xref: /openbmc/qemu/target/arm/hvf/hvf.c (revision e2d8cf9b5312ada63ffa7460dec7cf89cf0bd61e)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14 
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
21 
22 #include <mach/mach_time.h>
23 
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "target/arm/multiprocessing.h"
32 #include "trace/trace-target_arm_hvf.h"
33 #include "migration/vmstate.h"
34 
35 #include "exec/gdbstub.h"
36 
37 #define MDSCR_EL1_SS_SHIFT  0
38 #define MDSCR_EL1_MDE_SHIFT 15
39 
40 static const uint16_t dbgbcr_regs[] = {
41     HV_SYS_REG_DBGBCR0_EL1,
42     HV_SYS_REG_DBGBCR1_EL1,
43     HV_SYS_REG_DBGBCR2_EL1,
44     HV_SYS_REG_DBGBCR3_EL1,
45     HV_SYS_REG_DBGBCR4_EL1,
46     HV_SYS_REG_DBGBCR5_EL1,
47     HV_SYS_REG_DBGBCR6_EL1,
48     HV_SYS_REG_DBGBCR7_EL1,
49     HV_SYS_REG_DBGBCR8_EL1,
50     HV_SYS_REG_DBGBCR9_EL1,
51     HV_SYS_REG_DBGBCR10_EL1,
52     HV_SYS_REG_DBGBCR11_EL1,
53     HV_SYS_REG_DBGBCR12_EL1,
54     HV_SYS_REG_DBGBCR13_EL1,
55     HV_SYS_REG_DBGBCR14_EL1,
56     HV_SYS_REG_DBGBCR15_EL1,
57 };
58 
59 static const uint16_t dbgbvr_regs[] = {
60     HV_SYS_REG_DBGBVR0_EL1,
61     HV_SYS_REG_DBGBVR1_EL1,
62     HV_SYS_REG_DBGBVR2_EL1,
63     HV_SYS_REG_DBGBVR3_EL1,
64     HV_SYS_REG_DBGBVR4_EL1,
65     HV_SYS_REG_DBGBVR5_EL1,
66     HV_SYS_REG_DBGBVR6_EL1,
67     HV_SYS_REG_DBGBVR7_EL1,
68     HV_SYS_REG_DBGBVR8_EL1,
69     HV_SYS_REG_DBGBVR9_EL1,
70     HV_SYS_REG_DBGBVR10_EL1,
71     HV_SYS_REG_DBGBVR11_EL1,
72     HV_SYS_REG_DBGBVR12_EL1,
73     HV_SYS_REG_DBGBVR13_EL1,
74     HV_SYS_REG_DBGBVR14_EL1,
75     HV_SYS_REG_DBGBVR15_EL1,
76 };
77 
78 static const uint16_t dbgwcr_regs[] = {
79     HV_SYS_REG_DBGWCR0_EL1,
80     HV_SYS_REG_DBGWCR1_EL1,
81     HV_SYS_REG_DBGWCR2_EL1,
82     HV_SYS_REG_DBGWCR3_EL1,
83     HV_SYS_REG_DBGWCR4_EL1,
84     HV_SYS_REG_DBGWCR5_EL1,
85     HV_SYS_REG_DBGWCR6_EL1,
86     HV_SYS_REG_DBGWCR7_EL1,
87     HV_SYS_REG_DBGWCR8_EL1,
88     HV_SYS_REG_DBGWCR9_EL1,
89     HV_SYS_REG_DBGWCR10_EL1,
90     HV_SYS_REG_DBGWCR11_EL1,
91     HV_SYS_REG_DBGWCR12_EL1,
92     HV_SYS_REG_DBGWCR13_EL1,
93     HV_SYS_REG_DBGWCR14_EL1,
94     HV_SYS_REG_DBGWCR15_EL1,
95 };
96 
97 static const uint16_t dbgwvr_regs[] = {
98     HV_SYS_REG_DBGWVR0_EL1,
99     HV_SYS_REG_DBGWVR1_EL1,
100     HV_SYS_REG_DBGWVR2_EL1,
101     HV_SYS_REG_DBGWVR3_EL1,
102     HV_SYS_REG_DBGWVR4_EL1,
103     HV_SYS_REG_DBGWVR5_EL1,
104     HV_SYS_REG_DBGWVR6_EL1,
105     HV_SYS_REG_DBGWVR7_EL1,
106     HV_SYS_REG_DBGWVR8_EL1,
107     HV_SYS_REG_DBGWVR9_EL1,
108     HV_SYS_REG_DBGWVR10_EL1,
109     HV_SYS_REG_DBGWVR11_EL1,
110     HV_SYS_REG_DBGWVR12_EL1,
111     HV_SYS_REG_DBGWVR13_EL1,
112     HV_SYS_REG_DBGWVR14_EL1,
113     HV_SYS_REG_DBGWVR15_EL1,
114 };
115 
116 static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
117 {
118     uint64_t val;
119     hv_return_t ret;
120     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
121                                          &val);
122     assert_hvf_ok(ret);
123     return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
124 }
125 
126 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
127 {
128     uint64_t val;
129     hv_return_t ret;
130     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
131                                          &val);
132     assert_hvf_ok(ret);
133     return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
134 }
135 
136 void hvf_arm_init_debug(void)
137 {
138     hv_vcpu_config_t config;
139     config = hv_vcpu_config_create();
140 
141     max_hw_bps = hvf_arm_num_brps(config);
142     hw_breakpoints =
143         g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
144 
145     max_hw_wps = hvf_arm_num_wrps(config);
146     hw_watchpoints =
147         g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
148 }
149 
150 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
151         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
152 #define PL1_WRITE_MASK 0x4
153 
154 #define SYSREG_OP0_SHIFT      20
155 #define SYSREG_OP0_MASK       0x3
156 #define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
157 #define SYSREG_OP1_SHIFT      14
158 #define SYSREG_OP1_MASK       0x7
159 #define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
160 #define SYSREG_CRN_SHIFT      10
161 #define SYSREG_CRN_MASK       0xf
162 #define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
163 #define SYSREG_CRM_SHIFT      1
164 #define SYSREG_CRM_MASK       0xf
165 #define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
166 #define SYSREG_OP2_SHIFT      17
167 #define SYSREG_OP2_MASK       0x7
168 #define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
169 
170 #define SYSREG(op0, op1, crn, crm, op2) \
171     ((op0 << SYSREG_OP0_SHIFT) | \
172      (op1 << SYSREG_OP1_SHIFT) | \
173      (crn << SYSREG_CRN_SHIFT) | \
174      (crm << SYSREG_CRM_SHIFT) | \
175      (op2 << SYSREG_OP2_SHIFT))
176 #define SYSREG_MASK \
177     SYSREG(SYSREG_OP0_MASK, \
178            SYSREG_OP1_MASK, \
179            SYSREG_CRN_MASK, \
180            SYSREG_CRM_MASK, \
181            SYSREG_OP2_MASK)
182 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
183 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
184 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
185 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
186 #define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
187 #define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
188 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
189 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
190 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
191 #define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
192 #define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
193 #define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
194 #define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
195 #define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
196 #define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
197 #define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
198 
199 #define SYSREG_ICC_AP0R0_EL1     SYSREG(3, 0, 12, 8, 4)
200 #define SYSREG_ICC_AP0R1_EL1     SYSREG(3, 0, 12, 8, 5)
201 #define SYSREG_ICC_AP0R2_EL1     SYSREG(3, 0, 12, 8, 6)
202 #define SYSREG_ICC_AP0R3_EL1     SYSREG(3, 0, 12, 8, 7)
203 #define SYSREG_ICC_AP1R0_EL1     SYSREG(3, 0, 12, 9, 0)
204 #define SYSREG_ICC_AP1R1_EL1     SYSREG(3, 0, 12, 9, 1)
205 #define SYSREG_ICC_AP1R2_EL1     SYSREG(3, 0, 12, 9, 2)
206 #define SYSREG_ICC_AP1R3_EL1     SYSREG(3, 0, 12, 9, 3)
207 #define SYSREG_ICC_ASGI1R_EL1    SYSREG(3, 0, 12, 11, 6)
208 #define SYSREG_ICC_BPR0_EL1      SYSREG(3, 0, 12, 8, 3)
209 #define SYSREG_ICC_BPR1_EL1      SYSREG(3, 0, 12, 12, 3)
210 #define SYSREG_ICC_CTLR_EL1      SYSREG(3, 0, 12, 12, 4)
211 #define SYSREG_ICC_DIR_EL1       SYSREG(3, 0, 12, 11, 1)
212 #define SYSREG_ICC_EOIR0_EL1     SYSREG(3, 0, 12, 8, 1)
213 #define SYSREG_ICC_EOIR1_EL1     SYSREG(3, 0, 12, 12, 1)
214 #define SYSREG_ICC_HPPIR0_EL1    SYSREG(3, 0, 12, 8, 2)
215 #define SYSREG_ICC_HPPIR1_EL1    SYSREG(3, 0, 12, 12, 2)
216 #define SYSREG_ICC_IAR0_EL1      SYSREG(3, 0, 12, 8, 0)
217 #define SYSREG_ICC_IAR1_EL1      SYSREG(3, 0, 12, 12, 0)
218 #define SYSREG_ICC_IGRPEN0_EL1   SYSREG(3, 0, 12, 12, 6)
219 #define SYSREG_ICC_IGRPEN1_EL1   SYSREG(3, 0, 12, 12, 7)
220 #define SYSREG_ICC_PMR_EL1       SYSREG(3, 0, 4, 6, 0)
221 #define SYSREG_ICC_RPR_EL1       SYSREG(3, 0, 12, 11, 3)
222 #define SYSREG_ICC_SGI0R_EL1     SYSREG(3, 0, 12, 11, 7)
223 #define SYSREG_ICC_SGI1R_EL1     SYSREG(3, 0, 12, 11, 5)
224 #define SYSREG_ICC_SRE_EL1       SYSREG(3, 0, 12, 12, 5)
225 
226 #define SYSREG_MDSCR_EL1      SYSREG(2, 0, 0, 2, 2)
227 #define SYSREG_DBGBVR0_EL1    SYSREG(2, 0, 0, 0, 4)
228 #define SYSREG_DBGBCR0_EL1    SYSREG(2, 0, 0, 0, 5)
229 #define SYSREG_DBGWVR0_EL1    SYSREG(2, 0, 0, 0, 6)
230 #define SYSREG_DBGWCR0_EL1    SYSREG(2, 0, 0, 0, 7)
231 #define SYSREG_DBGBVR1_EL1    SYSREG(2, 0, 0, 1, 4)
232 #define SYSREG_DBGBCR1_EL1    SYSREG(2, 0, 0, 1, 5)
233 #define SYSREG_DBGWVR1_EL1    SYSREG(2, 0, 0, 1, 6)
234 #define SYSREG_DBGWCR1_EL1    SYSREG(2, 0, 0, 1, 7)
235 #define SYSREG_DBGBVR2_EL1    SYSREG(2, 0, 0, 2, 4)
236 #define SYSREG_DBGBCR2_EL1    SYSREG(2, 0, 0, 2, 5)
237 #define SYSREG_DBGWVR2_EL1    SYSREG(2, 0, 0, 2, 6)
238 #define SYSREG_DBGWCR2_EL1    SYSREG(2, 0, 0, 2, 7)
239 #define SYSREG_DBGBVR3_EL1    SYSREG(2, 0, 0, 3, 4)
240 #define SYSREG_DBGBCR3_EL1    SYSREG(2, 0, 0, 3, 5)
241 #define SYSREG_DBGWVR3_EL1    SYSREG(2, 0, 0, 3, 6)
242 #define SYSREG_DBGWCR3_EL1    SYSREG(2, 0, 0, 3, 7)
243 #define SYSREG_DBGBVR4_EL1    SYSREG(2, 0, 0, 4, 4)
244 #define SYSREG_DBGBCR4_EL1    SYSREG(2, 0, 0, 4, 5)
245 #define SYSREG_DBGWVR4_EL1    SYSREG(2, 0, 0, 4, 6)
246 #define SYSREG_DBGWCR4_EL1    SYSREG(2, 0, 0, 4, 7)
247 #define SYSREG_DBGBVR5_EL1    SYSREG(2, 0, 0, 5, 4)
248 #define SYSREG_DBGBCR5_EL1    SYSREG(2, 0, 0, 5, 5)
249 #define SYSREG_DBGWVR5_EL1    SYSREG(2, 0, 0, 5, 6)
250 #define SYSREG_DBGWCR5_EL1    SYSREG(2, 0, 0, 5, 7)
251 #define SYSREG_DBGBVR6_EL1    SYSREG(2, 0, 0, 6, 4)
252 #define SYSREG_DBGBCR6_EL1    SYSREG(2, 0, 0, 6, 5)
253 #define SYSREG_DBGWVR6_EL1    SYSREG(2, 0, 0, 6, 6)
254 #define SYSREG_DBGWCR6_EL1    SYSREG(2, 0, 0, 6, 7)
255 #define SYSREG_DBGBVR7_EL1    SYSREG(2, 0, 0, 7, 4)
256 #define SYSREG_DBGBCR7_EL1    SYSREG(2, 0, 0, 7, 5)
257 #define SYSREG_DBGWVR7_EL1    SYSREG(2, 0, 0, 7, 6)
258 #define SYSREG_DBGWCR7_EL1    SYSREG(2, 0, 0, 7, 7)
259 #define SYSREG_DBGBVR8_EL1    SYSREG(2, 0, 0, 8, 4)
260 #define SYSREG_DBGBCR8_EL1    SYSREG(2, 0, 0, 8, 5)
261 #define SYSREG_DBGWVR8_EL1    SYSREG(2, 0, 0, 8, 6)
262 #define SYSREG_DBGWCR8_EL1    SYSREG(2, 0, 0, 8, 7)
263 #define SYSREG_DBGBVR9_EL1    SYSREG(2, 0, 0, 9, 4)
264 #define SYSREG_DBGBCR9_EL1    SYSREG(2, 0, 0, 9, 5)
265 #define SYSREG_DBGWVR9_EL1    SYSREG(2, 0, 0, 9, 6)
266 #define SYSREG_DBGWCR9_EL1    SYSREG(2, 0, 0, 9, 7)
267 #define SYSREG_DBGBVR10_EL1   SYSREG(2, 0, 0, 10, 4)
268 #define SYSREG_DBGBCR10_EL1   SYSREG(2, 0, 0, 10, 5)
269 #define SYSREG_DBGWVR10_EL1   SYSREG(2, 0, 0, 10, 6)
270 #define SYSREG_DBGWCR10_EL1   SYSREG(2, 0, 0, 10, 7)
271 #define SYSREG_DBGBVR11_EL1   SYSREG(2, 0, 0, 11, 4)
