1 /* 2 * QEMU ARM CPU -- internal functions and types 3 * 4 * Copyright (c) 2014 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 * 20 * This header defines functions, types, etc which need to be shared 21 * between different source files within target/arm/ but which are 22 * private to it and not required by the rest of QEMU. 23 */ 24 25 #ifndef TARGET_ARM_INTERNALS_H 26 #define TARGET_ARM_INTERNALS_H 27 28 #include "hw/registerfields.h" 29 #include "tcg/tcg-gvec-desc.h" 30 #include "syndrome.h" 31 32 /* register banks for CPU modes */ 33 #define BANK_USRSYS 0 34 #define BANK_SVC 1 35 #define BANK_ABT 2 36 #define BANK_UND 3 37 #define BANK_IRQ 4 38 #define BANK_FIQ 5 39 #define BANK_HYP 6 40 #define BANK_MON 7 41 42 static inline bool excp_is_internal(int excp) 43 { 44 /* Return true if this exception number represents a QEMU-internal 45 * exception that will not be passed to the guest. 46 */ 47 return excp == EXCP_INTERRUPT 48 || excp == EXCP_HLT 49 || excp == EXCP_DEBUG 50 || excp == EXCP_HALTED 51 || excp == EXCP_EXCEPTION_EXIT 52 || excp == EXCP_KERNEL_TRAP 53 || excp == EXCP_SEMIHOST; 54 } 55 56 /* Scale factor for generic timers, ie number of ns per tick. 57 * This gives a 62.5MHz timer. 58 */ 59 #define GTIMER_SCALE 16 60 61 /* Bit definitions for the v7M CONTROL register */ 62 FIELD(V7M_CONTROL, NPRIV, 0, 1) 63 FIELD(V7M_CONTROL, SPSEL, 1, 1) 64 FIELD(V7M_CONTROL, FPCA, 2, 1) 65 FIELD(V7M_CONTROL, SFPA, 3, 1) 66 67 /* Bit definitions for v7M exception return payload */ 68 FIELD(V7M_EXCRET, ES, 0, 1) 69 FIELD(V7M_EXCRET, RES0, 1, 1) 70 FIELD(V7M_EXCRET, SPSEL, 2, 1) 71 FIELD(V7M_EXCRET, MODE, 3, 1) 72 FIELD(V7M_EXCRET, FTYPE, 4, 1) 73 FIELD(V7M_EXCRET, DCRS, 5, 1) 74 FIELD(V7M_EXCRET, S, 6, 1) 75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ 76 77 /* Minimum value which is a magic number for exception return */ 78 #define EXC_RETURN_MIN_MAGIC 0xff000000 79 /* Minimum number which is a magic number for function or exception return 80 * when using v8M security extension 81 */ 82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe 83 84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */ 85 FIELD(DBGWCR, E, 0, 1) 86 FIELD(DBGWCR, PAC, 1, 2) 87 FIELD(DBGWCR, LSC, 3, 2) 88 FIELD(DBGWCR, BAS, 5, 8) 89 FIELD(DBGWCR, HMC, 13, 1) 90 FIELD(DBGWCR, SSC, 14, 2) 91 FIELD(DBGWCR, LBN, 16, 4) 92 FIELD(DBGWCR, WT, 20, 1) 93 FIELD(DBGWCR, MASK, 24, 5) 94 FIELD(DBGWCR, SSCE, 29, 1) 95 96 /* We use a few fake FSR values for internal purposes in M profile. 97 * M profile cores don't have A/R format FSRs, but currently our 98 * get_phys_addr() code assumes A/R profile and reports failures via 99 * an A/R format FSR value. We then translate that into the proper 100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). 101 * Mostly the FSR values we use for this are those defined for v7PMSA, 102 * since we share some of that codepath. A few kinds of fault are 103 * only for M profile and have no A/R equivalent, though, so we have 104 * to pick a value from the reserved range (which we never otherwise 105 * generate) to use for these. 106 * These values will never be visible to the guest. 107 */ 108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ 109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ 110 111 /** 112 * raise_exception: Raise the specified exception. 113 * Raise a guest exception with the specified value, syndrome register 114 * and target exception level. This should be called from helper functions, 115 * and never returns because we will longjump back up to the CPU main loop. 116 */ 117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp, 118 uint32_t syndrome, uint32_t target_el); 119 120 /* 121 * Similarly, but also use unwinding to restore cpu state. 122 */ 123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp, 124 uint32_t syndrome, uint32_t target_el, 125 uintptr_t ra); 126 127 /* 128 * For AArch64, map a given EL to an index in the banked_spsr array. 129 * Note that this mapping and the AArch32 mapping defined in bank_number() 130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally 131 * mandated mapping between each other. 132 */ 133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el) 134 { 135 static const unsigned int map[4] = { 136 [1] = BANK_SVC, /* EL1. */ 137 [2] = BANK_HYP, /* EL2. */ 138 [3] = BANK_MON, /* EL3. */ 139 }; 140 assert(el >= 1 && el <= 3); 141 return map[el]; 142 } 143 144 /* Map CPU modes onto saved register banks. */ 145 static inline int bank_number(int mode) 146 { 147 switch (mode) { 148 case ARM_CPU_MODE_USR: 149 case ARM_CPU_MODE_SYS: 150 return BANK_USRSYS; 151 case ARM_CPU_MODE_SVC: 152 return BANK_SVC; 153 case ARM_CPU_MODE_ABT: 154 return BANK_ABT; 155 case ARM_CPU_MODE_UND: 156 return BANK_UND; 157 case ARM_CPU_MODE_IRQ: 158 return BANK_IRQ; 159 case ARM_CPU_MODE_FIQ: 160 return BANK_FIQ; 161 case ARM_CPU_MODE_HYP: 162 return BANK_HYP; 163 case ARM_CPU_MODE_MON: 164 return BANK_MON; 165 } 166 g_assert_not_reached(); 167 } 168 169 /** 170 * r14_bank_number: Map CPU mode onto register bank for r14 171 * 172 * Given an AArch32 CPU mode, return the index into the saved register 173 * banks to use for the R14 (LR) in that mode. This is the same as 174 * bank_number(), except for the special case of Hyp mode, where 175 * R14 is shared with USR and SYS, unlike its R13 and SPSR. 176 * This should be used as the index into env->banked_r14[], and 177 * bank_number() used for the index into env->banked_r13[] and 178 * env->banked_spsr[]. 