1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "exec/helper-proto.h" 15 #include "qemu/main-loop.h" 16 #include "qemu/timer.h" 17 #include "qemu/bitops.h" 18 #include "qemu/crc32c.h" 19 #include "qemu/qemu-print.h" 20 #include "exec/exec-all.h" 21 #include <zlib.h> /* For crc32 */ 22 #include "hw/irq.h" 23 #include "sysemu/cpu-timers.h" 24 #include "sysemu/kvm.h" 25 #include "sysemu/tcg.h" 26 #include "qapi/error.h" 27 #include "qemu/guest-random.h" 28 #ifdef CONFIG_TCG 29 #include "semihosting/common-semi.h" 30 #endif 31 #include "cpregs.h" 32 33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 34 35 static void switch_mode(CPUARMState *env, int mode); 36 37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 38 { 39 assert(ri->fieldoffset); 40 if (cpreg_field_is_64bit(ri)) { 41 return CPREG_FIELD64(env, ri); 42 } else { 43 return CPREG_FIELD32(env, ri); 44 } 45 } 46 47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 48 { 49 assert(ri->fieldoffset); 50 if (cpreg_field_is_64bit(ri)) { 51 CPREG_FIELD64(env, ri) = value; 52 } else { 53 CPREG_FIELD32(env, ri) = value; 54 } 55 } 56 57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 return (char *)env + ri->fieldoffset; 60 } 61 62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 63 { 64 /* Raw read of a coprocessor register (as needed for migration, etc). */ 65 if (ri->type & ARM_CP_CONST) { 66 return ri->resetvalue; 67 } else if (ri->raw_readfn) { 68 return ri->raw_readfn(env, ri); 69 } else if (ri->readfn) { 70 return ri->readfn(env, ri); 71 } else { 72 return raw_read(env, ri); 73 } 74 } 75 76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 77 uint64_t v) 78 { 79 /* 80 * Raw write of a coprocessor register (as needed for migration, etc). 81 * Note that constant registers are treated as write-ignored; the 82 * caller should check for success by whether a readback gives the 83 * value written. 84 */ 85 if (ri->type & ARM_CP_CONST) { 86 return; 87 } else if (ri->raw_writefn) { 88 ri->raw_writefn(env, ri, v); 89 } else if (ri->writefn) { 90 ri->writefn(env, ri, v); 91 } else { 92 raw_write(env, ri, v); 93 } 94 } 95 96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 97 { 98 /* 99 * Return true if the regdef would cause an assertion if you called 100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 101 * program bug for it not to have the NO_RAW flag). 102 * NB that returning false here doesn't necessarily mean that calling 103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 104 * read/write access functions which are safe for raw use" from "has 105 * read/write access functions which have side effects but has forgotten 106 * to provide raw access functions". 107 * The tests here line up with the conditions in read/write_raw_cp_reg() 108 * and assertions in raw_read()/raw_write(). 109 */ 110 if ((ri->type & ARM_CP_CONST) || 111 ri->fieldoffset || 112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 113 return false; 114 } 115 return true; 116 } 117 118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 119 { 120 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 121 int i; 122 bool ok = true; 123 124 for (i = 0; i < cpu->cpreg_array_len; i++) { 125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 126 const ARMCPRegInfo *ri; 127 uint64_t newval; 128 129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 130 if (!ri) { 131 ok = false; 132 continue; 133 } 134 if (ri->type & ARM_CP_NO_RAW) { 135 continue; 136 } 137 138 newval = read_raw_cp_reg(&cpu->env, ri); 139 if (kvm_sync) { 140 /* 141 * Only sync if the previous list->cpustate sync succeeded. 142 * Rather than tracking the success/failure state for every 143 * item in the list, we just recheck "does the raw write we must 144 * have made in write_list_to_cpustate() read back OK" here. 145 */ 146 uint64_t oldval = cpu->cpreg_values[i]; 147 148 if (oldval == newval) { 149 continue; 150 } 151 152 write_raw_cp_reg(&cpu->env, ri, oldval); 153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, newval); 158 } 159 cpu->cpreg_values[i] = newval; 160 } 161 return ok; 162 } 163 164 bool write_list_to_cpustate(ARMCPU *cpu) 165 { 166 int i; 167 bool ok = true; 168 169 for (i = 0; i < cpu->cpreg_array_len; i++) { 170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 171 uint64_t v = cpu->cpreg_values[i]; 172 const ARMCPRegInfo *ri; 173 174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 175 if (!ri) { 176 ok = false; 177 continue; 178 } 179 if (ri->type & ARM_CP_NO_RAW) { 180 continue; 181 } 182 /* 183 * Write value and confirm it reads back as written 184 * (to catch read-only registers and partially read-only 185 * registers where the incoming migration value doesn't match) 186 */ 187 write_raw_cp_reg(&cpu->env, ri, v); 188 if (read_raw_cp_reg(&cpu->env, ri) != v) { 189 ok = false; 190 } 191 } 192 return ok; 193 } 194 195 static void add_cpreg_to_list(gpointer key, gpointer opaque) 196 { 197 ARMCPU *cpu = opaque; 198 uint32_t regidx = (uintptr_t)key; 199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 200 201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 203 /* The value array need not be initialized at this point */ 204 cpu->cpreg_array_len++; 205 } 206 } 207 208 static void count_cpreg(gpointer key, gpointer opaque) 209 { 210 ARMCPU *cpu = opaque; 211 const ARMCPRegInfo *ri; 212 213 ri = g_hash_table_lookup(cpu->cp_regs, key); 214 215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 216 cpu->cpreg_array_len++; 217 } 218 } 219 220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 221 { 222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 224 225 if (aidx > bidx) { 226 return 1; 227 } 228 if (aidx < bidx) { 229 return -1; 230 } 231 return 0; 232 } 233 234 void init_cpreg_list(ARMCPU *cpu) 235 { 236 /* 237 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 238 * Note that we require cpreg_tuples[] to be sorted by key ID. 239 */ 240 GList *keys; 241 int arraylen; 242 243 keys = g_hash_table_get_keys(cpu->cp_regs); 244 keys = g_list_sort(keys, cpreg_key_compare); 245 246 cpu->cpreg_array_len = 0; 247 248 g_list_foreach(keys, count_cpreg, cpu); 249 250 arraylen = cpu->cpreg_array_len; 251 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 252 cpu->cpreg_values = g_new(uint64_t, arraylen); 253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 256 cpu->cpreg_array_len = 0; 257 258 g_list_foreach(keys, add_cpreg_to_list, cpu); 259 260 assert(cpu->cpreg_array_len == arraylen); 261 262 g_list_free(keys); 263 } 264 265 /* 266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 267 */ 268 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 269 const ARMCPRegInfo *ri, 270 bool isread) 271 { 272 if (!is_a64(env) && arm_current_el(env) == 3 && 273 arm_is_secure_below_el3(env)) { 274 return CP_ACCESS_TRAP_UNCATEGORIZED; 275 } 276 return CP_ACCESS_OK; 277 } 278 279 /* 280 * Some secure-only AArch32 registers trap to EL3 if used from 281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 283 * We assume that the .access field is set to PL1_RW. 284 */ 285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 286 const ARMCPRegInfo *ri, 287 bool isread) 288 { 289 if (arm_current_el(env) == 3) { 290 return CP_ACCESS_OK; 291 } 292 if (arm_is_secure_below_el3(env)) { 293 if (env->cp15.scr_el3 & SCR_EEL2) { 294 return CP_ACCESS_TRAP_EL2; 295 } 296 return CP_ACCESS_TRAP_EL3; 297 } 298 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 299 return CP_ACCESS_TRAP_UNCATEGORIZED; 300 } 301 302 /* 303 * Check for traps to performance monitor registers, which are controlled 304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 305 */ 306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 307 bool isread) 308 { 309 int el = arm_current_el(env); 310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 311 312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 313 return CP_ACCESS_TRAP_EL2; 314 } 315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 316 return CP_ACCESS_TRAP_EL3; 317 } 318 return CP_ACCESS_OK; 319 } 320 321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 322 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 323 bool isread) 324 { 325 if (arm_current_el(env) == 1) { 326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 327 if (arm_hcr_el2_eff(env) & trap) { 328 return CP_ACCESS_TRAP_EL2; 329 } 330 } 331 return CP_ACCESS_OK; 332 } 333 334 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 336 bool isread) 337 { 338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 339 return CP_ACCESS_TRAP_EL2; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 346 bool isread) 347 { 348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 349 return CP_ACCESS_TRAP_EL2; 350 } 351 return CP_ACCESS_OK; 352 } 353 354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 356 bool isread) 357 { 358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 359 return CP_ACCESS_TRAP_EL2; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 366 bool isread) 367 { 368 if (arm_current_el(env) == 1 && 369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 370 return CP_ACCESS_TRAP_EL2; 371 } 372 return CP_ACCESS_OK; 373 } 374 375 #ifdef TARGET_AARCH64 376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 1 && 381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 382 return CP_ACCESS_TRAP_EL2; 383 } 384 return CP_ACCESS_OK; 385 } 386 #endif 387 388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 389 { 390 ARMCPU *cpu = env_archcpu(env); 391 392 raw_write(env, ri, value); 393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 394 } 395 396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 397 { 398 ARMCPU *cpu = env_archcpu(env); 399 400 if (raw_read(env, ri) != value) { 401 /* 402 * Unlike real hardware the qemu TLB uses virtual addresses, 403 * not modified virtual addresses, so this causes a TLB flush. 404 */ 405 tlb_flush(CPU(cpu)); 406 raw_write(env, ri, value); 407 } 408 } 409 410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 411 uint64_t value) 412 { 413 ARMCPU *cpu = env_archcpu(env); 414 415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 416 && !extended_addresses_enabled(env)) { 417 /* 418 * For VMSA (when not using the LPAE long descriptor page table 419 * format) this register includes the ASID, so do a TLB flush. 420 * For PMSA it is purely a process ID and no action is needed. 421 */ 422 tlb_flush(CPU(cpu)); 423 } 424 raw_write(env, ri, value); 425 } 426 427 static int alle1_tlbmask(CPUARMState *env) 428 { 429 /* 430 * Note that the 'ALL' scope must invalidate both stage 1 and 431 * stage 2 translations, whereas most other scopes only invalidate 432 * stage 1 translations. 433 */ 434 return (ARMMMUIdxBit_E10_1 | 435 ARMMMUIdxBit_E10_1_PAN | 436 ARMMMUIdxBit_E10_0 | 437 ARMMMUIdxBit_Stage2 | 438 ARMMMUIdxBit_Stage2_S); 439 } 440 441 442 /* IS variants of TLB operations must affect all cores */ 443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 444 uint64_t value) 445 { 446 CPUState *cs = env_cpu(env); 447 448 tlb_flush_all_cpus_synced(cs); 449 } 450 451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 452 uint64_t value) 453 { 454 CPUState *cs = env_cpu(env); 455 456 tlb_flush_all_cpus_synced(cs); 457 } 458 459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 460 uint64_t value) 461 { 462 CPUState *cs = env_cpu(env); 463 464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 465 } 466 467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 468 uint64_t value) 469 { 470 CPUState *cs = env_cpu(env); 471 472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 473 } 474 475 /* 476 * Non-IS variants of TLB operations are upgraded to 477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 478 * force broadcast of these operations. 479 */ 480 static bool tlb_force_broadcast(CPUARMState *env) 481 { 482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 483 } 484 485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 /* Invalidate all (TLBIALL) */ 489 CPUState *cs = env_cpu(env); 490 491 if (tlb_force_broadcast(env)) { 492 tlb_flush_all_cpus_synced(cs); 493 } else { 494 tlb_flush(cs); 495 } 496 } 497 498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 499 uint64_t value) 500 { 501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 502 CPUState *cs = env_cpu(env); 503 504 value &= TARGET_PAGE_MASK; 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_page_all_cpus_synced(cs, value); 507 } else { 508 tlb_flush_page(cs, value); 509 } 510 } 511 512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate by ASID (TLBIASID) */ 516 CPUState *cs = env_cpu(env); 517 518 if (tlb_force_broadcast(env)) { 519 tlb_flush_all_cpus_synced(cs); 520 } else { 521 tlb_flush(cs); 522 } 523 } 524 525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 529 CPUState *cs = env_cpu(env); 530 531 value &= TARGET_PAGE_MASK; 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_page_all_cpus_synced(cs, value); 534 } else { 535 tlb_flush_page(cs, value); 536 } 537 } 538 539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 CPUState *cs = env_cpu(env); 543 544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 545 } 546 547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 553 } 554 555 556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = env_cpu(env); 560 561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 562 } 563 564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = env_cpu(env); 568 569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 570 } 571 572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = env_cpu(env); 576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 577 578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 579 } 580 581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 582 uint64_t value) 583 { 584 CPUState *cs = env_cpu(env); 585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 586 587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 588 ARMMMUIdxBit_E2); 589 } 590 591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 592 uint64_t value) 593 { 594 CPUState *cs = env_cpu(env); 595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 596 597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 598 } 599 600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 601 uint64_t value) 602 { 603 CPUState *cs = env_cpu(env); 604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 605 606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 607 } 608 609 static const ARMCPRegInfo cp_reginfo[] = { 610 /* 611 * Define the secure and non-secure FCSE identifier CP registers 612 * separately because there is no secure bank in V8 (no _EL3). This allows 613 * the secure register to be properly reset and migrated. There is also no 614 * v8 EL1 version of the register so the non-secure instance stands alone. 615 */ 616 { .name = "FCSEIDR", 617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 621 { .name = "FCSEIDR_S", 622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 626 /* 627 * Define the secure and non-secure context identifier CP registers 628 * separately because there is no secure bank in V8 (no _EL3). This allows 629 * the secure register to be properly reset and migrated. In the 630 * non-secure case, the 32-bit register will have reset and migration 631 * disabled during registration as it is handled by the 64-bit instance. 632 */ 633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 635 .access = PL1_RW, .accessfn = access_tvm_trvm, 636 .fgt = FGT_CONTEXTIDR_EL1, 637 .secure = ARM_CP_SECSTATE_NS, 638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 642 .access = PL1_RW, .accessfn = access_tvm_trvm, 643 .secure = ARM_CP_SECSTATE_S, 644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 646 }; 647 648 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 649 /* 650 * NB: Some of these registers exist in v8 but with more precise 651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 652 */ 653 /* MMU Domain access control / MPU write buffer control */ 654 { .name = "DACR", 655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 657 .writefn = dacr_write, .raw_writefn = raw_write, 658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 659 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 660 /* 661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 662 * For v6 and v5, these mappings are overly broad. 663 */ 664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 672 /* Cache maintenance ops; some of this space may be overridden later. */ 673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 676 }; 677 678 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 679 /* 680 * Not all pre-v6 cores implemented this WFI, so this is slightly 681 * over-broad. 682 */ 683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 684 .access = PL1_W, .type = ARM_CP_WFI }, 685 }; 686 687 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 688 /* 689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 690 * is UNPREDICTABLE; we choose to NOP as most implementations do). 691 */ 692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 693 .access = PL1_W, .type = ARM_CP_WFI }, 694 /* 695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 697 * OMAPCP will override this space. 698 */ 699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 701 .resetvalue = 0 }, 702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 704 .resetvalue = 0 }, 705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 708 .resetvalue = 0 }, 709 /* 710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 711 * implementing it as RAZ means the "debug architecture version" bits 712 * will read as a reserved value, which should cause Linux to not try 713 * to use the debug hardware. 714 */ 715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 717 /* 718 * MMU TLB control. Note that the wildcarding means we cover not just 719 * the unified TLB ops but also the dside/iside/inner-shareable variants. 720 */ 721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 723 .type = ARM_CP_NO_RAW }, 724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 726 .type = ARM_CP_NO_RAW }, 727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 729 .type = ARM_CP_NO_RAW }, 730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 732 .type = ARM_CP_NO_RAW }, 733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 737 }; 738 739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 740 uint64_t value) 741 { 742 uint32_t mask = 0; 743 744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 745 if (!arm_feature(env, ARM_FEATURE_V8)) { 746 /* 747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 750 */ 751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 752 /* VFP coprocessor: cp10 & cp11 [23:20] */ 753 mask |= R_CPACR_ASEDIS_MASK | 754 R_CPACR_D32DIS_MASK | 755 R_CPACR_CP11_MASK | 756 R_CPACR_CP10_MASK; 757 758 if (!arm_feature(env, ARM_FEATURE_NEON)) { 759 /* ASEDIS [31] bit is RAO/WI */ 760 value |= R_CPACR_ASEDIS_MASK; 761 } 762 763 /* 764 * VFPv3 and upwards with NEON implement 32 double precision 765 * registers (D0-D31). 766 */ 767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 769 value |= R_CPACR_D32DIS_MASK; 770 } 771 } 772 value &= mask; 773 } 774 775 /* 776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 778 */ 779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 783 } 784 785 env->cp15.cpacr_el1 = value; 786 } 787 788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 789 { 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 uint64_t value = env->cp15.cpacr_el1; 795 796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 799 } 800 return value; 801 } 802 803 804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 805 { 806 /* 807 * Call cpacr_write() so that we reset with the correct RAO bits set 808 * for our CPU features. 809 */ 810 cpacr_write(env, ri, 0); 811 } 812 813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 814 bool isread) 815 { 816 if (arm_feature(env, ARM_FEATURE_V8)) { 817 /* Check if CPACR accesses are to be trapped to EL2 */ 818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 820 return CP_ACCESS_TRAP_EL2; 821 /* Check if CPACR accesses are to be trapped to EL3 */ 822 } else if (arm_current_el(env) < 3 && 823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 824 return CP_ACCESS_TRAP_EL3; 825 } 826 } 827 828 return CP_ACCESS_OK; 829 } 830 831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 832 bool isread) 833 { 834 /* Check if CPTR accesses are set to trap to EL3 */ 835 if (arm_current_el(env) == 2 && 836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 837 return CP_ACCESS_TRAP_EL3; 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static const ARMCPRegInfo v6_cp_reginfo[] = { 844 /* prefetch by MVA in v6, NOP in v7 */ 845 { .name = "MVA_prefetch", 846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 847 .access = PL1_W, .type = ARM_CP_NOP }, 848 /* 849 * We need to break the TB after ISB to execute self-modifying code 850 * correctly and also to take any pending interrupts immediately. 851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 852 */ 853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 856 .access = PL0_W, .type = ARM_CP_NOP }, 857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 858 .access = PL0_W, .type = ARM_CP_NOP }, 859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 860 .access = PL1_RW, .accessfn = access_tvm_trvm, 861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 862 offsetof(CPUARMState, cp15.ifar_ns) }, 863 .resetvalue = 0, }, 864 /* 865 * Watchpoint Fault Address Register : should actually only be present 866 * for 1136, 1176, 11MPCore. 867 */ 868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 872 .fgt = FGT_CPACR_EL1, 873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 875 }; 876 877 typedef struct pm_event { 878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 880 bool (*supported)(CPUARMState *); 881 /* 882 * Retrieve the current count of the underlying event. The programmed 883 * counters hold a difference from the return value from this function 884 */ 885 uint64_t (*get_count)(CPUARMState *); 886 /* 887 * Return how many nanoseconds it will take (at a minimum) for count events 888 * to occur. A negative value indicates the counter will never overflow, or 889 * that the counter has otherwise arranged for the overflow bit to be set 890 * and the PMU interrupt to be raised on overflow. 891 */ 892 int64_t (*ns_per_count)(uint64_t); 893 } pm_event; 894 895 static bool event_always_supported(CPUARMState *env) 896 { 897 return true; 898 } 899 900 static uint64_t swinc_get_count(CPUARMState *env) 901 { 902 /* 903 * SW_INCR events are written directly to the pmevcntr's by writes to 904 * PMSWINC, so there is no underlying count maintained by the PMU itself 905 */ 906 return 0; 907 } 908 909 static int64_t swinc_ns_per(uint64_t ignored) 910 { 911 return -1; 912 } 913 914 /* 915 * Return the underlying cycle count for the PMU cycle counters. If we're in 916 * usermode, simply return 0. 917 */ 918 static uint64_t cycles_get_count(CPUARMState *env) 919 { 920 #ifndef CONFIG_USER_ONLY 921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 923 #else 924 return cpu_get_host_ticks(); 925 #endif 926 } 927 928 #ifndef CONFIG_USER_ONLY 929 static int64_t cycles_ns_per(uint64_t cycles) 930 { 931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 932 } 933 934 static bool instructions_supported(CPUARMState *env) 935 { 936 return icount_enabled() == 1; /* Precise instruction counting */ 937 } 938 939 static uint64_t instructions_get_count(CPUARMState *env) 940 { 941 return (uint64_t)icount_get_raw(); 942 } 943 944 static int64_t instructions_ns_per(uint64_t icount) 945 { 946 return icount_to_ns((int64_t)icount); 947 } 948 #endif 949 950 static bool pmuv3p1_events_supported(CPUARMState *env) 951 { 952 /* For events which are supported in any v8.1 PMU */ 953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 954 } 955 956 static bool pmuv3p4_events_supported(CPUARMState *env) 957 { 958 /* For events which are supported in any v8.1 PMU */ 959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 960 } 961 962 static uint64_t zero_event_get_count(CPUARMState *env) 963 { 964 /* For events which on QEMU never fire, so their count is always zero */ 965 return 0; 966 } 967 968 static int64_t zero_event_ns_per(uint64_t cycles) 969 { 970 /* An event which never fires can never overflow */ 971 return -1; 972 } 973 974 static const pm_event pm_events[] = { 975 { .number = 0x000, /* SW_INCR */ 976 .supported = event_always_supported, 977 .get_count = swinc_get_count, 978 .ns_per_count = swinc_ns_per, 979 }, 980 #ifndef CONFIG_USER_ONLY 981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 982 .supported = instructions_supported, 983 .get_count = instructions_get_count, 984 .ns_per_count = instructions_ns_per, 985 }, 986 { .number = 0x011, /* CPU_CYCLES, Cycle */ 987 .supported = event_always_supported, 988 .get_count = cycles_get_count, 989 .ns_per_count = cycles_ns_per, 990 }, 991 #endif 992 { .number = 0x023, /* STALL_FRONTEND */ 993 .supported = pmuv3p1_events_supported, 994 .get_count = zero_event_get_count, 995 .ns_per_count = zero_event_ns_per, 996 }, 997 { .number = 0x024, /* STALL_BACKEND */ 998 .supported = pmuv3p1_events_supported, 999 .get_count = zero_event_get_count, 1000 .ns_per_count = zero_event_ns_per, 1001 }, 1002 { .number = 0x03c, /* STALL */ 1003 .supported = pmuv3p4_events_supported, 1004 .get_count = zero_event_get_count, 1005 .ns_per_count = zero_event_ns_per, 1006 }, 1007 }; 1008 1009 /* 1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1011 * events (i.e. the statistical profiling extension), this implementation 1012 * should first be updated to something sparse instead of the current 1013 * supported_event_map[] array. 1014 */ 1015 #define MAX_EVENT_ID 0x3c 1016 #define UNSUPPORTED_EVENT UINT16_MAX 1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1018 1019 /* 1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1021 * of ARM event numbers to indices in our pm_events array. 1022 * 1023 * Note: Events in the 0x40XX range are not currently supported. 1024 */ 1025 void pmu_init(ARMCPU *cpu) 1026 { 1027 unsigned int i; 1028 1029 /* 1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1031 * events to them 1032 */ 1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1034 supported_event_map[i] = UNSUPPORTED_EVENT; 1035 } 1036 cpu->pmceid0 = 0; 1037 cpu->pmceid1 = 0; 1038 1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1040 const pm_event *cnt = &pm_events[i]; 1041 assert(cnt->number <= MAX_EVENT_ID); 1042 /* We do not currently support events in the 0x40xx range */ 1043 assert(cnt->number <= 0x3f); 1044 1045 if (cnt->supported(&cpu->env)) { 1046 supported_event_map[cnt->number] = i; 1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1048 if (cnt->number & 0x20) { 1049 cpu->pmceid1 |= event_mask; 1050 } else { 1051 cpu->pmceid0 |= event_mask; 1052 } 1053 } 1054 } 1055 } 1056 1057 /* 1058 * Check at runtime whether a PMU event is supported for the current machine 1059 */ 1060 static bool event_supported(uint16_t number) 1061 { 1062 if (number > MAX_EVENT_ID) { 1063 return false; 1064 } 1065 return supported_event_map[number] != UNSUPPORTED_EVENT; 1066 } 1067 1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1069 bool isread) 1070 { 1071 /* 1072 * Performance monitor registers user accessibility is controlled 1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1074 * trapping to EL2 or EL3 for other accesses. 1075 */ 1076 int el = arm_current_el(env); 1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1078 1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1080 return CP_ACCESS_TRAP; 1081 } 1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1083 return CP_ACCESS_TRAP_EL2; 1084 } 1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1086 return CP_ACCESS_TRAP_EL3; 1087 } 1088 1089 return CP_ACCESS_OK; 1090 } 1091 1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1093 const ARMCPRegInfo *ri, 1094 bool isread) 1095 { 1096 /* ER: event counter read trap control */ 1097 if (arm_feature(env, ARM_FEATURE_V8) 1098 && arm_current_el(env) == 0 1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1100 && isread) { 1101 return CP_ACCESS_OK; 1102 } 1103 1104 return pmreg_access(env, ri, isread); 1105 } 1106 1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1108 const ARMCPRegInfo *ri, 1109 bool isread) 1110 { 1111 /* SW: software increment write trap control */ 1112 if (arm_feature(env, ARM_FEATURE_V8) 1113 && arm_current_el(env) == 0 1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1115 && !isread) { 1116 return CP_ACCESS_OK; 1117 } 1118 1119 return pmreg_access(env, ri, isread); 1120 } 1121 1122 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1123 const ARMCPRegInfo *ri, 1124 bool isread) 1125 { 1126 /* ER: event counter read trap control */ 1127 if (arm_feature(env, ARM_FEATURE_V8) 1128 && arm_current_el(env) == 0 1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1130 return CP_ACCESS_OK; 1131 } 1132 1133 return pmreg_access(env, ri, isread); 1134 } 1135 1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1137 const ARMCPRegInfo *ri, 1138 bool isread) 1139 { 1140 /* CR: cycle counter read trap control */ 1141 if (arm_feature(env, ARM_FEATURE_V8) 1142 && arm_current_el(env) == 0 1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1144 && isread) { 1145 return CP_ACCESS_OK; 1146 } 1147 1148 return pmreg_access(env, ri, isread); 1149 } 1150 1151 /* 1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1153 * We use these to decide whether we need to wrap a write to MDCR_EL2 1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1155 */ 1156 #define MDCR_EL2_PMU_ENABLE_BITS \ 1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1159 1160 /* 1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1162 * the current EL, security state, and register configuration. 1163 */ 1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1165 { 1166 uint64_t filter; 1167 bool e, p, u, nsk, nsu, nsh, m; 1168 bool enabled, prohibited = false, filtered; 1169 bool secure = arm_is_secure(env); 1170 int el = arm_current_el(env); 1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1173 1174 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1175 return false; 1176 } 1177 1178 if (!arm_feature(env, ARM_FEATURE_EL2) || 1179 (counter < hpmn || counter == 31)) { 1180 e = env->cp15.c9_pmcr & PMCRE; 1181 } else { 1182 e = mdcr_el2 & MDCR_HPME; 1183 } 1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1185 1186 /* Is event counting prohibited? */ 1187 if (el == 2 && (counter < hpmn || counter == 31)) { 1188 prohibited = mdcr_el2 & MDCR_HPMD; 1189 } 1190 if (secure) { 1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (counter == 31) { 1195 /* 1196 * The cycle counter defaults to running. PMCR.DP says "disable 1197 * the cycle counter when event counting is prohibited". 1198 * Some MDCR bits disable the cycle counter specifically. 1199 */ 1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1202 if (secure) { 1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1204 } 1205 if (el == 2) { 1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1207 } 1208 } 1209 } 1210 1211 if (counter == 31) { 1212 filter = env->cp15.pmccfiltr_el0; 1213 } else { 1214 filter = env->cp15.c14_pmevtyper[counter]; 1215 } 1216 1217 p = filter & PMXEVTYPER_P; 1218 u = filter & PMXEVTYPER_U; 1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1222 m = arm_el_is_aa64(env, 1) && 1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1224 1225 if (el == 0) { 1226 filtered = secure ? u : u != nsu; 1227 } else if (el == 1) { 1228 filtered = secure ? p : p != nsk; 1229 } else if (el == 2) { 1230 filtered = !nsh; 1231 } else { /* EL3 */ 1232 filtered = m != p; 1233 } 1234 1235 if (counter != 31) { 1236 /* 1237 * If not checking PMCCNTR, ensure the counter is setup to an event we 1238 * support 1239 */ 1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1241 if (!event_supported(event)) { 1242 return false; 1243 } 1244 } 1245 1246 return enabled && !prohibited && !filtered; 1247 } 1248 1249 static void pmu_update_irq(CPUARMState *env) 1250 { 1251 ARMCPU *cpu = env_archcpu(env); 1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1254 } 1255 1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1257 { 1258 /* 1259 * Return true if the clock divider is enabled and the cycle counter 1260 * is supposed to tick only once every 64 clock cycles. This is 1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1262 * (64-bit) cycle counter PMCR.D has no effect. 1263 */ 1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1265 } 1266 1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1268 { 1269 /* Return true if the specified event counter is configured to be 64 bit */ 1270 1271 /* This isn't intended to be used with the cycle counter */ 1272 assert(counter < 31); 1273 1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1275 return false; 1276 } 1277 1278 if (arm_feature(env, ARM_FEATURE_EL2)) { 1279 /* 1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1281 * current security state, so we don't use arm_mdcr_el2_eff() here. 1282 */ 1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1285 1286 if (counter >= hpmn) { 1287 return hlp; 1288 } 1289 } 1290 return env->cp15.c9_pmcr & PMCRLP; 1291 } 1292 1293 /* 1294 * Ensure c15_ccnt is the guest-visible count so that operations such as 1295 * enabling/disabling the counter or filtering, modifying the count itself, 1296 * etc. can be done logically. This is essentially a no-op if the counter is 1297 * not enabled at the time of the call. 1298 */ 1299 static void pmccntr_op_start(CPUARMState *env) 1300 { 1301 uint64_t cycles = cycles_get_count(env); 1302 1303 if (pmu_counter_enabled(env, 31)) { 1304 uint64_t eff_cycles = cycles; 1305 if (pmccntr_clockdiv_enabled(env)) { 1306 eff_cycles /= 64; 1307 } 1308 1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1310 1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1312 1ull << 63 : 1ull << 31; 1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1314 env->cp15.c9_pmovsr |= (1ULL << 31); 1315 pmu_update_irq(env); 1316 } 1317 1318 env->cp15.c15_ccnt = new_pmccntr; 1319 } 1320 env->cp15.c15_ccnt_delta = cycles; 1321 } 1322 1323 /* 1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1326 * pmccntr_op_start. 1327 */ 1328 static void pmccntr_op_finish(CPUARMState *env) 1329 { 1330 if (pmu_counter_enabled(env, 31)) { 1331 #ifndef CONFIG_USER_ONLY 1332 /* Calculate when the counter will next overflow */ 1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1334 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1335 remaining_cycles = (uint32_t)remaining_cycles; 1336 } 1337 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at; 1341 1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1343 overflow_in, &overflow_at)) { 1344 ARMCPU *cpu = env_archcpu(env); 1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1346 } 1347 } 1348 #endif 1349 1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1351 if (pmccntr_clockdiv_enabled(env)) { 1352 prev_cycles /= 64; 1353 } 1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1355 } 1356 } 1357 1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1359 { 1360 1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1362 uint64_t count = 0; 1363 if (event_supported(event)) { 1364 uint16_t event_idx = supported_event_map[event]; 1365 count = pm_events[event_idx].get_count(env); 1366 } 1367 1368 if (pmu_counter_enabled(env, counter)) { 1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1371 1ULL << 63 : 1ULL << 31; 1372 1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1374 env->cp15.c9_pmovsr |= (1 << counter); 1375 pmu_update_irq(env); 1376 } 1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1378 } 1379 env->cp15.c14_pmevcntr_delta[counter] = count; 1380 } 1381 1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1383 { 1384 if (pmu_counter_enabled(env, counter)) { 1385 #ifndef CONFIG_USER_ONLY 1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1387 uint16_t event_idx = supported_event_map[event]; 1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1389 int64_t overflow_in; 1390 1391 if (!pmevcntr_is_64_bit(env, counter)) { 1392 delta = (uint32_t)delta; 1393 } 1394 overflow_in = pm_events[event_idx].ns_per_count(delta); 1395 1396 if (overflow_in > 0) { 1397 int64_t overflow_at; 1398 1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1400 overflow_in, &overflow_at)) { 1401 ARMCPU *cpu = env_archcpu(env); 1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1403 } 1404 } 1405 #endif 1406 1407 env->cp15.c14_pmevcntr_delta[counter] -= 1408 env->cp15.c14_pmevcntr[counter]; 1409 } 1410 } 1411 1412 void pmu_op_start(CPUARMState *env) 1413 { 1414 unsigned int i; 1415 pmccntr_op_start(env); 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 pmevcntr_op_start(env, i); 1418 } 1419 } 1420 1421 void pmu_op_finish(CPUARMState *env) 1422 { 1423 unsigned int i; 1424 pmccntr_op_finish(env); 1425 for (i = 0; i < pmu_num_counters(env); i++) { 1426 pmevcntr_op_finish(env, i); 1427 } 1428 } 1429 1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1431 { 1432 pmu_op_start(&cpu->env); 1433 } 1434 1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1436 { 1437 pmu_op_finish(&cpu->env); 1438 } 1439 1440 void arm_pmu_timer_cb(void *opaque) 1441 { 1442 ARMCPU *cpu = opaque; 1443 1444 /* 1445 * Update all the counter values based on the current underlying counts, 1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1448 * counter may expire. 