xref: /openbmc/qemu/target/arm/hvf/hvf.c (revision c16de0d9fdaf83d38f2f5141b35c9b3fbfcece78)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14 
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
21 
22 #include <mach/mach_time.h>
23 
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "trace/trace-target_arm_hvf.h"
32 #include "migration/vmstate.h"
33 
34 #include "exec/gdbstub.h"
35 
36 #define MDSCR_EL1_SS_SHIFT  0
37 #define MDSCR_EL1_MDE_SHIFT 15
38 
39 static const uint16_t dbgbcr_regs[] = {
40     HV_SYS_REG_DBGBCR0_EL1,
41     HV_SYS_REG_DBGBCR1_EL1,
42     HV_SYS_REG_DBGBCR2_EL1,
43     HV_SYS_REG_DBGBCR3_EL1,
44     HV_SYS_REG_DBGBCR4_EL1,
45     HV_SYS_REG_DBGBCR5_EL1,
46     HV_SYS_REG_DBGBCR6_EL1,
47     HV_SYS_REG_DBGBCR7_EL1,
48     HV_SYS_REG_DBGBCR8_EL1,
49     HV_SYS_REG_DBGBCR9_EL1,
50     HV_SYS_REG_DBGBCR10_EL1,
51     HV_SYS_REG_DBGBCR11_EL1,
52     HV_SYS_REG_DBGBCR12_EL1,
53     HV_SYS_REG_DBGBCR13_EL1,
54     HV_SYS_REG_DBGBCR14_EL1,
55     HV_SYS_REG_DBGBCR15_EL1,
56 };
57 
58 static const uint16_t dbgbvr_regs[] = {
59     HV_SYS_REG_DBGBVR0_EL1,
60     HV_SYS_REG_DBGBVR1_EL1,
61     HV_SYS_REG_DBGBVR2_EL1,
62     HV_SYS_REG_DBGBVR3_EL1,
63     HV_SYS_REG_DBGBVR4_EL1,
64     HV_SYS_REG_DBGBVR5_EL1,
65     HV_SYS_REG_DBGBVR6_EL1,
66     HV_SYS_REG_DBGBVR7_EL1,
67     HV_SYS_REG_DBGBVR8_EL1,
68     HV_SYS_REG_DBGBVR9_EL1,
69     HV_SYS_REG_DBGBVR10_EL1,
70     HV_SYS_REG_DBGBVR11_EL1,
71     HV_SYS_REG_DBGBVR12_EL1,
72     HV_SYS_REG_DBGBVR13_EL1,
73     HV_SYS_REG_DBGBVR14_EL1,
74     HV_SYS_REG_DBGBVR15_EL1,
75 };
76 
77 static const uint16_t dbgwcr_regs[] = {
78     HV_SYS_REG_DBGWCR0_EL1,
79     HV_SYS_REG_DBGWCR1_EL1,
80     HV_SYS_REG_DBGWCR2_EL1,
81     HV_SYS_REG_DBGWCR3_EL1,
82     HV_SYS_REG_DBGWCR4_EL1,
83     HV_SYS_REG_DBGWCR5_EL1,
84     HV_SYS_REG_DBGWCR6_EL1,
85     HV_SYS_REG_DBGWCR7_EL1,
86     HV_SYS_REG_DBGWCR8_EL1,
87     HV_SYS_REG_DBGWCR9_EL1,
88     HV_SYS_REG_DBGWCR10_EL1,
89     HV_SYS_REG_DBGWCR11_EL1,
90     HV_SYS_REG_DBGWCR12_EL1,
91     HV_SYS_REG_DBGWCR13_EL1,
92     HV_SYS_REG_DBGWCR14_EL1,
93     HV_SYS_REG_DBGWCR15_EL1,
94 };
95 
96 static const uint16_t dbgwvr_regs[] = {
97     HV_SYS_REG_DBGWVR0_EL1,
98     HV_SYS_REG_DBGWVR1_EL1,
99     HV_SYS_REG_DBGWVR2_EL1,
100     HV_SYS_REG_DBGWVR3_EL1,
101     HV_SYS_REG_DBGWVR4_EL1,
102     HV_SYS_REG_DBGWVR5_EL1,
103     HV_SYS_REG_DBGWVR6_EL1,
104     HV_SYS_REG_DBGWVR7_EL1,
105     HV_SYS_REG_DBGWVR8_EL1,
106     HV_SYS_REG_DBGWVR9_EL1,
107     HV_SYS_REG_DBGWVR10_EL1,
108     HV_SYS_REG_DBGWVR11_EL1,
109     HV_SYS_REG_DBGWVR12_EL1,
110     HV_SYS_REG_DBGWVR13_EL1,
111     HV_SYS_REG_DBGWVR14_EL1,
112     HV_SYS_REG_DBGWVR15_EL1,
113 };
114 
115 static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
116 {
117     uint64_t val;
118     hv_return_t ret;
119     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
120                                          &val);
121     assert_hvf_ok(ret);
122     return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
123 }
124 
125 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
126 {
127     uint64_t val;
128     hv_return_t ret;
129     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
130                                          &val);
131     assert_hvf_ok(ret);
132     return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
133 }
134 
135 void hvf_arm_init_debug(void)
136 {
137     hv_vcpu_config_t config;
138     config = hv_vcpu_config_create();
139 
140     max_hw_bps = hvf_arm_num_brps(config);
141     hw_breakpoints =
142         g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
143 
144     max_hw_wps = hvf_arm_num_wrps(config);
145     hw_watchpoints =
146         g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
147 }
148 
149 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
150         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
151 #define PL1_WRITE_MASK 0x4
152 
153 #define SYSREG_OP0_SHIFT      20
154 #define SYSREG_OP0_MASK       0x3
155 #define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
156 #define SYSREG_OP1_SHIFT      14
157 #define SYSREG_OP1_MASK       0x7
158 #define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
159 #define SYSREG_CRN_SHIFT      10
160 #define SYSREG_CRN_MASK       0xf
161 #define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
162 #define SYSREG_CRM_SHIFT      1
163 #define SYSREG_CRM_MASK       0xf
164 #define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
165 #define SYSREG_OP2_SHIFT      17
166 #define SYSREG_OP2_MASK       0x7
167 #define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
168 
169 #define SYSREG(op0, op1, crn, crm, op2) \
170     ((op0 << SYSREG_OP0_SHIFT) | \
171      (op1 << SYSREG_OP1_SHIFT) | \
172      (crn << SYSREG_CRN_SHIFT) | \
173      (crm << SYSREG_CRM_SHIFT) | \
174      (op2 << SYSREG_OP2_SHIFT))
175 #define SYSREG_MASK \
176     SYSREG(SYSREG_OP0_MASK, \
177            SYSREG_OP1_MASK, \
178            SYSREG_CRN_MASK, \
179            SYSREG_CRM_MASK, \
180            SYSREG_OP2_MASK)
181 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
182 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
183 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
184 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
185 #define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
186 #define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
187 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
188 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
189 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
190 #define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
191 #define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
192 #define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
193 #define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
194 #define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
195 #define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
196 #define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
197 
198 #define SYSREG_ICC_AP0R0_EL1     SYSREG(3, 0, 12, 8, 4)
199 #define SYSREG_ICC_AP0R1_EL1     SYSREG(3, 0, 12, 8, 5)
200 #define SYSREG_ICC_AP0R2_EL1     SYSREG(3, 0, 12, 8, 6)
201 #define SYSREG_ICC_AP0R3_EL1     SYSREG(3, 0, 12, 8, 7)
202 #define SYSREG_ICC_AP1R0_EL1     SYSREG(3, 0, 12, 9, 0)
203 #define SYSREG_ICC_AP1R1_EL1     SYSREG(3, 0, 12, 9, 1)
204 #define SYSREG_ICC_AP1R2_EL1     SYSREG(3, 0, 12, 9, 2)
205 #define SYSREG_ICC_AP1R3_EL1     SYSREG(3, 0, 12, 9, 3)
206 #define SYSREG_ICC_ASGI1R_EL1    SYSREG(3, 0, 12, 11, 6)
207 #define SYSREG_ICC_BPR0_EL1      SYSREG(3, 0, 12, 8, 3)
208 #define SYSREG_ICC_BPR1_EL1      SYSREG(3, 0, 12, 12, 3)
209 #define SYSREG_ICC_CTLR_EL1      SYSREG(3, 0, 12, 12, 4)
210 #define SYSREG_ICC_DIR_EL1       SYSREG(3, 0, 12, 11, 1)
211 #define SYSREG_ICC_EOIR0_EL1     SYSREG(3, 0, 12, 8, 1)
212 #define SYSREG_ICC_EOIR1_EL1     SYSREG(3, 0, 12, 12, 1)
213 #define SYSREG_ICC_HPPIR0_EL1    SYSREG(3, 0, 12, 8, 2)
214 #define SYSREG_ICC_HPPIR1_EL1    SYSREG(3, 0, 12, 12, 2)
215 #define SYSREG_ICC_IAR0_EL1      SYSREG(3, 0, 12, 8, 0)
216 #define SYSREG_ICC_IAR1_EL1      SYSREG(3, 0, 12, 12, 0)
217 #define SYSREG_ICC_IGRPEN0_EL1   SYSREG(3, 0, 12, 12, 6)
218 #define SYSREG_ICC_IGRPEN1_EL1   SYSREG(3, 0, 12, 12, 7)
219 #define SYSREG_ICC_PMR_EL1       SYSREG(3, 0, 4, 6, 0)
220 #define SYSREG_ICC_RPR_EL1       SYSREG(3, 0, 12, 11, 3)
221 #define SYSREG_ICC_SGI0R_EL1     SYSREG(3, 0, 12, 11, 7)
222 #define SYSREG_ICC_SGI1R_EL1     SYSREG(3, 0, 12, 11, 5)
223 #define SYSREG_ICC_SRE_EL1       SYSREG(3, 0, 12, 12, 5)
224 
225 #define SYSREG_MDSCR_EL1      SYSREG(2, 0, 0, 2, 2)
226 #define SYSREG_DBGBVR0_EL1    SYSREG(2, 0, 0, 0, 4)
227 #define SYSREG_DBGBCR0_EL1    SYSREG(2, 0, 0, 0, 5)
228 #define SYSREG_DBGWVR0_EL1    SYSREG(2, 0, 0, 0, 6)
229 #define SYSREG_DBGWCR0_EL1    SYSREG(2, 0, 0, 0, 7)
230 #define SYSREG_DBGBVR1_EL1    SYSREG(2, 0, 0, 1, 4)
231 #define SYSREG_DBGBCR1_EL1    SYSREG(2, 0, 0, 1, 5)
232 #define SYSREG_DBGWVR1_EL1    SYSREG(2, 0, 0, 1, 6)
233 #define SYSREG_DBGWCR1_EL1    SYSREG(2, 0, 0, 1, 7)
234 #define SYSREG_DBGBVR2_EL1    SYSREG(2, 0, 0, 2, 4)
235 #define SYSREG_DBGBCR2_EL1    SYSREG(2, 0, 0, 2, 5)
236 #define SYSREG_DBGWVR2_EL1    SYSREG(2, 0, 0, 2, 6)
237 #define SYSREG_DBGWCR2_EL1    SYSREG(2, 0, 0, 2, 7)
238 #define SYSREG_DBGBVR3_EL1    SYSREG(2, 0, 0, 3, 4)
239 #define SYSREG_DBGBCR3_EL1    SYSREG(2, 0, 0, 3, 5)
240 #define SYSREG_DBGWVR3_EL1    SYSREG(2, 0, 0, 3, 6)
241 #define SYSREG_DBGWCR3_EL1    SYSREG(2, 0, 0, 3, 7)
242 #define SYSREG_DBGBVR4_EL1    SYSREG(2, 0, 0, 4, 4)
243 #define SYSREG_DBGBCR4_EL1    SYSREG(2, 0, 0, 4, 5)
244 #define SYSREG_DBGWVR4_EL1    SYSREG(2, 0, 0, 4, 6)
245 #define SYSREG_DBGWCR4_EL1    SYSREG(2, 0, 0, 4, 7)
246 #define SYSREG_DBGBVR5_EL1    SYSREG(2, 0, 0, 5, 4)
247 #define SYSREG_DBGBCR5_EL1    SYSREG(2, 0, 0, 5, 5)
248 #define SYSREG_DBGWVR5_EL1    SYSREG(2, 0, 0, 5, 6)
249 #define SYSREG_DBGWCR5_EL1    SYSREG(2, 0, 0, 5, 7)
250 #define SYSREG_DBGBVR6_EL1    SYSREG(2, 0, 0, 6, 4)
251 #define SYSREG_DBGBCR6_EL1    SYSREG(2, 0, 0, 6, 5)
252 #define SYSREG_DBGWVR6_EL1    SYSREG(2, 0, 0, 6, 6)
253 #define SYSREG_DBGWCR6_EL1    SYSREG(2, 0, 0, 6, 7)
254 #define SYSREG_DBGBVR7_EL1    SYSREG(2, 0, 0, 7, 4)
255 #define SYSREG_DBGBCR7_EL1    SYSREG(2, 0, 0, 7, 5)
256 #define SYSREG_DBGWVR7_EL1    SYSREG(2, 0, 0, 7, 6)
257 #define SYSREG_DBGWCR7_EL1    SYSREG(2, 0, 0, 7, 7)
258 #define SYSREG_DBGBVR8_EL1    SYSREG(2, 0, 0, 8, 4)
259 #define SYSREG_DBGBCR8_EL1    SYSREG(2, 0, 0, 8, 5)
260 #define SYSREG_DBGWVR8_EL1    SYSREG(2, 0, 0, 8, 6)
261 #define SYSREG_DBGWCR8_EL1    SYSREG(2, 0, 0, 8, 7)
262 #define SYSREG_DBGBVR9_EL1    SYSREG(2, 0, 0, 9, 4)
263 #define SYSREG_DBGBCR9_EL1    SYSREG(2, 0, 0, 9, 5)
264 #define SYSREG_DBGWVR9_EL1    SYSREG(2, 0, 0, 9, 6)
265 #define SYSREG_DBGWCR9_EL1    SYSREG(2, 0, 0, 9, 7)
266 #define SYSREG_DBGBVR10_EL1   SYSREG(2, 0, 0, 10, 4)
267 #define SYSREG_DBGBCR10_EL1   SYSREG(2, 0, 0, 10, 5)
268 #define SYSREG_DBGWVR10_EL1   SYSREG(2, 0, 0, 10, 6)
269 #define SYSREG_DBGWCR10_EL1   SYSREG(2, 0, 0, 10, 7)
270 #define SYSREG_DBGBVR11_EL1   SYSREG(2, 0, 0, 11, 4)
271 #define SYSREG_DBGBCR11_EL1   SYSREG(2, 0, 0, 11, 5)