179 */ 180 static inline int r14_bank_number(int mode) 181 { 182 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); 183 } 184 185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); 186 void arm_translate_init(void); 187 188 void arm_restore_state_to_opc(CPUState *cs, 189 const TranslationBlock *tb, 190 const uint64_t *data); 191 192 #ifdef CONFIG_TCG 193 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); 194 #endif /* CONFIG_TCG */ 195 196 typedef enum ARMFPRounding { 197 FPROUNDING_TIEEVEN, 198 FPROUNDING_POSINF, 199 FPROUNDING_NEGINF, 200 FPROUNDING_ZERO, 201 FPROUNDING_TIEAWAY, 202 FPROUNDING_ODD 203 } ARMFPRounding; 204 205 extern const FloatRoundMode arm_rmode_to_sf_map[6]; 206 207 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode) 208 { 209 assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map)); 210 return arm_rmode_to_sf_map[rmode]; 211 } 212 213 static inline void aarch64_save_sp(CPUARMState *env, int el) 214 { 215 if (env->pstate & PSTATE_SP) { 216 env->sp_el[el] = env->xregs[31]; 217 } else { 218 env->sp_el[0] = env->xregs[31]; 219 } 220 } 221 222 static inline void aarch64_restore_sp(CPUARMState *env, int el) 223 { 224 if (env->pstate & PSTATE_SP) { 225 env->xregs[31] = env->sp_el[el]; 226 } else { 227 env->xregs[31] = env->sp_el[0]; 228 } 229 } 230 231 static inline void update_spsel(CPUARMState *env, uint32_t imm) 232 { 233 unsigned int cur_el = arm_current_el(env); 234 /* Update PSTATE SPSel bit; this requires us to update the 235 * working stack pointer in xregs[31]. 236 */ 237 if (!((imm ^ env->pstate) & PSTATE_SP)) { 238 return; 239 } 240 aarch64_save_sp(env, cur_el); 241 env->pstate = deposit32(env->pstate, 0, 1, imm); 242 243 /* We rely on illegal updates to SPsel from EL0 to get trapped 244 * at translation time. 245 */ 246 assert(cur_el >= 1 && cur_el <= 3); 247 aarch64_restore_sp(env, cur_el); 248 } 249 250 /* 251 * arm_pamax 252 * @cpu: ARMCPU 253 * 254 * Returns the implementation defined bit-width of physical addresses. 255 * The ARMv8 reference manuals refer to this as PAMax(). 256 */ 257 unsigned int arm_pamax(ARMCPU *cpu); 258 259 /* Return true if extended addresses are enabled. 260 * This is always the case if our translation regime is 64 bit, 261 * but depends on TTBCR.EAE for 32 bit. 262 */ 263 static inline bool extended_addresses_enabled(CPUARMState *env) 264 { 265 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; 266 if (arm_feature(env, ARM_FEATURE_PMSA) && 267 arm_feature(env, ARM_FEATURE_V8)) { 268 return true; 269 } 270 return arm_el_is_aa64(env, 1) || 271 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE)); 272 } 273 274 /* Update a QEMU watchpoint based on the information the guest has set in the 275 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. 276 */ 277 void hw_watchpoint_update(ARMCPU *cpu, int n); 278 /* Update the QEMU watchpoints for every guest watchpoint. This does a 279 * complete delete-and-reinstate of the QEMU watchpoint list and so is 280 * suitable for use after migration or on reset. 281 */ 282 void hw_watchpoint_update_all(ARMCPU *cpu); 283 /* Update a QEMU breakpoint based on the information the guest has set in the 284 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. 285 */ 286 void hw_breakpoint_update(ARMCPU *cpu, int n); 287 /* Update the QEMU breakpoints for every guest breakpoint. This does a 288 * complete delete-and-reinstate of the QEMU breakpoint list and so is 289 * suitable for use after migration or on reset. 290 */ 291 void hw_breakpoint_update_all(ARMCPU *cpu); 292 293 /* Callback function for checking if a breakpoint should trigger. */ 294 bool arm_debug_check_breakpoint(CPUState *cs); 295 296 /* Callback function for checking if a watchpoint should trigger. */ 297 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); 298 299 /* Adjust addresses (in BE32 mode) before testing against watchpoint 300 * addresses. 301 */ 302 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); 303 304 /* Callback function for when a watchpoint or breakpoint triggers. */ 305 void arm_debug_excp_handler(CPUState *cs); 306 307 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) 308 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 309 { 310 return false; 311 } 312 static inline void arm_handle_psci_call(ARMCPU *cpu) 313 { 314 g_assert_not_reached(); 315 } 316 #else 317 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ 318 bool arm_is_psci_call(ARMCPU *cpu, int excp_type); 319 /* Actually handle a PSCI call */ 320 void arm_handle_psci_call(ARMCPU *cpu); 321 #endif 322 323 /** 324 * arm_clear_exclusive: clear the exclusive monitor 325 * @env: CPU env 326 * Clear the CPU's exclusive monitor, like the guest CLREX instruction. 327 */ 328 static inline void arm_clear_exclusive(CPUARMState *env) 329 { 330 env->exclusive_addr = -1; 331 } 332 333 /** 334 * ARMFaultType: type of an ARM MMU fault 335 * This corresponds to the v8A pseudocode's Fault enumeration, 336 * with extensions for QEMU internal conditions. 337 */ 338 typedef enum ARMFaultType { 339 ARMFault_None, 340 ARMFault_AccessFlag, 341 ARMFault_Alignment, 342 ARMFault_Background, 343 ARMFault_Domain, 344 ARMFault_Permission, 345 ARMFault_Translation, 346 ARMFault_AddressSize, 347 ARMFault_SyncExternal, 348 ARMFault_SyncExternalOnWalk, 349 ARMFault_SyncParity, 350 ARMFault_SyncParityOnWalk, 351 ARMFault_AsyncParity, 352 ARMFault_AsyncExternal, 353 ARMFault_Debug, 354 ARMFault_TLBConflict, 355 ARMFault_UnsuppAtomicUpdate, 356 ARMFault_Lockdown, 357 ARMFault_Exclusive, 358 ARMFault_ICacheMaint, 359 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ 360 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ 361 } ARMFaultType; 362 363 /** 364 * ARMMMUFaultInfo: Information describing an ARM MMU Fault 365 * @type: Type of fault 366 * @level: Table walk level (for translation, access flag and permission faults) 367 * @domain: Domain of the fault address (for non-LPAE CPUs only) 368 * @s2addr: Address that caused a fault at stage 2 369 * @stage2: True if we faulted at stage 2 370 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk 371 * @s1ns: True if we faulted on a non-secure IPA while in secure state 372 * @ea: True if we should set the EA (external abort type) bit in syndrome 373 */ 374 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 375 struct ARMMMUFaultInfo { 376 ARMFaultType type; 377 target_ulong s2addr; 378 int level; 379 int domain; 380 bool stage2; 381 bool s1ptw; 382 bool s1ns; 383 bool ea; 384 }; 385 386 /** 387 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC 388 * Compare pseudocode EncodeSDFSC(), though unlike that function 389 * we set up a whole FSR-format code including domain field and 390 * putting the high bit of the FSC into bit 10. 