1449 */ 1450 pmu_op_start(&cpu->env); 1451 pmu_op_finish(&cpu->env); 1452 } 1453 1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1455 uint64_t value) 1456 { 1457 pmu_op_start(env); 1458 1459 if (value & PMCRC) { 1460 /* The counter has been reset */ 1461 env->cp15.c15_ccnt = 0; 1462 } 1463 1464 if (value & PMCRP) { 1465 unsigned int i; 1466 for (i = 0; i < pmu_num_counters(env); i++) { 1467 env->cp15.c14_pmevcntr[i] = 0; 1468 } 1469 } 1470 1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1473 1474 pmu_op_finish(env); 1475 } 1476 1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1478 uint64_t value) 1479 { 1480 unsigned int i; 1481 uint64_t overflow_mask, new_pmswinc; 1482 1483 for (i = 0; i < pmu_num_counters(env); i++) { 1484 /* Increment a counter's count iff: */ 1485 if ((value & (1 << i)) && /* counter's bit is set */ 1486 /* counter is enabled and not filtered */ 1487 pmu_counter_enabled(env, i) && 1488 /* counter is SW_INCR */ 1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1490 pmevcntr_op_start(env, i); 1491 1492 /* 1493 * Detect if this write causes an overflow since we can't predict 1494 * PMSWINC overflows like we can for other events 1495 */ 1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1497 1498 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1499 1ULL << 63 : 1ULL << 31; 1500 1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1502 env->cp15.c9_pmovsr |= (1 << i); 1503 pmu_update_irq(env); 1504 } 1505 1506 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1507 1508 pmevcntr_op_finish(env, i); 1509 } 1510 } 1511 } 1512 1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1514 { 1515 uint64_t ret; 1516 pmccntr_op_start(env); 1517 ret = env->cp15.c15_ccnt; 1518 pmccntr_op_finish(env); 1519 return ret; 1520 } 1521 1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 /* 1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1529 * accessed. 1530 */ 1531 env->cp15.c9_pmselr = value & 0x1f; 1532 } 1533 1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1535 uint64_t value) 1536 { 1537 pmccntr_op_start(env); 1538 env->cp15.c15_ccnt = value; 1539 pmccntr_op_finish(env); 1540 } 1541 1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1543 uint64_t value) 1544 { 1545 uint64_t cur_val = pmccntr_read(env, NULL); 1546 1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1548 } 1549 1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1551 uint64_t value) 1552 { 1553 pmccntr_op_start(env); 1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1555 pmccntr_op_finish(env); 1556 } 1557 1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1559 uint64_t value) 1560 { 1561 pmccntr_op_start(env); 1562 /* M is not accessible from AArch32 */ 1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1564 (value & PMCCFILTR); 1565 pmccntr_op_finish(env); 1566 } 1567 1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1569 { 1570 /* M is not visible in AArch32 */ 1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1572 } 1573 1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1575 uint64_t value) 1576 { 1577 pmu_op_start(env); 1578 value &= pmu_counter_mask(env); 1579 env->cp15.c9_pmcnten |= value; 1580 pmu_op_finish(env); 1581 } 1582 1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1584 uint64_t value) 1585 { 1586 pmu_op_start(env); 1587 value &= pmu_counter_mask(env); 1588 env->cp15.c9_pmcnten &= ~value; 1589 pmu_op_finish(env); 1590 } 1591 1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1593 uint64_t value) 1594 { 1595 value &= pmu_counter_mask(env); 1596 env->cp15.c9_pmovsr &= ~value; 1597 pmu_update_irq(env); 1598 } 1599 1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1601 uint64_t value) 1602 { 1603 value &= pmu_counter_mask(env); 1604 env->cp15.c9_pmovsr |= value; 1605 pmu_update_irq(env); 1606 } 1607 1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1609 uint64_t value, const uint8_t counter) 1610 { 1611 if (counter == 31) { 1612 pmccfiltr_write(env, ri, value); 1613 } else if (counter < pmu_num_counters(env)) { 1614 pmevcntr_op_start(env, counter); 1615 1616 /* 1617 * If this counter's event type is changing, store the current 1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1619 * pmevcntr_op_finish has the correct baseline when it converts back to 1620 * a delta. 1621 */ 1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1623 PMXEVTYPER_EVTCOUNT; 1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1625 if (old_event != new_event) { 1626 uint64_t count = 0; 1627 if (event_supported(new_event)) { 1628 uint16_t event_idx = supported_event_map[new_event]; 1629 count = pm_events[event_idx].get_count(env); 1630 } 1631 env->cp15.c14_pmevcntr_delta[counter] = count; 1632 } 1633 1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1635 pmevcntr_op_finish(env, counter); 1636 } 1637 /* 1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1639 * PMSELR value is equal to or greater than the number of implemented 1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1641 */ 1642 } 1643 1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1645 const uint8_t counter) 1646 { 1647 if (counter == 31) { 1648 return env->cp15.pmccfiltr_el0; 1649 } else if (counter < pmu_num_counters(env)) { 1650 return env->cp15.c14_pmevtyper[counter]; 1651 } else { 1652 /* 1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1655 */ 1656 return 0; 1657 } 1658 } 1659 1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint64_t value) 1662 { 1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1664 pmevtyper_write(env, ri, value, counter); 1665 } 1666 1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value) 1669 { 1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1671 env->cp15.c14_pmevtyper[counter] = value; 1672 1673 /* 1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1675 * pmu_op_finish calls when loading saved state for a migration. Because 1676 * we're potentially updating the type of event here, the value written to 1677 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1678 * different counter type. Therefore, we need to set this value to the 1679 * current count for the counter type we're writing so that pmu_op_finish 1680 * has the correct count for its calculation. 1681 */ 1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1683 if (event_supported(event)) { 1684 uint16_t event_idx = supported_event_map[event]; 1685 env->cp15.c14_pmevcntr_delta[counter] = 1686 pm_events[event_idx].get_count(env); 1687 } 1688 } 1689 1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 return pmevtyper_read(env, ri, counter); 1694 } 1695 1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1697 uint64_t value) 1698 { 1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1700 } 1701 1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1703 { 1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1705 } 1706 1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1708 uint64_t value, uint8_t counter) 1709 { 1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1712 value &= MAKE_64BIT_MASK(0, 32); 1713 } 1714 if (counter < pmu_num_counters(env)) { 1715 pmevcntr_op_start(env, counter); 1716 env->cp15.c14_pmevcntr[counter] = value; 1717 pmevcntr_op_finish(env, counter); 1718 } 1719 /* 1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1721 * are CONSTRAINED UNPREDICTABLE. 1722 */ 1723 } 1724 1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint8_t counter) 1727 { 1728 if (counter < pmu_num_counters(env)) { 1729 uint64_t ret; 1730 pmevcntr_op_start(env, counter); 1731 ret = env->cp15.c14_pmevcntr[counter]; 1732 pmevcntr_op_finish(env, counter); 1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1735 ret &= MAKE_64BIT_MASK(0, 32); 1736 } 1737 return ret; 1738 } else { 1739 /* 1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1741 * are CONSTRAINED UNPREDICTABLE. 1742 */ 1743 return 0; 1744 } 1745 } 1746 1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1748 uint64_t value) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 pmevcntr_write(env, ri, value, counter); 1752 } 1753 1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1755 { 1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1757 return pmevcntr_read(env, ri, counter); 1758 } 1759 1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1764 assert(counter < pmu_num_counters(env)); 1765 env->cp15.c14_pmevcntr[counter] = value; 1766 pmevcntr_write(env, ri, value, counter); 1767 } 1768 1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1770 { 1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1772 assert(counter < pmu_num_counters(env)); 1773 return env->cp15.c14_pmevcntr[counter]; 1774 } 1775 1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1777 uint64_t value) 1778 { 1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1780 } 1781 1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1783 { 1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1785 } 1786 1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 if (arm_feature(env, ARM_FEATURE_V8)) { 1791 env->cp15.c9_pmuserenr = value & 0xf; 1792 } else { 1793 env->cp15.c9_pmuserenr = value & 1; 1794 } 1795 } 1796 1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1798 uint64_t value) 1799 { 1800 /* We have no event counters so only the C bit can be changed */ 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pminten |= value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pminten &= ~value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value) 1816 { 1817 /* 1818 * Note that even though the AArch64 view of this register has bits 1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1820 * architectural requirements for bits which are RES0 only in some 1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1823 */ 1824 raw_write(env, ri, value & ~0x1FULL); 1825 } 1826 1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1828 { 1829 /* Begin with base v8.0 state. */ 1830 uint64_t valid_mask = 0x3fff; 1831 ARMCPU *cpu = env_archcpu(env); 1832 uint64_t changed; 1833 1834 /* 1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1837 * Instead, choose the format based on the mode of EL3. 1838 */ 1839 if (arm_el_is_aa64(env, 3)) { 1840 value |= SCR_FW | SCR_AW; /* RES1 */ 1841 valid_mask &= ~SCR_NET; /* RES0 */ 1842 1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1845 value |= SCR_RW; /* RAO/WI */ 1846 } 1847 if (cpu_isar_feature(aa64_ras, cpu)) { 1848 valid_mask |= SCR_TERR; 1849 } 1850 if (cpu_isar_feature(aa64_lor, cpu)) { 1851 valid_mask |= SCR_TLOR; 1852 } 1853 if (cpu_isar_feature(aa64_pauth, cpu)) { 1854 valid_mask |= SCR_API | SCR_APK; 1855 } 1856 if (cpu_isar_feature(aa64_sel2, cpu)) { 1857 valid_mask |= SCR_EEL2; 1858 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1859 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1860 value |= SCR_NS; 1861 } 1862 if (cpu_isar_feature(aa64_mte, cpu)) { 1863 valid_mask |= SCR_ATA; 1864 } 1865 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1866 valid_mask |= SCR_ENSCXT; 1867 } 1868 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1869 valid_mask |= SCR_EASE | SCR_NMEA; 1870 } 1871 if (cpu_isar_feature(aa64_sme, cpu)) { 1872 valid_mask |= SCR_ENTP2; 1873 } 1874 if (cpu_isar_feature(aa64_hcx, cpu)) { 1875 valid_mask |= SCR_HXEN; 1876 } 1877 if (cpu_isar_feature(aa64_fgt, cpu)) { 1878 valid_mask |= SCR_FGTEN; 1879 } 1880 if (cpu_isar_feature(aa64_rme, cpu)) { 1881 valid_mask |= SCR_NSE | SCR_GPF; 1882 } 1883 } else { 1884 valid_mask &= ~(SCR_RW | SCR_ST); 1885 if (cpu_isar_feature(aa32_ras, cpu)) { 1886 valid_mask |= SCR_TERR; 1887 } 1888 } 1889 1890 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1891 valid_mask &= ~SCR_HCE; 1892 1893 /* 1894 * On ARMv7, SMD (or SCD as it is called in v7) is only 1895 * supported if EL2 exists. The bit is UNK/SBZP when 1896 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1897 * when EL2 is unavailable. 1898 * On ARMv8, this bit is always available. 1899 */ 1900 if (arm_feature(env, ARM_FEATURE_V7) && 1901 !arm_feature(env, ARM_FEATURE_V8)) { 1902 valid_mask &= ~SCR_SMD; 1903 } 1904 } 1905 1906 /* Clear all-context RES0 bits. */ 1907 value &= valid_mask; 1908 changed = env->cp15.scr_el3 ^ value; 1909 env->cp15.scr_el3 = value; 1910 1911 /* 1912 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1913 * we must invalidate all TLBs below EL3. 1914 */ 1915 if (changed & (SCR_NS | SCR_NSE)) { 1916 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1917 ARMMMUIdxBit_E20_0 | 1918 ARMMMUIdxBit_E10_1 | 1919 ARMMMUIdxBit_E20_2 | 1920 ARMMMUIdxBit_E10_1_PAN | 1921 ARMMMUIdxBit_E20_2_PAN | 1922 ARMMMUIdxBit_E2)); 1923 } 1924 } 1925 1926 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1927 { 1928 /* 1929 * scr_write will set the RES1 bits on an AArch64-only CPU. 1930 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1931 */ 1932 scr_write(env, ri, 0); 1933 } 1934 1935 static CPAccessResult access_tid4(CPUARMState *env, 1936 const ARMCPRegInfo *ri, 1937 bool isread) 1938 { 1939 if (arm_current_el(env) == 1 && 1940 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1941 return CP_ACCESS_TRAP_EL2; 1942 } 1943 1944 return CP_ACCESS_OK; 1945 } 1946 1947 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1948 { 1949 ARMCPU *cpu = env_archcpu(env); 1950 1951 /* 1952 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1953 * bank 1954 */ 1955 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1956 ri->secure & ARM_CP_SECSTATE_S); 1957 1958 return cpu->ccsidr[index]; 1959 } 1960 1961 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1962 uint64_t value) 1963 { 1964 raw_write(env, ri, value & 0xf); 1965 } 1966 1967 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1968 { 1969 CPUState *cs = env_cpu(env); 1970 bool el1 = arm_current_el(env) == 1; 1971 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1972 uint64_t ret = 0; 1973 1974 if (hcr_el2 & HCR_IMO) { 1975 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1976 ret |= CPSR_I; 1977 } 1978 } else { 1979 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1980 ret |= CPSR_I; 1981 } 1982 } 1983 1984 if (hcr_el2 & HCR_FMO) { 1985 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1986 ret |= CPSR_F; 1987 } 1988 } else { 1989 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1990 ret |= CPSR_F; 1991 } 1992 } 1993 1994 if (hcr_el2 & HCR_AMO) { 1995 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1996 ret |= CPSR_A; 1997 } 1998 } 1999 2000 return ret; 2001 } 2002 2003 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2004 bool isread) 2005 { 2006 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2007 return CP_ACCESS_TRAP_EL2; 2008 } 2009 2010 return CP_ACCESS_OK; 2011 } 2012 2013 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2014 bool isread) 2015 { 2016 if (arm_feature(env, ARM_FEATURE_V8)) { 2017 return access_aa64_tid1(env, ri, isread); 2018 } 2019 2020 return CP_ACCESS_OK; 2021 } 2022 2023 static const ARMCPRegInfo v7_cp_reginfo[] = { 2024 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2025 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2026 .access = PL1_W, .type = ARM_CP_NOP }, 2027 /* 2028 * Performance monitors are implementation defined in v7, 2029 * but with an ARM recommended set of registers, which we 2030 * follow. 2031 * 2032 * Performance registers fall into three categories: 2033 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2034 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2035 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2036 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2037 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2038 */ 2039 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2040 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2041 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2042 .writefn = pmcntenset_write, 2043 .accessfn = pmreg_access, 2044 .fgt = FGT_PMCNTEN, 2045 .raw_writefn = raw_write }, 2046 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2047 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2048 .access = PL0_RW, .accessfn = pmreg_access, 2049 .fgt = FGT_PMCNTEN, 2050 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2051 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2052 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2053 .access = PL0_RW, 2054 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2055 .accessfn = pmreg_access, 2056 .fgt = FGT_PMCNTEN, 2057 .writefn = pmcntenclr_write, 2058 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2059 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2061 .access = PL0_RW, .accessfn = pmreg_access, 2062 .fgt = FGT_PMCNTEN, 2063 .type = ARM_CP_ALIAS | ARM_CP_IO, 2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2065 .writefn = pmcntenclr_write }, 2066 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2067 .access = PL0_RW, .type = ARM_CP_IO, 2068 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2069 .accessfn = pmreg_access, 2070 .fgt = FGT_PMOVS, 2071 .writefn = pmovsr_write, 2072 .raw_writefn = raw_write }, 2073 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2074 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2075 .access = PL0_RW, .accessfn = pmreg_access, 2076 .fgt = FGT_PMOVS, 2077 .type = ARM_CP_ALIAS | ARM_CP_IO, 2078 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2079 .writefn = pmovsr_write, 2080 .raw_writefn = raw_write }, 2081 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2082 .access = PL0_W, .accessfn = pmreg_access_swinc, 2083 .fgt = FGT_PMSWINC_EL0, 2084 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2085 .writefn = pmswinc_write }, 2086 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2087 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2088 .access = PL0_W, .accessfn = pmreg_access_swinc, 2089 .fgt = FGT_PMSWINC_EL0, 2090 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2091 .writefn = pmswinc_write }, 2092 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2093 .access = PL0_RW, .type = ARM_CP_ALIAS, 2094 .fgt = FGT_PMSELR_EL0, 2095 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2096 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2097 .raw_writefn = raw_write}, 2098 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2099 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2100 .access = PL0_RW, .accessfn = pmreg_access_selr, 2101 .fgt = FGT_PMSELR_EL0, 2102 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2103 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2104 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2105 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2106 .fgt = FGT_PMCCNTR_EL0, 2107 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2108 .accessfn = pmreg_access_ccntr }, 2109 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2110 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2111 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2112 .fgt = FGT_PMCCNTR_EL0, 2113 .type = ARM_CP_IO, 2114 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2115 .readfn = pmccntr_read, .writefn = pmccntr_write, 2116 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2117 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2118 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2119 .access = PL0_RW, .accessfn = pmreg_access, 2120 .fgt = FGT_PMCCFILTR_EL0, 2121 .type = ARM_CP_ALIAS | ARM_CP_IO, 2122 .resetvalue = 0, }, 2123 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2125 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2126 .access = PL0_RW, .accessfn = pmreg_access, 2127 .fgt = FGT_PMCCFILTR_EL0, 2128 .type = ARM_CP_IO, 2129 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2130 .resetvalue = 0, }, 2131 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2132 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2133 .accessfn = pmreg_access, 2134 .fgt = FGT_PMEVTYPERN_EL0, 2135 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2136 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2137 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2138 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2139 .accessfn = pmreg_access, 2140 .fgt = FGT_PMEVTYPERN_EL0, 2141 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2142 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2144 .accessfn = pmreg_access_xevcntr, 2145 .fgt = FGT_PMEVCNTRN_EL0, 2146 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2147 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2148 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2149 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2150 .accessfn = pmreg_access_xevcntr, 2151 .fgt = FGT_PMEVCNTRN_EL0, 2152 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2153 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2154 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2155 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2156 .resetvalue = 0, 2157 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2158 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2160 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2162 .resetvalue = 0, 2163 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2164 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2165 .access = PL1_RW, .accessfn = access_tpm, 2166 .fgt = FGT_PMINTEN, 2167 .type = ARM_CP_ALIAS | ARM_CP_IO, 2168 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2169 .resetvalue = 0, 2170 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2171 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2172 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2173 .access = PL1_RW, .accessfn = access_tpm, 2174 .fgt = FGT_PMINTEN, 2175 .type = ARM_CP_IO, 2176 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2177 .writefn = pmintenset_write, .raw_writefn = raw_write, 2178 .resetvalue = 0x0 }, 2179 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2180 .access = PL1_RW, .accessfn = access_tpm, 2181 .fgt = FGT_PMINTEN, 2182 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2184 .writefn = pmintenclr_write, }, 2185 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2186 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2187 .access = PL1_RW, .accessfn = access_tpm, 2188 .fgt = FGT_PMINTEN, 2189 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2190 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2191 .writefn = pmintenclr_write }, 2192 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2193 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2194 .access = PL1_R, 2195 .accessfn = access_tid4, 2196 .fgt = FGT_CCSIDR_EL1, 2197 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2198 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2199 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2200 .access = PL1_RW, 2201 .accessfn = access_tid4, 2202 .fgt = FGT_CSSELR_EL1, 2203 .writefn = csselr_write, .resetvalue = 0, 2204 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2205 offsetof(CPUARMState, cp15.csselr_ns) } }, 2206 /* 2207 * Auxiliary ID register: this actually has an IMPDEF value but for now 2208 * just RAZ for all cores: 2209 */ 2210 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2211 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2212 .access = PL1_R, .type = ARM_CP_CONST, 2213 .accessfn = access_aa64_tid1, 2214 .fgt = FGT_AIDR_EL1, 2215 .resetvalue = 0 }, 2216 /* 2217 * Auxiliary fault status registers: these also are IMPDEF, and we 2218 * choose to RAZ/WI for all cores. 2219 */ 2220 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2221 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2222 .access = PL1_RW, .accessfn = access_tvm_trvm, 2223 .fgt = FGT_AFSR0_EL1, 2224 .type = ARM_CP_CONST, .resetvalue = 0 }, 2225 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2226 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2227 .access = PL1_RW, .accessfn = access_tvm_trvm, 2228 .fgt = FGT_AFSR1_EL1, 2229 .type = ARM_CP_CONST, .resetvalue = 0 }, 2230 /* 2231 * MAIR can just read-as-written because we don't implement caches 2232 * and so don't need to care about memory attributes. 2233 */ 2234 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2236 .access = PL1_RW, .accessfn = access_tvm_trvm, 2237 .fgt = FGT_MAIR_EL1, 2238 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2239 .resetvalue = 0 }, 2240 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2241 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2242 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2243 .resetvalue = 0 }, 2244 /* 2245 * For non-long-descriptor page tables these are PRRR and NMRR; 2246 * regardless they still act as reads-as-written for QEMU. 2247 */ 2248 /* 2249 * MAIR0/1 are defined separately from their 64-bit counterpart which 2250 * allows them to assign the correct fieldoffset based on the endianness 2251 * handled in the field definitions. 2252 */ 2253 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2254 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2255 .access = PL1_RW, .accessfn = access_tvm_trvm, 2256 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2257 offsetof(CPUARMState, cp15.mair0_ns) }, 2258 .resetfn = arm_cp_reset_ignore }, 2259 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2260 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2261 .access = PL1_RW, .accessfn = access_tvm_trvm, 2262 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2263 offsetof(CPUARMState, cp15.mair1_ns) }, 2264 .resetfn = arm_cp_reset_ignore }, 2265 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2266 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2267 .fgt = FGT_ISR_EL1, 2268 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2269 /* 32 bit ITLB invalidates */ 2270 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2271 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2272 .writefn = tlbiall_write }, 2273 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2274 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2275 .writefn = tlbimva_write }, 2276 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2277 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2278 .writefn = tlbiasid_write }, 2279 /* 32 bit DTLB invalidates */ 2280 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2282 .writefn = tlbiall_write }, 2283 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2284 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2285 .writefn = tlbimva_write }, 2286 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2287 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2288 .writefn = tlbiasid_write }, 2289 /* 32 bit TLB invalidates */ 2290 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2292 .writefn = tlbiall_write }, 2293 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2295 .writefn = tlbimva_write }, 2296 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2297 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2298 .writefn = tlbiasid_write }, 2299 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2300 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2301 .writefn = tlbimvaa_write }, 2302 }; 2303 2304 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2305 /* 32 bit TLB invalidates, Inner Shareable */ 2306 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2307 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2308 .writefn = tlbiall_is_write }, 2309 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2310 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2311 .writefn = tlbimva_is_write }, 2312 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2313 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2314 .writefn = tlbiasid_is_write }, 2315 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2316 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2317 .writefn = tlbimvaa_is_write }, 2318 }; 2319 2320 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2321 /* PMOVSSET is not implemented in v7 before v7ve */ 2322 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2323 .access = PL0_RW, .accessfn = pmreg_access, 2324 .fgt = FGT_PMOVS, 2325 .type = ARM_CP_ALIAS | ARM_CP_IO, 2326 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2327 .writefn = pmovsset_write, 2328 .raw_writefn = raw_write }, 2329 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2331 .access = PL0_RW, .accessfn = pmreg_access, 2332 .fgt = FGT_PMOVS, 2333 .type = ARM_CP_ALIAS | ARM_CP_IO, 2334 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2335 .writefn = pmovsset_write, 2336 .raw_writefn = raw_write }, 2337 }; 2338 2339 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2340 uint64_t value) 2341 { 2342 value &= 1; 2343 env->teecr = value; 2344 } 2345 2346 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2347 bool isread) 2348 { 2349 /* 2350 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2351 * at all, so we don't need to check whether we're v8A. 2352 */ 2353 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2354 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2355 return CP_ACCESS_TRAP_EL2; 2356 } 2357 return CP_ACCESS_OK; 2358 } 2359 2360 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2361 bool isread) 2362 { 2363 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2364 return CP_ACCESS_TRAP; 2365 } 2366 return teecr_access(env, ri, isread); 2367 } 2368 2369 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2370 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2371 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2372 .resetvalue = 0, 2373 .writefn = teecr_write, .accessfn = teecr_access }, 2374 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2375 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2376 .accessfn = teehbr_access, .resetvalue = 0 }, 2377 }; 2378 2379 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2380 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2381 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2382 .access = PL0_RW, 2383 .fgt = FGT_TPIDR_EL0, 2384 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2385 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2386 .access = PL0_RW, 2387 .fgt = FGT_TPIDR_EL0, 2388 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2389 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2390 .resetfn = arm_cp_reset_ignore }, 2391 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2392 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2393 .access = PL0_R | PL1_W, 2394 .fgt = FGT_TPIDRRO_EL0, 2395 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2396 .resetvalue = 0}, 2397 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2398 .access = PL0_R | PL1_W, 2399 .fgt = FGT_TPIDRRO_EL0, 2400 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2401 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2402 .resetfn = arm_cp_reset_ignore }, 2403 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2404 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2405 .access = PL1_RW, 2406 .fgt = FGT_TPIDR_EL1, 2407 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2408 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2409 .access = PL1_RW, 2410 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2411 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2412 .resetvalue = 0 }, 2413 }; 2414 2415 #ifndef CONFIG_USER_ONLY 2416 2417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2418 bool isread) 2419 { 2420 /* 2421 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2422 * Writable only at the highest implemented exception level. 2423 */ 2424 int el = arm_current_el(env); 2425 uint64_t hcr; 2426 uint32_t cntkctl; 2427 2428 switch (el) { 2429 case 0: 2430 hcr = arm_hcr_el2_eff(env); 2431 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2432 cntkctl = env->cp15.cnthctl_el2; 2433 } else { 2434 cntkctl = env->cp15.c14_cntkctl; 2435 } 2436 if (!extract32(cntkctl, 0, 2)) { 2437 return CP_ACCESS_TRAP; 2438 } 2439 break; 2440 case 1: 2441 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2442 arm_is_secure_below_el3(env)) { 2443 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2444 return CP_ACCESS_TRAP_UNCATEGORIZED; 2445 } 2446 break; 2447 case 2: 2448 case 3: 2449 break; 2450 } 2451 2452 if (!isread && el < arm_highest_el(env)) { 2453 return CP_ACCESS_TRAP_UNCATEGORIZED; 2454 } 2455 2456 return CP_ACCESS_OK; 2457 } 2458 2459 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2460 bool isread) 2461 { 2462 unsigned int cur_el = arm_current_el(env); 2463 bool has_el2 = arm_is_el2_enabled(env); 2464 uint64_t hcr = arm_hcr_el2_eff(env); 2465 2466 switch (cur_el) { 2467 case 0: 2468 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2469 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2470 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2471 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2472 } 2473 2474 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2475 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2476 return CP_ACCESS_TRAP; 2477 } 2478 /* fall through */ 2479 case 1: 2480 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2481 if (has_el2 && timeridx == GTIMER_PHYS && 2482 (hcr & HCR_E2H 2483 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2484 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2485 return CP_ACCESS_TRAP_EL2; 2486 } 2487 break; 2488 } 2489 return CP_ACCESS_OK; 2490 } 2491 2492 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2493 bool isread) 2494 { 2495 unsigned int cur_el = arm_current_el(env); 2496 bool has_el2 = arm_is_el2_enabled(env); 2497 uint64_t hcr = arm_hcr_el2_eff(env); 2498 2499 switch (cur_el) { 2500 case 0: 2501 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2502 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2503 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2504 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2505 } 2506 2507 /* 2508 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2509 * EL0 if EL0[PV]TEN is zero. 2510 */ 2511 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2512 return CP_ACCESS_TRAP; 2513 } 2514 /* fall through */ 2515 2516 case 1: 2517 if (has_el2 && timeridx == GTIMER_PHYS) { 2518 if (hcr & HCR_E2H) { 2519 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2520 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2521 return CP_ACCESS_TRAP_EL2; 2522 } 2523 } else { 2524 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2525 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2526 return CP_ACCESS_TRAP_EL2; 2527 } 2528 } 2529 } 2530 break; 2531 } 2532 return CP_ACCESS_OK; 2533 } 2534 2535 static CPAccessResult gt_pct_access(CPUARMState *env, 2536 const ARMCPRegInfo *ri, 2537 bool isread) 2538 { 2539 return gt_counter_access(env, GTIMER_PHYS, isread); 2540 } 2541 2542 static CPAccessResult gt_vct_access(CPUARMState *env, 2543 const ARMCPRegInfo *ri, 2544 bool isread) 2545 { 2546 return gt_counter_access(env, GTIMER_VIRT, isread); 2547 } 2548 2549 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2550 bool isread) 2551 { 2552 return gt_timer_access(env, GTIMER_PHYS, isread); 2553 } 2554 2555 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2556 bool isread) 2557 { 2558 return gt_timer_access(env, GTIMER_VIRT, isread); 2559 } 2560 2561 static CPAccessResult gt_stimer_access(CPUARMState *env, 2562 const ARMCPRegInfo *ri, 2563 bool isread) 2564 { 2565 /* 2566 * The AArch64 register view of the secure physical timer is 2567 * always accessible from EL3, and configurably accessible from 2568 * Secure EL1. 