272 #define SYSREG_DBGBCR11_EL1   SYSREG(2, 0, 0, 11, 5)
273 #define SYSREG_DBGWVR11_EL1   SYSREG(2, 0, 0, 11, 6)
274 #define SYSREG_DBGWCR11_EL1   SYSREG(2, 0, 0, 11, 7)
275 #define SYSREG_DBGBVR12_EL1   SYSREG(2, 0, 0, 12, 4)
276 #define SYSREG_DBGBCR12_EL1   SYSREG(2, 0, 0, 12, 5)
277 #define SYSREG_DBGWVR12_EL1   SYSREG(2, 0, 0, 12, 6)
278 #define SYSREG_DBGWCR12_EL1   SYSREG(2, 0, 0, 12, 7)
279 #define SYSREG_DBGBVR13_EL1   SYSREG(2, 0, 0, 13, 4)
280 #define SYSREG_DBGBCR13_EL1   SYSREG(2, 0, 0, 13, 5)
281 #define SYSREG_DBGWVR13_EL1   SYSREG(2, 0, 0, 13, 6)
282 #define SYSREG_DBGWCR13_EL1   SYSREG(2, 0, 0, 13, 7)
283 #define SYSREG_DBGBVR14_EL1   SYSREG(2, 0, 0, 14, 4)
284 #define SYSREG_DBGBCR14_EL1   SYSREG(2, 0, 0, 14, 5)
285 #define SYSREG_DBGWVR14_EL1   SYSREG(2, 0, 0, 14, 6)
286 #define SYSREG_DBGWCR14_EL1   SYSREG(2, 0, 0, 14, 7)
287 #define SYSREG_DBGBVR15_EL1   SYSREG(2, 0, 0, 15, 4)
288 #define SYSREG_DBGBCR15_EL1   SYSREG(2, 0, 0, 15, 5)
289 #define SYSREG_DBGWVR15_EL1   SYSREG(2, 0, 0, 15, 6)
290 #define SYSREG_DBGWCR15_EL1   SYSREG(2, 0, 0, 15, 7)
291 
292 #define WFX_IS_WFE (1 << 0)
293 
294 #define TMR_CTL_ENABLE  (1 << 0)
295 #define TMR_CTL_IMASK   (1 << 1)
296 #define TMR_CTL_ISTATUS (1 << 2)
297 
298 static void hvf_wfi(CPUState *cpu);
299 
300 typedef struct HVFVTimer {
301     /* Vtimer value during migration and paused state */
302     uint64_t vtimer_val;
303 } HVFVTimer;
304 
305 static HVFVTimer vtimer;
306 
307 typedef struct ARMHostCPUFeatures {
308     ARMISARegisters isar;
309     uint64_t features;
310     uint64_t midr;
311     uint32_t reset_sctlr;
312     const char *dtb_compatible;
313 } ARMHostCPUFeatures;
314 
315 static ARMHostCPUFeatures arm_host_cpu_features;
316 
317 struct hvf_reg_match {
318     int reg;
319     uint64_t offset;
320 };
321 
322 static const struct hvf_reg_match hvf_reg_match[] = {
323     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
324     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
325     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
326     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
327     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
328     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
329     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
330     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
331     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
332     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
333     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
334     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
335     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
336     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
337     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
338     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
339     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
340     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
341     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
342     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
343     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
344     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
345     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
346     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
347     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
348     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
349     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
350     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
351     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
352     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
353     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
354     { HV_REG_PC,   offsetof(CPUARMState, pc) },
355 };
356 
357 static const struct hvf_reg_match hvf_fpreg_match[] = {
358     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
359     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
360     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
361     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
362     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
363     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
364     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
365     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
366     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
367     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
368     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
369     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
370     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
371     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
372     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
373     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
374     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
375     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
376     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
377     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
378     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
379     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
380     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
381     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
382     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
383     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
384     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
385     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
386     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
387     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
388     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
389     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
390 };
391 
392 struct hvf_sreg_match {
393     int reg;
394     uint32_t key;
395     uint32_t cp_idx;
396 };
397 
398 static struct hvf_sreg_match hvf_sreg_match[] = {
399     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
400     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
401     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
402     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
403 
404     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
405     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
406     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
407     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
408 
409     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
410     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
411     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
412     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
413 
414     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
415     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
416     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
417     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
418 
419     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
420     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
421     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
422     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
423 
424     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
425     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
426     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
427     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
428 
429     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
430     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
431     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
432     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
433 
434     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
435     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
436     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
437     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
438 
439     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
440     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
441     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
442     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
443 
444     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
445     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
446     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
447     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
448 
449     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
450     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
451     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
452     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
453 
454     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
455     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
456     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
457     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
458 
459     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
460     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
461     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
462     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
463 
464     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
465     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
466     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
467     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
468 
469     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
470     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
471     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
472     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
473 
474     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
475     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
476     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
477     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
478 
479 #ifdef SYNC_NO_RAW_REGS
480     /*
481      * The registers below are manually synced on init because they are
482      * marked as NO_RAW. We still list them to make number space sync easier.