391 */ 392 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) 393 { 394 uint32_t fsc; 395 396 switch (fi->type) { 397 case ARMFault_None: 398 return 0; 399 case ARMFault_AccessFlag: 400 fsc = fi->level == 1 ? 0x3 : 0x6; 401 break; 402 case ARMFault_Alignment: 403 fsc = 0x1; 404 break; 405 case ARMFault_Permission: 406 fsc = fi->level == 1 ? 0xd : 0xf; 407 break; 408 case ARMFault_Domain: 409 fsc = fi->level == 1 ? 0x9 : 0xb; 410 break; 411 case ARMFault_Translation: 412 fsc = fi->level == 1 ? 0x5 : 0x7; 413 break; 414 case ARMFault_SyncExternal: 415 fsc = 0x8 | (fi->ea << 12); 416 break; 417 case ARMFault_SyncExternalOnWalk: 418 fsc = fi->level == 1 ? 0xc : 0xe; 419 fsc |= (fi->ea << 12); 420 break; 421 case ARMFault_SyncParity: 422 fsc = 0x409; 423 break; 424 case ARMFault_SyncParityOnWalk: 425 fsc = fi->level == 1 ? 0x40c : 0x40e; 426 break; 427 case ARMFault_AsyncParity: 428 fsc = 0x408; 429 break; 430 case ARMFault_AsyncExternal: 431 fsc = 0x406 | (fi->ea << 12); 432 break; 433 case ARMFault_Debug: 434 fsc = 0x2; 435 break; 436 case ARMFault_TLBConflict: 437 fsc = 0x400; 438 break; 439 case ARMFault_Lockdown: 440 fsc = 0x404; 441 break; 442 case ARMFault_Exclusive: 443 fsc = 0x405; 444 break; 445 case ARMFault_ICacheMaint: 446 fsc = 0x4; 447 break; 448 case ARMFault_Background: 449 fsc = 0x0; 450 break; 451 case ARMFault_QEMU_NSCExec: 452 fsc = M_FAKE_FSR_NSC_EXEC; 453 break; 454 case ARMFault_QEMU_SFault: 455 fsc = M_FAKE_FSR_SFAULT; 456 break; 457 default: 458 /* Other faults can't occur in a context that requires a 459 * short-format status code. 460 */ 461 g_assert_not_reached(); 462 } 463 464 fsc |= (fi->domain << 4); 465 return fsc; 466 } 467 468 /** 469 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC 470 * Compare pseudocode EncodeLDFSC(), though unlike that function 471 * we fill in also the LPAE bit 9 of a DFSR format. 472 */ 473 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) 474 { 475 uint32_t fsc; 476 477 switch (fi->type) { 478 case ARMFault_None: 479 return 0; 480 case ARMFault_AddressSize: 481 assert(fi->level >= -1 && fi->level <= 3); 482 if (fi->level < 0) { 483 fsc = 0b101001; 484 } else { 485 fsc = fi->level; 486 } 487 break; 488 case ARMFault_AccessFlag: 489 assert(fi->level >= 0 && fi->level <= 3); 490 fsc = 0b001000 | fi->level; 491 break; 492 case ARMFault_Permission: 493 assert(fi->level >= 0 && fi->level <= 3); 494 fsc = 0b001100 | fi->level; 495 break; 496 case ARMFault_Translation: 497 assert(fi->level >= -1 && fi->level <= 3); 498 if (fi->level < 0) { 499 fsc = 0b101011; 500 } else { 501 fsc = 0b000100 | fi->level; 502 } 503 break; 504 case ARMFault_SyncExternal: 505 fsc = 0x10 | (fi->ea << 12); 506 break; 507 case ARMFault_SyncExternalOnWalk: 508 assert(fi->level >= -1 && fi->level <= 3); 509 if (fi->level < 0) { 510 fsc = 0b010011; 511 } else { 512 fsc = 0b010100 | fi->level; 513 } 514 fsc |= fi->ea << 12; 515 break; 516 case ARMFault_SyncParity: 517 fsc = 0x18; 518 break; 519 case ARMFault_SyncParityOnWalk: 520 assert(fi->level >= -1 && fi->level <= 3); 521 if (fi->level < 0) { 522 fsc = 0b011011; 523 } else { 524 fsc = 0b011100 | fi->level; 525 } 526 break; 527 case ARMFault_AsyncParity: 528 fsc = 0x19; 529 break; 530 case ARMFault_AsyncExternal: 531 fsc = 0x11 | (fi->ea << 12); 532 break; 533 case ARMFault_Alignment: 534 fsc = 0x21; 535 break; 536 case ARMFault_Debug: 537 fsc = 0x22; 538 break; 539 case ARMFault_TLBConflict: 540 fsc = 0x30; 541 break; 542 case ARMFault_UnsuppAtomicUpdate: 543 fsc = 0x31; 544 break; 545 case ARMFault_Lockdown: 546 fsc = 0x34; 547 break; 548 case ARMFault_Exclusive: 549 fsc = 0x35; 550 break; 551 default: 552 /* Other faults can't occur in a context that requires a 553 * long-format status code. 554 */ 555 g_assert_not_reached(); 556 } 557 558 fsc |= 1 << 9; 559 return fsc; 560 } 561 562 static inline bool arm_extabort_type(MemTxResult result) 563 { 564 /* The EA bit in syndromes and fault status registers is an 565 * IMPDEF classification of external aborts. ARM implementations 566 * usually use this to indicate AXI bus Decode error (0) or 567 * Slave error (1); in QEMU we follow that. 568 */ 569 return result != MEMTX_DECODE_ERROR; 570 } 571 572 #ifdef CONFIG_USER_ONLY 573 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr, 574 MMUAccessType access_type, 575 bool maperr, uintptr_t ra); 576 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr, 577 MMUAccessType access_type, uintptr_t ra); 578 #else 579 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 580 MMUAccessType access_type, int mmu_idx, 581 bool probe, uintptr_t retaddr); 582 #endif 583 584 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 585 { 586 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 587 } 588 589 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 590 { 591 if (arm_feature(env, ARM_FEATURE_M)) { 592 return mmu_idx | ARM_MMU_IDX_M; 593 } else { 594 return mmu_idx | ARM_MMU_IDX_A; 595 } 596 } 597 598 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) 599 { 600 /* AArch64 is always a-profile. */ 601 return mmu_idx | ARM_MMU_IDX_A; 