2569 */ 2570 switch (arm_current_el(env)) { 2571 case 1: 2572 if (!arm_is_secure(env)) { 2573 return CP_ACCESS_TRAP; 2574 } 2575 if (!(env->cp15.scr_el3 & SCR_ST)) { 2576 return CP_ACCESS_TRAP_EL3; 2577 } 2578 return CP_ACCESS_OK; 2579 case 0: 2580 case 2: 2581 return CP_ACCESS_TRAP; 2582 case 3: 2583 return CP_ACCESS_OK; 2584 default: 2585 g_assert_not_reached(); 2586 } 2587 } 2588 2589 static uint64_t gt_get_countervalue(CPUARMState *env) 2590 { 2591 ARMCPU *cpu = env_archcpu(env); 2592 2593 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2594 } 2595 2596 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2597 { 2598 CPUARMState *env = &cpu->env; 2599 uint64_t cnthctl = env->cp15.cnthctl_el2; 2600 ARMSecuritySpace ss = arm_security_space(env); 2601 /* ISTATUS && !IMASK */ 2602 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2603 2604 /* 2605 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2606 * It is RES0 in Secure and NonSecure state. 2607 */ 2608 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2609 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) || 2610 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) { 2611 irqstate = 0; 2612 } 2613 2614 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2615 trace_arm_gt_update_irq(timeridx, irqstate); 2616 } 2617 2618 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2619 { 2620 /* 2621 * Changing security state between Root and Secure/NonSecure, which may 2622 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2623 * mask bits. Update the IRQ state accordingly. 2624 */ 2625 gt_update_irq(cpu, GTIMER_VIRT); 2626 gt_update_irq(cpu, GTIMER_PHYS); 2627 } 2628 2629 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2630 { 2631 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2632 2633 if (gt->ctl & 1) { 2634 /* 2635 * Timer enabled: calculate and set current ISTATUS, irq, and 2636 * reset timer to when ISTATUS next has to change 2637 */ 2638 uint64_t offset = timeridx == GTIMER_VIRT ? 2639 cpu->env.cp15.cntvoff_el2 : 0; 2640 uint64_t count = gt_get_countervalue(&cpu->env); 2641 /* Note that this must be unsigned 64 bit arithmetic: */ 2642 int istatus = count - offset >= gt->cval; 2643 uint64_t nexttick; 2644 2645 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2646 2647 if (istatus) { 2648 /* Next transition is when count rolls back over to zero */ 2649 nexttick = UINT64_MAX; 2650 } else { 2651 /* Next transition is when we hit cval */ 2652 nexttick = gt->cval + offset; 2653 } 2654 /* 2655 * Note that the desired next expiry time might be beyond the 2656 * signed-64-bit range of a QEMUTimer -- in this case we just 2657 * set the timer for as far in the future as possible. When the 2658 * timer expires we will reset the timer for any remaining period. 2659 */ 2660 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2661 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2662 } else { 2663 timer_mod(cpu->gt_timer[timeridx], nexttick); 2664 } 2665 trace_arm_gt_recalc(timeridx, nexttick); 2666 } else { 2667 /* Timer disabled: ISTATUS and timer output always clear */ 2668 gt->ctl &= ~4; 2669 timer_del(cpu->gt_timer[timeridx]); 2670 trace_arm_gt_recalc_disabled(timeridx); 2671 } 2672 gt_update_irq(cpu, timeridx); 2673 } 2674 2675 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2676 int timeridx) 2677 { 2678 ARMCPU *cpu = env_archcpu(env); 2679 2680 timer_del(cpu->gt_timer[timeridx]); 2681 } 2682 2683 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2684 { 2685 return gt_get_countervalue(env); 2686 } 2687 2688 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2689 { 2690 uint64_t hcr; 2691 2692 switch (arm_current_el(env)) { 2693 case 2: 2694 hcr = arm_hcr_el2_eff(env); 2695 if (hcr & HCR_E2H) { 2696 return 0; 2697 } 2698 break; 2699 case 0: 2700 hcr = arm_hcr_el2_eff(env); 2701 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2702 return 0; 2703 } 2704 break; 2705 } 2706 2707 return env->cp15.cntvoff_el2; 2708 } 2709 2710 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2711 { 2712 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2713 } 2714 2715 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2716 int timeridx, 2717 uint64_t value) 2718 { 2719 trace_arm_gt_cval_write(timeridx, value); 2720 env->cp15.c14_timer[timeridx].cval = value; 2721 gt_recalc_timer(env_archcpu(env), timeridx); 2722 } 2723 2724 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2725 int timeridx) 2726 { 2727 uint64_t offset = 0; 2728 2729 switch (timeridx) { 2730 case GTIMER_VIRT: 2731 case GTIMER_HYPVIRT: 2732 offset = gt_virt_cnt_offset(env); 2733 break; 2734 } 2735 2736 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2737 (gt_get_countervalue(env) - offset)); 2738 } 2739 2740 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2741 int timeridx, 2742 uint64_t value) 2743 { 2744 uint64_t offset = 0; 2745 2746 switch (timeridx) { 2747 case GTIMER_VIRT: 2748 case GTIMER_HYPVIRT: 2749 offset = gt_virt_cnt_offset(env); 2750 break; 2751 } 2752 2753 trace_arm_gt_tval_write(timeridx, value); 2754 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2755 sextract64(value, 0, 32); 2756 gt_recalc_timer(env_archcpu(env), timeridx); 2757 } 2758 2759 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2760 int timeridx, 2761 uint64_t value) 2762 { 2763 ARMCPU *cpu = env_archcpu(env); 2764 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2765 2766 trace_arm_gt_ctl_write(timeridx, value); 2767 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2768 if ((oldval ^ value) & 1) { 2769 /* Enable toggled */ 2770 gt_recalc_timer(cpu, timeridx); 2771 } else if ((oldval ^ value) & 2) { 2772 /* 2773 * IMASK toggled: don't need to recalculate, 2774 * just set the interrupt line based on ISTATUS 2775 */ 2776 trace_arm_gt_imask_toggle(timeridx); 2777 gt_update_irq(cpu, timeridx); 2778 } 2779 } 2780 2781 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2782 { 2783 gt_timer_reset(env, ri, GTIMER_PHYS); 2784 } 2785 2786 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2787 uint64_t value) 2788 { 2789 gt_cval_write(env, ri, GTIMER_PHYS, value); 2790 } 2791 2792 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2793 { 2794 return gt_tval_read(env, ri, GTIMER_PHYS); 2795 } 2796 2797 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2798 uint64_t value) 2799 { 2800 gt_tval_write(env, ri, GTIMER_PHYS, value); 2801 } 2802 2803 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2804 uint64_t value) 2805 { 2806 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2807 } 2808 2809 static int gt_phys_redir_timeridx(CPUARMState *env) 2810 { 2811 switch (arm_mmu_idx(env)) { 2812 case ARMMMUIdx_E20_0: 2813 case ARMMMUIdx_E20_2: 2814 case ARMMMUIdx_E20_2_PAN: 2815 return GTIMER_HYP; 2816 default: 2817 return GTIMER_PHYS; 2818 } 2819 } 2820 2821 static int gt_virt_redir_timeridx(CPUARMState *env) 2822 { 2823 switch (arm_mmu_idx(env)) { 2824 case ARMMMUIdx_E20_0: 2825 case ARMMMUIdx_E20_2: 2826 case ARMMMUIdx_E20_2_PAN: 2827 return GTIMER_HYPVIRT; 2828 default: 2829 return GTIMER_VIRT; 2830 } 2831 } 2832 2833 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2834 const ARMCPRegInfo *ri) 2835 { 2836 int timeridx = gt_phys_redir_timeridx(env); 2837 return env->cp15.c14_timer[timeridx].cval; 2838 } 2839 2840 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2841 uint64_t value) 2842 { 2843 int timeridx = gt_phys_redir_timeridx(env); 2844 gt_cval_write(env, ri, timeridx, value); 2845 } 2846 2847 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2848 const ARMCPRegInfo *ri) 2849 { 2850 int timeridx = gt_phys_redir_timeridx(env); 2851 return gt_tval_read(env, ri, timeridx); 2852 } 2853 2854 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2855 uint64_t value) 2856 { 2857 int timeridx = gt_phys_redir_timeridx(env); 2858 gt_tval_write(env, ri, timeridx, value); 2859 } 2860 2861 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2862 const ARMCPRegInfo *ri) 2863 { 2864 int timeridx = gt_phys_redir_timeridx(env); 2865 return env->cp15.c14_timer[timeridx].ctl; 2866 } 2867 2868 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2869 uint64_t value) 2870 { 2871 int timeridx = gt_phys_redir_timeridx(env); 2872 gt_ctl_write(env, ri, timeridx, value); 2873 } 2874 2875 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2876 { 2877 gt_timer_reset(env, ri, GTIMER_VIRT); 2878 } 2879 2880 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2881 uint64_t value) 2882 { 2883 gt_cval_write(env, ri, GTIMER_VIRT, value); 2884 } 2885 2886 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2887 { 2888 return gt_tval_read(env, ri, GTIMER_VIRT); 2889 } 2890 2891 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2892 uint64_t value) 2893 { 2894 gt_tval_write(env, ri, GTIMER_VIRT, value); 2895 } 2896 2897 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2898 uint64_t value) 2899 { 2900 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2901 } 2902 2903 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2904 uint64_t value) 2905 { 2906 ARMCPU *cpu = env_archcpu(env); 2907 uint32_t oldval = env->cp15.cnthctl_el2; 2908 2909 raw_write(env, ri, value); 2910 2911 if ((oldval ^ value) & CNTHCTL_CNTVMASK) { 2912 gt_update_irq(cpu, GTIMER_VIRT); 2913 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) { 2914 gt_update_irq(cpu, GTIMER_PHYS); 2915 } 2916 } 2917 2918 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2919 uint64_t value) 2920 { 2921 ARMCPU *cpu = env_archcpu(env); 2922 2923 trace_arm_gt_cntvoff_write(value); 2924 raw_write(env, ri, value); 2925 gt_recalc_timer(cpu, GTIMER_VIRT); 2926 } 2927 2928 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2929 const ARMCPRegInfo *ri) 2930 { 2931 int timeridx = gt_virt_redir_timeridx(env); 2932 return env->cp15.c14_timer[timeridx].cval; 2933 } 2934 2935 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2936 uint64_t value) 2937 { 2938 int timeridx = gt_virt_redir_timeridx(env); 2939 gt_cval_write(env, ri, timeridx, value); 2940 } 2941 2942 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2943 const ARMCPRegInfo *ri) 2944 { 2945 int timeridx = gt_virt_redir_timeridx(env); 2946 return gt_tval_read(env, ri, timeridx); 2947 } 2948 2949 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2950 uint64_t value) 2951 { 2952 int timeridx = gt_virt_redir_timeridx(env); 2953 gt_tval_write(env, ri, timeridx, value); 2954 } 2955 2956 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2957 const ARMCPRegInfo *ri) 2958 { 2959 int timeridx = gt_virt_redir_timeridx(env); 2960 return env->cp15.c14_timer[timeridx].ctl; 2961 } 2962 2963 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2964 uint64_t value) 2965 { 2966 int timeridx = gt_virt_redir_timeridx(env); 2967 gt_ctl_write(env, ri, timeridx, value); 2968 } 2969 2970 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2971 { 2972 gt_timer_reset(env, ri, GTIMER_HYP); 2973 } 2974 2975 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2976 uint64_t value) 2977 { 2978 gt_cval_write(env, ri, GTIMER_HYP, value); 2979 } 2980 2981 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2982 { 2983 return gt_tval_read(env, ri, GTIMER_HYP); 2984 } 2985 2986 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2987 uint64_t value) 2988 { 2989 gt_tval_write(env, ri, GTIMER_HYP, value); 2990 } 2991 2992 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2993 uint64_t value) 2994 { 2995 gt_ctl_write(env, ri, GTIMER_HYP, value); 2996 } 2997 2998 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2999 { 3000 gt_timer_reset(env, ri, GTIMER_SEC); 3001 } 3002 3003 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3004 uint64_t value) 3005 { 3006 gt_cval_write(env, ri, GTIMER_SEC, value); 3007 } 3008 3009 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3010 { 3011 return gt_tval_read(env, ri, GTIMER_SEC); 3012 } 3013 3014 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3015 uint64_t value) 3016 { 3017 gt_tval_write(env, ri, GTIMER_SEC, value); 3018 } 3019 3020 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3021 uint64_t value) 3022 { 3023 gt_ctl_write(env, ri, GTIMER_SEC, value); 3024 } 3025 3026 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3027 { 3028 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3029 } 3030 3031 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3032 uint64_t value) 3033 { 3034 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3035 } 3036 3037 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3038 { 3039 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3040 } 3041 3042 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3043 uint64_t value) 3044 { 3045 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3046 } 3047 3048 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3049 uint64_t value) 3050 { 3051 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3052 } 3053 3054 void arm_gt_ptimer_cb(void *opaque) 3055 { 3056 ARMCPU *cpu = opaque; 3057 3058 gt_recalc_timer(cpu, GTIMER_PHYS); 3059 } 3060 3061 void arm_gt_vtimer_cb(void *opaque) 3062 { 3063 ARMCPU *cpu = opaque; 3064 3065 gt_recalc_timer(cpu, GTIMER_VIRT); 3066 } 3067 3068 void arm_gt_htimer_cb(void *opaque) 3069 { 3070 ARMCPU *cpu = opaque; 3071 3072 gt_recalc_timer(cpu, GTIMER_HYP); 3073 } 3074 3075 void arm_gt_stimer_cb(void *opaque) 3076 { 3077 ARMCPU *cpu = opaque; 3078 3079 gt_recalc_timer(cpu, GTIMER_SEC); 3080 } 3081 3082 void arm_gt_hvtimer_cb(void *opaque) 3083 { 3084 ARMCPU *cpu = opaque; 3085 3086 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3087 } 3088 3089 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3090 { 3091 ARMCPU *cpu = env_archcpu(env); 3092 3093 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3094 } 3095 3096 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3097 /* 3098 * Note that CNTFRQ is purely reads-as-written for the benefit 3099 * of software; writing it doesn't actually change the timer frequency. 3100 * Our reset value matches the fixed frequency we implement the timer at. 3101 */ 3102 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3103 .type = ARM_CP_ALIAS, 3104 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3105 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3106 }, 3107 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3108 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3109 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3110 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3111 .resetfn = arm_gt_cntfrq_reset, 3112 }, 3113 /* overall control: mostly access permissions */ 3114 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3115 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3116 .access = PL1_RW, 3117 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3118 .resetvalue = 0, 3119 }, 3120 /* per-timer control */ 3121 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3122 .secure = ARM_CP_SECSTATE_NS, 3123 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3124 .accessfn = gt_ptimer_access, 3125 .fieldoffset = offsetoflow32(CPUARMState, 3126 cp15.c14_timer[GTIMER_PHYS].ctl), 3127 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3128 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3129 }, 3130 { .name = "CNTP_CTL_S", 3131 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3132 .secure = ARM_CP_SECSTATE_S, 3133 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3134 .accessfn = gt_ptimer_access, 3135 .fieldoffset = offsetoflow32(CPUARMState, 3136 cp15.c14_timer[GTIMER_SEC].ctl), 3137 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3138 }, 3139 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3141 .type = ARM_CP_IO, .access = PL0_RW, 3142 .accessfn = gt_ptimer_access, 3143 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3144 .resetvalue = 0, 3145 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3146 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3147 }, 3148 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3149 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3150 .accessfn = gt_vtimer_access, 3151 .fieldoffset = offsetoflow32(CPUARMState, 3152 cp15.c14_timer[GTIMER_VIRT].ctl), 3153 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3154 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3155 }, 3156 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3157 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3158 .type = ARM_CP_IO, .access = PL0_RW, 3159 .accessfn = gt_vtimer_access, 3160 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3161 .resetvalue = 0, 3162 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3163 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3164 }, 3165 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3166 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3167 .secure = ARM_CP_SECSTATE_NS, 3168 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3169 .accessfn = gt_ptimer_access, 3170 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3171 }, 3172 { .name = "CNTP_TVAL_S", 3173 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3174 .secure = ARM_CP_SECSTATE_S, 3175 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3176 .accessfn = gt_ptimer_access, 3177 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3178 }, 3179 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3180 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3181 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3182 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3183 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3184 }, 3185 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3186 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3187 .accessfn = gt_vtimer_access, 3188 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3189 }, 3190 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3191 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3192 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3193 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3194 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3195 }, 3196 /* The counter itself */ 3197 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3198 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3199 .accessfn = gt_pct_access, 3200 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3201 }, 3202 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3203 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3204 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3205 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3206 }, 3207 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3208 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3209 .accessfn = gt_vct_access, 3210 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3211 }, 3212 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3213 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3214 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3215 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3216 }, 3217 /* Comparison value, indicating when the timer goes off */ 3218 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3219 .secure = ARM_CP_SECSTATE_NS, 3220 .access = PL0_RW, 3221 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3222 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3223 .accessfn = gt_ptimer_access, 3224 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3225 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3226 }, 3227 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3228 .secure = ARM_CP_SECSTATE_S, 3229 .access = PL0_RW, 3230 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3231 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3232 .accessfn = gt_ptimer_access, 3233 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3234 }, 3235 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3236 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3237 .access = PL0_RW, 3238 .type = ARM_CP_IO, 3239 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3240 .resetvalue = 0, .accessfn = gt_ptimer_access, 3241 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3242 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3243 }, 3244 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3245 .access = PL0_RW, 3246 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3247 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3248 .accessfn = gt_vtimer_access, 3249 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3250 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3251 }, 3252 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3253 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3254 .access = PL0_RW, 3255 .type = ARM_CP_IO, 3256 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3257 .resetvalue = 0, .accessfn = gt_vtimer_access, 3258 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3259 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3260 }, 3261 /* 3262 * Secure timer -- this is actually restricted to only EL3 3263 * and configurably Secure-EL1 via the accessfn. 3264 */ 3265 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3266 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3267 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3268 .accessfn = gt_stimer_access, 3269 .readfn = gt_sec_tval_read, 3270 .writefn = gt_sec_tval_write, 3271 .resetfn = gt_sec_timer_reset, 3272 }, 3273 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3274 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3275 .type = ARM_CP_IO, .access = PL1_RW, 3276 .accessfn = gt_stimer_access, 3277 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3278 .resetvalue = 0, 3279 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3280 }, 3281 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3282 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3283 .type = ARM_CP_IO, .access = PL1_RW, 3284 .accessfn = gt_stimer_access, 3285 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3286 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3287 }, 3288 }; 3289 3290 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3291 bool isread) 3292 { 3293 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3294 return CP_ACCESS_TRAP; 3295 } 3296 return CP_ACCESS_OK; 3297 } 3298 3299 #else 3300 3301 /* 3302 * In user-mode most of the generic timer registers are inaccessible 3303 * however modern kernels (4.12+) allow access to cntvct_el0 3304 */ 3305 3306 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3307 { 3308 ARMCPU *cpu = env_archcpu(env); 3309 3310 /* 3311 * Currently we have no support for QEMUTimer in linux-user so we 3312 * can't call gt_get_countervalue(env), instead we directly 3313 * call the lower level functions. 3314 */ 3315 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3316 } 3317 3318 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3319 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3320 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3321 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3322 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3323 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3324 }, 3325 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3326 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3327 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3328 .readfn = gt_virt_cnt_read, 3329 }, 3330 }; 3331 3332 #endif 3333 3334 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3335 { 3336 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3337 raw_write(env, ri, value); 3338 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3339 raw_write(env, ri, value & 0xfffff6ff); 3340 } else { 3341 raw_write(env, ri, value & 0xfffff1ff); 3342 } 3343 } 3344 3345 #ifndef CONFIG_USER_ONLY 3346 /* get_phys_addr() isn't present for user-mode-only targets */ 3347 3348 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3349 bool isread) 3350 { 3351 if (ri->opc2 & 4) { 3352 /* 3353 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3354 * Secure EL1 (which can only happen if EL3 is AArch64). 3355 * They are simply UNDEF if executed from NS EL1. 3356 * They function normally from EL2 or EL3. 3357 */ 3358 if (arm_current_el(env) == 1) { 3359 if (arm_is_secure_below_el3(env)) { 3360 if (env->cp15.scr_el3 & SCR_EEL2) { 3361 return CP_ACCESS_TRAP_EL2; 3362 } 3363 return CP_ACCESS_TRAP_EL3; 3364 } 3365 return CP_ACCESS_TRAP_UNCATEGORIZED; 3366 } 3367 } 3368 return CP_ACCESS_OK; 3369 } 3370 3371 #ifdef CONFIG_TCG 3372 static int par_el1_shareability(GetPhysAddrResult *res) 3373 { 3374 /* 3375 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3376 * memory -- see pseudocode PAREncodeShareability(). 3377 */ 3378 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3379 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3380 return 2; 3381 } 3382 return res->cacheattrs.shareability; 3383 } 3384 3385 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3386 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3387 ARMSecuritySpace ss) 3388 { 3389 bool ret; 3390 uint64_t par64; 3391 bool format64 = false; 3392 ARMMMUFaultInfo fi = {}; 3393 GetPhysAddrResult res = {}; 3394 3395 /* 3396 * I_MXTJT: Granule protection checks are not performed on the final address 3397 * of a successful translation. 3398 */ 3399 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3400 &res, &fi); 3401 3402 /* 3403 * ATS operations only do S1 or S1+S2 translations, so we never 3404 * have to deal with the ARMCacheAttrs format for S2 only. 3405 */ 3406 assert(!res.cacheattrs.is_s2_format); 3407 3408 if (ret) { 3409 /* 3410 * Some kinds of translation fault must cause exceptions rather 3411 * than being reported in the PAR. 3412 */ 3413 int current_el = arm_current_el(env); 3414 int target_el; 3415 uint32_t syn, fsr, fsc; 3416 bool take_exc = false; 3417 3418 if (fi.s1ptw && current_el == 1 3419 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3420 /* 3421 * Synchronous stage 2 fault on an access made as part of the 3422 * translation table walk for AT S1E0* or AT S1E1* insn 3423 * executed from NS EL1. If this is a synchronous external abort 3424 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3425 * to EL3. Otherwise the fault is taken as an exception to EL2, 3426 * and HPFAR_EL2 holds the faulting IPA. 3427 */ 3428 if (fi.type == ARMFault_SyncExternalOnWalk && 3429 (env->cp15.scr_el3 & SCR_EA)) { 3430 target_el = 3; 3431 } else { 3432 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3433 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3434 env->cp15.hpfar_el2 |= HPFAR_NS; 3435 } 3436 target_el = 2; 3437 } 3438 take_exc = true; 3439 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3440 /* 3441 * Synchronous external aborts during a translation table walk 3442 * are taken as Data Abort exceptions. 3443 */ 3444 if (fi.stage2) { 3445 if (current_el == 3) { 3446 target_el = 3; 3447 } else { 3448 target_el = 2; 3449 } 3450 } else { 3451 target_el = exception_target_el(env); 3452 } 3453 take_exc = true; 3454 } 3455 3456 if (take_exc) { 3457 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3458 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3459 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3460 fsr = arm_fi_to_lfsc(&fi); 3461 fsc = extract32(fsr, 0, 6); 3462 } else { 3463 fsr = arm_fi_to_sfsc(&fi); 3464 fsc = 0x3f; 3465 } 3466 /* 3467 * Report exception with ESR indicating a fault due to a 3468 * translation table walk for a cache maintenance instruction. 3469 */ 3470 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3471 fi.ea, 1, fi.s1ptw, 1, fsc); 3472 env->exception.vaddress = value; 3473 env->exception.fsr = fsr; 3474 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3475 } 3476 } 3477 3478 if (is_a64(env)) { 3479 format64 = true; 3480 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3481 /* 3482 * ATS1Cxx: 3483 * * TTBCR.EAE determines whether the result is returned using the 3484 * 32-bit or the 64-bit PAR format 3485 * * Instructions executed in Hyp mode always use the 64bit format 3486 * 3487 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3488 * * The Non-secure TTBCR.EAE bit is set to 1 3489 * * The implementation includes EL2, and the value of HCR.VM is 1 3490 * 3491 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3492 * 3493 * ATS1Hx always uses the 64bit format. 3494 */ 3495 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3496 3497 if (arm_feature(env, ARM_FEATURE_EL2)) { 3498 if (mmu_idx == ARMMMUIdx_E10_0 || 3499 mmu_idx == ARMMMUIdx_E10_1 || 3500 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3501 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3502 } else { 3503 format64 |= arm_current_el(env) == 2; 3504 } 3505 } 3506 } 3507 3508 if (format64) { 3509 /* Create a 64-bit PAR */ 3510 par64 = (1 << 11); /* LPAE bit always set */ 3511 if (!ret) { 3512 par64 |= res.f.phys_addr & ~0xfffULL; 3513 if (!res.f.attrs.secure) { 3514 par64 |= (1 << 9); /* NS */ 3515 } 3516 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3517 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3518 } else { 3519 uint32_t fsr = arm_fi_to_lfsc(&fi); 3520 3521 par64 |= 1; /* F */ 3522 par64 |= (fsr & 0x3f) << 1; /* FS */ 3523 if (fi.stage2) { 3524 par64 |= (1 << 9); /* S */ 3525 } 3526 if (fi.s1ptw) { 3527 par64 |= (1 << 8); /* PTW */ 3528 } 3529 } 3530 } else { 3531 /* 3532 * fsr is a DFSR/IFSR value for the short descriptor 3533 * translation table format (with WnR always clear). 3534 * Convert it to a 32-bit PAR. 3535 */ 3536 if (!ret) { 3537 /* We do not set any attribute bits in the PAR */ 3538 if (res.f.lg_page_size == 24 3539 && arm_feature(env, ARM_FEATURE_V7)) { 3540 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3541 } else { 3542 par64 = res.f.phys_addr & 0xfffff000; 3543 } 3544 if (!res.f.attrs.secure) { 3545 par64 |= (1 << 9); /* NS */ 3546 } 3547 } else { 3548 uint32_t fsr = arm_fi_to_sfsc(&fi); 3549 3550 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3551 ((fsr & 0xf) << 1) | 1; 3552 } 3553 } 3554 return par64; 3555 } 3556 #endif /* CONFIG_TCG */ 3557 3558 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3559 { 3560 #ifdef CONFIG_TCG 3561 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3562 uint64_t par64; 3563 ARMMMUIdx mmu_idx; 3564 int el = arm_current_el(env); 3565 ARMSecuritySpace ss = arm_security_space(env); 3566 3567 switch (ri->opc2 & 6) { 3568 case 0: 3569 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3570 switch (el) { 3571 case 3: 3572 mmu_idx = ARMMMUIdx_E3; 3573 break; 3574 case 2: 3575 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3576 /* fall through */ 3577 case 1: 3578 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3579 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3580 } else { 3581 mmu_idx = ARMMMUIdx_Stage1_E1; 3582 } 3583 break; 3584 default: 3585 g_assert_not_reached(); 3586 } 3587 break; 3588 case 2: 3589 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3590 switch (el) { 3591 case 3: 3592 mmu_idx = ARMMMUIdx_E10_0; 3593 break; 3594 case 2: 3595 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3596 mmu_idx = ARMMMUIdx_Stage1_E0; 3597 break; 3598 case 1: 3599 mmu_idx = ARMMMUIdx_Stage1_E0; 3600 break; 3601 default: 3602 g_assert_not_reached(); 3603 } 3604 break; 3605 case 4: 3606 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3607 mmu_idx = ARMMMUIdx_E10_1; 3608 ss = ARMSS_NonSecure; 3609 break; 3610 case 6: 3611 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3612 mmu_idx = ARMMMUIdx_E10_0; 3613 ss = ARMSS_NonSecure; 3614 break; 3615 default: 3616 g_assert_not_reached(); 3617 } 3618 3619 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3620 3621 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3622 #else 3623 /* Handled by hardware accelerator. */ 3624 g_assert_not_reached(); 3625 #endif /* CONFIG_TCG */ 3626 } 3627 3628 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3629 uint64_t value) 3630 { 3631 #ifdef CONFIG_TCG 3632 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3633 uint64_t par64; 3634 3635 /* There is no SecureEL2 for AArch32. */ 3636 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3637 ARMSS_NonSecure); 3638 3639 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3640 #else 3641 /* Handled by hardware accelerator. */ 3642 g_assert_not_reached(); 3643 #endif /* CONFIG_TCG */ 3644 } 3645 3646 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3647 bool isread) 3648 { 3649 /* 3650 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3651 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3652 * only happen when executing at EL3 because that combination also causes an 3653 * illegal exception return. We don't need to check FEAT_RME either, because 3654 * scr_write() ensures that the NSE bit is not set otherwise. 3655 */ 3656 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3657 return CP_ACCESS_TRAP; 3658 } 3659 return CP_ACCESS_OK; 3660 } 3661 3662 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3663 bool isread) 3664 { 3665 if (arm_current_el(env) == 3 && 3666 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3667 return CP_ACCESS_TRAP; 3668 } 3669 return at_e012_access(env, ri, isread); 3670 } 3671 3672 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3673 uint64_t value) 3674 { 3675 #ifdef CONFIG_TCG 3676 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3677 ARMMMUIdx mmu_idx; 3678 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3679 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3680 3681 switch (ri->opc2 & 6) { 3682 case 0: 3683 switch (ri->opc1) { 3684 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3685 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3686 mmu_idx = regime_e20 ? 