483      */
484     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
485     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
486     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
487     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
488 #endif
489     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
490     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
491     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
492     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
493     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
494 #ifdef SYNC_NO_MMFR0
495     /* We keep the hardware MMFR0 around. HW limits are there anyway */
496     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
497 #endif
498     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
499     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
500 
501     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
502     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
503     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
504     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
505     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
506     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
507 
508     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
509     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
510     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
511     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
512     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
513     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
514     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
515     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
516     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
517     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
518 
519     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
520     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
521     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
522     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
523     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
524     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
525     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
526     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
527     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
528     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
529     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
530     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
531     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
532     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
533     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
534     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
535     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
536     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
537     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
538     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
539 };
540 
541 int hvf_get_registers(CPUState *cpu)
542 {
543     ARMCPU *arm_cpu = ARM_CPU(cpu);
544     CPUARMState *env = &arm_cpu->env;
545     hv_return_t ret;
546     uint64_t val;
547     hv_simd_fp_uchar16_t fpval;
548     int i;
549 
550     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
551         ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
552         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
553         assert_hvf_ok(ret);
554     }
555 
556     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
557         ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
558                                       &fpval);
559         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
560         assert_hvf_ok(ret);
561     }
562 
563     val = 0;
564     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
565     assert_hvf_ok(ret);
566     vfp_set_fpcr(env, val);
567 
568     val = 0;
569     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
570     assert_hvf_ok(ret);
571     vfp_set_fpsr(env, val);
572 
573     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
574     assert_hvf_ok(ret);
575     pstate_write(env, val);
576 
577     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
578         if (hvf_sreg_match[i].cp_idx == -1) {
579             continue;
580         }
581 
582         if (cpu->accel->guest_debug_enabled) {
583             /* Handle debug registers */
584             switch (hvf_sreg_match[i].reg) {
585             case HV_SYS_REG_DBGBVR0_EL1:
586             case HV_SYS_REG_DBGBCR0_EL1:
587             case HV_SYS_REG_DBGWVR0_EL1:
588             case HV_SYS_REG_DBGWCR0_EL1:
589             case HV_SYS_REG_DBGBVR1_EL1:
590             case HV_SYS_REG_DBGBCR1_EL1:
591             case HV_SYS_REG_DBGWVR1_EL1:
592             case HV_SYS_REG_DBGWCR1_EL1:
593             case HV_SYS_REG_DBGBVR2_EL1:
594             case HV_SYS_REG_DBGBCR2_EL1:
595             case HV_SYS_REG_DBGWVR2_EL1:
596             case HV_SYS_REG_DBGWCR2_EL1:
597             case HV_SYS_REG_DBGBVR3_EL1:
598             case HV_SYS_REG_DBGBCR3_EL1:
599             case HV_SYS_REG_DBGWVR3_EL1:
600             case HV_SYS_REG_DBGWCR3_EL1:
601             case HV_SYS_REG_DBGBVR4_EL1:
602             case HV_SYS_REG_DBGBCR4_EL1:
603             case HV_SYS_REG_DBGWVR4_EL1:
604             case HV_SYS_REG_DBGWCR4_EL1:
605             case HV_SYS_REG_DBGBVR5_EL1:
606             case HV_SYS_REG_DBGBCR5_EL1:
607             case HV_SYS_REG_DBGWVR5_EL1:
608             case HV_SYS_REG_DBGWCR5_EL1:
609             case HV_SYS_REG_DBGBVR6_EL1:
610             case HV_SYS_REG_DBGBCR6_EL1:
611             case HV_SYS_REG_DBGWVR6_EL1:
612             case HV_SYS_REG_DBGWCR6_EL1:
613             case HV_SYS_REG_DBGBVR7_EL1:
614             case HV_SYS_REG_DBGBCR7_EL1:
615             case HV_SYS_REG_DBGWVR7_EL1:
616             case HV_SYS_REG_DBGWCR7_EL1:
617             case HV_SYS_REG_DBGBVR8_EL1:
618             case HV_SYS_REG_DBGBCR8_EL1:
619             case HV_SYS_REG_DBGWVR8_EL1:
620             case HV_SYS_REG_DBGWCR8_EL1:
621             case HV_SYS_REG_DBGBVR9_EL1:
622             case HV_SYS_REG_DBGBCR9_EL1:
623             case HV_SYS_REG_DBGWVR9_EL1:
624             case HV_SYS_REG_DBGWCR9_EL1:
625             case HV_SYS_REG_DBGBVR10_EL1:
626             case HV_SYS_REG_DBGBCR10_EL1:
627             case HV_SYS_REG_DBGWVR10_EL1:
628             case HV_SYS_REG_DBGWCR10_EL1:
629             case HV_SYS_REG_DBGBVR11_EL1:
630             case HV_SYS_REG_DBGBCR11_EL1:
631             case HV_SYS_REG_DBGWVR11_EL1:
632             case HV_SYS_REG_DBGWCR11_EL1:
633             case HV_SYS_REG_DBGBVR12_EL1:
634             case HV_SYS_REG_DBGBCR12_EL1:
635             case HV_SYS_REG_DBGWVR12_EL1:
636             case HV_SYS_REG_DBGWCR12_EL1:
637             case HV_SYS_REG_DBGBVR13_EL1:
638             case HV_SYS_REG_DBGBCR13_EL1:
639             case HV_SYS_REG_DBGWVR13_EL1:
640             case HV_SYS_REG_DBGWCR13_EL1:
641             case HV_SYS_REG_DBGBVR14_EL1:
642             case HV_SYS_REG_DBGBCR14_EL1:
643             case HV_SYS_REG_DBGWVR14_EL1:
644             case HV_SYS_REG_DBGWCR14_EL1:
645             case HV_SYS_REG_DBGBVR15_EL1:
646             case HV_SYS_REG_DBGBCR15_EL1:
647             case HV_SYS_REG_DBGWVR15_EL1:
648             case HV_SYS_REG_DBGWCR15_EL1: {
649                 /*
650                  * If the guest is being debugged, the vCPU's debug registers
651                  * are holding the gdbstub's view of the registers (set in
652                  * hvf_arch_update_guest_debug()).
653                  * Since the environment is used to store only the guest's view
654                  * of the registers, don't update it with the values from the
655                  * vCPU but simply keep the values from the previous
656                  * environment.
657                  */
658                 const ARMCPRegInfo *ri;
659                 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
660                 val = read_raw_cp_reg(env, ri);
661 
662                 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
663                 continue;
664             }
665             }
666         }
667 
668         ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
669         assert_hvf_ok(ret);
670 
671         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
672     }
673     assert(write_list_to_cpustate(arm_cpu));
674 
675     aarch64_restore_sp(env, arm_current_el(env));
676 
677     return 0;
678 }
679 
680 int hvf_put_registers(CPUState *cpu)
681 {
682     ARMCPU *arm_cpu = ARM_CPU(cpu);
683     CPUARMState *env = &arm_cpu->env;
684     hv_return_t ret;
685     uint64_t val;
686     hv_simd_fp_uchar16_t fpval;
687     int i;
688 
689     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
690         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
691         ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
692         assert_hvf_ok(ret);
693     }
694 
695     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
696         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
697         ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
698                                       fpval);
699         assert_hvf_ok(ret);
700     }
701 
702     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
703     assert_hvf_ok(ret);
704 
705     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
706     assert_hvf_ok(ret);
707 
708     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
709     assert_hvf_ok(ret);
710 
711     aarch64_save_sp(env, arm_current_el(env));
712 
713     assert(write_cpustate_to_list(arm_cpu, false));
714     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
715         if (hvf_sreg_match[i].cp_idx == -1) {
716             continue;
717         }
718 
719         if (cpu->accel->guest_debug_enabled) {
720             /* Handle debug registers */
721             switch (hvf_sreg_match[i].reg) {
722             case HV_SYS_REG_DBGBVR0_EL1:
723             case HV_SYS_REG_DBGBCR0_EL1:
724             case HV_SYS_REG_DBGWVR0_EL1:
725             case HV_SYS_REG_DBGWCR0_EL1:
726             case HV_SYS_REG_DBGBVR1_EL1:
727             case HV_SYS_REG_DBGBCR1_EL1:
728             case HV_SYS_REG_DBGWVR1_EL1:
729             case HV_SYS_REG_DBGWCR1_EL1:
730             case HV_SYS_REG_DBGBVR2_EL1:
731             case HV_SYS_REG_DBGBCR2_EL1:
732             case HV_SYS_REG_DBGWVR2_EL1:
733             case HV_SYS_REG_DBGWCR2_EL1:
734             case HV_SYS_REG_DBGBVR3_EL1:
735             case HV_SYS_REG_DBGBCR3_EL1:
736             case HV_SYS_REG_DBGWVR3_EL1:
737             case HV_SYS_REG_DBGWCR3_EL1:
738             case HV_SYS_REG_DBGBVR4_EL1:
739             case HV_SYS_REG_DBGBCR4_EL1:
740             case HV_SYS_REG_DBGWVR4_EL1:
741             case HV_SYS_REG_DBGWCR4_EL1:
742             case HV_SYS_REG_DBGBVR5_EL1:
743             case HV_SYS_REG_DBGBCR5_EL1:
744             case HV_SYS_REG_DBGWVR5_EL1:
745             case HV_SYS_REG_DBGWCR5_EL1:
746             case HV_SYS_REG_DBGBVR6_EL1:
747             case HV_SYS_REG_DBGBCR6_EL1:
748             case HV_SYS_REG_DBGWVR6_EL1:
749             case HV_SYS_REG_DBGWCR6_EL1:
750             case HV_SYS_REG_DBGBVR7_EL1:
751             case HV_SYS_REG_DBGBCR7_EL1:
752             case HV_SYS_REG_DBGWVR7_EL1:
753             case HV_SYS_REG_DBGWCR7_EL1:
754             case HV_SYS_REG_DBGBVR8_EL1:
755             case HV_SYS_REG_DBGBCR8_EL1:
756             case HV_SYS_REG_DBGWVR8_EL1:
757             case HV_SYS_REG_DBGWCR8_EL1:
758             case HV_SYS_REG_DBGBVR9_EL1:
759             case HV_SYS_REG_DBGBCR9_EL1:
760             case HV_SYS_REG_DBGWVR9_EL1:
761             case HV_SYS_REG_DBGWCR9_EL1:
762             case HV_SYS_REG_DBGBVR10_EL1:
763             case HV_SYS_REG_DBGBCR10_EL1:
764             case HV_SYS_REG_DBGWVR10_EL1:
765             case HV_SYS_REG_DBGWCR10_EL1:
766             case HV_SYS_REG_DBGBVR11_EL1:
767             case HV_SYS_REG_DBGBCR11_EL1:
768             case HV_SYS_REG_DBGWVR11_EL1:
769             case HV_SYS_REG_DBGWCR11_EL1:
770             case HV_SYS_REG_DBGBVR12_EL1:
771             case HV_SYS_REG_DBGBCR12_EL1:
772             case HV_SYS_REG_DBGWVR12_EL1:
773             case HV_SYS_REG_DBGWCR12_EL1:
774             case HV_SYS_REG_DBGBVR13_EL1:
775             case HV_SYS_REG_DBGBCR13_EL1:
776             case HV_SYS_REG_DBGWVR13_EL1:
777             case HV_SYS_REG_DBGWCR13_EL1:
778             case HV_SYS_REG_DBGBVR14_EL1:
779             case HV_SYS_REG_DBGBCR14_EL1:
780             case HV_SYS_REG_DBGWVR14_EL1:
781             case HV_SYS_REG_DBGWCR14_EL1:
782             case HV_SYS_REG_DBGBVR15_EL1:
783             case HV_SYS_REG_DBGBCR15_EL1:
784             case HV_SYS_REG_DBGWVR15_EL1:
785             case HV_SYS_REG_DBGWCR15_EL1:
786                 /*
787                  * If the guest is being debugged, the vCPU's debug registers
788                  * are already holding the gdbstub's view of the registers (set
789                  * in hvf_arch_update_guest_debug()).