602 } 603 604 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); 605 606 /* Return the MMU index for a v7M CPU in the specified security state */ 607 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 608 609 /* 610 * Return true if the stage 1 translation regime is using LPAE 611 * format page tables 612 */ 613 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 614 615 /* Raise a data fault alignment exception for the specified virtual address */ 616 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 617 MMUAccessType access_type, 618 int mmu_idx, uintptr_t retaddr); 619 620 #ifndef CONFIG_USER_ONLY 621 /* arm_cpu_do_transaction_failed: handle a memory system error response 622 * (eg "no device/memory present at address") by raising an external abort 623 * exception 624 */ 625 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 626 vaddr addr, unsigned size, 627 MMUAccessType access_type, 628 int mmu_idx, MemTxAttrs attrs, 629 MemTxResult response, uintptr_t retaddr); 630 #endif 631 632 /* Call any registered EL change hooks */ 633 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) 634 { 635 ARMELChangeHook *hook, *next; 636 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 637 hook->hook(cpu, hook->opaque); 638 } 639 } 640 static inline void arm_call_el_change_hook(ARMCPU *cpu) 641 { 642 ARMELChangeHook *hook, *next; 643 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 644 hook->hook(cpu, hook->opaque); 645 } 646 } 647 648 /* Return true if this address translation regime has two ranges. */ 649 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) 650 { 651 switch (mmu_idx) { 652 case ARMMMUIdx_Stage1_E0: 653 case ARMMMUIdx_Stage1_E1: 654 case ARMMMUIdx_Stage1_E1_PAN: 655 case ARMMMUIdx_E10_0: 656 case ARMMMUIdx_E10_1: 657 case ARMMMUIdx_E10_1_PAN: 658 case ARMMMUIdx_E20_0: 659 case ARMMMUIdx_E20_2: 660 case ARMMMUIdx_E20_2_PAN: 661 return true; 662 default: 663 return false; 664 } 665 } 666 667 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) 668 { 669 switch (mmu_idx) { 670 case ARMMMUIdx_Stage1_E1_PAN: 671 case ARMMMUIdx_E10_1_PAN: 672 case ARMMMUIdx_E20_2_PAN: 673 return true; 674 default: 675 return false; 676 } 677 } 678 679 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx) 680 { 681 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S; 682 } 683 684 /* Return the exception level which controls this address translation regime */ 685 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 686 { 687 switch (mmu_idx) { 688 case ARMMMUIdx_E20_0: 689 case ARMMMUIdx_E20_2: 690 case ARMMMUIdx_E20_2_PAN: 691 case ARMMMUIdx_Stage2: 692 case ARMMMUIdx_Stage2_S: 693 case ARMMMUIdx_E2: 694 return 2; 695 case ARMMMUIdx_E3: 696 return 3; 697 case ARMMMUIdx_E10_0: 698 case ARMMMUIdx_Stage1_E0: 699 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3; 700 case ARMMMUIdx_Stage1_E1: 701 case ARMMMUIdx_Stage1_E1_PAN: 702 case ARMMMUIdx_E10_1: 703 case ARMMMUIdx_E10_1_PAN: 704 case ARMMMUIdx_MPrivNegPri: 705 case ARMMMUIdx_MUserNegPri: 706 case ARMMMUIdx_MPriv: 707 case ARMMMUIdx_MUser: 708 case ARMMMUIdx_MSPrivNegPri: 709 case ARMMMUIdx_MSUserNegPri: 710 case ARMMMUIdx_MSPriv: 711 case ARMMMUIdx_MSUser: 712 return 1; 713 default: 714 g_assert_not_reached(); 715 } 716 } 717 718 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 719 { 720 switch (mmu_idx) { 721 case ARMMMUIdx_E20_0: 722 case ARMMMUIdx_Stage1_E0: 723 case ARMMMUIdx_MUser: 724 case ARMMMUIdx_MSUser: 725 case ARMMMUIdx_MUserNegPri: 726 case ARMMMUIdx_MSUserNegPri: 727 return true; 728 default: 729 return false; 730 case ARMMMUIdx_E10_0: 731 case ARMMMUIdx_E10_1: 732 case ARMMMUIdx_E10_1_PAN: 733 g_assert_not_reached(); 734 } 735 } 736 737 /* Return the SCTLR value which controls this address translation regime */ 738 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 739 { 740 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 741 } 742 743 /* 744 * These are the fields in VTCR_EL2 which affect both the Secure stage 2 745 * and the Non-Secure stage 2 translation regimes (and hence which are 746 * not present in VSTCR_EL2). 747 */ 748 #define VTCR_SHARED_FIELD_MASK \ 749 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \ 750 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \ 751 R_VTCR_DS_MASK) 752 753 /* Return the value of the TCR controlling this translation regime */ 754 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 755 { 756 if (mmu_idx == ARMMMUIdx_Stage2) { 757 return env->cp15.vtcr_el2; 758 } 759 if (mmu_idx == ARMMMUIdx_Stage2_S) { 760 /* 761 * Secure stage 2 shares fields from VTCR_EL2. We merge those 762 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format 763 * value so the callers don't need to special case this. 764 * 765 * If a future architecture change defines bits in VSTCR_EL2 that 766 * overlap with these VTCR_EL2 fields we may need to revisit this. 767 */ 768 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK; 769 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK; 770 return v; 771 } 772 return env->cp15.tcr_el[regime_el(env, mmu_idx)]; 773 } 774 775 /* Return true if the translation regime is using LPAE format page tables */ 776 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 777 { 778 int el = regime_el(env, mmu_idx); 779 if (el == 2 || arm_el_is_aa64(env, el)) { 780 return true; 781 } 782 if (arm_feature(env, ARM_FEATURE_PMSA) && 783 arm_feature(env, ARM_FEATURE_V8)) { 784 return true; 785 } 786 if (arm_feature(env, ARM_FEATURE_LPAE) 787 && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) { 788 return true; 789 } 790 return false; 791 } 792 793 /** 794 * arm_num_brps: Return number of implemented breakpoints. 795 * Note that the ID register BRPS field is "number of bps - 1", 796 * and we return the actual number of breakpoints. 