3687 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3688 } else { 3689 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3690 } 3691 break; 3692 case 4: /* AT S1E2R, AT S1E2W */ 3693 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3694 break; 3695 case 6: /* AT S1E3R, AT S1E3W */ 3696 mmu_idx = ARMMMUIdx_E3; 3697 break; 3698 default: 3699 g_assert_not_reached(); 3700 } 3701 break; 3702 case 2: /* AT S1E0R, AT S1E0W */ 3703 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3704 break; 3705 case 4: /* AT S12E1R, AT S12E1W */ 3706 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3707 break; 3708 case 6: /* AT S12E0R, AT S12E0W */ 3709 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3710 break; 3711 default: 3712 g_assert_not_reached(); 3713 } 3714 3715 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3716 mmu_idx, arm_security_space(env)); 3717 #else 3718 /* Handled by hardware accelerator. */ 3719 g_assert_not_reached(); 3720 #endif /* CONFIG_TCG */ 3721 } 3722 #endif 3723 3724 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3725 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3726 .access = PL1_RW, .resetvalue = 0, 3727 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3728 offsetoflow32(CPUARMState, cp15.par_ns) }, 3729 .writefn = par_write }, 3730 #ifndef CONFIG_USER_ONLY 3731 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3732 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3733 .access = PL1_W, .accessfn = ats_access, 3734 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3735 #endif 3736 }; 3737 3738 /* Return basic MPU access permission bits. */ 3739 static uint32_t simple_mpu_ap_bits(uint32_t val) 3740 { 3741 uint32_t ret; 3742 uint32_t mask; 3743 int i; 3744 ret = 0; 3745 mask = 3; 3746 for (i = 0; i < 16; i += 2) { 3747 ret |= (val >> i) & mask; 3748 mask <<= 2; 3749 } 3750 return ret; 3751 } 3752 3753 /* Pad basic MPU access permission bits to extended format. */ 3754 static uint32_t extended_mpu_ap_bits(uint32_t val) 3755 { 3756 uint32_t ret; 3757 uint32_t mask; 3758 int i; 3759 ret = 0; 3760 mask = 3; 3761 for (i = 0; i < 16; i += 2) { 3762 ret |= (val & mask) << i; 3763 mask <<= 2; 3764 } 3765 return ret; 3766 } 3767 3768 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3769 uint64_t value) 3770 { 3771 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3772 } 3773 3774 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3775 { 3776 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3777 } 3778 3779 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3780 uint64_t value) 3781 { 3782 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3783 } 3784 3785 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3786 { 3787 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3788 } 3789 3790 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3791 { 3792 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3793 3794 if (!u32p) { 3795 return 0; 3796 } 3797 3798 u32p += env->pmsav7.rnr[M_REG_NS]; 3799 return *u32p; 3800 } 3801 3802 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3803 uint64_t value) 3804 { 3805 ARMCPU *cpu = env_archcpu(env); 3806 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3807 3808 if (!u32p) { 3809 return; 3810 } 3811 3812 u32p += env->pmsav7.rnr[M_REG_NS]; 3813 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3814 *u32p = value; 3815 } 3816 3817 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3818 uint64_t value) 3819 { 3820 ARMCPU *cpu = env_archcpu(env); 3821 uint32_t nrgs = cpu->pmsav7_dregion; 3822 3823 if (value >= nrgs) { 3824 qemu_log_mask(LOG_GUEST_ERROR, 3825 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3826 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3827 return; 3828 } 3829 3830 raw_write(env, ri, value); 3831 } 3832 3833 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3834 uint64_t value) 3835 { 3836 ARMCPU *cpu = env_archcpu(env); 3837 3838 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3839 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3840 } 3841 3842 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3843 { 3844 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3845 } 3846 3847 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3848 uint64_t value) 3849 { 3850 ARMCPU *cpu = env_archcpu(env); 3851 3852 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3853 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3854 } 3855 3856 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3857 { 3858 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3859 } 3860 3861 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3862 uint64_t value) 3863 { 3864 ARMCPU *cpu = env_archcpu(env); 3865 3866 /* 3867 * Ignore writes that would select not implemented region. 3868 * This is architecturally UNPREDICTABLE. 3869 */ 3870 if (value >= cpu->pmsav7_dregion) { 3871 return; 3872 } 3873 3874 env->pmsav7.rnr[M_REG_NS] = value; 3875 } 3876 3877 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3878 uint64_t value) 3879 { 3880 ARMCPU *cpu = env_archcpu(env); 3881 3882 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3883 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3884 } 3885 3886 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3887 { 3888 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3889 } 3890 3891 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3892 uint64_t value) 3893 { 3894 ARMCPU *cpu = env_archcpu(env); 3895 3896 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3897 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3898 } 3899 3900 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3901 { 3902 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3903 } 3904 3905 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3906 uint64_t value) 3907 { 3908 uint32_t n; 3909 uint32_t bit; 3910 ARMCPU *cpu = env_archcpu(env); 3911 3912 /* Ignore writes to unimplemented regions */ 3913 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3914 value &= MAKE_64BIT_MASK(0, rmax); 3915 3916 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3917 3918 /* Register alias is only valid for first 32 indexes */ 3919 for (n = 0; n < rmax; ++n) { 3920 bit = extract32(value, n, 1); 3921 env->pmsav8.hprlar[n] = deposit32( 3922 env->pmsav8.hprlar[n], 0, 1, bit); 3923 } 3924 } 3925 3926 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3927 { 3928 uint32_t n; 3929 uint32_t result = 0x0; 3930 ARMCPU *cpu = env_archcpu(env); 3931 3932 /* Register alias is only valid for first 32 indexes */ 3933 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3934 if (env->pmsav8.hprlar[n] & 0x1) { 3935 result |= (0x1 << n); 3936 } 3937 } 3938 return result; 3939 } 3940 3941 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3942 uint64_t value) 3943 { 3944 ARMCPU *cpu = env_archcpu(env); 3945 3946 /* 3947 * Ignore writes that would select not implemented region. 3948 * This is architecturally UNPREDICTABLE. 3949 */ 3950 if (value >= cpu->pmsav8r_hdregion) { 3951 return; 3952 } 3953 3954 env->pmsav8.hprselr = value; 3955 } 3956 3957 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3958 uint64_t value) 3959 { 3960 ARMCPU *cpu = env_archcpu(env); 3961 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3962 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3963 3964 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3965 3966 if (ri->opc1 & 4) { 3967 if (index >= cpu->pmsav8r_hdregion) { 3968 return; 3969 } 3970 if (ri->opc2 & 0x1) { 3971 env->pmsav8.hprlar[index] = value; 3972 } else { 3973 env->pmsav8.hprbar[index] = value; 3974 } 3975 } else { 3976 if (index >= cpu->pmsav7_dregion) { 3977 return; 3978 } 3979 if (ri->opc2 & 0x1) { 3980 env->pmsav8.rlar[M_REG_NS][index] = value; 3981 } else { 3982 env->pmsav8.rbar[M_REG_NS][index] = value; 3983 } 3984 } 3985 } 3986 3987 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3988 { 3989 ARMCPU *cpu = env_archcpu(env); 3990 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3991 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3992 3993 if (ri->opc1 & 4) { 3994 if (index >= cpu->pmsav8r_hdregion) { 3995 return 0x0; 3996 } 3997 if (ri->opc2 & 0x1) { 3998 return env->pmsav8.hprlar[index]; 3999 } else { 4000 return env->pmsav8.hprbar[index]; 4001 } 4002 } else { 4003 if (index >= cpu->pmsav7_dregion) { 4004 return 0x0; 4005 } 4006 if (ri->opc2 & 0x1) { 4007 return env->pmsav8.rlar[M_REG_NS][index]; 4008 } else { 4009 return env->pmsav8.rbar[M_REG_NS][index]; 4010 } 4011 } 4012 } 4013 4014 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4015 { .name = "PRBAR", 4016 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4017 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4018 .accessfn = access_tvm_trvm, 4019 .readfn = prbar_read, .writefn = prbar_write }, 4020 { .name = "PRLAR", 4021 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4022 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4023 .accessfn = access_tvm_trvm, 4024 .readfn = prlar_read, .writefn = prlar_write }, 4025 { .name = "PRSELR", .resetvalue = 0, 4026 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4027 .access = PL1_RW, .accessfn = access_tvm_trvm, 4028 .writefn = prselr_write, 4029 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4030 { .name = "HPRBAR", .resetvalue = 0, 4031 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4032 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4033 .readfn = hprbar_read, .writefn = hprbar_write }, 4034 { .name = "HPRLAR", 4035 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4036 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4037 .readfn = hprlar_read, .writefn = hprlar_write }, 4038 { .name = "HPRSELR", .resetvalue = 0, 4039 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4040 .access = PL2_RW, 4041 .writefn = hprselr_write, 4042 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4043 { .name = "HPRENR", 4044 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4045 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4046 .readfn = hprenr_read, .writefn = hprenr_write }, 4047 }; 4048 4049 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4050 /* 4051 * Reset for all these registers is handled in arm_cpu_reset(), 4052 * because the PMSAv7 is also used by M-profile CPUs, which do 4053 * not register cpregs but still need the state to be reset. 4054 */ 4055 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4056 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4057 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4058 .readfn = pmsav7_read, .writefn = pmsav7_write, 4059 .resetfn = arm_cp_reset_ignore }, 4060 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4061 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4062 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4063 .readfn = pmsav7_read, .writefn = pmsav7_write, 4064 .resetfn = arm_cp_reset_ignore }, 4065 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4066 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4067 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4068 .readfn = pmsav7_read, .writefn = pmsav7_write, 4069 .resetfn = arm_cp_reset_ignore }, 4070 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4071 .access = PL1_RW, 4072 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4073 .writefn = pmsav7_rgnr_write, 4074 .resetfn = arm_cp_reset_ignore }, 4075 }; 4076 4077 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4078 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4079 .access = PL1_RW, .type = ARM_CP_ALIAS, 4080 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4081 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4082 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4083 .access = PL1_RW, .type = ARM_CP_ALIAS, 4084 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4085 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4086 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4087 .access = PL1_RW, 4088 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4089 .resetvalue = 0, }, 4090 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4091 .access = PL1_RW, 4092 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4093 .resetvalue = 0, }, 4094 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4095 .access = PL1_RW, 4096 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4097 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4098 .access = PL1_RW, 4099 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4100 /* Protection region base and size registers */ 4101 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4102 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4103 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4104 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4105 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4106 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4107 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4108 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4109 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4110 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4111 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4112 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4113 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4114 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4115 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4116 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4117 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4118 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4119 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4120 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4121 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4122 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4123 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4124 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4125 }; 4126 4127 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4128 uint64_t value) 4129 { 4130 ARMCPU *cpu = env_archcpu(env); 4131 4132 if (!arm_feature(env, ARM_FEATURE_V8)) { 4133 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4134 /* 4135 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4136 * using Long-descriptor translation table format 4137 */ 4138 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4139 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4140 /* 4141 * In an implementation that includes the Security Extensions 4142 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4143 * Short-descriptor translation table format. 4144 */ 4145 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4146 } else { 4147 value &= TTBCR_N; 4148 } 4149 } 4150 4151 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4152 /* 4153 * With LPAE the TTBCR could result in a change of ASID 4154 * via the TTBCR.A1 bit, so do a TLB flush. 4155 */ 4156 tlb_flush(CPU(cpu)); 4157 } 4158 raw_write(env, ri, value); 4159 } 4160 4161 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4162 uint64_t value) 4163 { 4164 ARMCPU *cpu = env_archcpu(env); 4165 4166 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4167 tlb_flush(CPU(cpu)); 4168 raw_write(env, ri, value); 4169 } 4170 4171 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4172 uint64_t value) 4173 { 4174 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4175 if (cpreg_field_is_64bit(ri) && 4176 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4177 ARMCPU *cpu = env_archcpu(env); 4178 tlb_flush(CPU(cpu)); 4179 } 4180 raw_write(env, ri, value); 4181 } 4182 4183 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4184 uint64_t value) 4185 { 4186 /* 4187 * If we are running with E2&0 regime, then an ASID is active. 4188 * Flush if that might be changing. Note we're not checking 4189 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4190 * holds the active ASID, only checking the field that might. 4191 */ 4192 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4193 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4194 uint16_t mask = ARMMMUIdxBit_E20_2 | 4195 ARMMMUIdxBit_E20_2_PAN | 4196 ARMMMUIdxBit_E20_0; 4197 tlb_flush_by_mmuidx(env_cpu(env), mask); 4198 } 4199 raw_write(env, ri, value); 4200 } 4201 4202 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4203 uint64_t value) 4204 { 4205 ARMCPU *cpu = env_archcpu(env); 4206 CPUState *cs = CPU(cpu); 4207 4208 /* 4209 * A change in VMID to the stage2 page table (Stage2) invalidates 4210 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4211 */ 4212 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4213 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4214 } 4215 raw_write(env, ri, value); 4216 } 4217 4218 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4219 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4220 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4221 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4222 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4223 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4224 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4225 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4226 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4227 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4228 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4229 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4230 offsetof(CPUARMState, cp15.dfar_ns) } }, 4231 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4232 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4233 .access = PL1_RW, .accessfn = access_tvm_trvm, 4234 .fgt = FGT_FAR_EL1, 4235 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4236 .resetvalue = 0, }, 4237 }; 4238 4239 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4240 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4241 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4242 .access = PL1_RW, .accessfn = access_tvm_trvm, 4243 .fgt = FGT_ESR_EL1, 4244 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4245 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4246 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4247 .access = PL1_RW, .accessfn = access_tvm_trvm, 4248 .fgt = FGT_TTBR0_EL1, 4249 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4250 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4251 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4252 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4253 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4254 .access = PL1_RW, .accessfn = access_tvm_trvm, 4255 .fgt = FGT_TTBR1_EL1, 4256 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4258 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4259 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4260 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4261 .access = PL1_RW, .accessfn = access_tvm_trvm, 4262 .fgt = FGT_TCR_EL1, 4263 .writefn = vmsa_tcr_el12_write, 4264 .raw_writefn = raw_write, 4265 .resetvalue = 0, 4266 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4267 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4268 .access = PL1_RW, .accessfn = access_tvm_trvm, 4269 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4270 .raw_writefn = raw_write, 4271 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4272 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4273 }; 4274 4275 /* 4276 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4277 * qemu tlbs nor adjusting cached masks. 4278 */ 4279 static const ARMCPRegInfo ttbcr2_reginfo = { 4280 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4281 .access = PL1_RW, .accessfn = access_tvm_trvm, 4282 .type = ARM_CP_ALIAS, 4283 .bank_fieldoffsets = { 4284 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4285 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4286 }, 4287 }; 4288 4289 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4290 uint64_t value) 4291 { 4292 env->cp15.c15_ticonfig = value & 0xe7; 4293 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4294 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4295 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4296 } 4297 4298 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4299 uint64_t value) 4300 { 4301 env->cp15.c15_threadid = value & 0xffff; 4302 } 4303 4304 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4305 uint64_t value) 4306 { 4307 /* Wait-for-interrupt (deprecated) */ 4308 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4309 } 4310 4311 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4312 uint64_t value) 4313 { 4314 /* 4315 * On OMAP there are registers indicating the max/min index of dcache lines 4316 * containing a dirty line; cache flush operations have to reset these. 4317 */ 4318 env->cp15.c15_i_max = 0x000; 4319 env->cp15.c15_i_min = 0xff0; 4320 } 4321 4322 static const ARMCPRegInfo omap_cp_reginfo[] = { 4323 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4324 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4325 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4326 .resetvalue = 0, }, 4327 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4328 .access = PL1_RW, .type = ARM_CP_NOP }, 4329 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4330 .access = PL1_RW, 4331 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4332 .writefn = omap_ticonfig_write }, 4333 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4334 .access = PL1_RW, 4335 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4336 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4337 .access = PL1_RW, .resetvalue = 0xff0, 4338 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4339 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4340 .access = PL1_RW, 4341 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4342 .writefn = omap_threadid_write }, 4343 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4344 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4345 .type = ARM_CP_NO_RAW, 4346 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4347 /* 4348 * TODO: Peripheral port remap register: 4349 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4350 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4351 * when MMU is off. 4352 */ 4353 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4354 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4355 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4356 .writefn = omap_cachemaint_write }, 4357 { .name = "C9", .cp = 15, .crn = 9, 4358 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4359 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4360 }; 4361 4362 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4363 uint64_t value) 4364 { 4365 env->cp15.c15_cpar = value & 0x3fff; 4366 } 4367 4368 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4369 { .name = "XSCALE_CPAR", 4370 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4371 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4372 .writefn = xscale_cpar_write, }, 4373 { .name = "XSCALE_AUXCR", 4374 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4375 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4376 .resetvalue = 0, }, 4377 /* 4378 * XScale specific cache-lockdown: since we have no cache we NOP these 4379 * and hope the guest does not really rely on cache behaviour. 4380 */ 4381 { .name = "XSCALE_LOCK_ICACHE_LINE", 4382 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4383 .access = PL1_W, .type = ARM_CP_NOP }, 4384 { .name = "XSCALE_UNLOCK_ICACHE", 4385 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4386 .access = PL1_W, .type = ARM_CP_NOP }, 4387 { .name = "XSCALE_DCACHE_LOCK", 4388 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4389 .access = PL1_RW, .type = ARM_CP_NOP }, 4390 { .name = "XSCALE_UNLOCK_DCACHE", 4391 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4392 .access = PL1_W, .type = ARM_CP_NOP }, 4393 }; 4394 4395 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4396 /* 4397 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4398 * implementation of this implementation-defined space. 4399 * Ideally this should eventually disappear in favour of actually 4400 * implementing the correct behaviour for all cores. 4401 */ 4402 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4403 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4404 .access = PL1_RW, 4405 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4406 .resetvalue = 0 }, 4407 }; 4408 4409 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4410 /* Cache status: RAZ because we have no cache so it's always clean */ 4411 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4412 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4413 .resetvalue = 0 }, 4414 }; 4415 4416 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4417 /* We never have a block transfer operation in progress */ 4418 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4419 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4420 .resetvalue = 0 }, 4421 /* The cache ops themselves: these all NOP for QEMU */ 4422 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4423 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4424 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4425 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4426 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4427 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4428 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4429 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4430 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4431 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4432 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4433 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4434 }; 4435 4436 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4437 /* 4438 * The cache test-and-clean instructions always return (1 << 30) 4439 * to indicate that there are no dirty cache lines. 4440 */ 4441 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4442 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4443 .resetvalue = (1 << 30) }, 4444 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4445 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4446 .resetvalue = (1 << 30) }, 4447 }; 4448 4449 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4450 /* Ignore ReadBuffer accesses */ 4451 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4452 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4453 .access = PL1_RW, .resetvalue = 0, 4454 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4455 }; 4456 4457 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4458 { 4459 unsigned int cur_el = arm_current_el(env); 4460 4461 if (arm_is_el2_enabled(env) && cur_el == 1) { 4462 return env->cp15.vpidr_el2; 4463 } 4464 return raw_read(env, ri); 4465 } 4466 4467 static uint64_t mpidr_read_val(CPUARMState *env) 4468 { 4469 ARMCPU *cpu = env_archcpu(env); 4470 uint64_t mpidr = cpu->mp_affinity; 4471 4472 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4473 mpidr |= (1U << 31); 4474 /* 4475 * Cores which are uniprocessor (non-coherent) 4476 * but still implement the MP extensions set 4477 * bit 30. (For instance, Cortex-R5). 4478 */ 4479 if (cpu->mp_is_up) { 4480 mpidr |= (1u << 30); 4481 } 4482 } 4483 return mpidr; 4484 } 4485 4486 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4487 { 4488 unsigned int cur_el = arm_current_el(env); 4489 4490 if (arm_is_el2_enabled(env) && cur_el == 1) { 4491 return env->cp15.vmpidr_el2; 4492 } 4493 return mpidr_read_val(env); 4494 } 4495 4496 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4497 /* NOP AMAIR0/1 */ 4498 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4499 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4500 .access = PL1_RW, .accessfn = access_tvm_trvm, 4501 .fgt = FGT_AMAIR_EL1, 4502 .type = ARM_CP_CONST, .resetvalue = 0 }, 4503 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4504 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4505 .access = PL1_RW, .accessfn = access_tvm_trvm, 4506 .type = ARM_CP_CONST, .resetvalue = 0 }, 4507 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4508 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4509 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4510 offsetof(CPUARMState, cp15.par_ns)} }, 4511 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4512 .access = PL1_RW, .accessfn = access_tvm_trvm, 4513 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4514 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4515 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4516 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4517 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4518 .access = PL1_RW, .accessfn = access_tvm_trvm, 4519 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4520 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4521 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4522 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4523 }; 4524 4525 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4526 { 4527 return vfp_get_fpcr(env); 4528 } 4529 4530 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4531 uint64_t value) 4532 { 4533 vfp_set_fpcr(env, value); 4534 } 4535 4536 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4537 { 4538 return vfp_get_fpsr(env); 4539 } 4540 4541 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4542 uint64_t value) 4543 { 4544 vfp_set_fpsr(env, value); 4545 } 4546 4547 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4548 bool isread) 4549 { 4550 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4551 return CP_ACCESS_TRAP; 4552 } 4553 return CP_ACCESS_OK; 4554 } 4555 4556 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4557 uint64_t value) 4558 { 4559 env->daif = value & PSTATE_DAIF; 4560 } 4561 4562 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4563 { 4564 return env->pstate & PSTATE_PAN; 4565 } 4566 4567 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4568 uint64_t value) 4569 { 4570 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4571 } 4572 4573 static const ARMCPRegInfo pan_reginfo = { 4574 .name = "PAN", .state = ARM_CP_STATE_AA64, 4575 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4576 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4577 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4578 }; 4579 4580 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4581 { 4582 return env->pstate & PSTATE_UAO; 4583 } 4584 4585 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4586 uint64_t value) 4587 { 4588 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4589 } 4590 4591 static const ARMCPRegInfo uao_reginfo = { 4592 .name = "UAO", .state = ARM_CP_STATE_AA64, 4593 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4594 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4595 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4596 }; 4597 4598 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4599 { 4600 return env->pstate & PSTATE_DIT; 4601 } 4602 4603 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4604 uint64_t value) 4605 { 4606 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4607 } 4608 4609 static const ARMCPRegInfo dit_reginfo = { 4610 .name = "DIT", .state = ARM_CP_STATE_AA64, 4611 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4612 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4613 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4614 }; 4615 4616 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4617 { 4618 return env->pstate & PSTATE_SSBS; 4619 } 4620 4621 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4622 uint64_t value) 4623 { 4624 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4625 } 4626 4627 static const ARMCPRegInfo ssbs_reginfo = { 4628 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4629 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4630 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4631 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4632 }; 4633 4634 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4635 const ARMCPRegInfo *ri, 4636 bool isread) 4637 { 4638 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4639 switch (arm_current_el(env)) { 4640 case 0: 4641 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4642 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4643 return CP_ACCESS_TRAP; 4644 } 4645 /* fall through */ 4646 case 1: 4647 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4648 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4649 return CP_ACCESS_TRAP_EL2; 4650 } 4651 break; 4652 } 4653 return CP_ACCESS_OK; 4654 } 4655 4656 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4657 { 4658 /* Cache invalidate/clean to Point of Unification... */ 4659 switch (arm_current_el(env)) { 4660 case 0: 4661 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4662 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4663 return CP_ACCESS_TRAP; 4664 } 4665 /* fall through */ 4666 case 1: 4667 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4668 if (arm_hcr_el2_eff(env) & hcrflags) { 4669 return CP_ACCESS_TRAP_EL2; 4670 } 4671 break; 4672 } 4673 return CP_ACCESS_OK; 4674 } 4675 4676 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4677 bool isread) 4678 { 4679 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4680 } 4681 4682 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4683 bool isread) 4684 { 4685 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4686 } 4687 4688 /* 4689 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4690 * Page D4-1736 (DDI0487A.b) 4691 */ 4692 4693 static int vae1_tlbmask(CPUARMState *env) 4694 { 4695 uint64_t hcr = arm_hcr_el2_eff(env); 4696 uint16_t mask; 4697 4698 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4699 mask = ARMMMUIdxBit_E20_2 | 4700 ARMMMUIdxBit_E20_2_PAN | 4701 ARMMMUIdxBit_E20_0; 4702 } else { 4703 mask = ARMMMUIdxBit_E10_1 | 4704 ARMMMUIdxBit_E10_1_PAN | 4705 ARMMMUIdxBit_E10_0; 4706 } 4707 return mask; 4708 } 4709 4710 static int vae2_tlbmask(CPUARMState *env) 4711 { 4712 uint64_t hcr = arm_hcr_el2_eff(env); 4713 uint16_t mask; 4714 4715 if (hcr & HCR_E2H) { 4716 mask = ARMMMUIdxBit_E20_2 | 4717 ARMMMUIdxBit_E20_2_PAN | 4718 ARMMMUIdxBit_E20_0; 4719 } else { 4720 mask = ARMMMUIdxBit_E2; 4721 } 4722 return mask; 4723 } 4724 4725 /* Return 56 if TBI is enabled, 64 otherwise. */ 4726 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4727 uint64_t addr) 4728 { 4729 uint64_t tcr = regime_tcr(env, mmu_idx); 4730 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4731 int select = extract64(addr, 55, 1); 4732 4733 return (tbi >> select) & 1 ? 56 : 64; 4734 } 4735 4736 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4737 { 4738 uint64_t hcr = arm_hcr_el2_eff(env); 4739 ARMMMUIdx mmu_idx; 4740 4741 /* Only the regime of the mmu_idx below is significant. */ 4742 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4743 mmu_idx = ARMMMUIdx_E20_0; 4744 } else { 4745 mmu_idx = ARMMMUIdx_E10_0; 4746 } 4747 4748 return tlbbits_for_regime(env, mmu_idx, addr); 4749 } 4750 4751 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4752 { 4753 uint64_t hcr = arm_hcr_el2_eff(env); 4754 ARMMMUIdx mmu_idx; 4755 4756 /* 4757 * Only the regime of the mmu_idx below is significant. 4758 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4759 * only has one. 4760 */ 4761 if (hcr & HCR_E2H) { 4762 mmu_idx = ARMMMUIdx_E20_2; 4763 } else { 4764 mmu_idx = ARMMMUIdx_E2; 4765 } 4766 4767 return tlbbits_for_regime(env, mmu_idx, addr); 4768 } 4769 4770 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4771 uint64_t value) 4772 { 4773 CPUState *cs = env_cpu(env); 4774 int mask = vae1_tlbmask(env); 4775 4776 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4777 } 4778 4779 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4780 uint64_t value) 4781 { 4782 CPUState *cs = env_cpu(env); 4783 int mask = vae1_tlbmask(env); 4784 4785 if (tlb_force_broadcast(env)) { 4786 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4787 } else { 4788 tlb_flush_by_mmuidx(cs, mask); 4789 } 4790 } 4791 4792 static int e2_tlbmask(CPUARMState *env) 4793 { 4794 return (ARMMMUIdxBit_E20_0 | 4795 ARMMMUIdxBit_E20_2 | 4796 ARMMMUIdxBit_E20_2_PAN | 4797 ARMMMUIdxBit_E2); 4798 } 4799 4800 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4801 uint64_t value) 4802 { 4803 CPUState *cs = env_cpu(env); 4804 int mask = alle1_tlbmask(env); 4805 4806 tlb_flush_by_mmuidx(cs, mask); 4807 } 4808 4809 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4810 uint64_t value) 4811 { 4812 CPUState *cs = env_cpu(env); 4813 int mask = e2_tlbmask(env); 4814 4815 tlb_flush_by_mmuidx(cs, mask); 4816 } 4817 4818 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4819 uint64_t value) 4820 { 4821 ARMCPU *cpu = env_archcpu(env); 4822 CPUState *cs = CPU(cpu); 4823 4824 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4825 } 4826 4827 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4828 uint64_t value) 4829 { 4830 CPUState *cs = env_cpu(env); 4831 int mask = alle1_tlbmask(env); 4832 4833 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4834 } 4835 4836 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4837 uint64_t value) 4838 { 4839 CPUState *cs = env_cpu(env); 4840 int mask = e2_tlbmask(env); 4841 4842 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4843 } 4844 4845 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4846 uint64_t value) 4847 { 4848 CPUState *cs = env_cpu(env); 4849 4850 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4851 } 4852 4853 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4854 uint64_t value) 4855 { 4856 /* 4857 * Invalidate by VA, EL2 4858 * Currently handles both VAE2 and VALE2, since we don't support 4859 * flush-last-level-only. 4860 */ 4861 CPUState *cs = env_cpu(env); 4862 int mask = vae2_tlbmask(env); 4863 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4864 int bits = vae2_tlbbits(env, pageaddr); 4865 4866 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4867 } 4868 4869 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4870 uint64_t value) 4871 { 4872 /* 4873 * Invalidate by VA, EL3 4874 * Currently handles both VAE3 and VALE3, since we don't support 4875 * flush-last-level-only. 4876 */ 4877 ARMCPU *cpu = env_archcpu(env); 4878 CPUState *cs = CPU(cpu); 4879 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4880 4881 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4882 } 4883 4884 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4885 uint64_t value) 4886 { 4887 CPUState *cs = env_cpu(env); 4888 int mask = vae1_tlbmask(env); 4889 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4890 int bits = vae1_tlbbits(env, pageaddr); 4891 4892 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4893 } 4894 4895 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4896 uint64_t value) 4897 { 4898 /* 4899 * Invalidate by VA, EL1&0 (AArch64 version). 