790                  */
791                 continue;
792             }
793         }
794 
795         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
796         ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
797         assert_hvf_ok(ret);
798     }
799 
800     ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
801     assert_hvf_ok(ret);
802 
803     return 0;
804 }
805 
806 static void flush_cpu_state(CPUState *cpu)
807 {
808     if (cpu->vcpu_dirty) {
809         hvf_put_registers(cpu);
810         cpu->vcpu_dirty = false;
811     }
812 }
813 
814 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
815 {
816     hv_return_t r;
817 
818     flush_cpu_state(cpu);
819 
820     if (rt < 31) {
821         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
822         assert_hvf_ok(r);
823     }
824 }
825 
826 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
827 {
828     uint64_t val = 0;
829     hv_return_t r;
830 
831     flush_cpu_state(cpu);
832 
833     if (rt < 31) {
834         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
835         assert_hvf_ok(r);
836     }
837 
838     return val;
839 }
840 
841 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
842 {
843     ARMISARegisters host_isar = {};
844     const struct isar_regs {
845         int reg;
846         uint64_t *val;
847     } regs[] = {
848         { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
849         { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
850         { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
851         { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
852         { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
853         { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
854         /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
855         { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
856         { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
857         { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
858     };
859     hv_vcpu_t fd;
860     hv_return_t r = HV_SUCCESS;
861     hv_vcpu_exit_t *exit;
862     int i;
863 
864     ahcf->dtb_compatible = "arm,arm-v8";
865     ahcf->features = (1ULL << ARM_FEATURE_V8) |
866                      (1ULL << ARM_FEATURE_NEON) |
867                      (1ULL << ARM_FEATURE_AARCH64) |
868                      (1ULL << ARM_FEATURE_PMU) |
869                      (1ULL << ARM_FEATURE_GENERIC_TIMER);
870 
871     /* We set up a small vcpu to extract host registers */
872 
873     if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
874         return false;
875     }
876 
877     for (i = 0; i < ARRAY_SIZE(regs); i++) {
878         r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
879     }
880     r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
881     r |= hv_vcpu_destroy(fd);
882 
883     ahcf->isar = host_isar;
884 
885     /*
886      * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
887      * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
888      */
889     ahcf->reset_sctlr = 0x30100180;
890     /*
891      * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
892      * let's disable it on boot and then allow guest software to turn it on by
893      * setting it to 0.
894      */
895     ahcf->reset_sctlr |= 0x00800000;
896 
897     /* Make sure we don't advertise AArch32 support for EL0/EL1 */
898     if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
899         return false;
900     }
901 
902     return r == HV_SUCCESS;
903 }
904 
905 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
906 {
907     if (!arm_host_cpu_features.dtb_compatible) {
908         if (!hvf_enabled() ||
909             !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
910             /*
911              * We can't report this error yet, so flag that we need to
912              * in arm_cpu_realizefn().
913              */
914             cpu->host_cpu_probe_failed = true;
915             return;
916         }
917     }
918 
919     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
920     cpu->isar = arm_host_cpu_features.isar;
921     cpu->env.features = arm_host_cpu_features.features;
922     cpu->midr = arm_host_cpu_features.midr;
923     cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
924 }
925 
926 void hvf_arch_vcpu_destroy(CPUState *cpu)
927 {
928 }
929 
930 int hvf_arch_init_vcpu(CPUState *cpu)
931 {
932     ARMCPU *arm_cpu = ARM_CPU(cpu);
933     CPUARMState *env = &arm_cpu->env;
934     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
935     uint32_t sregs_cnt = 0;
936     uint64_t pfr;
937     hv_return_t ret;
938     int i;
939 
940     env->aarch64 = true;
941     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
942 
943     /* Allocate enough space for our sysreg sync */
944     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
945                                      sregs_match_len);
946     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
947                                     sregs_match_len);
948     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
949                                              arm_cpu->cpreg_vmstate_indexes,
950                                              sregs_match_len);
951     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
952                                             arm_cpu->cpreg_vmstate_values,
953                                             sregs_match_len);
954 
955     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
956 
957     /* Populate cp list for all known sysregs */
958     for (i = 0; i < sregs_match_len; i++) {
959         const ARMCPRegInfo *ri;
960         uint32_t key = hvf_sreg_match[i].key;
961 
962         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
963         if (ri) {
964             assert(!(ri->type & ARM_CP_NO_RAW));
965             hvf_sreg_match[i].cp_idx = sregs_cnt;
966             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
967         } else {
968             hvf_sreg_match[i].cp_idx = -1;
969         }
970     }
971     arm_cpu->cpreg_array_len = sregs_cnt;
972     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
973 
974     assert(write_cpustate_to_list(arm_cpu, false));
975 
976     /* Set CP_NO_RAW system registers on init */
977     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
978                               arm_cpu->midr);
979     assert_hvf_ok(ret);
980 
981     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
982                               arm_cpu->mp_affinity);
983     assert_hvf_ok(ret);
984 
985     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
986     assert_hvf_ok(ret);
987     pfr |= env->gicv3state ? (1 << 24) : 0;
988     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
989     assert_hvf_ok(ret);
990 
991     /* We're limited to underlying hardware caps, override internal versions */
992     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
993                               &arm_cpu->isar.id_aa64mmfr0);
994     assert_hvf_ok(ret);
995 
996     return 0;
997 }
998 
999 void hvf_kick_vcpu_thread(CPUState *cpu)
1000 {
1001     cpus_kick_thread(cpu);
1002     hv_vcpus_exit(&cpu->accel->fd, 1);
1003 }
1004 
1005 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
1006                                 uint32_t syndrome)
1007 {
1008     ARMCPU *arm_cpu = ARM_CPU(cpu);
1009     CPUARMState *env = &arm_cpu->env;
1010 
1011     cpu->exception_index = excp;
1012     env->exception.target_el = 1;
1013     env->exception.syndrome = syndrome;
1014 
1015     arm_cpu_do_interrupt(cpu);
1016 }
1017 
1018 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
1019 {
1020     int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu));
1021     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
1022 }
1023 
1024 /*
1025  * Handle a PSCI call.
1026  *
1027  * Returns 0 on success
1028  *         -1 when the PSCI call is unknown,
1029  */
1030 static bool hvf_handle_psci_call(CPUState *cpu)
1031 {
1032     ARMCPU *arm_cpu = ARM_CPU(cpu);
1033     CPUARMState *env = &arm_cpu->env;
1034     uint64_t param[4] = {
1035         env->xregs[0],
1036         env->xregs[1],
1037         env->xregs[2],
1038         env->xregs[3]
1039     };
1040     uint64_t context_id, mpidr;
1041     bool target_aarch64 = true;
1042     CPUState *target_cpu_state;
1043     ARMCPU *target_cpu;
1044     target_ulong entry;
1045     int target_el = 1;
1046     int32_t ret = 0;
1047 
1048     trace_hvf_psci_call(param[0], param[1], param[2], param[3],
1049                         arm_cpu_mp_affinity(arm_cpu));
1050 
1051     switch (param[0]) {
1052     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1053         ret = QEMU_PSCI_VERSION_1_1;
1054         break;
1055     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1056         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
1057         break;
1058     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1059     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1060         mpidr = param[1];
1061 
1062         switch (param[2]) {
1063         case 0:
1064             target_cpu_state = arm_get_cpu_by_id(mpidr);
1065             if (!target_cpu_state) {
1066                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1067                 break;
1068             }
1069             target_cpu = ARM_CPU(target_cpu_state);
1070 
1071             ret = target_cpu->power_state;
1072             break;
1073         default:
1074             /* Everything above affinity level 0 is always on. */
1075             ret = 0;
1076         }
1077         break;
1078     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1079         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1080         /*
1081          * QEMU reset and shutdown are async requests, but PSCI
1082          * mandates that we never return from the reset/shutdown
1083          * call, so power the CPU off now so it doesn't execute
1084          * anything further.