272 #define SYSREG_DBGWVR11_EL1   SYSREG(2, 0, 0, 11, 6)
273 #define SYSREG_DBGWCR11_EL1   SYSREG(2, 0, 0, 11, 7)
274 #define SYSREG_DBGBVR12_EL1   SYSREG(2, 0, 0, 12, 4)
275 #define SYSREG_DBGBCR12_EL1   SYSREG(2, 0, 0, 12, 5)
276 #define SYSREG_DBGWVR12_EL1   SYSREG(2, 0, 0, 12, 6)
277 #define SYSREG_DBGWCR12_EL1   SYSREG(2, 0, 0, 12, 7)
278 #define SYSREG_DBGBVR13_EL1   SYSREG(2, 0, 0, 13, 4)
279 #define SYSREG_DBGBCR13_EL1   SYSREG(2, 0, 0, 13, 5)
280 #define SYSREG_DBGWVR13_EL1   SYSREG(2, 0, 0, 13, 6)
281 #define SYSREG_DBGWCR13_EL1   SYSREG(2, 0, 0, 13, 7)
282 #define SYSREG_DBGBVR14_EL1   SYSREG(2, 0, 0, 14, 4)
283 #define SYSREG_DBGBCR14_EL1   SYSREG(2, 0, 0, 14, 5)
284 #define SYSREG_DBGWVR14_EL1   SYSREG(2, 0, 0, 14, 6)
285 #define SYSREG_DBGWCR14_EL1   SYSREG(2, 0, 0, 14, 7)
286 #define SYSREG_DBGBVR15_EL1   SYSREG(2, 0, 0, 15, 4)
287 #define SYSREG_DBGBCR15_EL1   SYSREG(2, 0, 0, 15, 5)
288 #define SYSREG_DBGWVR15_EL1   SYSREG(2, 0, 0, 15, 6)
289 #define SYSREG_DBGWCR15_EL1   SYSREG(2, 0, 0, 15, 7)
290 
291 #define WFX_IS_WFE (1 << 0)
292 
293 #define TMR_CTL_ENABLE  (1 << 0)
294 #define TMR_CTL_IMASK   (1 << 1)
295 #define TMR_CTL_ISTATUS (1 << 2)
296 
297 static void hvf_wfi(CPUState *cpu);
298 
299 typedef struct HVFVTimer {
300     /* Vtimer value during migration and paused state */
301     uint64_t vtimer_val;
302 } HVFVTimer;
303 
304 static HVFVTimer vtimer;
305 
306 typedef struct ARMHostCPUFeatures {
307     ARMISARegisters isar;
308     uint64_t features;
309     uint64_t midr;
310     uint32_t reset_sctlr;
311     const char *dtb_compatible;
312 } ARMHostCPUFeatures;
313 
314 static ARMHostCPUFeatures arm_host_cpu_features;
315 
316 struct hvf_reg_match {
317     int reg;
318     uint64_t offset;
319 };
320 
321 static const struct hvf_reg_match hvf_reg_match[] = {
322     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
323     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
324     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
325     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
326     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
327     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
328     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
329     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
330     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
331     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
332     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
333     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
334     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
335     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
336     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
337     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
338     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
339     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
340     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
341     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
342     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
343     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
344     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
345     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
346     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
347     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
348     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
349     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
350     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
351     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
352     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
353     { HV_REG_PC,   offsetof(CPUARMState, pc) },
354 };
355 
356 static const struct hvf_reg_match hvf_fpreg_match[] = {
357     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
358     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
359     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
360     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
361     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
362     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
363     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
364     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
365     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
366     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
367     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
368     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
369     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
370     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
371     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
372     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
373     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
374     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
375     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
376     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
377     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
378     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
379     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
380     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
381     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
382     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
383     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
384     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
385     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
386     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
387     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
388     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
389 };
390 
391 struct hvf_sreg_match {
392     int reg;
393     uint32_t key;
394     uint32_t cp_idx;
395 };
396 
397 static struct hvf_sreg_match hvf_sreg_match[] = {
398     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
399     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
400     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
401     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
402 
403     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
404     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
405     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
406     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
407 
408     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
409     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
410     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
411     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
412 
413     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
414     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
415     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
416     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
417 
418     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
419     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
420     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
421     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
422 
423     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
424     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
425     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
426     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
427 
428     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
429     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
430     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
431     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
432 
433     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
434     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
435     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
436     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
437 
438     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
439     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
440     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
441     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
442 
443     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
444     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
445     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
446     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
447 
448     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
449     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
450     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
451     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
452 
453     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
454     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
455     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
456     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
457 
458     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
459     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
460     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
461     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
462 
463     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
464     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
465     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
466     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
467 
468     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
469     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
470     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
471     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
472 
473     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
474     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
475     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
476     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
477 
478 #ifdef SYNC_NO_RAW_REGS
479     /*
480      * The registers below are manually synced on init because they are
481      * marked as NO_RAW. We still list them to make number space sync easier.