797 */ 798 static inline int arm_num_brps(ARMCPU *cpu) 799 { 800 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 801 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; 802 } else { 803 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; 804 } 805 } 806 807 /** 808 * arm_num_wrps: Return number of implemented watchpoints. 809 * Note that the ID register WRPS field is "number of wps - 1", 810 * and we return the actual number of watchpoints. 811 */ 812 static inline int arm_num_wrps(ARMCPU *cpu) 813 { 814 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 815 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; 816 } else { 817 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; 818 } 819 } 820 821 /** 822 * arm_num_ctx_cmps: Return number of implemented context comparators. 823 * Note that the ID register CTX_CMPS field is "number of cmps - 1", 824 * and we return the actual number of comparators. 825 */ 826 static inline int arm_num_ctx_cmps(ARMCPU *cpu) 827 { 828 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 829 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; 830 } else { 831 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; 832 } 833 } 834 835 /** 836 * v7m_using_psp: Return true if using process stack pointer 837 * Return true if the CPU is currently using the process stack 838 * pointer, or false if it is using the main stack pointer. 839 */ 840 static inline bool v7m_using_psp(CPUARMState *env) 841 { 842 /* Handler mode always uses the main stack; for thread mode 843 * the CONTROL.SPSEL bit determines the answer. 844 * Note that in v7M it is not possible to be in Handler mode with 845 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 846 */ 847 return !arm_v7m_is_handler_mode(env) && 848 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 849 } 850 851 /** 852 * v7m_sp_limit: Return SP limit for current CPU state 853 * Return the SP limit value for the current CPU security state 854 * and stack pointer. 855 */ 856 static inline uint32_t v7m_sp_limit(CPUARMState *env) 857 { 858 if (v7m_using_psp(env)) { 859 return env->v7m.psplim[env->v7m.secure]; 860 } else { 861 return env->v7m.msplim[env->v7m.secure]; 862 } 863 } 864 865 /** 866 * v7m_cpacr_pass: 867 * Return true if the v7M CPACR permits access to the FPU for the specified 868 * security state and privilege level. 869 */ 870 static inline bool v7m_cpacr_pass(CPUARMState *env, 871 bool is_secure, bool is_priv) 872 { 873 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 874 case 0: 875 case 2: /* UNPREDICTABLE: we treat like 0 */ 876 return false; 877 case 1: 878 return is_priv; 879 case 3: 880 return true; 881 default: 882 g_assert_not_reached(); 883 } 884 } 885 886 /** 887 * aarch32_mode_name(): Return name of the AArch32 CPU mode 888 * @psr: Program Status Register indicating CPU mode 889 * 890 * Returns, for debug logging purposes, a printable representation 891 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by 892 * the low bits of the specified PSR. 893 */ 894 static inline const char *aarch32_mode_name(uint32_t psr) 895 { 896 static const char cpu_mode_names[16][4] = { 897 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", 898 "???", "???", "hyp", "und", "???", "???", "???", "sys" 899 }; 900 901 return cpu_mode_names[psr & 0xf]; 902 } 903 904 /** 905 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request 906 * 907 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following 908 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. 909 * Must be called with the iothread lock held. 910 */ 911 void arm_cpu_update_virq(ARMCPU *cpu); 912 913 /** 914 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request 915 * 916 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following 917 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. 918 * Must be called with the iothread lock held. 919 */ 920 void arm_cpu_update_vfiq(ARMCPU *cpu); 921 922 /** 923 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit 924 * 925 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request, 926 * following a change to the HCR_EL2.VSE bit. 927 */ 928 void arm_cpu_update_vserr(ARMCPU *cpu); 929 930 /** 931 * arm_mmu_idx_el: 932 * @env: The cpu environment 933 * @el: The EL to use. 934 * 935 * Return the full ARMMMUIdx for the translation regime for EL. 936 */ 937 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); 938 939 /** 940 * arm_mmu_idx: 941 * @env: The cpu environment 942 * 943 * Return the full ARMMMUIdx for the current translation regime. 944 */ 945 ARMMMUIdx arm_mmu_idx(CPUARMState *env); 946 947 /** 948 * arm_stage1_mmu_idx: 949 * @env: The cpu environment 950 * 951 * Return the ARMMMUIdx for the stage1 traversal for the current regime. 952 */ 953 #ifdef CONFIG_USER_ONLY 954 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 955 { 956 return ARMMMUIdx_Stage1_E0; 957 } 958 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 959 { 960 return ARMMMUIdx_Stage1_E0; 961 } 962 #else 963 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx); 964 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); 965 #endif 966 967 /** 968 * arm_mmu_idx_is_stage1_of_2: 969 * @mmu_idx: The ARMMMUIdx to test 970 * 971 * Return true if @mmu_idx is a NOTLB mmu_idx that is the 972 * first stage of a two stage regime. 