4900 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4901 * since we don't support flush-for-specific-ASID-only or 4902 * flush-last-level-only. 4903 */ 4904 CPUState *cs = env_cpu(env); 4905 int mask = vae1_tlbmask(env); 4906 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4907 int bits = vae1_tlbbits(env, pageaddr); 4908 4909 if (tlb_force_broadcast(env)) { 4910 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4911 } else { 4912 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4913 } 4914 } 4915 4916 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4917 uint64_t value) 4918 { 4919 CPUState *cs = env_cpu(env); 4920 int mask = vae2_tlbmask(env); 4921 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4922 int bits = vae2_tlbbits(env, pageaddr); 4923 4924 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4925 } 4926 4927 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4928 uint64_t value) 4929 { 4930 CPUState *cs = env_cpu(env); 4931 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4932 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4933 4934 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4935 ARMMMUIdxBit_E3, bits); 4936 } 4937 4938 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4939 { 4940 /* 4941 * The MSB of value is the NS field, which only applies if SEL2 4942 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4943 */ 4944 return (value >= 0 4945 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4946 && arm_is_secure_below_el3(env) 4947 ? ARMMMUIdxBit_Stage2_S 4948 : ARMMMUIdxBit_Stage2); 4949 } 4950 4951 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4952 uint64_t value) 4953 { 4954 CPUState *cs = env_cpu(env); 4955 int mask = ipas2e1_tlbmask(env, value); 4956 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4957 4958 if (tlb_force_broadcast(env)) { 4959 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4960 } else { 4961 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4962 } 4963 } 4964 4965 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4966 uint64_t value) 4967 { 4968 CPUState *cs = env_cpu(env); 4969 int mask = ipas2e1_tlbmask(env, value); 4970 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4971 4972 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4973 } 4974 4975 #ifdef TARGET_AARCH64 4976 typedef struct { 4977 uint64_t base; 4978 uint64_t length; 4979 } TLBIRange; 4980 4981 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4982 { 4983 /* 4984 * Note that the TLBI range TG field encoding differs from both 4985 * TG0 and TG1 encodings. 4986 */ 4987 switch (tg) { 4988 case 1: 4989 return Gran4K; 4990 case 2: 4991 return Gran16K; 4992 case 3: 4993 return Gran64K; 4994 default: 4995 return GranInvalid; 4996 } 4997 } 4998 4999 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5000 uint64_t value) 5001 { 5002 unsigned int page_size_granule, page_shift, num, scale, exponent; 5003 /* Extract one bit to represent the va selector in use. */ 5004 uint64_t select = sextract64(value, 36, 1); 5005 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5006 TLBIRange ret = { }; 5007 ARMGranuleSize gran; 5008 5009 page_size_granule = extract64(value, 46, 2); 5010 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5011 5012 /* The granule encoded in value must match the granule in use. */ 5013 if (gran != param.gran) { 5014 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5015 page_size_granule); 5016 return ret; 5017 } 5018 5019 page_shift = arm_granule_bits(gran); 5020 num = extract64(value, 39, 5); 5021 scale = extract64(value, 44, 2); 5022 exponent = (5 * scale) + 1; 5023 5024 ret.length = (num + 1) << (exponent + page_shift); 5025 5026 if (param.select) { 5027 ret.base = sextract64(value, 0, 37); 5028 } else { 5029 ret.base = extract64(value, 0, 37); 5030 } 5031 if (param.ds) { 5032 /* 5033 * With DS=1, BaseADDR is always shifted 16 so that it is able 5034 * to address all 52 va bits. The input address is perforce 5035 * aligned on a 64k boundary regardless of translation granule. 5036 */ 5037 page_shift = 16; 5038 } 5039 ret.base <<= page_shift; 5040 5041 return ret; 5042 } 5043 5044 static void do_rvae_write(CPUARMState *env, uint64_t value, 5045 int idxmap, bool synced) 5046 { 5047 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5048 TLBIRange range; 5049 int bits; 5050 5051 range = tlbi_aa64_get_range(env, one_idx, value); 5052 bits = tlbbits_for_regime(env, one_idx, range.base); 5053 5054 if (synced) { 5055 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5056 range.base, 5057 range.length, 5058 idxmap, 5059 bits); 5060 } else { 5061 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5062 range.length, idxmap, bits); 5063 } 5064 } 5065 5066 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5067 const ARMCPRegInfo *ri, 5068 uint64_t value) 5069 { 5070 /* 5071 * Invalidate by VA range, EL1&0. 5072 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5073 * since we don't support flush-for-specific-ASID-only or 5074 * flush-last-level-only. 5075 */ 5076 5077 do_rvae_write(env, value, vae1_tlbmask(env), 5078 tlb_force_broadcast(env)); 5079 } 5080 5081 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5082 const ARMCPRegInfo *ri, 5083 uint64_t value) 5084 { 5085 /* 5086 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5087 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5088 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5089 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5090 * shareable specific flushes. 5091 */ 5092 5093 do_rvae_write(env, value, vae1_tlbmask(env), true); 5094 } 5095 5096 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5097 const ARMCPRegInfo *ri, 5098 uint64_t value) 5099 { 5100 /* 5101 * Invalidate by VA range, EL2. 5102 * Currently handles all of RVAE2 and RVALE2, 5103 * since we don't support flush-for-specific-ASID-only or 5104 * flush-last-level-only. 5105 */ 5106 5107 do_rvae_write(env, value, vae2_tlbmask(env), 5108 tlb_force_broadcast(env)); 5109 5110 5111 } 5112 5113 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5114 const ARMCPRegInfo *ri, 5115 uint64_t value) 5116 { 5117 /* 5118 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5119 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5120 * since we don't support flush-for-specific-ASID-only, 5121 * flush-last-level-only or inner/outer shareable specific flushes. 5122 */ 5123 5124 do_rvae_write(env, value, vae2_tlbmask(env), true); 5125 5126 } 5127 5128 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5129 const ARMCPRegInfo *ri, 5130 uint64_t value) 5131 { 5132 /* 5133 * Invalidate by VA range, EL3. 5134 * Currently handles all of RVAE3 and RVALE3, 5135 * since we don't support flush-for-specific-ASID-only or 5136 * flush-last-level-only. 5137 */ 5138 5139 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5140 } 5141 5142 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5143 const ARMCPRegInfo *ri, 5144 uint64_t value) 5145 { 5146 /* 5147 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5148 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5149 * since we don't support flush-for-specific-ASID-only, 5150 * flush-last-level-only or inner/outer specific flushes. 5151 */ 5152 5153 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5154 } 5155 5156 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5157 uint64_t value) 5158 { 5159 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5160 tlb_force_broadcast(env)); 5161 } 5162 5163 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5164 const ARMCPRegInfo *ri, 5165 uint64_t value) 5166 { 5167 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5168 } 5169 #endif 5170 5171 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5172 bool isread) 5173 { 5174 int cur_el = arm_current_el(env); 5175 5176 if (cur_el < 2) { 5177 uint64_t hcr = arm_hcr_el2_eff(env); 5178 5179 if (cur_el == 0) { 5180 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5181 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5182 return CP_ACCESS_TRAP_EL2; 5183 } 5184 } else { 5185 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5186 return CP_ACCESS_TRAP; 5187 } 5188 if (hcr & HCR_TDZ) { 5189 return CP_ACCESS_TRAP_EL2; 5190 } 5191 } 5192 } else if (hcr & HCR_TDZ) { 5193 return CP_ACCESS_TRAP_EL2; 5194 } 5195 } 5196 return CP_ACCESS_OK; 5197 } 5198 5199 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5200 { 5201 ARMCPU *cpu = env_archcpu(env); 5202 int dzp_bit = 1 << 4; 5203 5204 /* DZP indicates whether DC ZVA access is allowed */ 5205 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5206 dzp_bit = 0; 5207 } 5208 return cpu->dcz_blocksize | dzp_bit; 5209 } 5210 5211 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5212 bool isread) 5213 { 5214 if (!(env->pstate & PSTATE_SP)) { 5215 /* 5216 * Access to SP_EL0 is undefined if it's being used as 5217 * the stack pointer. 5218 */ 5219 return CP_ACCESS_TRAP_UNCATEGORIZED; 5220 } 5221 return CP_ACCESS_OK; 5222 } 5223 5224 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5225 { 5226 return env->pstate & PSTATE_SP; 5227 } 5228 5229 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5230 { 5231 update_spsel(env, val); 5232 } 5233 5234 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5235 uint64_t value) 5236 { 5237 ARMCPU *cpu = env_archcpu(env); 5238 5239 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5240 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5241 value &= ~SCTLR_M; 5242 } 5243 5244 /* ??? Lots of these bits are not implemented. */ 5245 5246 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5247 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5248 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5249 } else { 5250 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5251 SCTLR_ATA0 | SCTLR_ATA); 5252 } 5253 } 5254 5255 if (raw_read(env, ri) == value) { 5256 /* 5257 * Skip the TLB flush if nothing actually changed; Linux likes 5258 * to do a lot of pointless SCTLR writes. 5259 */ 5260 return; 5261 } 5262 5263 raw_write(env, ri, value); 5264 5265 /* This may enable/disable the MMU, so do a TLB flush. */ 5266 tlb_flush(CPU(cpu)); 5267 5268 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5269 /* 5270 * Normally we would always end the TB on an SCTLR write; see the 5271 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5272 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5273 * of hflags from the translator, so do it here. 5274 */ 5275 arm_rebuild_hflags(env); 5276 } 5277 } 5278 5279 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5280 uint64_t value) 5281 { 5282 /* 5283 * Some MDCR_EL3 bits affect whether PMU counters are running: 5284 * if we are trying to change any of those then we must 5285 * bracket this update with PMU start/finish calls. 5286 */ 5287 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5288 5289 if (pmu_op) { 5290 pmu_op_start(env); 5291 } 5292 env->cp15.mdcr_el3 = value; 5293 if (pmu_op) { 5294 pmu_op_finish(env); 5295 } 5296 } 5297 5298 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5299 uint64_t value) 5300 { 5301 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5302 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5303 } 5304 5305 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5306 uint64_t value) 5307 { 5308 /* 5309 * Some MDCR_EL2 bits affect whether PMU counters are running: 5310 * if we are trying to change any of those then we must 5311 * bracket this update with PMU start/finish calls. 5312 */ 5313 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5314 5315 if (pmu_op) { 5316 pmu_op_start(env); 5317 } 5318 env->cp15.mdcr_el2 = value; 5319 if (pmu_op) { 5320 pmu_op_finish(env); 5321 } 5322 } 5323 5324 #ifdef CONFIG_USER_ONLY 5325 /* 5326 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5327 * code to get around W^X restrictions, where one region is writable and the 5328 * other is executable. 5329 * 5330 * Since the executable region is never written to we cannot detect code 5331 * changes when running in user mode, and rely on the emulated JIT telling us 5332 * that the code has changed by executing this instruction. 5333 */ 5334 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5335 uint64_t value) 5336 { 5337 uint64_t icache_line_mask, start_address, end_address; 5338 const ARMCPU *cpu; 5339 5340 cpu = env_archcpu(env); 5341 5342 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5343 start_address = value & ~icache_line_mask; 5344 end_address = value | icache_line_mask; 5345 5346 mmap_lock(); 5347 5348 tb_invalidate_phys_range(start_address, end_address); 5349 5350 mmap_unlock(); 5351 } 5352 #endif 5353 5354 static const ARMCPRegInfo v8_cp_reginfo[] = { 5355 /* 5356 * Minimal set of EL0-visible registers. This will need to be expanded 5357 * significantly for system emulation of AArch64 CPUs. 5358 */ 5359 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5360 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5361 .access = PL0_RW, .type = ARM_CP_NZCV }, 5362 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5363 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5364 .type = ARM_CP_NO_RAW, 5365 .access = PL0_RW, .accessfn = aa64_daif_access, 5366 .fieldoffset = offsetof(CPUARMState, daif), 5367 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5368 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5369 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5370 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5371 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5372 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5373 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5374 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5375 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5376 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5377 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5378 .access = PL0_R, .type = ARM_CP_NO_RAW, 5379 .fgt = FGT_DCZID_EL0, 5380 .readfn = aa64_dczid_read }, 5381 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5382 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5383 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5384 #ifndef CONFIG_USER_ONLY 5385 /* Avoid overhead of an access check that always passes in user-mode */ 5386 .accessfn = aa64_zva_access, 5387 .fgt = FGT_DCZVA, 5388 #endif 5389 }, 5390 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5391 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5392 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5393 /* 5394 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5395 * don't emulate caches. 5396 */ 5397 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5398 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5399 .access = PL1_W, .type = ARM_CP_NOP, 5400 .fgt = FGT_ICIALLUIS, 5401 .accessfn = access_ticab }, 5402 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5403 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5404 .access = PL1_W, .type = ARM_CP_NOP, 5405 .fgt = FGT_ICIALLU, 5406 .accessfn = access_tocu }, 5407 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5408 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5409 .access = PL0_W, 5410 .fgt = FGT_ICIVAU, 5411 .accessfn = access_tocu, 5412 #ifdef CONFIG_USER_ONLY 5413 .type = ARM_CP_NO_RAW, 5414 .writefn = ic_ivau_write 5415 #else 5416 .type = ARM_CP_NOP 5417 #endif 5418 }, 5419 /* Cache ops: all NOPs since we don't emulate caches */ 5420 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5421 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5422 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5423 .fgt = FGT_DCIVAC, 5424 .type = ARM_CP_NOP }, 5425 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5426 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5427 .fgt = FGT_DCISW, 5428 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5429 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5430 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5431 .access = PL0_W, .type = ARM_CP_NOP, 5432 .fgt = FGT_DCCVAC, 5433 .accessfn = aa64_cacheop_poc_access }, 5434 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5435 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5436 .fgt = FGT_DCCSW, 5437 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5438 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5439 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5440 .access = PL0_W, .type = ARM_CP_NOP, 5441 .fgt = FGT_DCCVAU, 5442 .accessfn = access_tocu }, 5443 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5444 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5445 .access = PL0_W, .type = ARM_CP_NOP, 5446 .fgt = FGT_DCCIVAC, 5447 .accessfn = aa64_cacheop_poc_access }, 5448 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5449 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5450 .fgt = FGT_DCCISW, 5451 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5452 /* TLBI operations */ 5453 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5454 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5455 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5456 .fgt = FGT_TLBIVMALLE1IS, 5457 .writefn = tlbi_aa64_vmalle1is_write }, 5458 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5459 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5460 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5461 .fgt = FGT_TLBIVAE1IS, 5462 .writefn = tlbi_aa64_vae1is_write }, 5463 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5464 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5465 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5466 .fgt = FGT_TLBIASIDE1IS, 5467 .writefn = tlbi_aa64_vmalle1is_write }, 5468 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5469 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5470 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5471 .fgt = FGT_TLBIVAAE1IS, 5472 .writefn = tlbi_aa64_vae1is_write }, 5473 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5474 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5475 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5476 .fgt = FGT_TLBIVALE1IS, 5477 .writefn = tlbi_aa64_vae1is_write }, 5478 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5479 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5480 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5481 .fgt = FGT_TLBIVAALE1IS, 5482 .writefn = tlbi_aa64_vae1is_write }, 5483 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5484 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5485 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5486 .fgt = FGT_TLBIVMALLE1, 5487 .writefn = tlbi_aa64_vmalle1_write }, 5488 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5489 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5490 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5491 .fgt = FGT_TLBIVAE1, 5492 .writefn = tlbi_aa64_vae1_write }, 5493 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5494 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5495 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5496 .fgt = FGT_TLBIASIDE1, 5497 .writefn = tlbi_aa64_vmalle1_write }, 5498 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5499 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5500 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5501 .fgt = FGT_TLBIVAAE1, 5502 .writefn = tlbi_aa64_vae1_write }, 5503 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5504 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5505 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5506 .fgt = FGT_TLBIVALE1, 5507 .writefn = tlbi_aa64_vae1_write }, 5508 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5509 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5510 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5511 .fgt = FGT_TLBIVAALE1, 5512 .writefn = tlbi_aa64_vae1_write }, 5513 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5514 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5515 .access = PL2_W, .type = ARM_CP_NO_RAW, 5516 .writefn = tlbi_aa64_ipas2e1is_write }, 5517 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5518 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5519 .access = PL2_W, .type = ARM_CP_NO_RAW, 5520 .writefn = tlbi_aa64_ipas2e1is_write }, 5521 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5522 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5523 .access = PL2_W, .type = ARM_CP_NO_RAW, 5524 .writefn = tlbi_aa64_alle1is_write }, 5525 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5526 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5527 .access = PL2_W, .type = ARM_CP_NO_RAW, 5528 .writefn = tlbi_aa64_alle1is_write }, 5529 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5530 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5531 .access = PL2_W, .type = ARM_CP_NO_RAW, 5532 .writefn = tlbi_aa64_ipas2e1_write }, 5533 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5534 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5535 .access = PL2_W, .type = ARM_CP_NO_RAW, 5536 .writefn = tlbi_aa64_ipas2e1_write }, 5537 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5538 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5539 .access = PL2_W, .type = ARM_CP_NO_RAW, 5540 .writefn = tlbi_aa64_alle1_write }, 5541 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5542 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5543 .access = PL2_W, .type = ARM_CP_NO_RAW, 5544 .writefn = tlbi_aa64_alle1is_write }, 5545 #ifndef CONFIG_USER_ONLY 5546 /* 64 bit address translation operations */ 5547 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5548 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5549 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5550 .fgt = FGT_ATS1E1R, 5551 .accessfn = at_e012_access, .writefn = ats_write64 }, 5552 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5553 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5554 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5555 .fgt = FGT_ATS1E1W, 5556 .accessfn = at_e012_access, .writefn = ats_write64 }, 5557 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5558 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5559 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5560 .fgt = FGT_ATS1E0R, 5561 .accessfn = at_e012_access, .writefn = ats_write64 }, 5562 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5563 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5564 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5565 .fgt = FGT_ATS1E0W, 5566 .accessfn = at_e012_access, .writefn = ats_write64 }, 5567 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5568 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5569 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5570 .accessfn = at_e012_access, .writefn = ats_write64 }, 5571 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5572 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5573 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5574 .accessfn = at_e012_access, .writefn = ats_write64 }, 5575 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5576 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5577 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5578 .accessfn = at_e012_access, .writefn = ats_write64 }, 5579 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5580 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5581 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5582 .accessfn = at_e012_access, .writefn = ats_write64 }, 5583 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5584 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5585 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5586 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5587 .writefn = ats_write64 }, 5588 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5589 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5590 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5591 .writefn = ats_write64 }, 5592 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5593 .type = ARM_CP_ALIAS, 5594 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5595 .access = PL1_RW, .resetvalue = 0, 5596 .fgt = FGT_PAR_EL1, 5597 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5598 .writefn = par_write }, 5599 #endif 5600 /* TLB invalidate last level of translation table walk */ 5601 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5602 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5603 .writefn = tlbimva_is_write }, 5604 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5605 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5606 .writefn = tlbimvaa_is_write }, 5607 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5608 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5609 .writefn = tlbimva_write }, 5610 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5611 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5612 .writefn = tlbimvaa_write }, 5613 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5614 .type = ARM_CP_NO_RAW, .access = PL2_W, 5615 .writefn = tlbimva_hyp_write }, 5616 { .name = "TLBIMVALHIS", 5617 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5618 .type = ARM_CP_NO_RAW, .access = PL2_W, 5619 .writefn = tlbimva_hyp_is_write }, 5620 { .name = "TLBIIPAS2", 5621 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5622 .type = ARM_CP_NO_RAW, .access = PL2_W, 5623 .writefn = tlbiipas2_hyp_write }, 5624 { .name = "TLBIIPAS2IS", 5625 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5626 .type = ARM_CP_NO_RAW, .access = PL2_W, 5627 .writefn = tlbiipas2is_hyp_write }, 5628 { .name = "TLBIIPAS2L", 5629 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5630 .type = ARM_CP_NO_RAW, .access = PL2_W, 5631 .writefn = tlbiipas2_hyp_write }, 5632 { .name = "TLBIIPAS2LIS", 5633 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5634 .type = ARM_CP_NO_RAW, .access = PL2_W, 5635 .writefn = tlbiipas2is_hyp_write }, 5636 /* 32 bit cache operations */ 5637 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5638 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5639 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5640 .type = ARM_CP_NOP, .access = PL1_W }, 5641 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5642 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5643 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5644 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5645 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5646 .type = ARM_CP_NOP, .access = PL1_W }, 5647 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5648 .type = ARM_CP_NOP, .access = PL1_W }, 5649 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5650 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5651 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5652 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5653 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5654 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5655 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5656 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5657 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5658 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5659 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5660 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5661 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5662 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5663 /* MMU Domain access control / MPU write buffer control */ 5664 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5665 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5666 .writefn = dacr_write, .raw_writefn = raw_write, 5667 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5668 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5669 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5670 .type = ARM_CP_ALIAS, 5671 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5672 .access = PL1_RW, 5673 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5674 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5675 .type = ARM_CP_ALIAS, 5676 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5677 .access = PL1_RW, 5678 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5679 /* 5680 * We rely on the access checks not allowing the guest to write to the 5681 * state field when SPSel indicates that it's being used as the stack 5682 * pointer. 5683 */ 5684 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5685 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5686 .access = PL1_RW, .accessfn = sp_el0_access, 5687 .type = ARM_CP_ALIAS, 5688 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5689 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5690 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5691 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5692 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5693 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5694 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5695 .type = ARM_CP_NO_RAW, 5696 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5697 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5698 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5699 .access = PL2_RW, 5700 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5701 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5702 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5703 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5704 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5705 .writefn = dacr_write, .raw_writefn = raw_write, 5706 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5707 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5708 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5709 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5710 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5711 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5712 .type = ARM_CP_ALIAS, 5713 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5714 .access = PL2_RW, 5715 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5716 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5717 .type = ARM_CP_ALIAS, 5718 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5719 .access = PL2_RW, 5720 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5721 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5722 .type = ARM_CP_ALIAS, 5723 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5724 .access = PL2_RW, 5725 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5726 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5727 .type = ARM_CP_ALIAS, 5728 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5729 .access = PL2_RW, 5730 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5731 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5732 .type = ARM_CP_IO, 5733 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5734 .resetvalue = 0, 5735 .access = PL3_RW, 5736 .writefn = mdcr_el3_write, 5737 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5738 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5739 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5740 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5741 .writefn = sdcr_write, 5742 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5743 }; 5744 5745 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5746 { 5747 ARMCPU *cpu = env_archcpu(env); 5748 5749 if (arm_feature(env, ARM_FEATURE_V8)) { 5750 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5751 } else { 5752 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5753 } 5754 5755 if (arm_feature(env, ARM_FEATURE_EL3)) { 5756 valid_mask &= ~HCR_HCD; 5757 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5758 /* 5759 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5760 * However, if we're using the SMC PSCI conduit then QEMU is 5761 * effectively acting like EL3 firmware and so the guest at 5762 * EL2 should retain the ability to prevent EL1 from being 5763 * able to make SMC calls into the ersatz firmware, so in 5764 * that case HCR.TSC should be read/write. 5765 */ 5766 valid_mask &= ~HCR_TSC; 5767 } 5768 5769 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5770 if (cpu_isar_feature(aa64_vh, cpu)) { 5771 valid_mask |= HCR_E2H; 5772 } 5773 if (cpu_isar_feature(aa64_ras, cpu)) { 5774 valid_mask |= HCR_TERR | HCR_TEA; 5775 } 5776 if (cpu_isar_feature(aa64_lor, cpu)) { 5777 valid_mask |= HCR_TLOR; 5778 } 5779 if (cpu_isar_feature(aa64_pauth, cpu)) { 5780 valid_mask |= HCR_API | HCR_APK; 5781 } 5782 if (cpu_isar_feature(aa64_mte, cpu)) { 5783 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5784 } 5785 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5786 valid_mask |= HCR_ENSCXT; 5787 } 5788 if (cpu_isar_feature(aa64_fwb, cpu)) { 5789 valid_mask |= HCR_FWB; 5790 } 5791 if (cpu_isar_feature(aa64_rme, cpu)) { 5792 valid_mask |= HCR_GPF; 5793 } 5794 } 5795 5796 if (cpu_isar_feature(any_evt, cpu)) { 5797 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5798 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5799 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5800 } 5801 5802 /* Clear RES0 bits. */ 5803 value &= valid_mask; 5804 5805 /* 5806 * These bits change the MMU setup: 5807 * HCR_VM enables stage 2 translation 5808 * HCR_PTW forbids certain page-table setups 5809 * HCR_DC disables stage1 and enables stage2 translation 5810 * HCR_DCT enables tagging on (disabled) stage1 translation 5811 * HCR_FWB changes the interpretation of stage2 descriptor bits 5812 */ 5813 if ((env->cp15.hcr_el2 ^ value) & 5814 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5815 tlb_flush(CPU(cpu)); 5816 } 5817 env->cp15.hcr_el2 = value; 5818 5819 /* 5820 * Updates to VI and VF require us to update the status of 5821 * virtual interrupts, which are the logical OR of these bits 5822 * and the state of the input lines from the GIC. (This requires 5823 * that we have the iothread lock, which is done by marking the 5824 * reginfo structs as ARM_CP_IO.) 5825 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5826 * possible for it to be taken immediately, because VIRQ and 5827 * VFIQ are masked unless running at EL0 or EL1, and HCR 5828 * can only be written at EL2. 5829 */ 5830 g_assert(qemu_mutex_iothread_locked()); 5831 arm_cpu_update_virq(cpu); 5832 arm_cpu_update_vfiq(cpu); 5833 arm_cpu_update_vserr(cpu); 5834 } 5835 5836 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5837 { 5838 do_hcr_write(env, value, 0); 5839 } 5840 5841 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5842 uint64_t value) 5843 { 5844 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5845 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5846 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5847 } 5848 5849 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5850 uint64_t value) 5851 { 5852 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5853 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5854 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5855 } 5856 5857 /* 5858 * Return the effective value of HCR_EL2, at the given security state. 5859 * Bits that are not included here: 5860 * RW (read from SCR_EL3.RW as needed) 5861 */ 5862 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5863 { 5864 uint64_t ret = env->cp15.hcr_el2; 5865 5866 assert(space != ARMSS_Root); 5867 5868 if (!arm_is_el2_enabled_secstate(env, space)) { 5869 /* 5870 * "This register has no effect if EL2 is not enabled in the 5871 * current Security state". This is ARMv8.4-SecEL2 speak for 5872 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5873 * 5874 * Prior to that, the language was "In an implementation that 5875 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5876 * as if this field is 0 for all purposes other than a direct 5877 * read or write access of HCR_EL2". With lots of enumeration 5878 * on a per-field basis. In current QEMU, this is condition 5879 * is arm_is_secure_below_el3. 