482      */
483     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
484     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
485     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
486     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
487 #endif
488     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
489     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
490     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
491     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
492     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
493 #ifdef SYNC_NO_MMFR0
494     /* We keep the hardware MMFR0 around. HW limits are there anyway */
495     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
496 #endif
497     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
498     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
499 
500     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
501     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
502     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
503     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
504     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
505     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
506 
507     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
508     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
509     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
510     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
511     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
512     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
513     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
514     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
515     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
516     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
517 
518     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
519     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
520     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
521     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
522     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
523     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
524     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
525     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
526     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
527     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
528     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
529     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
530     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
531     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
532     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
533     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
534     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
535     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
536     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
537     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
538 };
539 
540 int hvf_get_registers(CPUState *cpu)
541 {
542     ARMCPU *arm_cpu = ARM_CPU(cpu);
543     CPUARMState *env = &arm_cpu->env;
544     hv_return_t ret;
545     uint64_t val;
546     hv_simd_fp_uchar16_t fpval;
547     int i;
548 
549     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
550         ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
551         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
552         assert_hvf_ok(ret);
553     }
554 
555     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
556         ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
557                                       &fpval);
558         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
559         assert_hvf_ok(ret);
560     }
561 
562     val = 0;
563     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
564     assert_hvf_ok(ret);
565     vfp_set_fpcr(env, val);
566 
567     val = 0;
568     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
569     assert_hvf_ok(ret);
570     vfp_set_fpsr(env, val);
571 
572     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
573     assert_hvf_ok(ret);
574     pstate_write(env, val);
575 
576     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
577         if (hvf_sreg_match[i].cp_idx == -1) {
578             continue;
579         }
580 
581         if (cpu->accel->guest_debug_enabled) {
582             /* Handle debug registers */
583             switch (hvf_sreg_match[i].reg) {
584             case HV_SYS_REG_DBGBVR0_EL1:
585             case HV_SYS_REG_DBGBCR0_EL1:
586             case HV_SYS_REG_DBGWVR0_EL1:
587             case HV_SYS_REG_DBGWCR0_EL1:
588             case HV_SYS_REG_DBGBVR1_EL1:
589             case HV_SYS_REG_DBGBCR1_EL1:
590             case HV_SYS_REG_DBGWVR1_EL1:
591             case HV_SYS_REG_DBGWCR1_EL1:
592             case HV_SYS_REG_DBGBVR2_EL1:
593             case HV_SYS_REG_DBGBCR2_EL1:
594             case HV_SYS_REG_DBGWVR2_EL1:
595             case HV_SYS_REG_DBGWCR2_EL1:
596             case HV_SYS_REG_DBGBVR3_EL1:
597             case HV_SYS_REG_DBGBCR3_EL1:
598             case HV_SYS_REG_DBGWVR3_EL1:
599             case HV_SYS_REG_DBGWCR3_EL1:
600             case HV_SYS_REG_DBGBVR4_EL1:
601             case HV_SYS_REG_DBGBCR4_EL1:
602             case HV_SYS_REG_DBGWVR4_EL1:
603             case HV_SYS_REG_DBGWCR4_EL1:
604             case HV_SYS_REG_DBGBVR5_EL1:
605             case HV_SYS_REG_DBGBCR5_EL1:
606             case HV_SYS_REG_DBGWVR5_EL1:
607             case HV_SYS_REG_DBGWCR5_EL1:
608             case HV_SYS_REG_DBGBVR6_EL1:
609             case HV_SYS_REG_DBGBCR6_EL1:
610             case HV_SYS_REG_DBGWVR6_EL1:
611             case HV_SYS_REG_DBGWCR6_EL1:
612             case HV_SYS_REG_DBGBVR7_EL1:
613             case HV_SYS_REG_DBGBCR7_EL1:
614             case HV_SYS_REG_DBGWVR7_EL1:
615             case HV_SYS_REG_DBGWCR7_EL1:
616             case HV_SYS_REG_DBGBVR8_EL1:
617             case HV_SYS_REG_DBGBCR8_EL1:
618             case HV_SYS_REG_DBGWVR8_EL1:
619             case HV_SYS_REG_DBGWCR8_EL1:
620             case HV_SYS_REG_DBGBVR9_EL1:
621             case HV_SYS_REG_DBGBCR9_EL1:
622             case HV_SYS_REG_DBGWVR9_EL1:
623             case HV_SYS_REG_DBGWCR9_EL1:
624             case HV_SYS_REG_DBGBVR10_EL1:
625             case HV_SYS_REG_DBGBCR10_EL1:
626             case HV_SYS_REG_DBGWVR10_EL1:
627             case HV_SYS_REG_DBGWCR10_EL1:
628             case HV_SYS_REG_DBGBVR11_EL1:
629             case HV_SYS_REG_DBGBCR11_EL1:
630             case HV_SYS_REG_DBGWVR11_EL1:
631             case HV_SYS_REG_DBGWCR11_EL1:
632             case HV_SYS_REG_DBGBVR12_EL1:
633             case HV_SYS_REG_DBGBCR12_EL1:
634             case HV_SYS_REG_DBGWVR12_EL1:
635             case HV_SYS_REG_DBGWCR12_EL1:
636             case HV_SYS_REG_DBGBVR13_EL1:
637             case HV_SYS_REG_DBGBCR13_EL1:
638             case HV_SYS_REG_DBGWVR13_EL1:
639             case HV_SYS_REG_DBGWCR13_EL1:
640             case HV_SYS_REG_DBGBVR14_EL1:
641             case HV_SYS_REG_DBGBCR14_EL1:
642             case HV_SYS_REG_DBGWVR14_EL1:
643             case HV_SYS_REG_DBGWCR14_EL1:
644             case HV_SYS_REG_DBGBVR15_EL1:
645             case HV_SYS_REG_DBGBCR15_EL1:
646             case HV_SYS_REG_DBGWVR15_EL1:
647             case HV_SYS_REG_DBGWCR15_EL1: {
648                 /*
649                  * If the guest is being debugged, the vCPU's debug registers
650                  * are holding the gdbstub's view of the registers (set in
651                  * hvf_arch_update_guest_debug()).
652                  * Since the environment is used to store only the guest's view
653                  * of the registers, don't update it with the values from the
654                  * vCPU but simply keep the values from the previous
655                  * environment.
656                  */
657                 const ARMCPRegInfo *ri;
658                 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
659                 val = read_raw_cp_reg(env, ri);
660 
661                 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
662                 continue;
663             }
664             }
665         }
666 
667         ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
668         assert_hvf_ok(ret);
669 
670         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
671     }
672     assert(write_list_to_cpustate(arm_cpu));
673 
674     aarch64_restore_sp(env, arm_current_el(env));
675 
676     return 0;
677 }
678 
679 int hvf_put_registers(CPUState *cpu)
680 {
681     ARMCPU *arm_cpu = ARM_CPU(cpu);
682     CPUARMState *env = &arm_cpu->env;
683     hv_return_t ret;
684     uint64_t val;
685     hv_simd_fp_uchar16_t fpval;
686     int i;
687 
688     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
689         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
690         ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
691         assert_hvf_ok(ret);
692     }
693 
694     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
695         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
696         ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
697                                       fpval);
698         assert_hvf_ok(ret);
699     }
700 
701     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
702     assert_hvf_ok(ret);
703 
704     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
705     assert_hvf_ok(ret);
706 
707     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
708     assert_hvf_ok(ret);
709 
710     aarch64_save_sp(env, arm_current_el(env));
711 
712     assert(write_cpustate_to_list(arm_cpu, false));
713     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
714         if (hvf_sreg_match[i].cp_idx == -1) {
715             continue;
716         }
717 
718         if (cpu->accel->guest_debug_enabled) {
719             /* Handle debug registers */
720             switch (hvf_sreg_match[i].reg) {
721             case HV_SYS_REG_DBGBVR0_EL1:
722             case HV_SYS_REG_DBGBCR0_EL1:
723             case HV_SYS_REG_DBGWVR0_EL1:
724             case HV_SYS_REG_DBGWCR0_EL1:
725             case HV_SYS_REG_DBGBVR1_EL1:
726             case HV_SYS_REG_DBGBCR1_EL1:
727             case HV_SYS_REG_DBGWVR1_EL1:
728             case HV_SYS_REG_DBGWCR1_EL1:
729             case HV_SYS_REG_DBGBVR2_EL1:
730             case HV_SYS_REG_DBGBCR2_EL1:
731             case HV_SYS_REG_DBGWVR2_EL1:
732             case HV_SYS_REG_DBGWCR2_EL1:
733             case HV_SYS_REG_DBGBVR3_EL1:
734             case HV_SYS_REG_DBGBCR3_EL1:
735             case HV_SYS_REG_DBGWVR3_EL1:
736             case HV_SYS_REG_DBGWCR3_EL1:
737             case HV_SYS_REG_DBGBVR4_EL1:
738             case HV_SYS_REG_DBGBCR4_EL1:
739             case HV_SYS_REG_DBGWVR4_EL1:
740             case HV_SYS_REG_DBGWCR4_EL1:
741             case HV_SYS_REG_DBGBVR5_EL1:
742             case HV_SYS_REG_DBGBCR5_EL1:
743             case HV_SYS_REG_DBGWVR5_EL1:
744             case HV_SYS_REG_DBGWCR5_EL1:
745             case HV_SYS_REG_DBGBVR6_EL1:
746             case HV_SYS_REG_DBGBCR6_EL1:
747             case HV_SYS_REG_DBGWVR6_EL1:
748             case HV_SYS_REG_DBGWCR6_EL1:
749             case HV_SYS_REG_DBGBVR7_EL1:
750             case HV_SYS_REG_DBGBCR7_EL1:
751             case HV_SYS_REG_DBGWVR7_EL1:
752             case HV_SYS_REG_DBGWCR7_EL1:
753             case HV_SYS_REG_DBGBVR8_EL1:
754             case HV_SYS_REG_DBGBCR8_EL1:
755             case HV_SYS_REG_DBGWVR8_EL1:
756             case HV_SYS_REG_DBGWCR8_EL1:
757             case HV_SYS_REG_DBGBVR9_EL1:
758             case HV_SYS_REG_DBGBCR9_EL1:
759             case HV_SYS_REG_DBGWVR9_EL1:
760             case HV_SYS_REG_DBGWCR9_EL1:
761             case HV_SYS_REG_DBGBVR10_EL1:
762             case HV_SYS_REG_DBGBCR10_EL1:
763             case HV_SYS_REG_DBGWVR10_EL1:
764             case HV_SYS_REG_DBGWCR10_EL1:
765             case HV_SYS_REG_DBGBVR11_EL1:
766             case HV_SYS_REG_DBGBCR11_EL1:
767             case HV_SYS_REG_DBGWVR11_EL1:
768             case HV_SYS_REG_DBGWCR11_EL1:
769             case HV_SYS_REG_DBGBVR12_EL1:
770             case HV_SYS_REG_DBGBCR12_EL1:
771             case HV_SYS_REG_DBGWVR12_EL1:
772             case HV_SYS_REG_DBGWCR12_EL1:
773             case HV_SYS_REG_DBGBVR13_EL1:
774             case HV_SYS_REG_DBGBCR13_EL1:
775             case HV_SYS_REG_DBGWVR13_EL1:
776             case HV_SYS_REG_DBGWCR13_EL1:
777             case HV_SYS_REG_DBGBVR14_EL1:
778             case HV_SYS_REG_DBGBCR14_EL1:
779             case HV_SYS_REG_DBGWVR14_EL1:
780             case HV_SYS_REG_DBGWCR14_EL1:
781             case HV_SYS_REG_DBGBVR15_EL1:
782             case HV_SYS_REG_DBGBCR15_EL1:
783             case HV_SYS_REG_DBGWVR15_EL1:
784             case HV_SYS_REG_DBGWCR15_EL1:
785                 /*
786                  * If the guest is being debugged, the vCPU's debug registers
787                  * are already holding the gdbstub's view of the registers (set
788                  * in hvf_arch_update_guest_debug()).