973 */ 974 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) 975 { 976 switch (mmu_idx) { 977 case ARMMMUIdx_Stage1_E0: 978 case ARMMMUIdx_Stage1_E1: 979 case ARMMMUIdx_Stage1_E1_PAN: 980 return true; 981 default: 982 return false; 983 } 984 } 985 986 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, 987 const ARMISARegisters *id) 988 { 989 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; 990 991 if ((features >> ARM_FEATURE_V4T) & 1) { 992 valid |= CPSR_T; 993 } 994 if ((features >> ARM_FEATURE_V5) & 1) { 995 valid |= CPSR_Q; /* V5TE in reality*/ 996 } 997 if ((features >> ARM_FEATURE_V6) & 1) { 998 valid |= CPSR_E | CPSR_GE; 999 } 1000 if ((features >> ARM_FEATURE_THUMB2) & 1) { 1001 valid |= CPSR_IT; 1002 } 1003 if (isar_feature_aa32_jazelle(id)) { 1004 valid |= CPSR_J; 1005 } 1006 if (isar_feature_aa32_pan(id)) { 1007 valid |= CPSR_PAN; 1008 } 1009 if (isar_feature_aa32_dit(id)) { 1010 valid |= CPSR_DIT; 1011 } 1012 if (isar_feature_aa32_ssbs(id)) { 1013 valid |= CPSR_SSBS; 1014 } 1015 1016 return valid; 1017 } 1018 1019 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) 1020 { 1021 uint32_t valid; 1022 1023 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; 1024 if (isar_feature_aa64_bti(id)) { 1025 valid |= PSTATE_BTYPE; 1026 } 1027 if (isar_feature_aa64_pan(id)) { 1028 valid |= PSTATE_PAN; 1029 } 1030 if (isar_feature_aa64_uao(id)) { 1031 valid |= PSTATE_UAO; 1032 } 1033 if (isar_feature_aa64_dit(id)) { 1034 valid |= PSTATE_DIT; 1035 } 1036 if (isar_feature_aa64_ssbs(id)) { 1037 valid |= PSTATE_SSBS; 1038 } 1039 if (isar_feature_aa64_mte(id)) { 1040 valid |= PSTATE_TCO; 1041 } 1042 1043 return valid; 1044 } 1045 1046 /* Granule size (i.e. page size) */ 1047 typedef enum ARMGranuleSize { 1048 /* Same order as TG0 encoding */ 1049 Gran4K, 1050 Gran64K, 1051 Gran16K, 1052 GranInvalid, 1053 } ARMGranuleSize; 1054 1055 /** 1056 * arm_granule_bits: Return address size of the granule in bits 1057 * 1058 * Return the address size of the granule in bits. This corresponds 1059 * to the pseudocode TGxGranuleBits(). 1060 */ 1061 static inline int arm_granule_bits(ARMGranuleSize gran) 1062 { 1063 switch (gran) { 1064 case Gran64K: 1065 return 16; 1066 case Gran16K: 1067 return 14; 1068 case Gran4K: 1069 return 12; 1070 default: 1071 g_assert_not_reached(); 1072 } 1073 } 1074 1075 /* 1076 * Parameters of a given virtual address, as extracted from the 1077 * translation control register (TCR) for a given regime. 1078 */ 1079 typedef struct ARMVAParameters { 1080 unsigned tsz : 8; 1081 unsigned ps : 3; 1082 unsigned sh : 2; 1083 unsigned select : 1; 1084 bool tbi : 1; 1085 bool epd : 1; 1086 bool hpd : 1; 1087 bool tsz_oob : 1; /* tsz has been clamped to legal range */ 1088 bool ds : 1; 1089 bool ha : 1; 1090 bool hd : 1; 1091 ARMGranuleSize gran : 2; 1092 } ARMVAParameters; 1093 1094 /** 1095 * aa64_va_parameters: Return parameters for an AArch64 virtual address 1096 * @env: CPU 1097 * @va: virtual address to look up 1098 * @mmu_idx: determines translation regime to use 1099 * @data: true if this is a data access 1100 * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32 1101 * (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob) 1102 */ 1103 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 1104 ARMMMUIdx mmu_idx, bool data, 1105 bool el1_is_aa32); 1106 1107 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 1108 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx); 1109 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx); 1110 1111 /* Determine if allocation tags are available. */ 1112 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, 1113 uint64_t sctlr) 1114 { 1115 if (el < 3 1116 && arm_feature(env, ARM_FEATURE_EL3) 1117 && !(env->cp15.scr_el3 & SCR_ATA)) { 1118 return false; 1119 } 1120 if (el < 2 && arm_is_el2_enabled(env)) { 1121 uint64_t hcr = arm_hcr_el2_eff(env); 1122 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 1123 return false; 1124 } 1125 } 1126 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); 1127 return sctlr != 0; 1128 } 1129 1130 #ifndef CONFIG_USER_ONLY 1131 1132 /* Security attributes for an address, as returned by v8m_security_lookup. */ 1133 typedef struct V8M_SAttributes { 1134 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 1135 bool ns; 1136 bool nsc; 1137 uint8_t sregion; 1138 bool srvalid; 1139 uint8_t iregion; 1140 bool irvalid; 1141 } V8M_SAttributes; 1142 1143 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1144 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1145 bool secure, V8M_SAttributes *sattrs); 1146 1147 /* Cacheability and shareability attributes for a memory access */ 1148 typedef struct ARMCacheAttrs { 1149 /* 1150 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2] 1151 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format 1152 */ 1153 unsigned int attrs:8; 1154 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 1155 bool is_s2_format:1; 1156 bool guarded:1; /* guarded bit of the v8-64 PTE */ 1157 } ARMCacheAttrs; 1158 1159 /* Fields that are valid upon success. */ 1160 typedef struct GetPhysAddrResult { 1161 CPUTLBEntryFull f; 1162 ARMCacheAttrs cacheattrs; 1163 } GetPhysAddrResult; 1164 1165 /** 1166 * get_phys_addr_with_secure: get the physical address for a virtual address 1167 * @env: CPUARMState 1168 * @address: virtual address to get physical address for 1169 * @access_type: 0 for read, 1 for write, 2 for execute 1170 * @mmu_idx: MMU index indicating required translation regime 1171 * @is_secure: security state for the access 1172 * @result: set on translation success. 1173 * @fi: set to fault info if the translation fails 1174 * 1175 * Find the physical address corresponding to the given virtual address, 1176 * by doing a translation table walk on MMU based systems or using the 1177 * MPU state on MPU based systems. 1178 * 1179 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 1180 * prot and page_size may not be filled in, and the populated fsr value provides 1181 * information on why the translation aborted, in the format of a 1182 * DFSR/IFSR fault register, with the following caveats: 1183 * * we honour the short vs long DFSR format differences. 1184 * * the WnR bit is never set (the caller must do this). 