5880 * 5881 * Since the v8.4 language applies to the entire register, and 5882 * appears to be backward compatible, use that. 5883 */ 5884 return 0; 5885 } 5886 5887 /* 5888 * For a cpu that supports both aarch64 and aarch32, we can set bits 5889 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5890 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5891 */ 5892 if (!arm_el_is_aa64(env, 2)) { 5893 uint64_t aa32_valid; 5894 5895 /* 5896 * These bits are up-to-date as of ARMv8.6. 5897 * For HCR, it's easiest to list just the 2 bits that are invalid. 5898 * For HCR2, list those that are valid. 5899 */ 5900 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5901 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5902 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5903 ret &= aa32_valid; 5904 } 5905 5906 if (ret & HCR_TGE) { 5907 /* These bits are up-to-date as of ARMv8.6. */ 5908 if (ret & HCR_E2H) { 5909 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5910 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5911 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5912 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5913 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5914 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5915 } else { 5916 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5917 } 5918 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5919 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5920 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5921 HCR_TLOR); 5922 } 5923 5924 return ret; 5925 } 5926 5927 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5928 { 5929 if (arm_feature(env, ARM_FEATURE_M)) { 5930 return 0; 5931 } 5932 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5933 } 5934 5935 /* 5936 * Corresponds to ARM pseudocode function ELIsInHost(). 5937 */ 5938 bool el_is_in_host(CPUARMState *env, int el) 5939 { 5940 uint64_t mask; 5941 5942 /* 5943 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5944 * Perform the simplest bit tests first, and validate EL2 afterward. 5945 */ 5946 if (el & 1) { 5947 return false; /* EL1 or EL3 */ 5948 } 5949 5950 /* 5951 * Note that hcr_write() checks isar_feature_aa64_vh(), 5952 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5953 */ 5954 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5955 if ((env->cp15.hcr_el2 & mask) != mask) { 5956 return false; 5957 } 5958 5959 /* TGE and/or E2H set: double check those bits are currently legal. */ 5960 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5961 } 5962 5963 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5964 uint64_t value) 5965 { 5966 uint64_t valid_mask = 0; 5967 5968 /* FEAT_MOPS adds MSCEn and MCE2 */ 5969 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5970 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 5971 } 5972 5973 /* Clear RES0 bits. */ 5974 env->cp15.hcrx_el2 = value & valid_mask; 5975 } 5976 5977 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5978 bool isread) 5979 { 5980 if (arm_current_el(env) < 3 5981 && arm_feature(env, ARM_FEATURE_EL3) 5982 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5983 return CP_ACCESS_TRAP_EL3; 5984 } 5985 return CP_ACCESS_OK; 5986 } 5987 5988 static const ARMCPRegInfo hcrx_el2_reginfo = { 5989 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5990 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5991 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5992 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5993 }; 5994 5995 /* Return the effective value of HCRX_EL2. */ 5996 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5997 { 5998 /* 5999 * The bits in this register behave as 0 for all purposes other than 6000 * direct reads of the register if SCR_EL3.HXEn is 0. 6001 * If EL2 is not enabled in the current security state, then the 6002 * bit may behave as if 0, or as if 1, depending on the bit. 6003 * For the moment, we treat the EL2-disabled case as taking 6004 * priority over the HXEn-disabled case. This is true for the only 6005 * bit for a feature which we implement where the answer is different 6006 * for the two cases (MSCEn for FEAT_MOPS). 6007 * This may need to be revisited for future bits. 6008 */ 6009 if (!arm_is_el2_enabled(env)) { 6010 uint64_t hcrx = 0; 6011 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6012 /* MSCEn behaves as 1 if EL2 is not enabled */ 6013 hcrx |= HCRX_MSCEN; 6014 } 6015 return hcrx; 6016 } 6017 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6018 return 0; 6019 } 6020 return env->cp15.hcrx_el2; 6021 } 6022 6023 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6024 uint64_t value) 6025 { 6026 /* 6027 * For A-profile AArch32 EL3, if NSACR.CP10 6028 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6029 */ 6030 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6031 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6032 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6033 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6034 } 6035 env->cp15.cptr_el[2] = value; 6036 } 6037 6038 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6039 { 6040 /* 6041 * For A-profile AArch32 EL3, if NSACR.CP10 6042 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6043 */ 6044 uint64_t value = env->cp15.cptr_el[2]; 6045 6046 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6047 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6048 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6049 } 6050 return value; 6051 } 6052 6053 static const ARMCPRegInfo el2_cp_reginfo[] = { 6054 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6055 .type = ARM_CP_IO, 6056 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6057 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6058 .writefn = hcr_write, .raw_writefn = raw_write }, 6059 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6060 .type = ARM_CP_ALIAS | ARM_CP_IO, 6061 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6062 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6063 .writefn = hcr_writelow }, 6064 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6065 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6066 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6067 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6068 .type = ARM_CP_ALIAS, 6069 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6070 .access = PL2_RW, 6071 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6072 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6073 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6074 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6075 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6076 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6077 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6078 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6079 .type = ARM_CP_ALIAS, 6080 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6081 .access = PL2_RW, 6082 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6083 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6084 .type = ARM_CP_ALIAS, 6085 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6086 .access = PL2_RW, 6087 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6088 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6089 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6090 .access = PL2_RW, .writefn = vbar_write, 6091 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6092 .resetvalue = 0 }, 6093 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6094 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6095 .access = PL3_RW, .type = ARM_CP_ALIAS, 6096 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6097 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6098 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6099 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6100 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6101 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6102 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6103 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6104 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6105 .resetvalue = 0 }, 6106 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6107 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6108 .access = PL2_RW, .type = ARM_CP_ALIAS, 6109 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6110 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6111 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6112 .access = PL2_RW, .type = ARM_CP_CONST, 6113 .resetvalue = 0 }, 6114 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6115 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6116 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6117 .access = PL2_RW, .type = ARM_CP_CONST, 6118 .resetvalue = 0 }, 6119 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6120 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6121 .access = PL2_RW, .type = ARM_CP_CONST, 6122 .resetvalue = 0 }, 6123 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6124 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6125 .access = PL2_RW, .type = ARM_CP_CONST, 6126 .resetvalue = 0 }, 6127 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6128 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6129 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6130 .raw_writefn = raw_write, 6131 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6132 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6133 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6134 .type = ARM_CP_ALIAS, 6135 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6136 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6137 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6138 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6139 .access = PL2_RW, 6140 /* no .writefn needed as this can't cause an ASID change */ 6141 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6142 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6143 .cp = 15, .opc1 = 6, .crm = 2, 6144 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6145 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6146 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6147 .writefn = vttbr_write, .raw_writefn = raw_write }, 6148 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6149 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6150 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6151 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6152 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6153 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6154 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6155 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6156 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6157 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6158 .access = PL2_RW, .resetvalue = 0, 6159 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6160 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6161 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6162 .access = PL2_RW, .resetvalue = 0, 6163 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6164 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6165 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6166 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6167 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6168 { .name = "TLBIALLNSNH", 6169 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6170 .type = ARM_CP_NO_RAW, .access = PL2_W, 6171 .writefn = tlbiall_nsnh_write }, 6172 { .name = "TLBIALLNSNHIS", 6173 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6174 .type = ARM_CP_NO_RAW, .access = PL2_W, 6175 .writefn = tlbiall_nsnh_is_write }, 6176 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6177 .type = ARM_CP_NO_RAW, .access = PL2_W, 6178 .writefn = tlbiall_hyp_write }, 6179 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6180 .type = ARM_CP_NO_RAW, .access = PL2_W, 6181 .writefn = tlbiall_hyp_is_write }, 6182 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6183 .type = ARM_CP_NO_RAW, .access = PL2_W, 6184 .writefn = tlbimva_hyp_write }, 6185 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6186 .type = ARM_CP_NO_RAW, .access = PL2_W, 6187 .writefn = tlbimva_hyp_is_write }, 6188 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6189 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6190 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6191 .writefn = tlbi_aa64_alle2_write }, 6192 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6193 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6194 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6195 .writefn = tlbi_aa64_vae2_write }, 6196 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6197 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6198 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6199 .writefn = tlbi_aa64_vae2_write }, 6200 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6201 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6202 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6203 .writefn = tlbi_aa64_alle2is_write }, 6204 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6205 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6206 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6207 .writefn = tlbi_aa64_vae2is_write }, 6208 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6209 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6210 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6211 .writefn = tlbi_aa64_vae2is_write }, 6212 #ifndef CONFIG_USER_ONLY 6213 /* 6214 * Unlike the other EL2-related AT operations, these must 6215 * UNDEF from EL3 if EL2 is not implemented, which is why we 6216 * define them here rather than with the rest of the AT ops. 6217 */ 6218 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6219 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6220 .access = PL2_W, .accessfn = at_s1e2_access, 6221 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6222 .writefn = ats_write64 }, 6223 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6224 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6225 .access = PL2_W, .accessfn = at_s1e2_access, 6226 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6227 .writefn = ats_write64 }, 6228 /* 6229 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6230 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6231 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6232 * to behave as if SCR.NS was 1. 6233 */ 6234 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6235 .access = PL2_W, 6236 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6237 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6238 .access = PL2_W, 6239 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6240 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6241 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6242 /* 6243 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6244 * reset values as IMPDEF. We choose to reset to 3 to comply with 6245 * both ARMv7 and ARMv8. 6246 */ 6247 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6248 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6249 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6250 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6251 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6252 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6253 .writefn = gt_cntvoff_write, 6254 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6255 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6256 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6257 .writefn = gt_cntvoff_write, 6258 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6259 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6260 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6261 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6262 .type = ARM_CP_IO, .access = PL2_RW, 6263 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6264 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6266 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6267 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6268 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6269 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6270 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6271 .resetfn = gt_hyp_timer_reset, 6272 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6273 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6274 .type = ARM_CP_IO, 6275 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6276 .access = PL2_RW, 6277 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6278 .resetvalue = 0, 6279 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6280 #endif 6281 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6282 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6283 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6284 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6285 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6286 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6287 .access = PL2_RW, 6288 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6289 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6290 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6291 .access = PL2_RW, 6292 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6293 }; 6294 6295 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6296 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6297 .type = ARM_CP_ALIAS | ARM_CP_IO, 6298 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6299 .access = PL2_RW, 6300 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6301 .writefn = hcr_writehigh }, 6302 }; 6303 6304 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6305 bool isread) 6306 { 6307 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6308 return CP_ACCESS_OK; 6309 } 6310 return CP_ACCESS_TRAP_UNCATEGORIZED; 6311 } 6312 6313 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6314 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6315 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6316 .access = PL2_RW, .accessfn = sel2_access, 6317 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6318 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6319 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6320 .access = PL2_RW, .accessfn = sel2_access, 6321 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6322 }; 6323 6324 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6325 bool isread) 6326 { 6327 /* 6328 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6329 * At Secure EL1 it traps to EL3 or EL2. 6330 */ 6331 if (arm_current_el(env) == 3) { 6332 return CP_ACCESS_OK; 6333 } 6334 if (arm_is_secure_below_el3(env)) { 6335 if (env->cp15.scr_el3 & SCR_EEL2) { 6336 return CP_ACCESS_TRAP_EL2; 6337 } 6338 return CP_ACCESS_TRAP_EL3; 6339 } 6340 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6341 if (isread) { 6342 return CP_ACCESS_OK; 6343 } 6344 return CP_ACCESS_TRAP_UNCATEGORIZED; 6345 } 6346 6347 static const ARMCPRegInfo el3_cp_reginfo[] = { 6348 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6349 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6350 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6351 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6352 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6353 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6354 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6355 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6356 .writefn = scr_write, .raw_writefn = raw_write }, 6357 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6358 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6359 .access = PL3_RW, .resetvalue = 0, 6360 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6361 { .name = "SDER", 6362 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6363 .access = PL3_RW, .resetvalue = 0, 6364 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6365 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6366 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6367 .writefn = vbar_write, .resetvalue = 0, 6368 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6369 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6370 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6371 .access = PL3_RW, .resetvalue = 0, 6372 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6373 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6374 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6375 .access = PL3_RW, 6376 /* no .writefn needed as this can't cause an ASID change */ 6377 .resetvalue = 0, 6378 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6379 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6380 .type = ARM_CP_ALIAS, 6381 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6382 .access = PL3_RW, 6383 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6384 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6385 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6386 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6387 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6388 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6389 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6390 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6391 .type = ARM_CP_ALIAS, 6392 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6393 .access = PL3_RW, 6394 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6395 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6396 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6397 .access = PL3_RW, .writefn = vbar_write, 6398 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6399 .resetvalue = 0 }, 6400 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6401 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6402 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6403 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6404 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6405 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6406 .access = PL3_RW, .resetvalue = 0, 6407 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6408 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6409 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6410 .access = PL3_RW, .type = ARM_CP_CONST, 6411 .resetvalue = 0 }, 6412 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6413 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6414 .access = PL3_RW, .type = ARM_CP_CONST, 6415 .resetvalue = 0 }, 6416 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6417 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6418 .access = PL3_RW, .type = ARM_CP_CONST, 6419 .resetvalue = 0 }, 6420 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6421 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6422 .access = PL3_W, .type = ARM_CP_NO_RAW, 6423 .writefn = tlbi_aa64_alle3is_write }, 6424 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6425 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6426 .access = PL3_W, .type = ARM_CP_NO_RAW, 6427 .writefn = tlbi_aa64_vae3is_write }, 6428 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6429 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6430 .access = PL3_W, .type = ARM_CP_NO_RAW, 6431 .writefn = tlbi_aa64_vae3is_write }, 6432 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6433 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6434 .access = PL3_W, .type = ARM_CP_NO_RAW, 6435 .writefn = tlbi_aa64_alle3_write }, 6436 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6437 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6438 .access = PL3_W, .type = ARM_CP_NO_RAW, 6439 .writefn = tlbi_aa64_vae3_write }, 6440 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6441 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6442 .access = PL3_W, .type = ARM_CP_NO_RAW, 6443 .writefn = tlbi_aa64_vae3_write }, 6444 }; 6445 6446 #ifndef CONFIG_USER_ONLY 6447 /* Test if system register redirection is to occur in the current state. */ 6448 static bool redirect_for_e2h(CPUARMState *env) 6449 { 6450 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6451 } 6452 6453 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6454 { 6455 CPReadFn *readfn; 6456 6457 if (redirect_for_e2h(env)) { 6458 /* Switch to the saved EL2 version of the register. */ 6459 ri = ri->opaque; 6460 readfn = ri->readfn; 6461 } else { 6462 readfn = ri->orig_readfn; 6463 } 6464 if (readfn == NULL) { 6465 readfn = raw_read; 6466 } 6467 return readfn(env, ri); 6468 } 6469 6470 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6471 uint64_t value) 6472 { 6473 CPWriteFn *writefn; 6474 6475 if (redirect_for_e2h(env)) { 6476 /* Switch to the saved EL2 version of the register. */ 6477 ri = ri->opaque; 6478 writefn = ri->writefn; 6479 } else { 6480 writefn = ri->orig_writefn; 6481 } 6482 if (writefn == NULL) { 6483 writefn = raw_write; 6484 } 6485 writefn(env, ri, value); 6486 } 6487 6488 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6489 { 6490 struct E2HAlias { 6491 uint32_t src_key, dst_key, new_key; 6492 const char *src_name, *dst_name, *new_name; 6493 bool (*feature)(const ARMISARegisters *id); 6494 }; 6495 6496 #define K(op0, op1, crn, crm, op2) \ 6497 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6498 6499 static const struct E2HAlias aliases[] = { 6500 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6501 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6502 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6503 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6504 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6505 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6506 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6507 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6508 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6509 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6510 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6511 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6512 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6513 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6514 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6515 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6516 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6517 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6518 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6519 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6520 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6521 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6522 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6523 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6524 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6525 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6526 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6527 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6528 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6529 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6530 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6531 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6532 6533 /* 6534 * Note that redirection of ZCR is mentioned in the description 6535 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6536 * not in the summary table. 6537 */ 6538 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6539 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6540 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6541 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6542 6543 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6544 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6545 6546 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6547 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6548 isar_feature_aa64_scxtnum }, 6549 6550 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6551 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6552 }; 6553 #undef K 6554 6555 size_t i; 6556 6557 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6558 const struct E2HAlias *a = &aliases[i]; 6559 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6560 bool ok; 6561 6562 if (a->feature && !a->feature(&cpu->isar)) { 6563 continue; 6564 } 6565 6566 src_reg = g_hash_table_lookup(cpu->cp_regs, 6567 (gpointer)(uintptr_t)a->src_key); 6568 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6569 (gpointer)(uintptr_t)a->dst_key); 6570 g_assert(src_reg != NULL); 6571 g_assert(dst_reg != NULL); 6572 6573 /* Cross-compare names to detect typos in the keys. */ 6574 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6575 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6576 6577 /* None of the core system registers use opaque; we will. */ 6578 g_assert(src_reg->opaque == NULL); 6579 6580 /* Create alias before redirection so we dup the right data. */ 6581 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6582 6583 new_reg->name = a->new_name; 6584 new_reg->type |= ARM_CP_ALIAS; 6585 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6586 new_reg->access &= PL2_RW | PL3_RW; 6587 6588 ok = g_hash_table_insert(cpu->cp_regs, 6589 (gpointer)(uintptr_t)a->new_key, new_reg); 6590 g_assert(ok); 6591 6592 src_reg->opaque = dst_reg; 6593 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6594 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6595 if (!src_reg->raw_readfn) { 6596 src_reg->raw_readfn = raw_read; 6597 } 6598 if (!src_reg->raw_writefn) { 6599 src_reg->raw_writefn = raw_write; 6600 } 6601 src_reg->readfn = el2_e2h_read; 6602 src_reg->writefn = el2_e2h_write; 6603 } 6604 } 6605 #endif 6606 6607 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6608 bool isread) 6609 { 6610 int cur_el = arm_current_el(env); 6611 6612 if (cur_el < 2) { 6613 uint64_t hcr = arm_hcr_el2_eff(env); 6614 6615 if (cur_el == 0) { 6616 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6617 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6618 return CP_ACCESS_TRAP_EL2; 6619 } 6620 } else { 6621 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6622 return CP_ACCESS_TRAP; 6623 } 6624 if (hcr & HCR_TID2) { 6625 return CP_ACCESS_TRAP_EL2; 6626 } 6627 } 6628 } else if (hcr & HCR_TID2) { 6629 return CP_ACCESS_TRAP_EL2; 6630 } 6631 } 6632 6633 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6634 return CP_ACCESS_TRAP_EL2; 6635 } 6636 6637 return CP_ACCESS_OK; 6638 } 6639 6640 /* 6641 * Check for traps to RAS registers, which are controlled 6642 * by HCR_EL2.TERR and SCR_EL3.TERR. 6643 */ 6644 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6645 bool isread) 6646 { 6647 int el = arm_current_el(env); 6648 6649 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6650 return CP_ACCESS_TRAP_EL2; 6651 } 6652 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6653 return CP_ACCESS_TRAP_EL3; 6654 } 6655 return CP_ACCESS_OK; 6656 } 6657 6658 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6659 { 6660 int el = arm_current_el(env); 6661 6662 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6663 return env->cp15.vdisr_el2; 6664 } 6665 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6666 return 0; /* RAZ/WI */ 6667 } 6668 return env->cp15.disr_el1; 6669 } 6670 6671 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6672 { 6673 int el = arm_current_el(env); 6674 6675 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6676 env->cp15.vdisr_el2 = val; 6677 return; 6678 } 6679 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6680 return; /* RAZ/WI */ 6681 } 6682 env->cp15.disr_el1 = val; 6683 } 6684 6685 /* 6686 * Minimal RAS implementation with no Error Records. 6687 * Which means that all of the Error Record registers: 6688 * ERXADDR_EL1 6689 * ERXCTLR_EL1 6690 * ERXFR_EL1 6691 * ERXMISC0_EL1 6692 * ERXMISC1_EL1 6693 * ERXMISC2_EL1 6694 * ERXMISC3_EL1 6695 * ERXPFGCDN_EL1 (RASv1p1) 6696 * ERXPFGCTL_EL1 (RASv1p1) 6697 * ERXPFGF_EL1 (RASv1p1) 6698 * ERXSTATUS_EL1 6699 * and 6700 * ERRSELR_EL1 6701 * may generate UNDEFINED, which is the effect we get by not 6702 * listing them at all. 6703 * 6704 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6705 * is higher priority than FGT-to-EL2 so we do not need to list them 6706 * in order to check for an FGT. 6707 */ 6708 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6709 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6710 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6711 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6712 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6713 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6714 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6715 .access = PL1_R, .accessfn = access_terr, 6716 .fgt = FGT_ERRIDR_EL1, 6717 .type = ARM_CP_CONST, .resetvalue = 0 }, 6718 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6719 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6720 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6721 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6722 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6723 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6724 }; 6725 6726 /* 6727 * Return the exception level to which exceptions should be taken 6728 * via SVEAccessTrap. This excludes the check for whether the exception 6729 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6730 * be found by testing 0 < fp_exception_el < sve_exception_el. 6731 * 6732 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6733 * pseudocode does *not* separate out the FP trap checks, but has them 6734 * all in one function. 6735 */ 6736 int sve_exception_el(CPUARMState *env, int el) 6737 { 6738 #ifndef CONFIG_USER_ONLY 6739 if (el <= 1 && !el_is_in_host(env, el)) { 6740 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6741 case 1: 6742 if (el != 0) { 6743 break; 6744 } 6745 /* fall through */ 6746 case 0: 6747 case 2: 6748 return 1; 6749 } 6750 } 6751 6752 if (el <= 2 && arm_is_el2_enabled(env)) { 6753 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6754 if (env->cp15.hcr_el2 & HCR_E2H) { 6755 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6756 case 1: 6757 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6758 break; 6759 } 6760 /* fall through */ 6761 case 0: 6762 case 2: 6763 return 2; 6764 } 6765 } else { 6766 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6767 return 2; 6768 } 6769 } 6770 } 6771 6772 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6773 if (arm_feature(env, ARM_FEATURE_EL3) 6774 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6775 return 3; 6776 } 6777 #endif 6778 return 0; 6779 } 6780 6781 /* 6782 * Return the exception level to which exceptions should be taken for SME. 6783 * C.f. the ARM pseudocode function CheckSMEAccess. 6784 */ 6785 int sme_exception_el(CPUARMState *env, int el) 6786 { 6787 #ifndef CONFIG_USER_ONLY 6788 if (el <= 1 && !el_is_in_host(env, el)) { 6789 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6790 case 1: 6791 if (el != 0) { 6792 break; 6793 } 6794 /* fall through */ 6795 case 0: 6796 case 2: 6797 return 1; 6798 } 6799 } 6800 6801 if (el <= 2 && arm_is_el2_enabled(env)) { 6802 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6803 if (env->cp15.hcr_el2 & HCR_E2H) { 6804 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6805 case 1: 6806 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6807 break; 6808 } 6809 /* fall through */ 6810 case 0: 6811 case 2: 6812 return 2; 6813 } 6814 } else { 6815 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6816 return 2; 6817 } 6818 } 6819 } 6820 6821 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6822 if (arm_feature(env, ARM_FEATURE_EL3) 6823 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6824 return 3; 6825 } 6826 #endif 6827 return 0; 6828 } 6829 6830 /* 6831 * Given that SVE is enabled, return the vector length for EL. 6832 */ 6833 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6834 { 6835 ARMCPU *cpu = env_archcpu(env); 6836 uint64_t *cr = env->vfp.zcr_el; 6837 uint32_t map = cpu->sve_vq.map; 6838 uint32_t len = ARM_MAX_VQ - 1; 6839 6840 if (sm) { 6841 cr = env->vfp.smcr_el; 6842 map = cpu->sme_vq.map; 6843 } 6844 6845 if (el <= 1 && !el_is_in_host(env, el)) { 6846 len = MIN(len, 0xf & (uint32_t)cr[1]); 6847 } 6848 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6849 len = MIN(len, 0xf & (uint32_t)cr[2]); 6850 } 6851 if (arm_feature(env, ARM_FEATURE_EL3)) { 6852 len = MIN(len, 0xf & (uint32_t)cr[3]); 6853 } 6854 6855 map &= MAKE_64BIT_MASK(0, len + 1); 6856 if (map != 0) { 6857 return 31 - clz32(map); 6858 } 6859 6860 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6861 assert(sm); 6862 return ctz32(cpu->sme_vq.map); 6863 } 6864 6865 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6866 { 6867 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6868 } 6869 6870 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6871 uint64_t value) 6872 { 6873 int cur_el = arm_current_el(env); 6874 int old_len = sve_vqm1_for_el(env, cur_el); 6875 int new_len; 6876 6877 /* Bits other than [3:0] are RAZ/WI. */ 6878 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6879 raw_write(env, ri, value & 0xf); 6880 6881 /* 6882 * Because we arrived here, we know both FP and SVE are enabled; 6883 * otherwise we would have trapped access to the ZCR_ELn register. 