789                  */
790                 continue;
791             }
792         }
793 
794         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
795         ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
796         assert_hvf_ok(ret);
797     }
798 
799     ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
800     assert_hvf_ok(ret);
801 
802     return 0;
803 }
804 
805 static void flush_cpu_state(CPUState *cpu)
806 {
807     if (cpu->vcpu_dirty) {
808         hvf_put_registers(cpu);
809         cpu->vcpu_dirty = false;
810     }
811 }
812 
813 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
814 {
815     hv_return_t r;
816 
817     flush_cpu_state(cpu);
818 
819     if (rt < 31) {
820         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
821         assert_hvf_ok(r);
822     }
823 }
824 
825 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
826 {
827     uint64_t val = 0;
828     hv_return_t r;
829 
830     flush_cpu_state(cpu);
831 
832     if (rt < 31) {
833         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
834         assert_hvf_ok(r);
835     }
836 
837     return val;
838 }
839 
840 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
841 {
842     ARMISARegisters host_isar = {};
843     const struct isar_regs {
844         int reg;
845         uint64_t *val;
846     } regs[] = {
847         { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
848         { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
849         { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
850         { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
851         { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
852         { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
853         /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
854         { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
855         { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
856         { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
857     };
858     hv_vcpu_t fd;
859     hv_return_t r = HV_SUCCESS;
860     hv_vcpu_exit_t *exit;
861     int i;
862 
863     ahcf->dtb_compatible = "arm,arm-v8";
864     ahcf->features = (1ULL << ARM_FEATURE_V8) |
865                      (1ULL << ARM_FEATURE_NEON) |
866                      (1ULL << ARM_FEATURE_AARCH64) |
867                      (1ULL << ARM_FEATURE_PMU) |
868                      (1ULL << ARM_FEATURE_GENERIC_TIMER);
869 
870     /* We set up a small vcpu to extract host registers */
871 
872     if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
873         return false;
874     }
875 
876     for (i = 0; i < ARRAY_SIZE(regs); i++) {
877         r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
878     }
879     r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
880     r |= hv_vcpu_destroy(fd);
881 
882     ahcf->isar = host_isar;
883 
884     /*
885      * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
886      * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
887      */
888     ahcf->reset_sctlr = 0x30100180;
889     /*
890      * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
891      * let's disable it on boot and then allow guest software to turn it on by
892      * setting it to 0.
893      */
894     ahcf->reset_sctlr |= 0x00800000;
895 
896     /* Make sure we don't advertise AArch32 support for EL0/EL1 */
897     if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
898         return false;
899     }
900 
901     return r == HV_SUCCESS;
902 }
903 
904 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
905 {
906     if (!arm_host_cpu_features.dtb_compatible) {
907         if (!hvf_enabled() ||
908             !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
909             /*
910              * We can't report this error yet, so flag that we need to
911              * in arm_cpu_realizefn().
912              */
913             cpu->host_cpu_probe_failed = true;
914             return;
915         }
916     }
917 
918     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
919     cpu->isar = arm_host_cpu_features.isar;
920     cpu->env.features = arm_host_cpu_features.features;
921     cpu->midr = arm_host_cpu_features.midr;
922     cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
923 }
924 
925 void hvf_arch_vcpu_destroy(CPUState *cpu)
926 {
927 }
928 
929 int hvf_arch_init_vcpu(CPUState *cpu)
930 {
931     ARMCPU *arm_cpu = ARM_CPU(cpu);
932     CPUARMState *env = &arm_cpu->env;
933     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
934     uint32_t sregs_cnt = 0;
935     uint64_t pfr;
936     hv_return_t ret;
937     int i;
938 
939     env->aarch64 = true;
940     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
941 
942     /* Allocate enough space for our sysreg sync */
943     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
944                                      sregs_match_len);
945     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
946                                     sregs_match_len);
947     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
948                                              arm_cpu->cpreg_vmstate_indexes,
949                                              sregs_match_len);
950     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
951                                             arm_cpu->cpreg_vmstate_values,
952                                             sregs_match_len);
953 
954     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
955 
956     /* Populate cp list for all known sysregs */
957     for (i = 0; i < sregs_match_len; i++) {
958         const ARMCPRegInfo *ri;
959         uint32_t key = hvf_sreg_match[i].key;
960 
961         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
962         if (ri) {
963             assert(!(ri->type & ARM_CP_NO_RAW));
964             hvf_sreg_match[i].cp_idx = sregs_cnt;
965             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
966         } else {
967             hvf_sreg_match[i].cp_idx = -1;
968         }
969     }
970     arm_cpu->cpreg_array_len = sregs_cnt;
971     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
972 
973     assert(write_cpustate_to_list(arm_cpu, false));
974 
975     /* Set CP_NO_RAW system registers on init */
976     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
977                               arm_cpu->midr);
978     assert_hvf_ok(ret);
979 
980     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
981                               arm_cpu->mp_affinity);
982     assert_hvf_ok(ret);
983 
984     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
985     assert_hvf_ok(ret);
986     pfr |= env->gicv3state ? (1 << 24) : 0;
987     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
988     assert_hvf_ok(ret);
989 
990     /* We're limited to underlying hardware caps, override internal versions */
991     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
992                               &arm_cpu->isar.id_aa64mmfr0);
993     assert_hvf_ok(ret);
994 
995     return 0;
996 }
997 
998 void hvf_kick_vcpu_thread(CPUState *cpu)
999 {
1000     cpus_kick_thread(cpu);
1001     hv_vcpus_exit(&cpu->accel->fd, 1);
1002 }
1003 
1004 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
1005                                 uint32_t syndrome)
1006 {
1007     ARMCPU *arm_cpu = ARM_CPU(cpu);
1008     CPUARMState *env = &arm_cpu->env;
1009 
1010     cpu->exception_index = excp;
1011     env->exception.target_el = 1;
1012     env->exception.syndrome = syndrome;
1013 
1014     arm_cpu_do_interrupt(cpu);
1015 }
1016 
1017 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
1018 {
1019     int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
1020     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
1021 }
1022 
1023 /*
1024  * Handle a PSCI call.
1025  *
1026  * Returns 0 on success
1027  *         -1 when the PSCI call is unknown,
1028  */
1029 static bool hvf_handle_psci_call(CPUState *cpu)
1030 {
1031     ARMCPU *arm_cpu = ARM_CPU(cpu);
1032     CPUARMState *env = &arm_cpu->env;
1033     uint64_t param[4] = {
1034         env->xregs[0],
1035         env->xregs[1],
1036         env->xregs[2],
1037         env->xregs[3]
1038     };
1039     uint64_t context_id, mpidr;
1040     bool target_aarch64 = true;
1041     CPUState *target_cpu_state;
1042     ARMCPU *target_cpu;
1043     target_ulong entry;
1044     int target_el = 1;
1045     int32_t ret = 0;
1046 
1047     trace_hvf_psci_call(param[0], param[1], param[2], param[3],
1048                         arm_cpu->mp_affinity);
1049 
1050     switch (param[0]) {
1051     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1052         ret = QEMU_PSCI_VERSION_1_1;
1053         break;
1054     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1055         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
1056         break;
1057     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1058     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1059         mpidr = param[1];
1060 
1061         switch (param[2]) {
1062         case 0:
1063             target_cpu_state = arm_get_cpu_by_id(mpidr);
1064             if (!target_cpu_state) {
1065                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1066                 break;
1067             }
1068             target_cpu = ARM_CPU(target_cpu_state);
1069 
1070             ret = target_cpu->power_state;
1071             break;
1072         default:
1073             /* Everything above affinity level 0 is always on. */
1074             ret = 0;
1075         }
1076         break;
1077     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1078         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1079         /*
1080          * QEMU reset and shutdown are async requests, but PSCI
1081          * mandates that we never return from the reset/shutdown
1082          * call, so power the CPU off now so it doesn't execute
1083          * anything further.