1185 * * for PSMAv5 based systems we don't bother to return a full FSR format 1186 * value. 1187 */ 1188 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address, 1189 MMUAccessType access_type, 1190 ARMMMUIdx mmu_idx, bool is_secure, 1191 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1192 __attribute__((nonnull)); 1193 1194 /** 1195 * get_phys_addr: get the physical address for a virtual address 1196 * @env: CPUARMState 1197 * @address: virtual address to get physical address for 1198 * @access_type: 0 for read, 1 for write, 2 for execute 1199 * @mmu_idx: MMU index indicating required translation regime 1200 * @result: set on translation success. 1201 * @fi: set to fault info if the translation fails 1202 * 1203 * Similarly, but use the security regime of @mmu_idx. 1204 */ 1205 bool get_phys_addr(CPUARMState *env, target_ulong address, 1206 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1207 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1208 __attribute__((nonnull)); 1209 1210 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1211 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1212 bool is_secure, GetPhysAddrResult *result, 1213 ARMMMUFaultInfo *fi, uint32_t *mregion); 1214 1215 void arm_log_exception(CPUState *cs); 1216 1217 #endif /* !CONFIG_USER_ONLY */ 1218 1219 /* 1220 * The log2 of the words in the tag block, for GMID_EL1.BS. 1221 * The is the maximum, 256 bytes, which manipulates 64-bits of tags. 1222 */ 1223 #define GMID_EL1_BS 6 1224 1225 /* 1226 * SVE predicates are 1/8 the size of SVE vectors, and cannot use 1227 * the same simd_desc() encoding due to restrictions on size. 1228 * Use these instead. 1229 */ 1230 FIELD(PREDDESC, OPRSZ, 0, 6) 1231 FIELD(PREDDESC, ESZ, 6, 2) 1232 FIELD(PREDDESC, DATA, 8, 24) 1233 1234 /* 1235 * The SVE simd_data field, for memory ops, contains either 1236 * rd (5 bits) or a shift count (2 bits). 1237 */ 1238 #define SVE_MTEDESC_SHIFT 5 1239 1240 /* Bits within a descriptor passed to the helper_mte_check* functions. */ 1241 FIELD(MTEDESC, MIDX, 0, 4) 1242 FIELD(MTEDESC, TBI, 4, 2) 1243 FIELD(MTEDESC, TCMA, 6, 2) 1244 FIELD(MTEDESC, WRITE, 8, 1) 1245 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */ 1246 1247 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr); 1248 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra); 1249 1250 static inline int allocation_tag_from_addr(uint64_t ptr) 1251 { 1252 return extract64(ptr, 56, 4); 1253 } 1254 1255 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) 1256 { 1257 return deposit64(ptr, 56, 4, rtag); 1258 } 1259 1260 /* Return true if tbi bits mean that the access is checked. */ 1261 static inline bool tbi_check(uint32_t desc, int bit55) 1262 { 1263 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; 1264 } 1265 1266 /* Return true if tcma bits mean that the access is unchecked. */ 1267 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) 1268 { 1269 /* 1270 * We had extracted bit55 and ptr_tag for other reasons, so fold 1271 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. 1272 */ 1273 bool match = ((ptr_tag + bit55) & 0xf) == 0; 1274 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; 1275 return tcma && match; 1276 } 1277 1278 /* 1279 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 1280 * for the tag to be present in the FAR_ELx register. But for user-only 1281 * mode, we do not have a TLB with which to implement this, so we must 1282 * remove the top byte. 1283 */ 1284 static inline uint64_t useronly_clean_ptr(uint64_t ptr) 1285 { 1286 #ifdef CONFIG_USER_ONLY 1287 /* TBI0 is known to be enabled, while TBI1 is disabled. */ 1288 ptr &= sextract64(ptr, 0, 56); 1289 #endif 1290 return ptr; 1291 } 1292 1293 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) 1294 { 1295 #ifdef CONFIG_USER_ONLY 1296 int64_t clean_ptr = sextract64(ptr, 0, 56); 1297 if (tbi_check(desc, clean_ptr < 0)) { 1298 ptr = clean_ptr; 1299 } 1300 #endif 1301 return ptr; 1302 } 1303 1304 /* Values for M-profile PSR.ECI for MVE insns */ 1305 enum MVEECIState { 1306 ECI_NONE = 0, /* No completed beats */ 1307 ECI_A0 = 1, /* Completed: A0 */ 1308 ECI_A0A1 = 2, /* Completed: A0, A1 */ 1309 /* 3 is reserved */ 1310 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */ 1311 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */ 1312 /* All other values reserved */ 1313 }; 1314 1315 /* Definitions for the PMU registers */ 1316 #define PMCRN_MASK 0xf800 1317 #define PMCRN_SHIFT 11 1318 #define PMCRLP 0x80 1319 #define PMCRLC 0x40 1320 #define PMCRDP 0x20 1321 #define PMCRX 0x10 1322 #define PMCRD 0x8 1323 #define PMCRC 0x4 1324 #define PMCRP 0x2 1325 #define PMCRE 0x1 1326 /* 1327 * Mask of PMCR bits writable by guest (not including WO bits like C, P, 1328 * which can be written as 1 to trigger behaviour but which stay RAZ). 1329 */ 1330 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1331 1332 #define PMXEVTYPER_P 0x80000000 1333 #define PMXEVTYPER_U 0x40000000 1334 #define PMXEVTYPER_NSK 0x20000000 1335 #define PMXEVTYPER_NSU 0x10000000 1336 #define PMXEVTYPER_NSH 0x08000000 1337 #define PMXEVTYPER_M 0x04000000 1338 #define PMXEVTYPER_MT 0x02000000 1339 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1340 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1341 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1342 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1343 PMXEVTYPER_EVTCOUNT) 1344 1345 #define PMCCFILTR 0xf8000000 1346 #define PMCCFILTR_M PMXEVTYPER_M 1347 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1348 1349 static inline uint32_t pmu_num_counters(CPUARMState *env) 1350 { 1351 ARMCPU *cpu = env_archcpu(env); 1352 1353 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT; 1354 } 1355 1356 