6884 */ 6885 new_len = sve_vqm1_for_el(env, cur_el); 6886 if (new_len < old_len) { 6887 aarch64_sve_narrow_vq(env, new_len + 1); 6888 } 6889 } 6890 6891 static const ARMCPRegInfo zcr_reginfo[] = { 6892 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6893 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6894 .access = PL1_RW, .type = ARM_CP_SVE, 6895 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6896 .writefn = zcr_write, .raw_writefn = raw_write }, 6897 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6898 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6899 .access = PL2_RW, .type = ARM_CP_SVE, 6900 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6901 .writefn = zcr_write, .raw_writefn = raw_write }, 6902 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6903 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6904 .access = PL3_RW, .type = ARM_CP_SVE, 6905 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6906 .writefn = zcr_write, .raw_writefn = raw_write }, 6907 }; 6908 6909 #ifdef TARGET_AARCH64 6910 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6911 bool isread) 6912 { 6913 int el = arm_current_el(env); 6914 6915 if (el == 0) { 6916 uint64_t sctlr = arm_sctlr(env, el); 6917 if (!(sctlr & SCTLR_EnTP2)) { 6918 return CP_ACCESS_TRAP; 6919 } 6920 } 6921 /* TODO: FEAT_FGT */ 6922 if (el < 3 6923 && arm_feature(env, ARM_FEATURE_EL3) 6924 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6925 return CP_ACCESS_TRAP_EL3; 6926 } 6927 return CP_ACCESS_OK; 6928 } 6929 6930 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6931 bool isread) 6932 { 6933 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6934 if (arm_current_el(env) < 3 6935 && arm_feature(env, ARM_FEATURE_EL3) 6936 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6937 return CP_ACCESS_TRAP_EL3; 6938 } 6939 return CP_ACCESS_OK; 6940 } 6941 6942 /* ResetSVEState */ 6943 static void arm_reset_sve_state(CPUARMState *env) 6944 { 6945 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6946 /* Recall that FFR is stored as pregs[16]. */ 6947 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6948 vfp_set_fpcr(env, 0x0800009f); 6949 } 6950 6951 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6952 { 6953 uint64_t change = (env->svcr ^ new) & mask; 6954 6955 if (change == 0) { 6956 return; 6957 } 6958 env->svcr ^= change; 6959 6960 if (change & R_SVCR_SM_MASK) { 6961 arm_reset_sve_state(env); 6962 } 6963 6964 /* 6965 * ResetSMEState. 6966 * 6967 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6968 * on enable: while disabled, the storage is inaccessible and the 6969 * value does not matter. We're not saving the storage in vmstate 6970 * when disabled either. 6971 */ 6972 if (change & new & R_SVCR_ZA_MASK) { 6973 memset(env->zarray, 0, sizeof(env->zarray)); 6974 } 6975 6976 if (tcg_enabled()) { 6977 arm_rebuild_hflags(env); 6978 } 6979 } 6980 6981 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6982 uint64_t value) 6983 { 6984 aarch64_set_svcr(env, value, -1); 6985 } 6986 6987 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6988 uint64_t value) 6989 { 6990 int cur_el = arm_current_el(env); 6991 int old_len = sve_vqm1_for_el(env, cur_el); 6992 int new_len; 6993 6994 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6995 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6996 raw_write(env, ri, value); 6997 6998 /* 6999 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7000 * when SVL is widened (old values kept, or zeros). Choose to keep the 7001 * current values for simplicity. But for QEMU internals, we must still 7002 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7003 * above aarch64_sve_narrow_vq. 7004 */ 7005 new_len = sve_vqm1_for_el(env, cur_el); 7006 if (new_len < old_len) { 7007 aarch64_sve_narrow_vq(env, new_len + 1); 7008 } 7009 } 7010 7011 static const ARMCPRegInfo sme_reginfo[] = { 7012 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7013 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7014 .access = PL0_RW, .accessfn = access_tpidr2, 7015 .fgt = FGT_NTPIDR2_EL0, 7016 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7017 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7018 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7019 .access = PL0_RW, .type = ARM_CP_SME, 7020 .fieldoffset = offsetof(CPUARMState, svcr), 7021 .writefn = svcr_write, .raw_writefn = raw_write }, 7022 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7023 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7024 .access = PL1_RW, .type = ARM_CP_SME, 7025 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7026 .writefn = smcr_write, .raw_writefn = raw_write }, 7027 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7028 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7029 .access = PL2_RW, .type = ARM_CP_SME, 7030 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7031 .writefn = smcr_write, .raw_writefn = raw_write }, 7032 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7034 .access = PL3_RW, .type = ARM_CP_SME, 7035 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7036 .writefn = smcr_write, .raw_writefn = raw_write }, 7037 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7038 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7039 .access = PL1_R, .accessfn = access_aa64_tid1, 7040 /* 7041 * IMPLEMENTOR = 0 (software) 7042 * REVISION = 0 (implementation defined) 7043 * SMPS = 0 (no streaming execution priority in QEMU) 7044 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7045 */ 7046 .type = ARM_CP_CONST, .resetvalue = 0, }, 7047 /* 7048 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7049 */ 7050 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7051 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7052 .access = PL1_RW, .accessfn = access_esm, 7053 .fgt = FGT_NSMPRI_EL1, 7054 .type = ARM_CP_CONST, .resetvalue = 0 }, 7055 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7056 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7057 .access = PL2_RW, .accessfn = access_esm, 7058 .type = ARM_CP_CONST, .resetvalue = 0 }, 7059 }; 7060 7061 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7062 uint64_t value) 7063 { 7064 CPUState *cs = env_cpu(env); 7065 7066 tlb_flush(cs); 7067 } 7068 7069 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7070 uint64_t value) 7071 { 7072 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7073 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7074 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7075 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7076 7077 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7078 } 7079 7080 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7081 { 7082 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7083 env_archcpu(env)->reset_l0gptsz); 7084 } 7085 7086 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7087 uint64_t value) 7088 { 7089 CPUState *cs = env_cpu(env); 7090 7091 tlb_flush_all_cpus_synced(cs); 7092 } 7093 7094 static const ARMCPRegInfo rme_reginfo[] = { 7095 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7096 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7097 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7098 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7099 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7100 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7101 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7102 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7103 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7104 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7105 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7106 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7107 .access = PL3_W, .type = ARM_CP_NO_RAW, 7108 .writefn = tlbi_aa64_paall_write }, 7109 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7110 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7111 .access = PL3_W, .type = ARM_CP_NO_RAW, 7112 .writefn = tlbi_aa64_paallos_write }, 7113 /* 7114 * QEMU does not have a way to invalidate by physical address, thus 7115 * invalidating a range of physical addresses is accomplished by 7116 * flushing all tlb entries in the outer shareable domain, 7117 * just like PAALLOS. 7118 */ 7119 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7121 .access = PL3_W, .type = ARM_CP_NO_RAW, 7122 .writefn = tlbi_aa64_paallos_write }, 7123 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7124 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7125 .access = PL3_W, .type = ARM_CP_NO_RAW, 7126 .writefn = tlbi_aa64_paallos_write }, 7127 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7128 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7129 .access = PL3_W, .type = ARM_CP_NOP }, 7130 }; 7131 7132 static const ARMCPRegInfo rme_mte_reginfo[] = { 7133 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7134 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7135 .access = PL3_W, .type = ARM_CP_NOP }, 7136 }; 7137 #endif /* TARGET_AARCH64 */ 7138 7139 static void define_pmu_regs(ARMCPU *cpu) 7140 { 7141 /* 7142 * v7 performance monitor control register: same implementor 7143 * field as main ID register, and we implement four counters in 7144 * addition to the cycle count register. 7145 */ 7146 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7147 ARMCPRegInfo pmcr = { 7148 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7149 .access = PL0_RW, 7150 .fgt = FGT_PMCR_EL0, 7151 .type = ARM_CP_IO | ARM_CP_ALIAS, 7152 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7153 .accessfn = pmreg_access, .writefn = pmcr_write, 7154 .raw_writefn = raw_write, 7155 }; 7156 ARMCPRegInfo pmcr64 = { 7157 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7158 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7159 .access = PL0_RW, .accessfn = pmreg_access, 7160 .fgt = FGT_PMCR_EL0, 7161 .type = ARM_CP_IO, 7162 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7163 .resetvalue = cpu->isar.reset_pmcr_el0, 7164 .writefn = pmcr_write, .raw_writefn = raw_write, 7165 }; 7166 7167 define_one_arm_cp_reg(cpu, &pmcr); 7168 define_one_arm_cp_reg(cpu, &pmcr64); 7169 for (i = 0; i < pmcrn; i++) { 7170 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7171 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7172 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7173 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7174 ARMCPRegInfo pmev_regs[] = { 7175 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7176 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7177 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7178 .fgt = FGT_PMEVCNTRN_EL0, 7179 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7180 .accessfn = pmreg_access_xevcntr }, 7181 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7182 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7183 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7184 .type = ARM_CP_IO, 7185 .fgt = FGT_PMEVCNTRN_EL0, 7186 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7187 .raw_readfn = pmevcntr_rawread, 7188 .raw_writefn = pmevcntr_rawwrite }, 7189 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7190 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7191 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7192 .fgt = FGT_PMEVTYPERN_EL0, 7193 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7194 .accessfn = pmreg_access }, 7195 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7196 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7197 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7198 .fgt = FGT_PMEVTYPERN_EL0, 7199 .type = ARM_CP_IO, 7200 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7201 .raw_writefn = pmevtyper_rawwrite }, 7202 }; 7203 define_arm_cp_regs(cpu, pmev_regs); 7204 g_free(pmevcntr_name); 7205 g_free(pmevcntr_el0_name); 7206 g_free(pmevtyper_name); 7207 g_free(pmevtyper_el0_name); 7208 } 7209 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7210 ARMCPRegInfo v81_pmu_regs[] = { 7211 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7212 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7213 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7214 .fgt = FGT_PMCEIDN_EL0, 7215 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7216 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7217 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7218 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7219 .fgt = FGT_PMCEIDN_EL0, 7220 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7221 }; 7222 define_arm_cp_regs(cpu, v81_pmu_regs); 7223 } 7224 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7225 static const ARMCPRegInfo v84_pmmir = { 7226 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7227 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7228 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7229 .fgt = FGT_PMMIR_EL1, 7230 .resetvalue = 0 7231 }; 7232 define_one_arm_cp_reg(cpu, &v84_pmmir); 7233 } 7234 } 7235 7236 #ifndef CONFIG_USER_ONLY 7237 /* 7238 * We don't know until after realize whether there's a GICv3 7239 * attached, and that is what registers the gicv3 sysregs. 7240 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7241 * at runtime. 7242 */ 7243 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7244 { 7245 ARMCPU *cpu = env_archcpu(env); 7246 uint64_t pfr1 = cpu->isar.id_pfr1; 7247 7248 if (env->gicv3state) { 7249 pfr1 |= 1 << 28; 7250 } 7251 return pfr1; 7252 } 7253 7254 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7255 { 7256 ARMCPU *cpu = env_archcpu(env); 7257 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7258 7259 if (env->gicv3state) { 7260 pfr0 |= 1 << 24; 7261 } 7262 return pfr0; 7263 } 7264 #endif 7265 7266 /* 7267 * Shared logic between LORID and the rest of the LOR* registers. 7268 * Secure state exclusion has already been dealt with. 7269 */ 7270 static CPAccessResult access_lor_ns(CPUARMState *env, 7271 const ARMCPRegInfo *ri, bool isread) 7272 { 7273 int el = arm_current_el(env); 7274 7275 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7276 return CP_ACCESS_TRAP_EL2; 7277 } 7278 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7279 return CP_ACCESS_TRAP_EL3; 7280 } 7281 return CP_ACCESS_OK; 7282 } 7283 7284 static CPAccessResult access_lor_other(CPUARMState *env, 7285 const ARMCPRegInfo *ri, bool isread) 7286 { 7287 if (arm_is_secure_below_el3(env)) { 7288 /* Access denied in secure mode. */ 7289 return CP_ACCESS_TRAP; 7290 } 7291 return access_lor_ns(env, ri, isread); 7292 } 7293 7294 /* 7295 * A trivial implementation of ARMv8.1-LOR leaves all of these 7296 * registers fixed at 0, which indicates that there are zero 7297 * supported Limited Ordering regions. 7298 */ 7299 static const ARMCPRegInfo lor_reginfo[] = { 7300 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7301 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7302 .access = PL1_RW, .accessfn = access_lor_other, 7303 .fgt = FGT_LORSA_EL1, 7304 .type = ARM_CP_CONST, .resetvalue = 0 }, 7305 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7306 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7307 .access = PL1_RW, .accessfn = access_lor_other, 7308 .fgt = FGT_LOREA_EL1, 7309 .type = ARM_CP_CONST, .resetvalue = 0 }, 7310 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7311 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7312 .access = PL1_RW, .accessfn = access_lor_other, 7313 .fgt = FGT_LORN_EL1, 7314 .type = ARM_CP_CONST, .resetvalue = 0 }, 7315 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7316 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7317 .access = PL1_RW, .accessfn = access_lor_other, 7318 .fgt = FGT_LORC_EL1, 7319 .type = ARM_CP_CONST, .resetvalue = 0 }, 7320 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7321 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7322 .access = PL1_R, .accessfn = access_lor_ns, 7323 .fgt = FGT_LORID_EL1, 7324 .type = ARM_CP_CONST, .resetvalue = 0 }, 7325 }; 7326 7327 #ifdef TARGET_AARCH64 7328 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7329 bool isread) 7330 { 7331 int el = arm_current_el(env); 7332 7333 if (el < 2 && 7334 arm_is_el2_enabled(env) && 7335 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7336 return CP_ACCESS_TRAP_EL2; 7337 } 7338 if (el < 3 && 7339 arm_feature(env, ARM_FEATURE_EL3) && 7340 !(env->cp15.scr_el3 & SCR_APK)) { 7341 return CP_ACCESS_TRAP_EL3; 7342 } 7343 return CP_ACCESS_OK; 7344 } 7345 7346 static const ARMCPRegInfo pauth_reginfo[] = { 7347 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7348 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7349 .access = PL1_RW, .accessfn = access_pauth, 7350 .fgt = FGT_APDAKEY, 7351 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7352 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7353 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7354 .access = PL1_RW, .accessfn = access_pauth, 7355 .fgt = FGT_APDAKEY, 7356 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7357 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7358 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7359 .access = PL1_RW, .accessfn = access_pauth, 7360 .fgt = FGT_APDBKEY, 7361 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7362 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7363 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7364 .access = PL1_RW, .accessfn = access_pauth, 7365 .fgt = FGT_APDBKEY, 7366 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7367 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7368 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7369 .access = PL1_RW, .accessfn = access_pauth, 7370 .fgt = FGT_APGAKEY, 7371 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7372 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7373 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7374 .access = PL1_RW, .accessfn = access_pauth, 7375 .fgt = FGT_APGAKEY, 7376 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7377 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7378 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7379 .access = PL1_RW, .accessfn = access_pauth, 7380 .fgt = FGT_APIAKEY, 7381 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7382 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7383 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7384 .access = PL1_RW, .accessfn = access_pauth, 7385 .fgt = FGT_APIAKEY, 7386 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7387 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7388 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7389 .access = PL1_RW, .accessfn = access_pauth, 7390 .fgt = FGT_APIBKEY, 7391 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7392 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7393 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7394 .access = PL1_RW, .accessfn = access_pauth, 7395 .fgt = FGT_APIBKEY, 7396 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7397 }; 7398 7399 static const ARMCPRegInfo tlbirange_reginfo[] = { 7400 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7401 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7402 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7403 .fgt = FGT_TLBIRVAE1IS, 7404 .writefn = tlbi_aa64_rvae1is_write }, 7405 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7406 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7407 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7408 .fgt = FGT_TLBIRVAAE1IS, 7409 .writefn = tlbi_aa64_rvae1is_write }, 7410 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7411 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7412 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7413 .fgt = FGT_TLBIRVALE1IS, 7414 .writefn = tlbi_aa64_rvae1is_write }, 7415 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7416 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7417 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7418 .fgt = FGT_TLBIRVAALE1IS, 7419 .writefn = tlbi_aa64_rvae1is_write }, 7420 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7421 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7422 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7423 .fgt = FGT_TLBIRVAE1OS, 7424 .writefn = tlbi_aa64_rvae1is_write }, 7425 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7426 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7427 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7428 .fgt = FGT_TLBIRVAAE1OS, 7429 .writefn = tlbi_aa64_rvae1is_write }, 7430 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7431 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7432 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7433 .fgt = FGT_TLBIRVALE1OS, 7434 .writefn = tlbi_aa64_rvae1is_write }, 7435 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7437 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7438 .fgt = FGT_TLBIRVAALE1OS, 7439 .writefn = tlbi_aa64_rvae1is_write }, 7440 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7441 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7442 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7443 .fgt = FGT_TLBIRVAE1, 7444 .writefn = tlbi_aa64_rvae1_write }, 7445 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7446 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7447 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7448 .fgt = FGT_TLBIRVAAE1, 7449 .writefn = tlbi_aa64_rvae1_write }, 7450 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7451 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7452 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7453 .fgt = FGT_TLBIRVALE1, 7454 .writefn = tlbi_aa64_rvae1_write }, 7455 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7457 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7458 .fgt = FGT_TLBIRVAALE1, 7459 .writefn = tlbi_aa64_rvae1_write }, 7460 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7461 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7462 .access = PL2_W, .type = ARM_CP_NO_RAW, 7463 .writefn = tlbi_aa64_ripas2e1is_write }, 7464 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7465 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7466 .access = PL2_W, .type = ARM_CP_NO_RAW, 7467 .writefn = tlbi_aa64_ripas2e1is_write }, 7468 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7469 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7470 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7471 .writefn = tlbi_aa64_rvae2is_write }, 7472 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7473 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7474 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7475 .writefn = tlbi_aa64_rvae2is_write }, 7476 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7477 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7478 .access = PL2_W, .type = ARM_CP_NO_RAW, 7479 .writefn = tlbi_aa64_ripas2e1_write }, 7480 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7481 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7482 .access = PL2_W, .type = ARM_CP_NO_RAW, 7483 .writefn = tlbi_aa64_ripas2e1_write }, 7484 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7485 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7486 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7487 .writefn = tlbi_aa64_rvae2is_write }, 7488 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7489 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7490 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7491 .writefn = tlbi_aa64_rvae2is_write }, 7492 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7493 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7494 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7495 .writefn = tlbi_aa64_rvae2_write }, 7496 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7497 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7498 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7499 .writefn = tlbi_aa64_rvae2_write }, 7500 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7501 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7502 .access = PL3_W, .type = ARM_CP_NO_RAW, 7503 .writefn = tlbi_aa64_rvae3is_write }, 7504 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7505 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7506 .access = PL3_W, .type = ARM_CP_NO_RAW, 7507 .writefn = tlbi_aa64_rvae3is_write }, 7508 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7509 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7510 .access = PL3_W, .type = ARM_CP_NO_RAW, 7511 .writefn = tlbi_aa64_rvae3is_write }, 7512 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7513 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7514 .access = PL3_W, .type = ARM_CP_NO_RAW, 7515 .writefn = tlbi_aa64_rvae3is_write }, 7516 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7517 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7518 .access = PL3_W, .type = ARM_CP_NO_RAW, 7519 .writefn = tlbi_aa64_rvae3_write }, 7520 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7521 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7522 .access = PL3_W, .type = ARM_CP_NO_RAW, 7523 .writefn = tlbi_aa64_rvae3_write }, 7524 }; 7525 7526 static const ARMCPRegInfo tlbios_reginfo[] = { 7527 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7528 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7529 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7530 .fgt = FGT_TLBIVMALLE1OS, 7531 .writefn = tlbi_aa64_vmalle1is_write }, 7532 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7533 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7534 .fgt = FGT_TLBIVAE1OS, 7535 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7536 .writefn = tlbi_aa64_vae1is_write }, 7537 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7538 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7539 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7540 .fgt = FGT_TLBIASIDE1OS, 7541 .writefn = tlbi_aa64_vmalle1is_write }, 7542 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7543 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7544 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7545 .fgt = FGT_TLBIVAAE1OS, 7546 .writefn = tlbi_aa64_vae1is_write }, 7547 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7548 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7549 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7550 .fgt = FGT_TLBIVALE1OS, 7551 .writefn = tlbi_aa64_vae1is_write }, 7552 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7553 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7554 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7555 .fgt = FGT_TLBIVAALE1OS, 7556 .writefn = tlbi_aa64_vae1is_write }, 7557 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7558 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7559 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7560 .writefn = tlbi_aa64_alle2is_write }, 7561 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7562 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7563 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7564 .writefn = tlbi_aa64_vae2is_write }, 7565 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7566 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7567 .access = PL2_W, .type = ARM_CP_NO_RAW, 7568 .writefn = tlbi_aa64_alle1is_write }, 7569 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7570 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7571 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7572 .writefn = tlbi_aa64_vae2is_write }, 7573 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7574 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7575 .access = PL2_W, .type = ARM_CP_NO_RAW, 7576 .writefn = tlbi_aa64_alle1is_write }, 7577 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7578 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7579 .access = PL2_W, .type = ARM_CP_NOP }, 7580 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7581 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7582 .access = PL2_W, .type = ARM_CP_NOP }, 7583 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7584 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7585 .access = PL2_W, .type = ARM_CP_NOP }, 7586 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7587 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7588 .access = PL2_W, .type = ARM_CP_NOP }, 7589 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7590 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7591 .access = PL3_W, .type = ARM_CP_NO_RAW, 7592 .writefn = tlbi_aa64_alle3is_write }, 7593 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7594 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7595 .access = PL3_W, .type = ARM_CP_NO_RAW, 7596 .writefn = tlbi_aa64_vae3is_write }, 7597 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7598 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7599 .access = PL3_W, .type = ARM_CP_NO_RAW, 7600 .writefn = tlbi_aa64_vae3is_write }, 7601 }; 7602 7603 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7604 { 7605 Error *err = NULL; 7606 uint64_t ret; 7607 7608 /* Success sets NZCV = 0000. */ 7609 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7610 7611 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7612 /* 7613 * ??? Failed, for unknown reasons in the crypto subsystem. 7614 * The best we can do is log the reason and return the 7615 * timed-out indication to the guest. There is no reason 7616 * we know to expect this failure to be transitory, so the 7617 * guest may well hang retrying the operation. 7618 */ 7619 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7620 ri->name, error_get_pretty(err)); 7621 error_free(err); 7622 7623 env->ZF = 0; /* NZCF = 0100 */ 7624 return 0; 7625 } 7626 return ret; 7627 } 7628 7629 /* We do not support re-seeding, so the two registers operate the same. */ 7630 static const ARMCPRegInfo rndr_reginfo[] = { 7631 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7632 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7633 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7634 .access = PL0_R, .readfn = rndr_readfn }, 7635 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7636 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7637 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7638 .access = PL0_R, .readfn = rndr_readfn }, 7639 }; 7640 7641 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7642 uint64_t value) 7643 { 7644 ARMCPU *cpu = env_archcpu(env); 7645 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7646 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7647 uint64_t vaddr_in = (uint64_t) value; 7648 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7649 void *haddr; 7650 int mem_idx = cpu_mmu_index(env, false); 7651 7652 /* This won't be crossing page boundaries */ 7653 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7654 if (haddr) { 7655 #ifndef CONFIG_USER_ONLY 7656 7657 ram_addr_t offset; 7658 MemoryRegion *mr; 7659 7660 /* RCU lock is already being held */ 7661 mr = memory_region_from_host(haddr, &offset); 7662 7663 if (mr) { 7664 memory_region_writeback(mr, offset, dline_size); 7665 } 7666 #endif /*CONFIG_USER_ONLY*/ 7667 } 7668 } 7669 7670 static const ARMCPRegInfo dcpop_reg[] = { 7671 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7672 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7673 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7674 .fgt = FGT_DCCVAP, 7675 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7676 }; 7677 7678 static const ARMCPRegInfo dcpodp_reg[] = { 7679 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7680 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7681 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7682 .fgt = FGT_DCCVADP, 7683 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7684 }; 7685 7686 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7687 bool isread) 7688 { 7689 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7690 return CP_ACCESS_TRAP_EL2; 7691 } 7692 7693 return CP_ACCESS_OK; 7694 } 7695 7696 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7697 bool isread) 7698 { 7699 int el = arm_current_el(env); 7700 7701 if (el < 2 && arm_is_el2_enabled(env)) { 7702 uint64_t hcr = arm_hcr_el2_eff(env); 7703 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7704 return CP_ACCESS_TRAP_EL2; 7705 } 7706 } 7707 if (el < 3 && 7708 arm_feature(env, ARM_FEATURE_EL3) && 7709 !