1084          */
1085         hvf_psci_cpu_off(arm_cpu);
1086         break;
1087     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1088         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1089         hvf_psci_cpu_off(arm_cpu);
1090         break;
1091     case QEMU_PSCI_0_1_FN_CPU_ON:
1092     case QEMU_PSCI_0_2_FN_CPU_ON:
1093     case QEMU_PSCI_0_2_FN64_CPU_ON:
1094         mpidr = param[1];
1095         entry = param[2];
1096         context_id = param[3];
1097         ret = arm_set_cpu_on(mpidr, entry, context_id,
1098                              target_el, target_aarch64);
1099         break;
1100     case QEMU_PSCI_0_1_FN_CPU_OFF:
1101     case QEMU_PSCI_0_2_FN_CPU_OFF:
1102         hvf_psci_cpu_off(arm_cpu);
1103         break;
1104     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1105     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1106     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1107         /* Affinity levels are not supported in QEMU */
1108         if (param[1] & 0xfffe0000) {
1109             ret = QEMU_PSCI_RET_INVALID_PARAMS;
1110             break;
1111         }
1112         /* Powerdown is not supported, we always go into WFI */
1113         env->xregs[0] = 0;
1114         hvf_wfi(cpu);
1115         break;
1116     case QEMU_PSCI_0_1_FN_MIGRATE:
1117     case QEMU_PSCI_0_2_FN_MIGRATE:
1118         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1119         break;
1120     case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1121         switch (param[1]) {
1122         case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1123         case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1124         case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1125         case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1126         case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1127         case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1128         case QEMU_PSCI_0_1_FN_CPU_ON:
1129         case QEMU_PSCI_0_2_FN_CPU_ON:
1130         case QEMU_PSCI_0_2_FN64_CPU_ON:
1131         case QEMU_PSCI_0_1_FN_CPU_OFF:
1132         case QEMU_PSCI_0_2_FN_CPU_OFF:
1133         case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1134         case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1135         case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1136         case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1137             ret = 0;
1138             break;
1139         case QEMU_PSCI_0_1_FN_MIGRATE:
1140         case QEMU_PSCI_0_2_FN_MIGRATE:
1141         default:
1142             ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1143         }
1144         break;
1145     default:
1146         return false;
1147     }
1148 
1149     env->xregs[0] = ret;
1150     return true;
1151 }
1152 
1153 static bool is_id_sysreg(uint32_t reg)
1154 {
1155     return SYSREG_OP0(reg) == 3 &&
1156            SYSREG_OP1(reg) == 0 &&
1157            SYSREG_CRN(reg) == 0 &&
1158            SYSREG_CRM(reg) >= 1 &&
1159            SYSREG_CRM(reg) < 8;
1160 }
1161 
1162 static uint32_t hvf_reg2cp_reg(uint32_t reg)
1163 {
1164     return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1165                               (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
1166                               (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
1167                               (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
1168                               (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
1169                               (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
1170 }
1171 
1172 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
1173 {
1174     ARMCPU *arm_cpu = ARM_CPU(cpu);
1175     CPUARMState *env = &arm_cpu->env;
1176     const ARMCPRegInfo *ri;
1177 
1178     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1179     if (ri) {
1180         if (ri->accessfn) {
1181             if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
1182                 return false;
1183             }
1184         }
1185         if (ri->type & ARM_CP_CONST) {
1186             *val = ri->resetvalue;
1187         } else if (ri->readfn) {
1188             *val = ri->readfn(env, ri);
1189         } else {
1190             *val = CPREG_FIELD64(env, ri);
1191         }
1192         trace_hvf_vgic_read(ri->name, *val);
1193         return true;
1194     }
1195 
1196     return false;
1197 }
1198 
1199 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
1200 {
1201     ARMCPU *arm_cpu = ARM_CPU(cpu);
1202     CPUARMState *env = &arm_cpu->env;
1203     uint64_t val = 0;
1204 
1205     switch (reg) {
1206     case SYSREG_CNTPCT_EL0:
1207         val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
1208               gt_cntfrq_period_ns(arm_cpu);
1209         break;
1210     case SYSREG_PMCR_EL0:
1211         val = env->cp15.c9_pmcr;
1212         break;
1213     case SYSREG_PMCCNTR_EL0:
1214         pmu_op_start(env);
1215         val = env->cp15.c15_ccnt;
1216         pmu_op_finish(env);
1217         break;
1218     case SYSREG_PMCNTENCLR_EL0:
1219         val = env->cp15.c9_pmcnten;
1220         break;
1221     case SYSREG_PMOVSCLR_EL0:
1222         val = env->cp15.c9_pmovsr;
1223         break;
1224     case SYSREG_PMSELR_EL0:
1225         val = env->cp15.c9_pmselr;
1226         break;
1227     case SYSREG_PMINTENCLR_EL1:
1228         val = env->cp15.c9_pminten;
1229         break;
1230     case SYSREG_PMCCFILTR_EL0:
1231         val = env->cp15.pmccfiltr_el0;
1232         break;
1233     case SYSREG_PMCNTENSET_EL0:
1234         val = env->cp15.c9_pmcnten;
1235         break;
1236     case SYSREG_PMUSERENR_EL0:
1237         val = env->cp15.c9_pmuserenr;
1238         break;
1239     case SYSREG_PMCEID0_EL0:
1240     case SYSREG_PMCEID1_EL0:
1241         /* We can't really count anything yet, declare all events invalid */
1242         val = 0;
1243         break;
1244     case SYSREG_OSLSR_EL1:
1245         val = env->cp15.oslsr_el1;
1246         break;
1247     case SYSREG_OSDLR_EL1:
1248         /* Dummy register */
1249         break;
1250     case SYSREG_ICC_AP0R0_EL1:
1251     case SYSREG_ICC_AP0R1_EL1:
1252     case SYSREG_ICC_AP0R2_EL1:
1253     case SYSREG_ICC_AP0R3_EL1:
1254     case SYSREG_ICC_AP1R0_EL1:
1255     case SYSREG_ICC_AP1R1_EL1:
1256     case SYSREG_ICC_AP1R2_EL1:
1257     case SYSREG_ICC_AP1R3_EL1:
1258     case SYSREG_ICC_ASGI1R_EL1:
1259     case SYSREG_ICC_BPR0_EL1:
1260     case SYSREG_ICC_BPR1_EL1:
1261     case SYSREG_ICC_DIR_EL1:
1262     case SYSREG_ICC_EOIR0_EL1:
1263     case SYSREG_ICC_EOIR1_EL1:
1264     case SYSREG_ICC_HPPIR0_EL1:
1265     case SYSREG_ICC_HPPIR1_EL1:
1266     case SYSREG_ICC_IAR0_EL1:
1267     case SYSREG_ICC_IAR1_EL1:
1268     case SYSREG_ICC_IGRPEN0_EL1:
1269     case SYSREG_ICC_IGRPEN1_EL1:
1270     case SYSREG_ICC_PMR_EL1:
1271     case SYSREG_ICC_SGI0R_EL1:
1272     case SYSREG_ICC_SGI1R_EL1:
1273     case SYSREG_ICC_SRE_EL1:
1274     case SYSREG_ICC_CTLR_EL1:
1275         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1276         if (!hvf_sysreg_read_cp(cpu, reg, &val)) {
1277             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1278         }
1279         break;
1280     case SYSREG_DBGBVR0_EL1:
1281     case SYSREG_DBGBVR1_EL1:
1282     case SYSREG_DBGBVR2_EL1:
1283     case SYSREG_DBGBVR3_EL1:
1284     case SYSREG_DBGBVR4_EL1:
1285     case SYSREG_DBGBVR5_EL1:
1286     case SYSREG_DBGBVR6_EL1:
1287     case SYSREG_DBGBVR7_EL1:
1288     case SYSREG_DBGBVR8_EL1:
1289     case SYSREG_DBGBVR9_EL1:
1290     case SYSREG_DBGBVR10_EL1:
1291     case SYSREG_DBGBVR11_EL1:
1292     case SYSREG_DBGBVR12_EL1:
1293     case SYSREG_DBGBVR13_EL1:
1294     case SYSREG_DBGBVR14_EL1:
1295     case SYSREG_DBGBVR15_EL1:
1296         val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1297         break;
1298     case SYSREG_DBGBCR0_EL1:
1299     case SYSREG_DBGBCR1_EL1:
1300     case SYSREG_DBGBCR2_EL1:
1301     case SYSREG_DBGBCR3_EL1:
1302     case SYSREG_DBGBCR4_EL1:
1303     case SYSREG_DBGBCR5_EL1:
1304     case SYSREG_DBGBCR6_EL1:
1305     case SYSREG_DBGBCR7_EL1:
1306     case SYSREG_DBGBCR8_EL1:
1307     case SYSREG_DBGBCR9_EL1:
1308     case SYSREG_DBGBCR10_EL1:
1309     case SYSREG_DBGBCR11_EL1:
1310     case SYSREG_DBGBCR12_EL1:
1311     case SYSREG_DBGBCR13_EL1:
1312     case SYSREG_DBGBCR14_EL1:
1313     case SYSREG_DBGBCR15_EL1:
1314         val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1315         break;
1316     case SYSREG_DBGWVR0_EL1:
1317     case SYSREG_DBGWVR1_EL1:
1318     case SYSREG_DBGWVR2_EL1:
1319     case SYSREG_DBGWVR3_EL1:
1320     case SYSREG_DBGWVR4_EL1:
1321     case SYSREG_DBGWVR5_EL1:
1322     case SYSREG_DBGWVR6_EL1:
1323     case SYSREG_DBGWVR7_EL1:
1324     case SYSREG_DBGWVR8_EL1:
1325     case SYSREG_DBGWVR9_EL1:
1326     case SYSREG_DBGWVR10_EL1:
1327     case SYSREG_DBGWVR11_EL1:
1328     case SYSREG_DBGWVR12_EL1:
1329     case SYSREG_DBGWVR13_EL1:
1330     case SYSREG_DBGWVR14_EL1:
1331     case SYSREG_DBGWVR15_EL1:
1332         val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1333         break;
1334     case SYSREG_DBGWCR0_EL1:
1335     case SYSREG_DBGWCR1_EL1:
1336     case SYSREG_DBGWCR2_EL1:
1337     case SYSREG_DBGWCR3_EL1:
1338     case SYSREG_DBGWCR4_EL1:
1339     case SYSREG_DBGWCR5_EL1:
1340     case SYSREG_DBGWCR6_EL1:
1341     case SYSREG_DBGWCR7_EL1:
1342     case SYSREG_DBGWCR8_EL1:
1343     case SYSREG_DBGWCR9_EL1:
1344     case SYSREG_DBGWCR10_EL1:
1345     case SYSREG_DBGWCR11_EL1:
1346     case SYSREG_DBGWCR12_EL1:
1347     case SYSREG_DBGWCR13_EL1:
1348     case SYSREG_DBGWCR14_EL1:
1349     case SYSREG_DBGWCR15_EL1:
1350         val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1351         break;
1352     default:
1353         if (is_id_sysreg(reg)) {
1354             /* ID system registers read as RES0 */
1355             val = 0;
1356             break;
1357         }
1358         cpu_synchronize_state(cpu);
1359         trace_hvf_unhandled_sysreg_read(env->pc, reg,
1360                                         SYSREG_OP0(reg),
1361                                         SYSREG_OP1(reg),
1362                                         SYSREG_CRN(reg),
1363                                         SYSREG_CRM(reg),
1364                                         SYSREG_OP2(reg));
1365         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1366         return 1;
1367     }
1368 
1369     trace_hvf_sysreg_read(reg,
1370                           SYSREG_OP0(reg),
1371                           SYSREG_OP1(reg),
1372                           SYSREG_CRN(reg),
1373                           SYSREG_CRM(reg),
1374                           SYSREG_OP2(reg),
1375                           val);
1376     hvf_set_reg(cpu, rt, val);
1377 
1378     return 0;
1379 }
1380 
1381 static void pmu_update_irq(CPUARMState *env)
1382 {
1383     ARMCPU *cpu = env_archcpu(env);
1384     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1385             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1386 }
1387 
1388 static bool pmu_event_supported(uint16_t number)
1389 {
1390     return false;
1391 }
1392 
1393 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1394  * the current EL, security state, and register configuration.