1085          */
1086         hvf_psci_cpu_off(arm_cpu);
1087         break;
1088     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1089         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1090         hvf_psci_cpu_off(arm_cpu);
1091         break;
1092     case QEMU_PSCI_0_1_FN_CPU_ON:
1093     case QEMU_PSCI_0_2_FN_CPU_ON:
1094     case QEMU_PSCI_0_2_FN64_CPU_ON:
1095         mpidr = param[1];
1096         entry = param[2];
1097         context_id = param[3];
1098         ret = arm_set_cpu_on(mpidr, entry, context_id,
1099                              target_el, target_aarch64);
1100         break;
1101     case QEMU_PSCI_0_1_FN_CPU_OFF:
1102     case QEMU_PSCI_0_2_FN_CPU_OFF:
1103         hvf_psci_cpu_off(arm_cpu);
1104         break;
1105     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1106     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1107     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1108         /* Affinity levels are not supported in QEMU */
1109         if (param[1] & 0xfffe0000) {
1110             ret = QEMU_PSCI_RET_INVALID_PARAMS;
1111             break;
1112         }
1113         /* Powerdown is not supported, we always go into WFI */
1114         env->xregs[0] = 0;
1115         hvf_wfi(cpu);
1116         break;
1117     case QEMU_PSCI_0_1_FN_MIGRATE:
1118     case QEMU_PSCI_0_2_FN_MIGRATE:
1119         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1120         break;
1121     case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1122         switch (param[1]) {
1123         case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1124         case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1125         case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1126         case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1127         case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1128         case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1129         case QEMU_PSCI_0_1_FN_CPU_ON:
1130         case QEMU_PSCI_0_2_FN_CPU_ON:
1131         case QEMU_PSCI_0_2_FN64_CPU_ON:
1132         case QEMU_PSCI_0_1_FN_CPU_OFF:
1133         case QEMU_PSCI_0_2_FN_CPU_OFF:
1134         case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1135         case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1136         case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1137         case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1138             ret = 0;
1139             break;
1140         case QEMU_PSCI_0_1_FN_MIGRATE:
1141         case QEMU_PSCI_0_2_FN_MIGRATE:
1142         default:
1143             ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1144         }
1145         break;
1146     default:
1147         return false;
1148     }
1149 
1150     env->xregs[0] = ret;
1151     return true;
1152 }
1153 
1154 static bool is_id_sysreg(uint32_t reg)
1155 {
1156     return SYSREG_OP0(reg) == 3 &&
1157            SYSREG_OP1(reg) == 0 &&
1158            SYSREG_CRN(reg) == 0 &&
1159            SYSREG_CRM(reg) >= 1 &&
1160            SYSREG_CRM(reg) < 8;
1161 }
1162 
1163 static uint32_t hvf_reg2cp_reg(uint32_t reg)
1164 {
1165     return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1166                               (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
1167                               (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
1168                               (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
1169                               (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
1170                               (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
1171 }
1172 
1173 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
1174 {
1175     ARMCPU *arm_cpu = ARM_CPU(cpu);
1176     CPUARMState *env = &arm_cpu->env;
1177     const ARMCPRegInfo *ri;
1178 
1179     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1180     if (ri) {
1181         if (ri->accessfn) {
1182             if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
1183                 return false;
1184             }
1185         }
1186         if (ri->type & ARM_CP_CONST) {
1187             *val = ri->resetvalue;
1188         } else if (ri->readfn) {
1189             *val = ri->readfn(env, ri);
1190         } else {
1191             *val = CPREG_FIELD64(env, ri);
1192         }
1193         trace_hvf_vgic_read(ri->name, *val);
1194         return true;
1195     }
1196 
1197     return false;
1198 }
1199 
1200 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
1201 {
1202     ARMCPU *arm_cpu = ARM_CPU(cpu);
1203     CPUARMState *env = &arm_cpu->env;
1204     uint64_t val = 0;
1205 
1206     switch (reg) {
1207     case SYSREG_CNTPCT_EL0:
1208         val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
1209               gt_cntfrq_period_ns(arm_cpu);
1210         break;
1211     case SYSREG_PMCR_EL0:
1212         val = env->cp15.c9_pmcr;
1213         break;
1214     case SYSREG_PMCCNTR_EL0:
1215         pmu_op_start(env);
1216         val = env->cp15.c15_ccnt;
1217         pmu_op_finish(env);
1218         break;
1219     case SYSREG_PMCNTENCLR_EL0:
1220         val = env->cp15.c9_pmcnten;
1221         break;
1222     case SYSREG_PMOVSCLR_EL0:
1223         val = env->cp15.c9_pmovsr;
1224         break;
1225     case SYSREG_PMSELR_EL0:
1226         val = env->cp15.c9_pmselr;
1227         break;
1228     case SYSREG_PMINTENCLR_EL1:
1229         val = env->cp15.c9_pminten;
1230         break;
1231     case SYSREG_PMCCFILTR_EL0:
1232         val = env->cp15.pmccfiltr_el0;
1233         break;
1234     case SYSREG_PMCNTENSET_EL0:
1235         val = env->cp15.c9_pmcnten;
1236         break;
1237     case SYSREG_PMUSERENR_EL0:
1238         val = env->cp15.c9_pmuserenr;
1239         break;
1240     case SYSREG_PMCEID0_EL0:
1241     case SYSREG_PMCEID1_EL0:
1242         /* We can't really count anything yet, declare all events invalid */
1243         val = 0;
1244         break;
1245     case SYSREG_OSLSR_EL1:
1246         val = env->cp15.oslsr_el1;
1247         break;
1248     case SYSREG_OSDLR_EL1:
1249         /* Dummy register */
1250         break;
1251     case SYSREG_ICC_AP0R0_EL1:
1252     case SYSREG_ICC_AP0R1_EL1:
1253     case SYSREG_ICC_AP0R2_EL1:
1254     case SYSREG_ICC_AP0R3_EL1:
1255     case SYSREG_ICC_AP1R0_EL1:
1256     case SYSREG_ICC_AP1R1_EL1:
1257     case SYSREG_ICC_AP1R2_EL1:
1258     case SYSREG_ICC_AP1R3_EL1:
1259     case SYSREG_ICC_ASGI1R_EL1:
1260     case SYSREG_ICC_BPR0_EL1:
1261     case SYSREG_ICC_BPR1_EL1:
1262     case SYSREG_ICC_DIR_EL1:
1263     case SYSREG_ICC_EOIR0_EL1:
1264     case SYSREG_ICC_EOIR1_EL1:
1265     case SYSREG_ICC_HPPIR0_EL1:
1266     case SYSREG_ICC_HPPIR1_EL1:
1267     case SYSREG_ICC_IAR0_EL1:
1268     case SYSREG_ICC_IAR1_EL1:
1269     case SYSREG_ICC_IGRPEN0_EL1:
1270     case SYSREG_ICC_IGRPEN1_EL1:
1271     case SYSREG_ICC_PMR_EL1:
1272     case SYSREG_ICC_SGI0R_EL1:
1273     case SYSREG_ICC_SGI1R_EL1:
1274     case SYSREG_ICC_SRE_EL1:
1275     case SYSREG_ICC_CTLR_EL1:
1276         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1277         if (!hvf_sysreg_read_cp(cpu, reg, &val)) {
1278             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1279         }
1280         break;
1281     case SYSREG_DBGBVR0_EL1:
1282     case SYSREG_DBGBVR1_EL1:
1283     case SYSREG_DBGBVR2_EL1:
1284     case SYSREG_DBGBVR3_EL1:
1285     case SYSREG_DBGBVR4_EL1:
1286     case SYSREG_DBGBVR5_EL1:
1287     case SYSREG_DBGBVR6_EL1:
1288     case SYSREG_DBGBVR7_EL1:
1289     case SYSREG_DBGBVR8_EL1:
1290     case SYSREG_DBGBVR9_EL1:
1291     case SYSREG_DBGBVR10_EL1:
1292     case SYSREG_DBGBVR11_EL1:
1293     case SYSREG_DBGBVR12_EL1:
1294     case SYSREG_DBGBVR13_EL1:
1295     case SYSREG_DBGBVR14_EL1:
1296     case SYSREG_DBGBVR15_EL1:
1297         val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1298         break;
1299     case SYSREG_DBGBCR0_EL1:
1300     case SYSREG_DBGBCR1_EL1:
1301     case SYSREG_DBGBCR2_EL1:
1302     case SYSREG_DBGBCR3_EL1:
1303     case SYSREG_DBGBCR4_EL1:
1304     case SYSREG_DBGBCR5_EL1:
1305     case SYSREG_DBGBCR6_EL1:
1306     case SYSREG_DBGBCR7_EL1:
1307     case SYSREG_DBGBCR8_EL1:
1308     case SYSREG_DBGBCR9_EL1:
1309     case SYSREG_DBGBCR10_EL1:
1310     case SYSREG_DBGBCR11_EL1:
1311     case SYSREG_DBGBCR12_EL1:
1312     case SYSREG_DBGBCR13_EL1:
1313     case SYSREG_DBGBCR14_EL1:
1314     case SYSREG_DBGBCR15_EL1:
1315         val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1316         break;
1317     case SYSREG_DBGWVR0_EL1:
1318     case SYSREG_DBGWVR1_EL1:
1319     case SYSREG_DBGWVR2_EL1:
1320     case SYSREG_DBGWVR3_EL1:
1321     case SYSREG_DBGWVR4_EL1:
1322     case SYSREG_DBGWVR5_EL1:
1323     case SYSREG_DBGWVR6_EL1:
1324     case SYSREG_DBGWVR7_EL1:
1325     case SYSREG_DBGWVR8_EL1:
1326     case SYSREG_DBGWVR9_EL1:
1327     case SYSREG_DBGWVR10_EL1:
1328     case SYSREG_DBGWVR11_EL1:
1329     case SYSREG_DBGWVR12_EL1:
1330     case SYSREG_DBGWVR13_EL1:
1331     case SYSREG_DBGWVR14_EL1:
1332     case SYSREG_DBGWVR15_EL1:
1333         val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1334         break;
1335     case SYSREG_DBGWCR0_EL1:
1336     case SYSREG_DBGWCR1_EL1:
1337     case SYSREG_DBGWCR2_EL1:
1338     case SYSREG_DBGWCR3_EL1:
1339     case SYSREG_DBGWCR4_EL1:
1340     case SYSREG_DBGWCR5_EL1:
1341     case SYSREG_DBGWCR6_EL1:
1342     case SYSREG_DBGWCR7_EL1:
1343     case SYSREG_DBGWCR8_EL1:
1344     case SYSREG_DBGWCR9_EL1:
1345     case SYSREG_DBGWCR10_EL1:
1346     case SYSREG_DBGWCR11_EL1:
1347     case SYSREG_DBGWCR12_EL1:
1348     case SYSREG_DBGWCR13_EL1:
1349     case SYSREG_DBGWCR14_EL1:
1350     case SYSREG_DBGWCR15_EL1:
1351         val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1352         break;
1353     default:
1354         if (is_id_sysreg(reg)) {
1355             /* ID system registers read as RES0 */
1356             val = 0;
1357             break;
1358         }
1359         cpu_synchronize_state(cpu);
1360         trace_hvf_unhandled_sysreg_read(env->pc, reg,
1361                                         SYSREG_OP0(reg),
1362                                         SYSREG_OP1(reg),
1363                                         SYSREG_CRN(reg),
1364                                         SYSREG_CRM(reg),
1365                                         SYSREG_OP2(reg));
1366         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1367         return 1;
1368     }
1369 
1370     trace_hvf_sysreg_read(reg,
1371                           SYSREG_OP0(reg),
1372                           SYSREG_OP1(reg),
1373                           SYSREG_CRN(reg),
1374                           SYSREG_CRM(reg),
1375                           SYSREG_OP2(reg),
1376                           val);
1377     hvf_set_reg(cpu, rt, val);
1378 
1379     return 0;
1380 }
1381 
1382 static void pmu_update_irq(CPUARMState *env)
1383 {
1384     ARMCPU *cpu = env_archcpu(env);
1385     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1386             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1387 }
1388 
1389 static bool pmu_event_supported(uint16_t number)
1390 {
1391     return false;
1392 }
1393 
1394 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1395  * the current EL, security state, and register configuration.