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1357 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1358 { 1359 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1); 1360 } 1361 1362 #ifdef TARGET_AARCH64 1363 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); 1364 int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg); 1365 int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg); 1366 int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg); 1367 int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg); 1368 int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg); 1369 int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg); 1370 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 1371 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp); 1372 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp); 1373 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp); 1374 void aarch64_max_tcg_initfn(Object *obj); 1375 void aarch64_add_pauth_properties(Object *obj); 1376 void aarch64_add_sve_properties(Object *obj); 1377 void aarch64_add_sme_properties(Object *obj); 1378 #endif 1379 1380 /* Read the CONTROL register as the MRS instruction would. */ 1381 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure); 1382 1383 /* 1384 * Return a pointer to the location where we currently store the 1385 * stack pointer for the requested security state and thread mode. 1386 * This pointer will become invalid if the CPU state is updated 1387 * such that the stack pointers are switched around (eg changing 1388 * the SPSEL control bit). 1389 */ 1390 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure, 1391 bool threadmode, bool spsel); 1392 1393 bool el_is_in_host(CPUARMState *env, int el); 1394 1395 void aa32_max_features(ARMCPU *cpu); 1396 int exception_target_el(CPUARMState *env); 1397 bool arm_singlestep_active(CPUARMState *env); 1398 bool arm_generate_debug_exceptions(CPUARMState *env); 1399 1400 /** 1401 * pauth_ptr_mask: 1402 * @param: parameters defining the MMU setup 1403 * 1404 * Return a mask of the address bits that contain the authentication code, 1405 * given the MMU config defined by @param. 1406 */ 1407 static inline uint64_t pauth_ptr_mask(ARMVAParameters param) 1408 { 1409 int bot_pac_bit = 64 - param.tsz; 1410 int top_pac_bit = 64 - 8 * param.tbi; 1411 1412 return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit); 1413 } 1414 1415 /* Add the cpreg definitions for debug related system registers */ 1416 void define_debug_regs(ARMCPU *cpu); 1417 1418 /* Effective value of MDCR_EL2 */ 1419 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env) 1420 { 1421 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 1422 } 1423 1424 /* Powers of 2 for sve_vq_map et al. */ 1425 #define SVE_VQ_POW2_MAP \ 1426 ((1 << (1 - 1)) | (1 << (2 - 1)) | \ 1427 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1))) 1428 1429 /* 1430 * Return true if it is possible to take a fine-grained-trap to EL2. 1431 */ 1432 static inline bool arm_fgt_active(CPUARMState *env, int el) 1433 { 1434 /* 1435 * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps 1436 * that can affect EL0, but it is harmless to do the test also for 1437 * traps on registers that are only accessible at EL1 because if the test 1438 * returns true then we can't be executing at EL1 anyway. 1439 * FGT traps only happen when EL2 is enabled and EL1 is AArch64; 1440 * traps from AArch32 only happen for the EL0 is AArch32 case. 1441 */ 1442 return cpu_isar_feature(aa64_fgt, env_archcpu(env)) && 1443 el < 2 && arm_is_el2_enabled(env) && 1444 arm_el_is_aa64(env, 1) && 1445 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) && 1446 (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN)); 1447 } 1448 1449 void assert_hflags_rebuild_correctly(CPUARMState *env); 1450 1451 /* 1452 * Although the ARM implementation of hardware assisted debugging 1453 * allows for different breakpoints per-core, the current GDB 1454 * interface treats them as a global pool of registers (which seems to 1455 * be the case for x86, ppc and s390). As a result we store one copy 1456 * of registers which is used for all active cores. 1457 * 1458 * Write access is serialised by virtue of the GDB protocol which 1459 * updates things. Read access (i.e. when the values are copied to the 1460 * vCPU) is also gated by GDB's run control. 1461 * 1462 * This is not unreasonable as most of the time debugging kernels you 1463 * never know which core will eventually execute your function. 1464 */ 1465 1466 typedef struct { 1467 uint64_t bcr; 1468 uint64_t bvr; 1469 } HWBreakpoint; 1470 1471 /* 1472 * The watchpoint registers can cover more area than the requested 1473 * watchpoint so we need to store the additional information 1474 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub 1475 * when the watchpoint is hit. 1476 */ 1477 typedef struct { 1478 uint64_t wcr; 1479 uint64_t wvr; 1480 CPUWatchpoint details; 1481 } HWWatchpoint; 1482 1483 /* Maximum and current break/watch point counts */ 1484 extern int max_hw_bps, max_hw_wps; 1485 extern GArray *hw_breakpoints, *hw_watchpoints; 1486 1487 #define cur_hw_wps (hw_watchpoints->len) 1488 #define cur_hw_bps (hw_breakpoints->len) 1489 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i)) 1490 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i)) 1491 1492 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc); 1493 int insert_hw_breakpoint(target_ulong pc); 1494 int delete_hw_breakpoint(target_ulong pc); 1495 1496 bool check_watchpoint_in_range(int i, target_ulong addr); 1497 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr); 1498 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type); 1499 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type); 1500 #endif 1501