1395  */
1396 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1397 {
1398     uint64_t filter;
1399     bool enabled, filtered = true;
1400     int el = arm_current_el(env);
1401 
1402     enabled = (env->cp15.c9_pmcr & PMCRE) &&
1403               (env->cp15.c9_pmcnten & (1 << counter));
1404 
1405     if (counter == 31) {
1406         filter = env->cp15.pmccfiltr_el0;
1407     } else {
1408         filter = env->cp15.c14_pmevtyper[counter];
1409     }
1410 
1411     if (el == 0) {
1412         filtered = filter & PMXEVTYPER_U;
1413     } else if (el == 1) {
1414         filtered = filter & PMXEVTYPER_P;
1415     }
1416 
1417     if (counter != 31) {
1418         /*
1419          * If not checking PMCCNTR, ensure the counter is setup to an event we
1420          * support
1421          */
1422         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1423         if (!pmu_event_supported(event)) {
1424             return false;
1425         }
1426     }
1427 
1428     return enabled && !filtered;
1429 }
1430 
1431 static void pmswinc_write(CPUARMState *env, uint64_t value)
1432 {
1433     unsigned int i;
1434     for (i = 0; i < pmu_num_counters(env); i++) {
1435         /* Increment a counter's count iff: */
1436         if ((value & (1 << i)) && /* counter's bit is set */
1437                 /* counter is enabled and not filtered */
1438                 pmu_counter_enabled(env, i) &&
1439                 /* counter is SW_INCR */
1440                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1441             /*
1442              * Detect if this write causes an overflow since we can't predict
1443              * PMSWINC overflows like we can for other events
1444              */
1445             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1446 
1447             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1448                 env->cp15.c9_pmovsr |= (1 << i);
1449                 pmu_update_irq(env);
1450             }
1451 
1452             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1453         }
1454     }
1455 }
1456 
1457 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1458 {
1459     ARMCPU *arm_cpu = ARM_CPU(cpu);
1460     CPUARMState *env = &arm_cpu->env;
1461     const ARMCPRegInfo *ri;
1462 
1463     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1464 
1465     if (ri) {
1466         if (ri->accessfn) {
1467             if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1468                 return false;
1469             }
1470         }
1471         if (ri->writefn) {
1472             ri->writefn(env, ri, val);
1473         } else {
1474             CPREG_FIELD64(env, ri) = val;
1475         }
1476 
1477         trace_hvf_vgic_write(ri->name, val);
1478         return true;
1479     }
1480 
1481     return false;
1482 }
1483 
1484 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1485 {
1486     ARMCPU *arm_cpu = ARM_CPU(cpu);
1487     CPUARMState *env = &arm_cpu->env;
1488 
1489     trace_hvf_sysreg_write(reg,
1490                            SYSREG_OP0(reg),
1491                            SYSREG_OP1(reg),
1492                            SYSREG_CRN(reg),
1493                            SYSREG_CRM(reg),
1494                            SYSREG_OP2(reg),
1495                            val);
1496 
1497     switch (reg) {
1498     case SYSREG_PMCCNTR_EL0:
1499         pmu_op_start(env);
1500         env->cp15.c15_ccnt = val;
1501         pmu_op_finish(env);
1502         break;
1503     case SYSREG_PMCR_EL0:
1504         pmu_op_start(env);
1505 
1506         if (val & PMCRC) {
1507             /* The counter has been reset */
1508             env->cp15.c15_ccnt = 0;
1509         }
1510 
1511         if (val & PMCRP) {
1512             unsigned int i;
1513             for (i = 0; i < pmu_num_counters(env); i++) {
1514                 env->cp15.c14_pmevcntr[i] = 0;
1515             }
1516         }
1517 
1518         env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1519         env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1520 
1521         pmu_op_finish(env);
1522         break;
1523     case SYSREG_PMUSERENR_EL0:
1524         env->cp15.c9_pmuserenr = val & 0xf;
1525         break;
1526     case SYSREG_PMCNTENSET_EL0:
1527         env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1528         break;
1529     case SYSREG_PMCNTENCLR_EL0:
1530         env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1531         break;
1532     case SYSREG_PMINTENCLR_EL1:
1533         pmu_op_start(env);
1534         env->cp15.c9_pminten |= val;
1535         pmu_op_finish(env);
1536         break;
1537     case SYSREG_PMOVSCLR_EL0:
1538         pmu_op_start(env);
1539         env->cp15.c9_pmovsr &= ~val;
1540         pmu_op_finish(env);
1541         break;
1542     case SYSREG_PMSWINC_EL0:
1543         pmu_op_start(env);
1544         pmswinc_write(env, val);
1545         pmu_op_finish(env);
1546         break;
1547     case SYSREG_PMSELR_EL0:
1548         env->cp15.c9_pmselr = val & 0x1f;
1549         break;
1550     case SYSREG_PMCCFILTR_EL0:
1551         pmu_op_start(env);
1552         env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1553         pmu_op_finish(env);
1554         break;
1555     case SYSREG_OSLAR_EL1:
1556         env->cp15.oslsr_el1 = val & 1;
1557         break;
1558     case SYSREG_OSDLR_EL1:
1559         /* Dummy register */
1560         break;
1561     case SYSREG_ICC_AP0R0_EL1:
1562     case SYSREG_ICC_AP0R1_EL1:
1563     case SYSREG_ICC_AP0R2_EL1:
1564     case SYSREG_ICC_AP0R3_EL1:
1565     case SYSREG_ICC_AP1R0_EL1:
1566     case SYSREG_ICC_AP1R1_EL1:
1567     case SYSREG_ICC_AP1R2_EL1:
1568     case SYSREG_ICC_AP1R3_EL1:
1569     case SYSREG_ICC_ASGI1R_EL1:
1570     case SYSREG_ICC_BPR0_EL1:
1571     case SYSREG_ICC_BPR1_EL1:
1572     case SYSREG_ICC_CTLR_EL1:
1573     case SYSREG_ICC_DIR_EL1:
1574     case SYSREG_ICC_EOIR0_EL1:
1575     case SYSREG_ICC_EOIR1_EL1:
1576     case SYSREG_ICC_HPPIR0_EL1:
1577     case SYSREG_ICC_HPPIR1_EL1:
1578     case SYSREG_ICC_IAR0_EL1:
1579     case SYSREG_ICC_IAR1_EL1:
1580     case SYSREG_ICC_IGRPEN0_EL1:
1581     case SYSREG_ICC_IGRPEN1_EL1:
1582     case SYSREG_ICC_PMR_EL1:
1583     case SYSREG_ICC_SGI0R_EL1:
1584     case SYSREG_ICC_SGI1R_EL1:
1585     case SYSREG_ICC_SRE_EL1:
1586         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1587         if (!hvf_sysreg_write_cp(cpu, reg, val)) {
1588             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1589         }
1590         break;
1591     case SYSREG_MDSCR_EL1:
1592         env->cp15.mdscr_el1 = val;
1593         break;
1594     case SYSREG_DBGBVR0_EL1:
1595     case SYSREG_DBGBVR1_EL1:
1596     case SYSREG_DBGBVR2_EL1:
1597     case SYSREG_DBGBVR3_EL1:
1598     case SYSREG_DBGBVR4_EL1:
1599     case SYSREG_DBGBVR5_EL1:
1600     case SYSREG_DBGBVR6_EL1:
1601     case SYSREG_DBGBVR7_EL1:
1602     case SYSREG_DBGBVR8_EL1:
1603     case SYSREG_DBGBVR9_EL1:
1604     case SYSREG_DBGBVR10_EL1:
1605     case SYSREG_DBGBVR11_EL1:
1606     case SYSREG_DBGBVR12_EL1:
1607     case SYSREG_DBGBVR13_EL1:
1608     case SYSREG_DBGBVR14_EL1:
1609     case SYSREG_DBGBVR15_EL1:
1610         env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1611         break;
1612     case SYSREG_DBGBCR0_EL1:
1613     case SYSREG_DBGBCR1_EL1:
1614     case SYSREG_DBGBCR2_EL1:
1615     case SYSREG_DBGBCR3_EL1:
1616     case SYSREG_DBGBCR4_EL1:
1617     case SYSREG_DBGBCR5_EL1:
1618     case SYSREG_DBGBCR6_EL1:
1619     case SYSREG_DBGBCR7_EL1:
1620     case SYSREG_DBGBCR8_EL1:
1621     case SYSREG_DBGBCR9_EL1:
1622     case SYSREG_DBGBCR10_EL1:
1623     case SYSREG_DBGBCR11_EL1:
1624     case SYSREG_DBGBCR12_EL1:
1625     case SYSREG_DBGBCR13_EL1:
1626     case SYSREG_DBGBCR14_EL1:
1627     case SYSREG_DBGBCR15_EL1:
1628         env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1629         break;
1630     case SYSREG_DBGWVR0_EL1:
1631     case SYSREG_DBGWVR1_EL1:
1632     case SYSREG_DBGWVR2_EL1:
1633     case SYSREG_DBGWVR3_EL1:
1634     case SYSREG_DBGWVR4_EL1:
1635     case SYSREG_DBGWVR5_EL1:
1636     case SYSREG_DBGWVR6_EL1:
1637     case SYSREG_DBGWVR7_EL1:
1638     case SYSREG_DBGWVR8_EL1:
1639     case SYSREG_DBGWVR9_EL1:
1640     case SYSREG_DBGWVR10_EL1:
1641     case SYSREG_DBGWVR11_EL1:
1642     case SYSREG_DBGWVR12_EL1:
1643     case SYSREG_DBGWVR13_EL1:
1644     case SYSREG_DBGWVR14_EL1:
1645     case SYSREG_DBGWVR15_EL1:
1646         env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1647         break;
1648     case SYSREG_DBGWCR0_EL1:
1649     case SYSREG_DBGWCR1_EL1:
1650     case SYSREG_DBGWCR2_EL1:
1651     case SYSREG_DBGWCR3_EL1:
1652     case SYSREG_DBGWCR4_EL1:
1653     case SYSREG_DBGWCR5_EL1:
1654     case SYSREG_DBGWCR6_EL1:
1655     case SYSREG_DBGWCR7_EL1:
1656     case SYSREG_DBGWCR8_EL1:
1657     case SYSREG_DBGWCR9_EL1:
1658     case SYSREG_DBGWCR10_EL1:
1659     case SYSREG_DBGWCR11_EL1:
1660     case SYSREG_DBGWCR12_EL1:
1661     case SYSREG_DBGWCR13_EL1:
1662     case SYSREG_DBGWCR14_EL1:
1663     case SYSREG_DBGWCR15_EL1:
1664         env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1665         break;
1666     default:
1667         cpu_synchronize_state(cpu);
1668         trace_hvf_unhandled_sysreg_write(env->pc, reg,
1669                                          SYSREG_OP0(reg),
1670                                          SYSREG_OP1(reg),
1671                                          SYSREG_CRN(reg),