1396  */
1397 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1398 {
1399     uint64_t filter;
1400     bool enabled, filtered = true;
1401     int el = arm_current_el(env);
1402 
1403     enabled = (env->cp15.c9_pmcr & PMCRE) &&
1404               (env->cp15.c9_pmcnten & (1 << counter));
1405 
1406     if (counter == 31) {
1407         filter = env->cp15.pmccfiltr_el0;
1408     } else {
1409         filter = env->cp15.c14_pmevtyper[counter];
1410     }
1411 
1412     if (el == 0) {
1413         filtered = filter & PMXEVTYPER_U;
1414     } else if (el == 1) {
1415         filtered = filter & PMXEVTYPER_P;
1416     }
1417 
1418     if (counter != 31) {
1419         /*
1420          * If not checking PMCCNTR, ensure the counter is setup to an event we
1421          * support
1422          */
1423         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1424         if (!pmu_event_supported(event)) {
1425             return false;
1426         }
1427     }
1428 
1429     return enabled && !filtered;
1430 }
1431 
1432 static void pmswinc_write(CPUARMState *env, uint64_t value)
1433 {
1434     unsigned int i;
1435     for (i = 0; i < pmu_num_counters(env); i++) {
1436         /* Increment a counter's count iff: */
1437         if ((value & (1 << i)) && /* counter's bit is set */
1438                 /* counter is enabled and not filtered */
1439                 pmu_counter_enabled(env, i) &&
1440                 /* counter is SW_INCR */
1441                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1442             /*
1443              * Detect if this write causes an overflow since we can't predict
1444              * PMSWINC overflows like we can for other events
1445              */
1446             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1447 
1448             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1449                 env->cp15.c9_pmovsr |= (1 << i);
1450                 pmu_update_irq(env);
1451             }
1452 
1453             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1454         }
1455     }
1456 }
1457 
1458 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1459 {
1460     ARMCPU *arm_cpu = ARM_CPU(cpu);
1461     CPUARMState *env = &arm_cpu->env;
1462     const ARMCPRegInfo *ri;
1463 
1464     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1465 
1466     if (ri) {
1467         if (ri->accessfn) {
1468             if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1469                 return false;
1470             }
1471         }
1472         if (ri->writefn) {
1473             ri->writefn(env, ri, val);
1474         } else {
1475             CPREG_FIELD64(env, ri) = val;
1476         }
1477 
1478         trace_hvf_vgic_write(ri->name, val);
1479         return true;
1480     }
1481 
1482     return false;
1483 }
1484 
1485 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1486 {
1487     ARMCPU *arm_cpu = ARM_CPU(cpu);
1488     CPUARMState *env = &arm_cpu->env;
1489 
1490     trace_hvf_sysreg_write(reg,
1491                            SYSREG_OP0(reg),
1492                            SYSREG_OP1(reg),
1493                            SYSREG_CRN(reg),
1494                            SYSREG_CRM(reg),
1495                            SYSREG_OP2(reg),
1496                            val);
1497 
1498     switch (reg) {
1499     case SYSREG_PMCCNTR_EL0:
1500         pmu_op_start(env);
1501         env->cp15.c15_ccnt = val;
1502         pmu_op_finish(env);
1503         break;
1504     case SYSREG_PMCR_EL0:
1505         pmu_op_start(env);
1506 
1507         if (val & PMCRC) {
1508             /* The counter has been reset */
1509             env->cp15.c15_ccnt = 0;
1510         }
1511 
1512         if (val & PMCRP) {
1513             unsigned int i;
1514             for (i = 0; i < pmu_num_counters(env); i++) {
1515                 env->cp15.c14_pmevcntr[i] = 0;
1516             }
1517         }
1518 
1519         env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1520         env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1521 
1522         pmu_op_finish(env);
1523         break;
1524     case SYSREG_PMUSERENR_EL0:
1525         env->cp15.c9_pmuserenr = val & 0xf;
1526         break;
1527     case SYSREG_PMCNTENSET_EL0:
1528         env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1529         break;
1530     case SYSREG_PMCNTENCLR_EL0:
1531         env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1532         break;
1533     case SYSREG_PMINTENCLR_EL1:
1534         pmu_op_start(env);
1535         env->cp15.c9_pminten |= val;
1536         pmu_op_finish(env);
1537         break;
1538     case SYSREG_PMOVSCLR_EL0:
1539         pmu_op_start(env);
1540         env->cp15.c9_pmovsr &= ~val;
1541         pmu_op_finish(env);
1542         break;
1543     case SYSREG_PMSWINC_EL0:
1544         pmu_op_start(env);
1545         pmswinc_write(env, val);
1546         pmu_op_finish(env);
1547         break;
1548     case SYSREG_PMSELR_EL0:
1549         env->cp15.c9_pmselr = val & 0x1f;
1550         break;
1551     case SYSREG_PMCCFILTR_EL0:
1552         pmu_op_start(env);
1553         env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1554         pmu_op_finish(env);
1555         break;
1556     case SYSREG_OSLAR_EL1:
1557         env->cp15.oslsr_el1 = val & 1;
1558         break;
1559     case SYSREG_OSDLR_EL1:
1560         /* Dummy register */
1561         break;
1562     case SYSREG_ICC_AP0R0_EL1:
1563     case SYSREG_ICC_AP0R1_EL1:
1564     case SYSREG_ICC_AP0R2_EL1:
1565     case SYSREG_ICC_AP0R3_EL1:
1566     case SYSREG_ICC_AP1R0_EL1:
1567     case SYSREG_ICC_AP1R1_EL1:
1568     case SYSREG_ICC_AP1R2_EL1:
1569     case SYSREG_ICC_AP1R3_EL1:
1570     case SYSREG_ICC_ASGI1R_EL1:
1571     case SYSREG_ICC_BPR0_EL1:
1572     case SYSREG_ICC_BPR1_EL1:
1573     case SYSREG_ICC_CTLR_EL1:
1574     case SYSREG_ICC_DIR_EL1:
1575     case SYSREG_ICC_EOIR0_EL1:
1576     case SYSREG_ICC_EOIR1_EL1:
1577     case SYSREG_ICC_HPPIR0_EL1:
1578     case SYSREG_ICC_HPPIR1_EL1:
1579     case SYSREG_ICC_IAR0_EL1:
1580     case SYSREG_ICC_IAR1_EL1:
1581     case SYSREG_ICC_IGRPEN0_EL1:
1582     case SYSREG_ICC_IGRPEN1_EL1:
1583     case SYSREG_ICC_PMR_EL1:
1584     case SYSREG_ICC_SGI0R_EL1:
1585     case SYSREG_ICC_SGI1R_EL1:
1586     case SYSREG_ICC_SRE_EL1:
1587         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1588         if (!hvf_sysreg_write_cp(cpu, reg, val)) {
1589             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1590         }
1591         break;
1592     case SYSREG_MDSCR_EL1:
1593         env->cp15.mdscr_el1 = val;
1594         break;
1595     case SYSREG_DBGBVR0_EL1:
1596     case SYSREG_DBGBVR1_EL1:
1597     case SYSREG_DBGBVR2_EL1:
1598     case SYSREG_DBGBVR3_EL1:
1599     case SYSREG_DBGBVR4_EL1:
1600     case SYSREG_DBGBVR5_EL1:
1601     case SYSREG_DBGBVR6_EL1:
1602     case SYSREG_DBGBVR7_EL1:
1603     case SYSREG_DBGBVR8_EL1:
1604     case SYSREG_DBGBVR9_EL1:
1605     case SYSREG_DBGBVR10_EL1:
1606     case SYSREG_DBGBVR11_EL1:
1607     case SYSREG_DBGBVR12_EL1:
1608     case SYSREG_DBGBVR13_EL1:
1609     case SYSREG_DBGBVR14_EL1:
1610     case SYSREG_DBGBVR15_EL1:
1611         env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1612         break;
1613     case SYSREG_DBGBCR0_EL1:
1614     case SYSREG_DBGBCR1_EL1:
1615     case SYSREG_DBGBCR2_EL1:
1616     case SYSREG_DBGBCR3_EL1:
1617     case SYSREG_DBGBCR4_EL1:
1618     case SYSREG_DBGBCR5_EL1:
1619     case SYSREG_DBGBCR6_EL1:
1620     case SYSREG_DBGBCR7_EL1:
1621     case SYSREG_DBGBCR8_EL1:
1622     case SYSREG_DBGBCR9_EL1:
1623     case SYSREG_DBGBCR10_EL1:
1624     case SYSREG_DBGBCR11_EL1:
1625     case SYSREG_DBGBCR12_EL1:
1626     case SYSREG_DBGBCR13_EL1:
1627     case SYSREG_DBGBCR14_EL1:
1628     case SYSREG_DBGBCR15_EL1:
1629         env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1630         break;
1631     case SYSREG_DBGWVR0_EL1:
1632     case SYSREG_DBGWVR1_EL1:
1633     case SYSREG_DBGWVR2_EL1:
1634     case SYSREG_DBGWVR3_EL1:
1635     case SYSREG_DBGWVR4_EL1:
1636     case SYSREG_DBGWVR5_EL1:
1637     case SYSREG_DBGWVR6_EL1:
1638     case SYSREG_DBGWVR7_EL1:
1639     case SYSREG_DBGWVR8_EL1:
1640     case SYSREG_DBGWVR9_EL1:
1641     case SYSREG_DBGWVR10_EL1:
1642     case SYSREG_DBGWVR11_EL1:
1643     case SYSREG_DBGWVR12_EL1:
1644     case SYSREG_DBGWVR13_EL1:
1645     case SYSREG_DBGWVR14_EL1:
1646     case SYSREG_DBGWVR15_EL1:
1647         env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1648         break;
1649     case SYSREG_DBGWCR0_EL1:
1650     case SYSREG_DBGWCR1_EL1:
1651     case SYSREG_DBGWCR2_EL1:
1652     case SYSREG_DBGWCR3_EL1:
1653     case SYSREG_DBGWCR4_EL1:
1654     case SYSREG_DBGWCR5_EL1:
1655     case SYSREG_DBGWCR6_EL1:
1656     case SYSREG_DBGWCR7_EL1:
1657     case SYSREG_DBGWCR8_EL1:
1658     case SYSREG_DBGWCR9_EL1:
1659     case SYSREG_DBGWCR10_EL1:
1660     case SYSREG_DBGWCR11_EL1:
1661     case SYSREG_DBGWCR12_EL1:
1662     case SYSREG_DBGWCR13_EL1:
1663     case SYSREG_DBGWCR14_EL1:
1664     case SYSREG_DBGWCR15_EL1:
1665         env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1666         break;
1667     default:
1668         cpu_synchronize_state(cpu);
1669         trace_hvf_unhandled_sysreg_write(env->pc, reg,
1670                                          SYSREG_OP0(reg),
1671                                          SYSREG_OP1(reg),
1672                                          SYSREG_CRN(reg),
