to be present in the FAR_ELx register.  But for user-only
1367  * mode, we do not have a TLB with which to implement this, so we must
1368  * remove the top byte.
1369  */
1370 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1371 {
1372 #ifdef CONFIG_USER_ONLY
1373     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1374     ptr &= sextract64(ptr, 0, 56);
1375 #endif
1376     return ptr;
1377 }
1378 
1379 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1380 {
1381 #ifdef CONFIG_USER_ONLY
1382     int64_t clean_ptr = sextract64(ptr, 0, 56);
1383     if (tbi_check(desc, clean_ptr < 0)) {
1384         ptr = clean_ptr;
1385     }
1386 #endif
1387     return ptr;
1388 }
1389 
1390 /* Values for M-profile PSR.ECI for MVE insns */
1391 enum MVEECIState {
1392     ECI_NONE = 0, /* No completed beats */
1393     ECI_A0 = 1, /* Completed: A0 */
1394     ECI_A0A1 = 2, /* Completed: A0, A1 */
1395     /* 3 is reserved */
1396     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1397     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1398     /* All other values reserved */
1399 };
1400 
1401 /* Definitions for the PMU registers */
1402 #define PMCRN_MASK  0xf800
1403 #define PMCRN_SHIFT 11
1404 #define PMCRLP  0x80
1405 #define PMCRLC  0x40
1406 #define PMCRDP  0x20
1407 #define PMCRX   0x10
1408 #define PMCRD   0x8
1409 #define PMCRC   0x4
1410 #define PMCRP   0x2
1411 #define PMCRE   0x1
1412 /*
1413  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1414  * which can be written as 1 to trigger behaviour but which stay RAZ).
1415  */
1416 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1417 
1418 #define PMXEVTYPER_P          0x80000000
1419 #define PMXEVTYPER_U          0x40000000
1420 #define PMXEVTYPER_NSK        0x20000000
1421 #define PMXEVTYPER_NSU        0x10000000
1422 #define PMXEVTYPER_NSH        0x08000000
1423 #define PMXEVTYPER_M          0x04000000
1424 #define PMXEVTYPER_MT         0x02000000
1425 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1426 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1427                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1428                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1429                                PMXEVTYPER_EVTCOUNT)
1430 
1431 #define PMCCFILTR             0xf8000000
1432 #define PMCCFILTR_M           PMXEVTYPER_M
1433 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1434 
1435 static inline uint32_t pmu_num_counters(CPUARMState *env)
1436 {
1437     ARMCPU *cpu = env_archcpu(env);
1438 
1439     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1440 }
1441 
1442 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1443 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1444 {
1445   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1446 }
1447 
1448 #ifdef TARGET_AARCH64
1449 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1450 int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg);
1451 int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg);
1452 int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg);
1453 int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg);
1454 int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg);
1455 int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg);
1456 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1457 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1458 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1459 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1460 void aarch64_max_tcg_initfn(Object *obj);
1461 void aarch64_add_pauth_properties(Object *obj);
1462 void aarch64_add_sve_properties(Object *obj);
1463 void aarch64_add_sme_properties(Object *obj);
1464 #endif
1465 
1466 /* Read the CONTROL register as the MRS instruction would. */
1467 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1468 
1469 /*
1470  * Return a pointer to the location where we currently store the
1471  * stack pointer for the requested security state and thread mode.
1472  * This pointer will become invalid if the CPU state is updated
1473  * such that the stack pointers are switched around (eg changing
1474  * the SPSEL control bit).
1475  */
1476 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1477                              bool threadmode, bool spsel);
1478 
1479 bool el_is_in_host(CPUARMState *env, int el);
1480 
1481 void aa32_max_features(ARMCPU *cpu);
1482 int exception_target_el(CPUARMState *env);
1483 bool arm_singlestep_active(CPUARMState *env);
1484 bool arm_generate_debug_exceptions(CPUARMState *env);
1485 
1486 /**
1487  * pauth_ptr_mask:
1488  * @param: parameters defining the MMU setup
1489  *
1490  * Return a mask of the address bits that contain the authentication code,
1491  * given the MMU config defined by @param.
1492  */
1493 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1494 {
1495     int bot_pac_bit = 64 - param.tsz;
1496     int top_pac_bit = 64 - 8 * param.tbi;
1497 
1498     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1499 }
1500 
1501 /* Add the cpreg definitions for debug related system registers */
1502 void define_debug_regs(ARMCPU *cpu);
1503 
1504 /* Effective value of MDCR_EL2 */
1505 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1506 {
1507     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1508 }
1509 
1510 /* Powers of 2 for sve_vq_map et al. */
1511 #define SVE_VQ_POW2_MAP                                 \
1512     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1513      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1514 
1515 /*
1516  * Return true if it is possible to take a fine-grained-trap to EL2.
1517  */
1518 static inline bool arm_fgt_active(CPUARMState *env, int el)
1519 {
1520     /*
1521      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1522      * that can affect EL0, but it is harmless to do the test also for
1523      * traps on registers that are only accessible at EL1 because if the test
1524      * returns true then we can't be executing at EL1 anyway.
1525      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1526      * traps from AArch32 only happen for the EL0 is AArch32 case.
1527      */
1528     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1529         el < 2 && arm_is_el2_enabled(env) &&
1530         arm_el_is_aa64(env, 1) &&
1531         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1532         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1533 }
1534 
1535 void assert_hflags_rebuild_correctly(CPUARMState *env);
1536 
1537 /*
1538  * Although the ARM implementation of hardware assisted debugging
1539  * allows for different breakpoints per-core, the current GDB
1540  * interface treats them as a global pool of registers (which seems to
1541  * be the case for x86, ppc and s390). As a result we store one copy
1542  * of registers which is used for all active cores.
1543  *
1544  * Write access is serialised by virtue of the GDB protocol which
1545  * updates things. Read access (i.e. when the values are copied to the
1546  * vCPU) is also gated by GDB's run control.
1547  *
1548  * This is not unreasonable as most of the time debugging kernels you
1549  * never know which core will eventually execute your function.
1550  */
1551 
1552 typedef struct {
1553     uint64_t bcr;
1554     uint64_t bvr;
1555 } HWBreakpoint;
1556 
1557 /*
1558  * The watchpoint registers can cover more area than the requested
1559  * watchpoint so we need to store the additional information
1560  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1561  * when the watchpoint is hit.
1562  */
1563 typedef struct {
1564     uint64_t wcr;
1565     uint64_t wvr;
1566     CPUWatchpoint details;
1567 } HWWatchpoint;
1568 
1569 /* Maximum and current break/watch point counts */
1570 extern int max_hw_bps, max_hw_wps;
1571 extern GArray *hw_breakpoints, *hw_watchpoints;
1572 
1573 #define cur_hw_wps      (hw_watchpoints->len)
1574 #define cur_hw_bps      (hw_breakpoints->len)
1575 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1576 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1577 
1578 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1579 int insert_hw_breakpoint(target_ulong pc);
1580 int delete_hw_breakpoint(target_ulong pc);
1581 
1582 bool check_watchpoint_in_range(int i, target_ulong addr);
1583 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1584 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1585 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1586 #endif
1587