1672                                          SYSREG_CRM(reg),
1673                                          SYSREG_OP2(reg));
1674         hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1675         return 1;
1676     }
1677 
1678     return 0;
1679 }
1680 
1681 static int hvf_inject_interrupts(CPUState *cpu)
1682 {
1683     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1684         trace_hvf_inject_fiq();
1685         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
1686                                       true);
1687     }
1688 
1689     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1690         trace_hvf_inject_irq();
1691         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
1692                                       true);
1693     }
1694 
1695     return 0;
1696 }
1697 
1698 static uint64_t hvf_vtimer_val_raw(void)
1699 {
1700     /*
1701      * mach_absolute_time() returns the vtimer value without the VM
1702      * offset that we define. Add our own offset on top.
1703      */
1704     return mach_absolute_time() - hvf_state->vtimer_offset;
1705 }
1706 
1707 static uint64_t hvf_vtimer_val(void)
1708 {
1709     if (!runstate_is_running()) {
1710         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1711         return vtimer.vtimer_val;
1712     }
1713 
1714     return hvf_vtimer_val_raw();
1715 }
1716 
1717 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1718 {
1719     /*
1720      * Use pselect to sleep so that other threads can IPI us while we're
1721      * sleeping.
1722      */
1723     qatomic_set_mb(&cpu->thread_kicked, false);
1724     qemu_mutex_unlock_iothread();
1725     pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
1726     qemu_mutex_lock_iothread();
1727 }
1728 
1729 static void hvf_wfi(CPUState *cpu)
1730 {
1731     ARMCPU *arm_cpu = ARM_CPU(cpu);
1732     struct timespec ts;
1733     hv_return_t r;
1734     uint64_t ctl;
1735     uint64_t cval;
1736     int64_t ticks_to_sleep;
1737     uint64_t seconds;
1738     uint64_t nanos;
1739     uint32_t cntfrq;
1740 
1741     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1742         /* Interrupt pending, no need to wait */
1743         return;
1744     }
1745 
1746     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1747     assert_hvf_ok(r);
1748 
1749     if (!(ctl & 1) || (ctl & 2)) {
1750         /* Timer disabled or masked, just wait for an IPI. */
1751         hvf_wait_for_ipi(cpu, NULL);
1752         return;
1753     }
1754 
1755     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1756     assert_hvf_ok(r);
1757 
1758     ticks_to_sleep = cval - hvf_vtimer_val();
1759     if (ticks_to_sleep < 0) {
1760         return;
1761     }
1762 
1763     cntfrq = gt_cntfrq_period_ns(arm_cpu);
1764     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1765     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1766     nanos = ticks_to_sleep * cntfrq;
1767 
1768     /*
1769      * Don't sleep for less than the time a context switch would take,
1770      * so that we can satisfy fast timer requests on the same CPU.
1771      * Measurements on M1 show the sweet spot to be ~2ms.
1772      */
1773     if (!seconds && nanos < (2 * SCALE_MS)) {
1774         return;
1775     }
1776 
1777     ts = (struct timespec) { seconds, nanos };
1778     hvf_wait_for_ipi(cpu, &ts);
1779 }
1780 
1781 static void hvf_sync_vtimer(CPUState *cpu)
1782 {
1783     ARMCPU *arm_cpu = ARM_CPU(cpu);
1784     hv_return_t r;
1785     uint64_t ctl;
1786     bool irq_state;
1787 
1788     if (!cpu->accel->vtimer_masked) {
1789         /* We will get notified on vtimer changes by hvf, nothing to do */
1790         return;
1791     }
1792 
1793     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1794     assert_hvf_ok(r);
1795 
1796     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1797                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1798     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1799 
1800     if (!irq_state) {
1801         /* Timer no longer asserting, we can unmask it */
1802         hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
1803         cpu->accel->vtimer_masked = false;
1804     }
1805 }
1806 
1807 int hvf_vcpu_exec(CPUState *cpu)
1808 {
1809     ARMCPU *arm_cpu = ARM_CPU(cpu);
1810     CPUARMState *env = &arm_cpu->env;
1811     int ret;
1812     hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
1813     hv_return_t r;
1814     bool advance_pc = false;
1815 
1816     if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
1817         hvf_inject_interrupts(cpu)) {
1818         return EXCP_INTERRUPT;
1819     }
1820 
1821     if (cpu->halted) {
1822         return EXCP_HLT;
1823     }
1824 
1825     flush_cpu_state(cpu);
1826 
1827     qemu_mutex_unlock_iothread();
1828     assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
1829 
1830     /* handle VMEXIT */
1831     uint64_t exit_reason = hvf_exit->reason;
1832     uint64_t syndrome = hvf_exit->exception.syndrome;
1833     uint32_t ec = syn_get_ec(syndrome);
1834 
1835     ret = 0;
1836     qemu_mutex_lock_iothread();
1837     switch (exit_reason) {
1838     case HV_EXIT_REASON_EXCEPTION:
1839         /* This is the main one, handle below. */
1840         break;
1841     case HV_EXIT_REASON_VTIMER_ACTIVATED:
1842         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1843         cpu->accel->vtimer_masked = true;
1844         return 0;
1845     case HV_EXIT_REASON_CANCELED:
1846         /* we got kicked, no exit to process */
1847         return 0;
1848     default:
1849         g_assert_not_reached();
1850     }
1851 
1852     hvf_sync_vtimer(cpu);
1853 
1854     switch (ec) {
1855     case EC_SOFTWARESTEP: {
1856         ret = EXCP_DEBUG;
1857 
1858         if (!cpu->singlestep_enabled) {
1859             error_report("EC_SOFTWARESTEP but single-stepping not enabled");
1860         }
1861         break;
1862     }
1863     case EC_AA64_BKPT: {
1864         ret = EXCP_DEBUG;
1865 
1866         cpu_synchronize_state(cpu);
1867 
1868         if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
1869             /* Re-inject into the guest */
1870             ret = 0;
1871             hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
1872         }
1873         break;
1874     }
1875     case EC_BREAKPOINT: {
1876         ret = EXCP_DEBUG;
1877 
1878         cpu_synchronize_state(cpu);
1879 
1880         if (!find_hw_breakpoint(cpu, env->pc)) {
1881             error_report("EC_BREAKPOINT but unknown hw breakpoint");
1882         }
1883         break;
1884     }
1885     case EC_WATCHPOINT: {
1886         ret = EXCP_DEBUG;
1887 
1888         cpu_synchronize_state(cpu);
1889 
1890         CPUWatchpoint *wp =
1891             find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
1892         if (!wp) {
1893             error_report("EXCP_DEBUG but unknown hw watchpoint");
1894         }
1895         cpu->watchpoint_hit = wp;
1896         break;
1897     }
1898     case EC_DATAABORT: {
1899         bool isv = syndrome & ARM_EL_ISV;
1900         bool iswrite = (syndrome >> 6) & 1;
1901         bool s1ptw = (syndrome >> 7) & 1;
1902         uint32_t sas = (syndrome >> 22) & 3;
1903         uint32_t len = 1 << sas;
1904         uint32_t srt = (syndrome >> 16) & 0x1f;
1905         uint32_t cm = (syndrome >> 8) & 0x1;
1906         uint64_t val = 0;
1907 
1908         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1909                              hvf_exit->exception.physical_address, isv,
1910                              iswrite, s1ptw, len, srt);
1911 
1912         if (cm) {
1913             /* We don't cache MMIO regions */
1914             advance_pc = true;
1915             break;
1916         }
1917 
1918         assert(isv);
1919 
1920         if (iswrite) {
1921             val = hvf_get_reg(cpu, srt);
1922             address_space_write(&address_space_memory,
1923                                 hvf_exit->exception.physical_address,
1924                                 MEMTXATTRS_UNSPECIFIED, &val, len);
1925         } else {
1926             address_space_read(&address_space_memory,
1927                                hvf_exit->exception.physical_address,
1928                                MEMTXATTRS_UNSPECIFIED, &val, len);
1929             hvf_set_reg(cpu, srt, val);
1930         }
1931 
1932         advance_pc = true;
1933         break;
1934     }
1935     case EC_SYSTEMREGISTERTRAP: {
1936         bool isread = (syndrome >> 0) & 1;
1937         uint32_t rt = (syndrome >> 5) & 0x1f;
1938         uint32_t reg = syndrome & SYSREG_MASK;
1939         uint64_t val;
1940         int sysreg_ret = 0;
1941 
1942         if (isread) {
1943             sysreg_ret = hvf_sysreg_read(cpu, reg, rt);
1944         } else {
1945             val = hvf_get_reg(cpu, rt);
1946             sysreg_ret = hvf_sysreg_write(cpu, reg, val);
1947         }
1948 
1949         advance_pc = !sysreg_ret;
1950         break;
1951     }
1952     case EC_WFX_TRAP:
1953         advance_pc = true;
1954         if (!(syndrome & WFX_IS_WFE)) {
1955             hvf_wfi(cpu);
1956         }
1957         break;
1958     case EC_AA64_HVC:
1959         cpu_synchronize_state(cpu);
1960         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1961             if (!hvf_handle_psci_call(cpu)) {
1962                 trace_hvf_unknown_hvc(env->xregs[0]);
1963                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1964                 env->xregs[0] = -1;
1965             }