1673                                          SYSREG_CRM(reg),
1674                                          SYSREG_OP2(reg));
1675         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1676         return 1;
1677     }
1678 
1679     return 0;
1680 }
1681 
1682 static int hvf_inject_interrupts(CPUState *cpu)
1683 {
1684     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1685         trace_hvf_inject_fiq();
1686         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
1687                                       true);
1688     }
1689 
1690     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1691         trace_hvf_inject_irq();
1692         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
1693                                       true);
1694     }
1695 
1696     return 0;
1697 }
1698 
1699 static uint64_t hvf_vtimer_val_raw(void)
1700 {
1701     /*
1702      * mach_absolute_time() returns the vtimer value without the VM
1703      * offset that we define. Add our own offset on top.
1704      */
1705     return mach_absolute_time() - hvf_state->vtimer_offset;
1706 }
1707 
1708 static uint64_t hvf_vtimer_val(void)
1709 {
1710     if (!runstate_is_running()) {
1711         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1712         return vtimer.vtimer_val;
1713     }
1714 
1715     return hvf_vtimer_val_raw();
1716 }
1717 
1718 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1719 {
1720     /*
1721      * Use pselect to sleep so that other threads can IPI us while we're
1722      * sleeping.
1723      */
1724     qatomic_set_mb(&cpu->thread_kicked, false);
1725     bql_unlock();
1726     pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
1727     bql_lock();
1728 }
1729 
1730 static void hvf_wfi(CPUState *cpu)
1731 {
1732     ARMCPU *arm_cpu = ARM_CPU(cpu);
1733     struct timespec ts;
1734     hv_return_t r;
1735     uint64_t ctl;
1736     uint64_t cval;
1737     int64_t ticks_to_sleep;
1738     uint64_t seconds;
1739     uint64_t nanos;
1740     uint32_t cntfrq;
1741 
1742     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1743         /* Interrupt pending, no need to wait */
1744         return;
1745     }
1746 
1747     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1748     assert_hvf_ok(r);
1749 
1750     if (!(ctl & 1) || (ctl & 2)) {
1751         /* Timer disabled or masked, just wait for an IPI. */
1752         hvf_wait_for_ipi(cpu, NULL);
1753         return;
1754     }
1755 
1756     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1757     assert_hvf_ok(r);
1758 
1759     ticks_to_sleep = cval - hvf_vtimer_val();
1760     if (ticks_to_sleep < 0) {
1761         return;
1762     }
1763 
1764     cntfrq = gt_cntfrq_period_ns(arm_cpu);
1765     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1766     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1767     nanos = ticks_to_sleep * cntfrq;
1768 
1769     /*
1770      * Don't sleep for less than the time a context switch would take,
1771      * so that we can satisfy fast timer requests on the same CPU.
1772      * Measurements on M1 show the sweet spot to be ~2ms.
1773      */
1774     if (!seconds && nanos < (2 * SCALE_MS)) {
1775         return;
1776     }
1777 
1778     ts = (struct timespec) { seconds, nanos };
1779     hvf_wait_for_ipi(cpu, &ts);
1780 }
1781 
1782 static void hvf_sync_vtimer(CPUState *cpu)
1783 {
1784     ARMCPU *arm_cpu = ARM_CPU(cpu);
1785     hv_return_t r;
1786     uint64_t ctl;
1787     bool irq_state;
1788 
1789     if (!cpu->accel->vtimer_masked) {
1790         /* We will get notified on vtimer changes by hvf, nothing to do */
1791         return;
1792     }
1793 
1794     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1795     assert_hvf_ok(r);
1796 
1797     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1798                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1799     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1800 
1801     if (!irq_state) {
1802         /* Timer no longer asserting, we can unmask it */
1803         hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
1804         cpu->accel->vtimer_masked = false;
1805     }
1806 }
1807 
1808 int hvf_vcpu_exec(CPUState *cpu)
1809 {
1810     ARMCPU *arm_cpu = ARM_CPU(cpu);
1811     CPUARMState *env = &arm_cpu->env;
1812     int ret;
1813     hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
1814     hv_return_t r;
1815     bool advance_pc = false;
1816 
1817     if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
1818         hvf_inject_interrupts(cpu)) {
1819         return EXCP_INTERRUPT;
1820     }
1821 
1822     if (cpu->halted) {
1823         return EXCP_HLT;
1824     }
1825 
1826     flush_cpu_state(cpu);
1827 
1828     bql_unlock();
1829     assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
1830 
1831     /* handle VMEXIT */
1832     uint64_t exit_reason = hvf_exit->reason;
1833     uint64_t syndrome = hvf_exit->exception.syndrome;
1834     uint32_t ec = syn_get_ec(syndrome);
1835 
1836     ret = 0;
1837     bql_lock();
1838     switch (exit_reason) {
1839     case HV_EXIT_REASON_EXCEPTION:
1840         /* This is the main one, handle below. */
1841         break;
1842     case HV_EXIT_REASON_VTIMER_ACTIVATED:
1843         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1844         cpu->accel->vtimer_masked = true;
1845         return 0;
1846     case HV_EXIT_REASON_CANCELED:
1847         /* we got kicked, no exit to process */
1848         return 0;
1849     default:
1850         g_assert_not_reached();
1851     }
1852 
1853     hvf_sync_vtimer(cpu);
1854 
1855     switch (ec) {
1856     case EC_SOFTWARESTEP: {
1857         ret = EXCP_DEBUG;
1858 
1859         if (!cpu->singlestep_enabled) {
1860             error_report("EC_SOFTWARESTEP but single-stepping not enabled");
1861         }
1862         break;
1863     }
1864     case EC_AA64_BKPT: {
1865         ret = EXCP_DEBUG;
1866 
1867         cpu_synchronize_state(cpu);
1868 
1869         if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
1870             /* Re-inject into the guest */
1871             ret = 0;
1872             hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
1873         }
1874         break;
1875     }
1876     case EC_BREAKPOINT: {
1877         ret = EXCP_DEBUG;
1878 
1879         cpu_synchronize_state(cpu);
1880 
1881         if (!find_hw_breakpoint(cpu, env->pc)) {
1882             error_report("EC_BREAKPOINT but unknown hw breakpoint");
1883         }
1884         break;
1885     }
1886     case EC_WATCHPOINT: {
1887         ret = EXCP_DEBUG;
1888 
1889         cpu_synchronize_state(cpu);
1890 
1891         CPUWatchpoint *wp =
1892             find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
1893         if (!wp) {
1894             error_report("EXCP_DEBUG but unknown hw watchpoint");
1895         }
1896         cpu->watchpoint_hit = wp;
1897         break;
1898     }
1899     case EC_DATAABORT: {
1900         bool isv = syndrome & ARM_EL_ISV;
1901         bool iswrite = (syndrome >> 6) & 1;
1902         bool s1ptw = (syndrome >> 7) & 1;
1903         uint32_t sas = (syndrome >> 22) & 3;
1904         uint32_t len = 1 << sas;
1905         uint32_t srt = (syndrome >> 16) & 0x1f;
1906         uint32_t cm = (syndrome >> 8) & 0x1;
1907         uint64_t val = 0;
1908 
1909         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1910                              hvf_exit->exception.physical_address, isv,
1911                              iswrite, s1ptw, len, srt);
1912 
1913         if (cm) {
1914             /* We don't cache MMIO regions */
1915             advance_pc = true;
1916             break;
1917         }
1918 
1919         assert(isv);
1920 
1921         if (iswrite) {
1922             val = hvf_get_reg(cpu, srt);
1923             address_space_write(&address_space_memory,
1924                                 hvf_exit->exception.physical_address,
1925                                 MEMTXATTRS_UNSPECIFIED, &val, len);
1926         } else {
1927             address_space_read(&address_space_memory,
1928                                hvf_exit->exception.physical_address,
1929                                MEMTXATTRS_UNSPECIFIED, &val, len);
1930             hvf_set_reg(cpu, srt, val);
1931         }
1932 
1933         advance_pc = true;
1934         break;
1935     }
1936     case EC_SYSTEMREGISTERTRAP: {
1937         bool isread = (syndrome >> 0) & 1;
1938         uint32_t rt = (syndrome >> 5) & 0x1f;
1939         uint32_t reg = syndrome & SYSREG_MASK;
1940         uint64_t val;
1941         int sysreg_ret = 0;
1942 
1943         if (isread) {
1944             sysreg_ret = hvf_sysreg_read(cpu, reg, rt);
1945         } else {
1946             val = hvf_get_reg(cpu, rt);
1947             sysreg_ret = hvf_sysreg_write(cpu, reg, val);
1948         }
1949 
1950         advance_pc = !sysreg_ret;
1951         break;
1952     }
1953     case EC_WFX_TRAP:
1954         advance_pc = true;
1955         if (!(syndrome & WFX_IS_WFE)) {
1956             hvf_wfi(cpu);
1957         }
1958         break;
1959     case EC_AA64_HVC:
1960         cpu_synchronize_state(cpu);
1961         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1962             if (!hvf_handle_psci_call(cpu)) {
1963                 trace_hvf_unknown_hvc(env->xregs[0]);
1964                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1965                 env->xregs[0] = -1;
1966             }
1967         } else {
1968             trace_hvf_unknown_hvc(env->xregs[0]);
1969             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1970         }
1971         break;
1972     case EC_AA64_SMC:
1973         cpu_synchronize_state(cpu);
1974         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1975             advance_pc = true;
1976 
1977             if (!hvf_handle_psci_call(cpu)) {
1978                 trace_hvf_unknown_smc(env->xregs[0]);
1979                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1980                 env->xregs[0] = -1;
1981             }
1982         } else {
1983             trace_hvf_unknown_smc(env->xregs[0]);
1984             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1985         }
1986         break;
1987     default:
1988         cpu_synchronize_state(cpu);
1989         trace_hvf_exit(syndrome, ec, env->pc);
1990         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1991     }
1992 
1993     if (advance_pc) {
1994         uint64_t pc;
1995 
1996         flush_cpu_state(cpu);
1997 
1998         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
1999         assert_hvf_ok(r);
2000         pc += 4;
2001         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
2002         assert_hvf_ok(r);
2003 
2004         /* Handle single-stepping over instructions which trigger a VM exit */
2005         if (cpu->singlestep_enabled) {
2006             ret = EXCP_DEBUG;
2007         }
2008     }
2009 
2010     return ret;
2011 }
2012 
2013 static const VMStateDescription vmstate_hvf_vtimer = {
2014     .name = "hvf-vtimer",
2015     .version_id = 1,
2016     .minimum_version_id = 1,
2017     .fields = (const VMStateField[]) {
2018         VMSTATE_UINT64(vtimer_val, HVFVTimer),
2019         VMSTATE_END_OF_LIST()
2020     },
2021 };
2022 
2023 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
2024 {
2025     HVFVTimer *s = opaque;
2026 
2027     if (running) {
2028         /* Update vtimer offset on all CPUs */
2029         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
2030         cpu_synchronize_all_states();
2031     } else {
2032         /* Remember vtimer value on every pause */
2033         s->vtimer_val = hvf_vtimer_val_raw();
2034     }
2035 }
2036 
2037 int hvf_arch_init(void)
2038 {
2039     hvf_state->vtimer_offset = mach_absolute_time();
2040     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
2041     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
2042 
2043     hvf_arm_init_debug();
2044 
2045     return 0;
2046 }
2047 
2048 static const uint32_t brk_insn = 0xd4200000;
2049 
2050 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2051 {
2052     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2053         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2054         return -EINVAL;
2055     }
2056     return 0;
2057 }
2058 
2059 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2060 {
2061     static uint32_t brk;
2062 
2063     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
2064         brk != brk_insn ||
2065         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2066         return -EINVAL;
2067     }
2068     return 0;
2069 }
2070 
2071 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2072 {
2073     switch (type) {
2074     case GDB_BREAKPOINT_HW:
2075         return insert_hw_breakpoint(addr);
2076     case GDB_WATCHPOINT_READ:
2077     case GDB_WATCHPOINT_WRITE:
2078     case GDB_WATCHPOINT_ACCESS:
2079         return insert_hw_watchpoint(addr, len, type);
2080     default:
2081         return -ENOSYS;
2082     }
2083 }
2084 
2085 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2086 {
2087     switch (type) {
2088     case GDB_BREAKPOINT_HW:
2089         return delete_hw_breakpoint(addr);
2090     case GDB_WATCHPOINT_READ:
2091     case GDB_WATCHPOINT_WRITE:
2092     case GDB_WATCHPOINT_ACCESS:
2093         return delete_hw_watchpoint(addr, len, type);
2094     default:
2095         return -ENOSYS;
2096     }
2097 }
2098 
2099 void hvf_arch_remove_all_hw_breakpoints(void)
2100 {
2101     if (cur_hw_wps > 0) {
2102         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
2103     }
2104     if (cur_hw_bps > 0) {
2105         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
2106     }
2107 }
2108 
2109 /*
2110  * Update the vCPU with the gdbstub's view of debug registers. This view
2111  * consists of all hardware breakpoints and watchpoints inserted so far while
2112  * debugging the guest.
2113  */
2114 static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
2115 {
2116     hv_return_t r = HV_SUCCESS;
2117     int i;
2118 
2119     for (i = 0; i < cur_hw_bps; i++) {
2120         HWBreakpoint *bp = get_hw_bp(i);
2121         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
2122         assert_hvf_ok(r);
2123         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
2124         assert_hvf_ok(r);
2125     }
2126     for (i = cur_hw_bps; i < max_hw_bps; i++) {
2127         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
2128         assert_hvf_ok(r);
2129         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
2130         assert_hvf_ok(r);
2131     }
2132 
2133     for (i = 0; i < cur_hw_wps; i++) {
2134         HWWatchpoint *wp = get_hw_wp(i);
2135         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
2136         assert_hvf_ok(r);
2137         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
2138         assert_hvf_ok(r);
2139     }
2140     for (i = cur_hw_wps; i < max_hw_wps; i++) {
2141         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
2142         assert_hvf_ok(r);
2143         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
2144         assert_hvf_ok(r);
2145     }
2146 }
2147 
2148 /*
2149  * Update the vCPU with the guest's view of debug registers. This view is kept
2150  * in the environment at all times.
2151  */
2152 static void hvf_put_guest_debug_registers(CPUState *cpu)
2153 {
2154     ARMCPU *arm_cpu = ARM_CPU(cpu);
2155     CPUARMState *env = &arm_cpu->env;
2156     hv_return_t r = HV_SUCCESS;
2157     int i;
2158 
2159     for (i = 0; i < max_hw_bps; i++) {
2160         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
2161                                 env->cp15.dbgbcr[i]);
2162         assert_hvf_ok(r);
2163         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
2164                                 env->cp15.dbgbvr[i]);
2165         assert_hvf_ok(r);
2166     }
2167 
2168     for (i = 0; i < max_hw_wps; i++) {
2169         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
2170                                 env->cp15.dbgwcr[i]);
2171         assert_hvf_ok(r);
2172         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
2173                                 env->cp15.dbgwvr[i]);
2174         assert_hvf_ok(r);
2175     }
2176 }
2177 
2178 static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
2179 {
2180     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
2181 }
2182 
2183 static void hvf_arch_set_traps(void)
2184 {
2185     CPUState *cpu;
2186     bool should_enable_traps = false;
2187     hv_return_t r = HV_SUCCESS;
2188 
2189     /* Check whether guest debugging is enabled for at least one vCPU; if it
2190      * is, enable exiting the guest on all vCPUs */
2191     CPU_FOREACH(cpu) {
2192         should_enable_traps |= cpu->accel->guest_debug_enabled;
2193     }
2194     CPU_FOREACH(cpu) {
2195         /* Set whether debug exceptions exit the guest */
2196         r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
2197                                               should_enable_traps);
2198         assert_hvf_ok(r);
2199 
2200         /* Set whether accesses to debug registers exit the guest */
2201         r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
2202                                                 should_enable_traps);
2203         assert_hvf_ok(r);
2204     }
2205 }
2206 
2207 void hvf_arch_update_guest_debug(CPUState *cpu)
2208 {
2209     ARMCPU *arm_cpu = ARM_CPU(cpu);
2210     CPUARMState *env = &arm_cpu->env;
2211 
2212     /* Check whether guest debugging is enabled */
2213     cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
2214                                     hvf_sw_breakpoints_active(cpu) ||
2215                                     hvf_arm_hw_debug_active(cpu);
2216 
2217     /* Update debug registers */
2218     if (cpu->accel->guest_debug_enabled) {
2219         hvf_put_gdbstub_debug_registers(cpu);
2220     } else {
2221         hvf_put_guest_debug_registers(cpu);
2222     }
2223 
2224     cpu_synchronize_state(cpu);
2225 
2226     /* Enable/disable single-stepping */
2227     if (cpu->singlestep_enabled) {
2228         env->cp15.mdscr_el1 =
2229             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
2230         pstate_write(env, pstate_read(env) | PSTATE_SS);
2231     } else {
2232         env->cp15.mdscr_el1 =
2233             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
2234     }
2235 
2236     /* Enable/disable Breakpoint exceptions */
2237     if (hvf_arm_hw_debug_active(cpu)) {
2238         env->cp15.mdscr_el1 =
2239             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
2240     } else {
2241         env->cp15.mdscr_el1 =
2242             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
2243     }
2244 
2245     hvf_arch_set_traps();
2246 }
2247 
2248 inline bool hvf_arch_supports_guest_debug(void)
2249 {
2250     return true;
2251 }
2252