1966         } else {
1967             trace_hvf_unknown_hvc(env->xregs[0]);
1968             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1969         }
1970         break;
1971     case EC_AA64_SMC:
1972         cpu_synchronize_state(cpu);
1973         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1974             advance_pc = true;
1975 
1976             if (!hvf_handle_psci_call(cpu)) {
1977                 trace_hvf_unknown_smc(env->xregs[0]);
1978                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1979                 env->xregs[0] = -1;
1980             }
1981         } else {
1982             trace_hvf_unknown_smc(env->xregs[0]);
1983             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1984         }
1985         break;
1986     default:
1987         cpu_synchronize_state(cpu);
1988         trace_hvf_exit(syndrome, ec, env->pc);
1989         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1990     }
1991 
1992     if (advance_pc) {
1993         uint64_t pc;
1994 
1995         flush_cpu_state(cpu);
1996 
1997         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
1998         assert_hvf_ok(r);
1999         pc += 4;
2000         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
2001         assert_hvf_ok(r);
2002 
2003         /* Handle single-stepping over instructions which trigger a VM exit */
2004         if (cpu->singlestep_enabled) {
2005             ret = EXCP_DEBUG;
2006         }
2007     }
2008 
2009     return ret;
2010 }
2011 
2012 static const VMStateDescription vmstate_hvf_vtimer = {
2013     .name = "hvf-vtimer",
2014     .version_id = 1,
2015     .minimum_version_id = 1,
2016     .fields = (const VMStateField[]) {
2017         VMSTATE_UINT64(vtimer_val, HVFVTimer),
2018         VMSTATE_END_OF_LIST()
2019     },
2020 };
2021 
2022 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
2023 {
2024     HVFVTimer *s = opaque;
2025 
2026     if (running) {
2027         /* Update vtimer offset on all CPUs */
2028         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
2029         cpu_synchronize_all_states();
2030     } else {
2031         /* Remember vtimer value on every pause */
2032         s->vtimer_val = hvf_vtimer_val_raw();
2033     }
2034 }
2035 
2036 int hvf_arch_init(void)
2037 {
2038     hvf_state->vtimer_offset = mach_absolute_time();
2039     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
2040     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
2041 
2042     hvf_arm_init_debug();
2043 
2044     return 0;
2045 }
2046 
2047 static const uint32_t brk_insn = 0xd4200000;
2048 
2049 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2050 {
2051     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2052         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2053         return -EINVAL;
2054     }
2055     return 0;
2056 }
2057 
2058 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2059 {
2060     static uint32_t brk;
2061 
2062     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
2063         brk != brk_insn ||
2064         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2065         return -EINVAL;
2066     }
2067     return 0;
2068 }
2069 
2070 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2071 {
2072     switch (type) {
2073     case GDB_BREAKPOINT_HW:
2074         return insert_hw_breakpoint(addr);
2075     case GDB_WATCHPOINT_READ:
2076     case GDB_WATCHPOINT_WRITE:
2077     case GDB_WATCHPOINT_ACCESS:
2078         return insert_hw_watchpoint(addr, len, type);
2079     default:
2080         return -ENOSYS;
2081     }
2082 }
2083 
2084 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2085 {
2086     switch (type) {
2087     case GDB_BREAKPOINT_HW:
2088         return delete_hw_breakpoint(addr);
2089     case GDB_WATCHPOINT_READ:
2090     case GDB_WATCHPOINT_WRITE:
2091     case GDB_WATCHPOINT_ACCESS:
2092         return delete_hw_watchpoint(addr, len, type);
2093     default:
2094         return -ENOSYS;
2095     }
2096 }
2097 
2098 void hvf_arch_remove_all_hw_breakpoints(void)
2099 {
2100     if (cur_hw_wps > 0) {
2101         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
2102     }
2103     if (cur_hw_bps > 0) {
2104         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
2105     }
2106 }
2107 
2108 /*
2109  * Update the vCPU with the gdbstub's view of debug registers. This view
2110  * consists of all hardware breakpoints and watchpoints inserted so far while
2111  * debugging the guest.
2112  */
2113 static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
2114 {
2115     hv_return_t r = HV_SUCCESS;
2116     int i;
2117 
2118     for (i = 0; i < cur_hw_bps; i++) {
2119         HWBreakpoint *bp = get_hw_bp(i);
2120         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
2121         assert_hvf_ok(r);
2122         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
2123         assert_hvf_ok(r);
2124     }
2125     for (i = cur_hw_bps; i < max_hw_bps; i++) {
2126         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
2127         assert_hvf_ok(r);
2128         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
2129         assert_hvf_ok(r);
2130     }
2131 
2132     for (i = 0; i < cur_hw_wps; i++) {
2133         HWWatchpoint *wp = get_hw_wp(i);
2134         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
2135         assert_hvf_ok(r);
2136         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
2137         assert_hvf_ok(r);
2138     }
2139     for (i = cur_hw_wps; i < max_hw_wps; i++) {
2140         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
2141         assert_hvf_ok(r);
2142         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
2143         assert_hvf_ok(r);
2144     }
2145 }
2146 
2147 /*
2148  * Update the vCPU with the guest's view of debug registers. This view is kept
2149  * in the environment at all times.
2150  */
2151 static void hvf_put_guest_debug_registers(CPUState *cpu)
2152 {
2153     ARMCPU *arm_cpu = ARM_CPU(cpu);
2154     CPUARMState *env = &arm_cpu->env;
2155     hv_return_t r = HV_SUCCESS;
2156     int i;
2157 
2158     for (i = 0; i < max_hw_bps; i++) {
2159         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
2160                                 env->cp15.dbgbcr[i]);
2161         assert_hvf_ok(r);
2162         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
2163                                 env->cp15.dbgbvr[i]);
2164         assert_hvf_ok(r);
2165     }
2166 
2167     for (i = 0; i < max_hw_wps; i++) {
2168         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
2169                                 env->cp15.dbgwcr[i]);
2170         assert_hvf_ok(r);
2171         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
2172                                 env->cp15.dbgwvr[i]);
2173         assert_hvf_ok(r);
2174     }
2175 }
2176 
2177 static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
2178 {
2179     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
2180 }
2181 
2182 static void hvf_arch_set_traps(void)
2183 {
2184     CPUState *cpu;
2185     bool should_enable_traps = false;
2186     hv_return_t r = HV_SUCCESS;
2187 
2188     /* Check whether guest debugging is enabled for at least one vCPU; if it
2189      * is, enable exiting the guest on all vCPUs */
2190     CPU_FOREACH(cpu) {
2191         should_enable_traps |= cpu->accel->guest_debug_enabled;
2192     }
2193     CPU_FOREACH(cpu) {
2194         /* Set whether debug exceptions exit the guest */
2195         r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
2196                                               should_enable_traps);
2197         assert_hvf_ok(r);
2198 
2199         /* Set whether accesses to debug registers exit the guest */
2200         r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
2201                                                 should_enable_traps);
2202         assert_hvf_ok(r);
2203     }
2204 }
2205 
2206 void hvf_arch_update_guest_debug(CPUState *cpu)
2207 {
2208     ARMCPU *arm_cpu = ARM_CPU(cpu);
2209     CPUARMState *env = &arm_cpu->env;
2210 
2211     /* Check whether guest debugging is enabled */
2212     cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
2213                                     hvf_sw_breakpoints_active(cpu) ||
2214                                     hvf_arm_hw_debug_active(cpu);
2215 
2216     /* Update debug registers */
2217     if (cpu->accel->guest_debug_enabled) {
2218         hvf_put_gdbstub_debug_registers(cpu);
2219     } else {
2220         hvf_put_guest_debug_registers(cpu);
2221     }
2222 
2223     cpu_synchronize_state(cpu);
2224 
2225     /* Enable/disable single-stepping */
2226     if (cpu->singlestep_enabled) {
2227         env->cp15.mdscr_el1 =
2228             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
2229         pstate_write(env, pstate_read(env) | PSTATE_SS);
2230     } else {
2231         env->cp15.mdscr_el1 =
2232             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
2233     }
2234 
2235     /* Enable/disable Breakpoint exceptions */
2236     if (hvf_arm_hw_debug_active(cpu)) {
2237         env->cp15.mdscr_el1 =
2238             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
2239     } else {
2240         env->cp15.mdscr_el1 =
2241             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
2242     }
2243 
2244     hvf_arch_set_traps();
2245 }
2246 
2247 inline bool hvf_arch_supports_guest_debug(void)
2248 {
2249     return true;
2250 }
2251