(env->cp15.scr_el3 & SCR_ATA)) { 7710 return CP_ACCESS_TRAP_EL3; 7711 } 7712 return CP_ACCESS_OK; 7713 } 7714 7715 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7716 { 7717 return env->pstate & PSTATE_TCO; 7718 } 7719 7720 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7721 { 7722 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7723 } 7724 7725 static const ARMCPRegInfo mte_reginfo[] = { 7726 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7727 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7728 .access = PL1_RW, .accessfn = access_mte, 7729 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7730 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7732 .access = PL1_RW, .accessfn = access_mte, 7733 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7734 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7735 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7736 .access = PL2_RW, .accessfn = access_mte, 7737 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7738 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7739 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7740 .access = PL3_RW, 7741 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7742 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7743 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7744 .access = PL1_RW, .accessfn = access_mte, 7745 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7746 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7747 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7748 .access = PL1_RW, .accessfn = access_mte, 7749 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7750 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7751 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7752 .type = ARM_CP_NO_RAW, 7753 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7754 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7755 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7756 .type = ARM_CP_NOP, .access = PL1_W, 7757 .fgt = FGT_DCIVAC, 7758 .accessfn = aa64_cacheop_poc_access }, 7759 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7760 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7761 .fgt = FGT_DCISW, 7762 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7763 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7764 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7765 .type = ARM_CP_NOP, .access = PL1_W, 7766 .fgt = FGT_DCIVAC, 7767 .accessfn = aa64_cacheop_poc_access }, 7768 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7769 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7770 .fgt = FGT_DCISW, 7771 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7772 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7773 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7774 .fgt = FGT_DCCSW, 7775 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7776 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7777 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7778 .fgt = FGT_DCCSW, 7779 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7780 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7781 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7782 .fgt = FGT_DCCISW, 7783 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7784 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7785 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7786 .fgt = FGT_DCCISW, 7787 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7788 }; 7789 7790 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7791 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7792 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7793 .type = ARM_CP_CONST, .access = PL0_RW, }, 7794 }; 7795 7796 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7797 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7798 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7799 .type = ARM_CP_NOP, .access = PL0_W, 7800 .fgt = FGT_DCCVAC, 7801 .accessfn = aa64_cacheop_poc_access }, 7802 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7803 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7804 .type = ARM_CP_NOP, .access = PL0_W, 7805 .fgt = FGT_DCCVAC, 7806 .accessfn = aa64_cacheop_poc_access }, 7807 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7808 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7809 .type = ARM_CP_NOP, .access = PL0_W, 7810 .fgt = FGT_DCCVAP, 7811 .accessfn = aa64_cacheop_poc_access }, 7812 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7813 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7814 .type = ARM_CP_NOP, .access = PL0_W, 7815 .fgt = FGT_DCCVAP, 7816 .accessfn = aa64_cacheop_poc_access }, 7817 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7818 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7819 .type = ARM_CP_NOP, .access = PL0_W, 7820 .fgt = FGT_DCCVADP, 7821 .accessfn = aa64_cacheop_poc_access }, 7822 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7823 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7824 .type = ARM_CP_NOP, .access = PL0_W, 7825 .fgt = FGT_DCCVADP, 7826 .accessfn = aa64_cacheop_poc_access }, 7827 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7828 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7829 .type = ARM_CP_NOP, .access = PL0_W, 7830 .fgt = FGT_DCCIVAC, 7831 .accessfn = aa64_cacheop_poc_access }, 7832 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7833 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7834 .type = ARM_CP_NOP, .access = PL0_W, 7835 .fgt = FGT_DCCIVAC, 7836 .accessfn = aa64_cacheop_poc_access }, 7837 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7838 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7839 .access = PL0_W, .type = ARM_CP_DC_GVA, 7840 #ifndef CONFIG_USER_ONLY 7841 /* Avoid overhead of an access check that always passes in user-mode */ 7842 .accessfn = aa64_zva_access, 7843 .fgt = FGT_DCZVA, 7844 #endif 7845 }, 7846 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7847 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7848 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7849 #ifndef CONFIG_USER_ONLY 7850 /* Avoid overhead of an access check that always passes in user-mode */ 7851 .accessfn = aa64_zva_access, 7852 .fgt = FGT_DCZVA, 7853 #endif 7854 }, 7855 }; 7856 7857 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7858 bool isread) 7859 { 7860 uint64_t hcr = arm_hcr_el2_eff(env); 7861 int el = arm_current_el(env); 7862 7863 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7864 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7865 if (hcr & HCR_TGE) { 7866 return CP_ACCESS_TRAP_EL2; 7867 } 7868 return CP_ACCESS_TRAP; 7869 } 7870 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7871 return CP_ACCESS_TRAP_EL2; 7872 } 7873 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7874 return CP_ACCESS_TRAP_EL2; 7875 } 7876 if (el < 3 7877 && arm_feature(env, ARM_FEATURE_EL3) 7878 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7879 return CP_ACCESS_TRAP_EL3; 7880 } 7881 return CP_ACCESS_OK; 7882 } 7883 7884 static const ARMCPRegInfo scxtnum_reginfo[] = { 7885 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7886 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7887 .access = PL0_RW, .accessfn = access_scxtnum, 7888 .fgt = FGT_SCXTNUM_EL0, 7889 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7890 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7891 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7892 .access = PL1_RW, .accessfn = access_scxtnum, 7893 .fgt = FGT_SCXTNUM_EL1, 7894 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7895 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7896 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7897 .access = PL2_RW, .accessfn = access_scxtnum, 7898 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7899 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7900 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7901 .access = PL3_RW, 7902 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7903 }; 7904 7905 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7906 bool isread) 7907 { 7908 if (arm_current_el(env) == 2 && 7909 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7910 return CP_ACCESS_TRAP_EL3; 7911 } 7912 return CP_ACCESS_OK; 7913 } 7914 7915 static const ARMCPRegInfo fgt_reginfo[] = { 7916 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7917 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7918 .access = PL2_RW, .accessfn = access_fgt, 7919 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7920 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7921 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7922 .access = PL2_RW, .accessfn = access_fgt, 7923 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7924 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7925 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7926 .access = PL2_RW, .accessfn = access_fgt, 7927 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7928 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7929 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7930 .access = PL2_RW, .accessfn = access_fgt, 7931 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7932 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7933 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7934 .access = PL2_RW, .accessfn = access_fgt, 7935 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7936 }; 7937 #endif /* TARGET_AARCH64 */ 7938 7939 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7940 bool isread) 7941 { 7942 int el = arm_current_el(env); 7943 7944 if (el == 0) { 7945 uint64_t sctlr = arm_sctlr(env, el); 7946 if (!(sctlr & SCTLR_EnRCTX)) { 7947 return CP_ACCESS_TRAP; 7948 } 7949 } else if (el == 1) { 7950 uint64_t hcr = arm_hcr_el2_eff(env); 7951 if (hcr & HCR_NV) { 7952 return CP_ACCESS_TRAP_EL2; 7953 } 7954 } 7955 return CP_ACCESS_OK; 7956 } 7957 7958 static const ARMCPRegInfo predinv_reginfo[] = { 7959 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7960 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7961 .fgt = FGT_CFPRCTX, 7962 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7963 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7964 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7965 .fgt = FGT_DVPRCTX, 7966 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7967 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7968 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7969 .fgt = FGT_CPPRCTX, 7970 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7971 /* 7972 * Note the AArch32 opcodes have a different OPC1. 7973 */ 7974 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7975 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7976 .fgt = FGT_CFPRCTX, 7977 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7978 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7979 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7980 .fgt = FGT_DVPRCTX, 7981 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7982 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7983 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7984 .fgt = FGT_CPPRCTX, 7985 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7986 }; 7987 7988 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7989 { 7990 /* Read the high 32 bits of the current CCSIDR */ 7991 return extract64(ccsidr_read(env, ri), 32, 32); 7992 } 7993 7994 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7995 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7996 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7997 .access = PL1_R, 7998 .accessfn = access_tid4, 7999 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8000 }; 8001 8002 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8003 bool isread) 8004 { 8005 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8006 return CP_ACCESS_TRAP_EL2; 8007 } 8008 8009 return CP_ACCESS_OK; 8010 } 8011 8012 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8013 bool isread) 8014 { 8015 if (arm_feature(env, ARM_FEATURE_V8)) { 8016 return access_aa64_tid3(env, ri, isread); 8017 } 8018 8019 return CP_ACCESS_OK; 8020 } 8021 8022 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8023 bool isread) 8024 { 8025 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8026 return CP_ACCESS_TRAP_EL2; 8027 } 8028 8029 return CP_ACCESS_OK; 8030 } 8031 8032 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8033 const ARMCPRegInfo *ri, bool isread) 8034 { 8035 /* 8036 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8037 * in v7A, not in v8A. 8038 */ 8039 if (!arm_feature(env, ARM_FEATURE_V8) && 8040 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8041 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8042 return CP_ACCESS_TRAP_EL2; 8043 } 8044 return CP_ACCESS_OK; 8045 } 8046 8047 static const ARMCPRegInfo jazelle_regs[] = { 8048 { .name = "JIDR", 8049 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8050 .access = PL1_R, .accessfn = access_jazelle, 8051 .type = ARM_CP_CONST, .resetvalue = 0 }, 8052 { .name = "JOSCR", 8053 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8054 .accessfn = access_joscr_jmcr, 8055 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8056 { .name = "JMCR", 8057 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8058 .accessfn = access_joscr_jmcr, 8059 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8060 }; 8061 8062 static const ARMCPRegInfo contextidr_el2 = { 8063 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8064 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8065 .access = PL2_RW, 8066 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8067 }; 8068 8069 static const ARMCPRegInfo vhe_reginfo[] = { 8070 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8071 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8072 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8073 .raw_writefn = raw_write, 8074 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8075 #ifndef CONFIG_USER_ONLY 8076 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8077 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8078 .fieldoffset = 8079 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8080 .type = ARM_CP_IO, .access = PL2_RW, 8081 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8082 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8083 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8084 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8085 .resetfn = gt_hv_timer_reset, 8086 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8087 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8088 .type = ARM_CP_IO, 8089 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8090 .access = PL2_RW, 8091 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8092 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8093 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8094 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8095 .type = ARM_CP_IO | ARM_CP_ALIAS, 8096 .access = PL2_RW, .accessfn = e2h_access, 8097 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8098 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8099 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8100 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8101 .type = ARM_CP_IO | ARM_CP_ALIAS, 8102 .access = PL2_RW, .accessfn = e2h_access, 8103 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8104 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8105 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8106 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8107 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8108 .access = PL2_RW, .accessfn = e2h_access, 8109 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8110 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8111 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8112 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8113 .access = PL2_RW, .accessfn = e2h_access, 8114 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8115 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8116 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8117 .type = ARM_CP_IO | ARM_CP_ALIAS, 8118 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8119 .access = PL2_RW, .accessfn = e2h_access, 8120 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8121 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8122 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8123 .type = ARM_CP_IO | ARM_CP_ALIAS, 8124 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8125 .access = PL2_RW, .accessfn = e2h_access, 8126 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8127 #endif 8128 }; 8129 8130 #ifndef CONFIG_USER_ONLY 8131 static const ARMCPRegInfo ats1e1_reginfo[] = { 8132 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8133 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8134 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8135 .fgt = FGT_ATS1E1RP, 8136 .accessfn = at_e012_access, .writefn = ats_write64 }, 8137 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8138 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8139 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8140 .fgt = FGT_ATS1E1WP, 8141 .accessfn = at_e012_access, .writefn = ats_write64 }, 8142 }; 8143 8144 static const ARMCPRegInfo ats1cp_reginfo[] = { 8145 { .name = "ATS1CPRP", 8146 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8147 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8148 .writefn = ats_write }, 8149 { .name = "ATS1CPWP", 8150 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8151 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8152 .writefn = ats_write }, 8153 }; 8154 #endif 8155 8156 /* 8157 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8158 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8159 * is non-zero, which is never for ARMv7, optionally in ARMv8 8160 * and mandatorily for ARMv8.2 and up. 8161 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8162 * implementation is RAZ/WI we can ignore this detail, as we 8163 * do for ACTLR. 8164 */ 8165 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8166 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8167 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8168 .access = PL1_RW, .accessfn = access_tacr, 8169 .type = ARM_CP_CONST, .resetvalue = 0 }, 8170 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8171 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8172 .access = PL2_RW, .type = ARM_CP_CONST, 8173 .resetvalue = 0 }, 8174 }; 8175 8176 void register_cp_regs_for_features(ARMCPU *cpu) 8177 { 8178 /* Register all the coprocessor registers based on feature bits */ 8179 CPUARMState *env = &cpu->env; 8180 if (arm_feature(env, ARM_FEATURE_M)) { 8181 /* M profile has no coprocessor registers */ 8182 return; 8183 } 8184 8185 define_arm_cp_regs(cpu, cp_reginfo); 8186 if (!arm_feature(env, ARM_FEATURE_V8)) { 8187 /* 8188 * Must go early as it is full of wildcards that may be 8189 * overridden by later definitions. 8190 */ 8191 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8192 } 8193 8194 if (arm_feature(env, ARM_FEATURE_V6)) { 8195 /* The ID registers all have impdef reset values */ 8196 ARMCPRegInfo v6_idregs[] = { 8197 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8198 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8199 .access = PL1_R, .type = ARM_CP_CONST, 8200 .accessfn = access_aa32_tid3, 8201 .resetvalue = cpu->isar.id_pfr0 }, 8202 /* 8203 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8204 * the value of the GIC field until after we define these regs. 8205 */ 8206 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8207 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8208 .access = PL1_R, .type = ARM_CP_NO_RAW, 8209 .accessfn = access_aa32_tid3, 8210 #ifdef CONFIG_USER_ONLY 8211 .type = ARM_CP_CONST, 8212 .resetvalue = cpu->isar.id_pfr1, 8213 #else 8214 .type = ARM_CP_NO_RAW, 8215 .accessfn = access_aa32_tid3, 8216 .readfn = id_pfr1_read, 8217 .writefn = arm_cp_write_ignore 8218 #endif 8219 }, 8220 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8221 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8222 .access = PL1_R, .type = ARM_CP_CONST, 8223 .accessfn = access_aa32_tid3, 8224 .resetvalue = cpu->isar.id_dfr0 }, 8225 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8226 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8227 .access = PL1_R, .type = ARM_CP_CONST, 8228 .accessfn = access_aa32_tid3, 8229 .resetvalue = cpu->id_afr0 }, 8230 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8231 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8232 .access = PL1_R, .type = ARM_CP_CONST, 8233 .accessfn = access_aa32_tid3, 8234 .resetvalue = cpu->isar.id_mmfr0 }, 8235 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8236 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8237 .access = PL1_R, .type = ARM_CP_CONST, 8238 .accessfn = access_aa32_tid3, 8239 .resetvalue = cpu->isar.id_mmfr1 }, 8240 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8241 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8242 .access = PL1_R, .type = ARM_CP_CONST, 8243 .accessfn = access_aa32_tid3, 8244 .resetvalue = cpu->isar.id_mmfr2 }, 8245 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8246 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8247 .access = PL1_R, .type = ARM_CP_CONST, 8248 .accessfn = access_aa32_tid3, 8249 .resetvalue = cpu->isar.id_mmfr3 }, 8250 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8251 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8252 .access = PL1_R, .type = ARM_CP_CONST, 8253 .accessfn = access_aa32_tid3, 8254 .resetvalue = cpu->isar.id_isar0 }, 8255 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8256 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8257 .access = PL1_R, .type = ARM_CP_CONST, 8258 .accessfn = access_aa32_tid3, 8259 .resetvalue = cpu->isar.id_isar1 }, 8260 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8261 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8262 .access = PL1_R, .type = ARM_CP_CONST, 8263 .accessfn = access_aa32_tid3, 8264 .resetvalue = cpu->isar.id_isar2 }, 8265 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8266 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8267 .access = PL1_R, .type = ARM_CP_CONST, 8268 .accessfn = access_aa32_tid3, 8269 .resetvalue = cpu->isar.id_isar3 }, 8270 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8271 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8272 .access = PL1_R, .type = ARM_CP_CONST, 8273 .accessfn = access_aa32_tid3, 8274 .resetvalue = cpu->isar.id_isar4 }, 8275 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8277 .access = PL1_R, .type = ARM_CP_CONST, 8278 .accessfn = access_aa32_tid3, 8279 .resetvalue = cpu->isar.id_isar5 }, 8280 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8282 .access = PL1_R, .type = ARM_CP_CONST, 8283 .accessfn = access_aa32_tid3, 8284 .resetvalue = cpu->isar.id_mmfr4 }, 8285 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8286 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8287 .access = PL1_R, .type = ARM_CP_CONST, 8288 .accessfn = access_aa32_tid3, 8289 .resetvalue = cpu->isar.id_isar6 }, 8290 }; 8291 define_arm_cp_regs(cpu, v6_idregs); 8292 define_arm_cp_regs(cpu, v6_cp_reginfo); 8293 } else { 8294 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8295 } 8296 if (arm_feature(env, ARM_FEATURE_V6K)) { 8297 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8298 } 8299 if (arm_feature(env, ARM_FEATURE_V7MP) && 8300 !arm_feature(env, ARM_FEATURE_PMSA)) { 8301 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8302 } 8303 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8304 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8305 } 8306 if (arm_feature(env, ARM_FEATURE_V7)) { 8307 ARMCPRegInfo clidr = { 8308 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8309 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8310 .access = PL1_R, .type = ARM_CP_CONST, 8311 .accessfn = access_tid4, 8312 .fgt = FGT_CLIDR_EL1, 8313 .resetvalue = cpu->clidr 8314 }; 8315 define_one_arm_cp_reg(cpu, &clidr); 8316 define_arm_cp_regs(cpu, v7_cp_reginfo); 8317 define_debug_regs(cpu); 8318 define_pmu_regs(cpu); 8319 } else { 8320 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8321 } 8322 if (arm_feature(env, ARM_FEATURE_V8)) { 8323 /* 8324 * v8 ID registers, which all have impdef reset values. 8325 * Note that within the ID register ranges the unused slots 8326 * must all RAZ, not UNDEF; future architecture versions may 8327 * define new registers here. 8328 * ID registers which are AArch64 views of the AArch32 ID registers 8329 * which already existed in v6 and v7 are handled elsewhere, 8330 * in v6_idregs[]. 8331 */ 8332 int i; 8333 ARMCPRegInfo v8_idregs[] = { 8334 /* 8335 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8336 * emulation because we don't know the right value for the 8337 * GIC field until after we define these regs. 8338 */ 8339 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8340 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8341 .access = PL1_R, 8342 #ifdef CONFIG_USER_ONLY 8343 .type = ARM_CP_CONST, 8344 .resetvalue = cpu->isar.id_aa64pfr0 8345 #else 8346 .type = ARM_CP_NO_RAW, 8347 .accessfn = access_aa64_tid3, 8348 .readfn = id_aa64pfr0_read, 8349 .writefn = arm_cp_write_ignore 8350 #endif 8351 }, 8352 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8354 .access = PL1_R, .type = ARM_CP_CONST, 8355 .accessfn = access_aa64_tid3, 8356 .resetvalue = cpu->isar.id_aa64pfr1}, 8357 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8358 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8359 .access = PL1_R, .type = ARM_CP_CONST, 8360 .accessfn = access_aa64_tid3, 8361 .resetvalue = 0 }, 8362 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8363 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8364 .access = PL1_R, .type = ARM_CP_CONST, 8365 .accessfn = access_aa64_tid3, 8366 .resetvalue = 0 }, 8367 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8369 .access = PL1_R, .type = ARM_CP_CONST, 8370 .accessfn = access_aa64_tid3, 8371 .resetvalue = cpu->isar.id_aa64zfr0 }, 8372 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8374 .access = PL1_R, .type = ARM_CP_CONST, 8375 .accessfn = access_aa64_tid3, 8376 .resetvalue = cpu->isar.id_aa64smfr0 }, 8377 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8379 .access = PL1_R, .type = ARM_CP_CONST, 8380 .accessfn = access_aa64_tid3, 8381 .resetvalue = 0 }, 8382 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8383 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8384 .access = PL1_R, .type = ARM_CP_CONST, 8385 .accessfn = access_aa64_tid3, 8386 .resetvalue = 0 }, 8387 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8389 .access = PL1_R, .type = ARM_CP_CONST, 8390 .accessfn = access_aa64_tid3, 8391 .resetvalue = cpu->isar.id_aa64dfr0 }, 8392 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8393 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8394 .access = PL1_R, .type = ARM_CP_CONST, 8395 .accessfn = access_aa64_tid3, 8396 .resetvalue = cpu->isar.id_aa64dfr1 }, 8397 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8399 .access = PL1_R, .type = ARM_CP_CONST, 8400 .accessfn = access_aa64_tid3, 8401 .resetvalue = 0 }, 8402 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8404 .access = PL1_R, .type = ARM_CP_CONST, 8405 .accessfn = access_aa64_tid3, 8406 .resetvalue = 0 }, 8407 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8409 .access = PL1_R, .type = ARM_CP_CONST, 8410 .accessfn = access_aa64_tid3, 8411 .resetvalue = cpu->id_aa64afr0 }, 8412 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8414 .access = PL1_R, .type = ARM_CP_CONST, 8415 .accessfn = access_aa64_tid3, 8416 .resetvalue = cpu->id_aa64afr1 }, 8417 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8418 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8419 .access = PL1_R, .type = ARM_CP_CONST, 8420 .accessfn = access_aa64_tid3, 8421 .resetvalue = 0 }, 8422 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8424 .access = PL1_R, .type = ARM_CP_CONST, 8425 .accessfn = access_aa64_tid3, 8426 .resetvalue = 0 }, 8427 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8428 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8429 .access = PL1_R, .type = ARM_CP_CONST, 8430 .accessfn = access_aa64_tid3, 8431 .resetvalue = cpu->isar.id_aa64isar0 }, 8432 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8433 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8434 .access = PL1_R, .type = ARM_CP_CONST, 8435 .accessfn = access_aa64_tid3, 8436 .resetvalue = cpu->isar.id_aa64isar1 }, 8437 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8438 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8439 .access = PL1_R, .type = ARM_CP_CONST, 8440 .accessfn = access_aa64_tid3, 8441 .resetvalue = cpu->isar.id_aa64isar2 }, 8442 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8444 .access = PL1_R, .type = ARM_CP_CONST, 8445 .accessfn = access_aa64_tid3, 8446 .resetvalue = 0 }, 8447 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8449 .access = PL1_R, .type = ARM_CP_CONST, 8450 .accessfn = access_aa64_tid3, 8451 .resetvalue = 0 }, 8452 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8453 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8454 .access = PL1_R, .type = ARM_CP_CONST, 8455 .accessfn = access_aa64_tid3, 8456 .resetvalue = 0 }, 8457 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8458 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8459 .access = PL1_R, .type = ARM_CP_CONST, 8460 .accessfn = access_aa64_tid3, 8461 .resetvalue = 0 }, 8462 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8463 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8464 .access = PL1_R, .type = ARM_CP_CONST, 8465 .accessfn = access_aa64_tid3, 8466 .resetvalue = 0 }, 8467 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8468 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8469 .access = PL1_R, .type = ARM_CP_CONST, 8470 .accessfn = access_aa64_tid3, 8471 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8472 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8473 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8474 .access = PL1_R, .type = ARM_CP_CONST, 8475 .accessfn = access_aa64_tid3, 8476 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8477 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8478 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8479 .access = PL1_R, .type = ARM_CP_CONST, 8480 .accessfn = access_aa64_tid3, 8481 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8482 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8483 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8484 .access = PL1_R, .type = ARM_CP_CONST, 8485 .accessfn = access_aa64_tid3, 8486 .resetvalue = 0 }, 8487 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8489 .access = PL1_R, .type = ARM_CP_CONST, 8490 .accessfn = access_aa64_tid3, 8491 .resetvalue = 0 }, 8492 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8493 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8494 .access = PL1_R, .type = ARM_CP_CONST, 8495 .accessfn = access_aa64_tid3, 8496 .resetvalue = 0 }, 8497 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8498 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8499 .access = PL1_R, .type = ARM_CP_CONST, 8500 .accessfn = access_aa64_tid3, 8501 .resetvalue = 0 }, 8502 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8504 .access = PL1_R, .type = ARM_CP_CONST, 8505 .accessfn = access_aa64_tid3, 8506 .resetvalue = 0 }, 8507 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8509 .access = PL1_R, .type = ARM_CP_CONST, 8510 .accessfn = access_aa64_tid3, 8511 .resetvalue = cpu->isar.mvfr0 }, 8512 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8514 .access = PL1_R, .type = ARM_CP_CONST, 8515 .accessfn = access_aa64_tid3, 8516 .resetvalue = cpu->isar.mvfr1 }, 8517 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8519 .access = PL1_R, .type = ARM_CP_CONST, 8520 .accessfn = access_aa64_tid3, 8521 .resetvalue = cpu->isar.mvfr2 }, 8522 /* 8523 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8524 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8525 * as RAZ, since it is in the "reserved for future ID 8526 * registers, RAZ" part of the AArch32 encoding space. 8527 */ 8528 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8529 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8530 .access = PL1_R, .type = ARM_CP_CONST, 8531 .accessfn = access_aa64_tid3, 8532 .resetvalue = 0 }, 8533 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8534 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8535 .access = PL1_R, .type = ARM_CP_CONST, 8536 .accessfn = access_aa64_tid3, 8537 .resetvalue = 0 }, 8538 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8539 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8540 .access = PL1_R, .type = ARM_CP_CONST, 8541 .accessfn = access_aa64_tid3, 8542 .resetvalue = 0 }, 8543 /* 8544 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8545 * they're also RAZ for AArch64, and in v8 are gradually 8546 * being filled with AArch64-view-of-AArch32-ID-register 8547 * for new ID registers. 8548 */ 8549 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8551 .access = PL1_R, .type = ARM_CP_CONST, 8552 .accessfn = access_aa64_tid3, 8553 .resetvalue = 0 }, 8554 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8556 .access = PL1_R, .type = ARM_CP_CONST, 8557 .accessfn = access_aa64_tid3, 8558 .resetvalue = cpu->isar.id_pfr2 }, 8559 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8561 .access = PL1_R, .type = ARM_CP_CONST, 8562 .accessfn = access_aa64_tid3, 8563 .resetvalue = cpu->isar.id_dfr1 }, 8564 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8566 .access = PL1_R, .type = ARM_CP_CONST, 8567 .accessfn = access_aa64_tid3, 8568 .resetvalue = cpu->isar.id_mmfr5 }, 8569 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8571 .access = PL1_R, .type = ARM_CP_CONST, 8572 .accessfn = access_aa64_tid3, 8573 .resetvalue = 0 }, 8574 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8575 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8576 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8577 .fgt = FGT_PMCEIDN_EL0, 8578 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8579 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8580 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8581 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8582 .fgt = FGT_PMCEIDN_EL0, 8583 .resetvalue = cpu->pmceid0 }, 8584 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8585 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8586 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8587 .fgt = FGT_PMCEIDN_EL0, 8588 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8589 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8590 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8591 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8592 .fgt = FGT_PMCEIDN_EL0, 8593 .resetvalue = cpu->pmceid1 }, 8594 }; 8595 #ifdef CONFIG_USER_ONLY 8596 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8597 { .name = "ID_AA64PFR0_EL1", 8598 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8599 R_ID_AA64PFR0_ADVSIMD_MASK | 8600 R_ID_AA64PFR0_SVE_MASK | 8601 R_ID_AA64PFR0_DIT_MASK, 8602 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8603 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8604 { .name = "ID_AA64PFR1_EL1", 8605 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8606 R_ID_AA64PFR1_SSBS_MASK | 8607 R_ID_AA64PFR1_MTE_MASK | 8608 R_ID_AA64PFR1_SME_MASK }, 8609 { .name = "ID_AA64PFR*_EL1_RESERVED", 8610 .is_glob = true }, 8611 { .name = "ID_AA64ZFR0_EL1", 8612 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8613 R_ID_AA64ZFR0_AES_MASK | 8614 R_ID_AA64ZFR0_BITPERM_MASK | 8615 R_ID_AA64ZFR0_BFLOAT16_MASK | 8616 R_ID_AA64ZFR0_SHA3_MASK | 8617 R_ID_AA64ZFR0_SM4_MASK | 8618 R_ID_AA64ZFR0_I8MM_MASK | 8619 R_ID_AA64ZFR0_F32MM_MASK | 8620 R_ID_AA64ZFR0_F64MM_MASK }, 8621 { .name = "ID_AA64SMFR0_EL1", 8622 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8623 R_ID_AA64SMFR0_BI32I32_MASK | 8624 R_ID_AA64SMFR0_B16F32_MASK | 8625 R_ID_AA64SMFR0_F16F32_MASK | 8626 R_ID_AA64SMFR0_I8I32_MASK | 8627 R_ID_AA64SMFR0_F16F16_MASK | 8628 R_ID_AA64SMFR0_B16B16_MASK | 8629 R_ID_AA64SMFR0_I16I32_MASK | 8630 R_ID_AA64SMFR0_F64F64_MASK | 8631 R_ID_AA64SMFR0_I16I64_MASK | 8632 R_ID_AA64SMFR0_SMEVER_MASK | 8633 R_ID_AA64SMFR0_FA64_MASK }, 8634 { .name = "ID_AA64MMFR0_EL1", 8635 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8636 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8637 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8638 { .name = "ID_AA64MMFR1_EL1", 8639 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8640 { .name = "ID_AA64MMFR2_EL1", 8641 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8642 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8643 .is_glob = true }, 8644 { .name = "ID_AA64DFR0_EL1", 8645 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8646 { .name = "ID_AA64DFR1_EL1" }, 8647 { .name = "ID_AA64DFR*_EL1_RESERVED", 8648 .is_glob = true }, 8649 { .name = "ID_AA64AFR*", 8650 .is_glob = true }, 8651 { .name = "ID_AA64ISAR0_EL1", 8652 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8653 R_ID_AA64ISAR0_SHA1_MASK | 8654 R_ID_AA64ISAR0_SHA2_MASK | 8655 R_ID_AA64ISAR0_CRC32_MASK | 8656 R_ID_AA64ISAR0_ATOMIC_MASK | 8657 R_ID_AA64ISAR0_RDM_MASK | 8658 R_ID_AA64ISAR0_SHA3_MASK | 8659 R_ID_AA64ISAR0_SM3_MASK | 8660 R_ID_AA64ISAR0_SM4_MASK | 8661 R_ID_AA64ISAR0_DP_MASK | 8662 R_ID_AA64ISAR0_FHM_MASK | 8663 R_ID_AA64ISAR0_TS_MASK | 8664 R_ID_AA64ISAR0_RNDR_MASK }, 8665 { .name = "ID_AA64ISAR1_EL1", 8666 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8667 R_ID_AA64ISAR1_APA_MASK | 8668 R_ID_AA64ISAR1_API_MASK | 8669 R_ID_AA64ISAR1_JSCVT_MASK | 8670 R_ID_AA64ISAR1_FCMA_MASK | 8671 R_ID_AA64ISAR1_LRCPC_MASK | 8672 R_ID_AA64ISAR1_GPA_MASK | 8673 R_ID_AA64ISAR1_GPI_MASK | 8674 R_ID_AA64ISAR1_FRINTTS_MASK | 8675 R_ID_AA64ISAR1_SB_MASK | 8676 R_ID_AA64ISAR1_BF16_MASK | 8677 R_ID_AA64ISAR1_DGH_MASK | 8678 R_ID_AA64ISAR1_I8MM_MASK }, 8679 { .name = "ID_AA64ISAR2_EL1", 8680 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8681 R_ID_AA64ISAR2_RPRES_MASK | 8682 R_ID_AA64ISAR2_GPA3_MASK | 8683 R_ID_AA64ISAR2_APA3_MASK | 8684 R_ID_AA64ISAR2_MOPS_MASK | 8685 R_ID_AA64ISAR2_BC_MASK | 8686 R_ID_AA64ISAR2_RPRFM_MASK | 8687 R_ID_AA64ISAR2_CSSC_MASK }, 8688 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8689 .is_glob = true }, 8690 }; 8691 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8692 #endif 8693 /* 8694 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8695 * TODO: For RMR, a write with bit 1 set should do something with 8696 * cpu_reset(). In the meantime, "the bit is strictly a request", 8697 * so we are in spec just ignoring writes. 8698 */ 8699 if (!arm_feature(env, ARM_FEATURE_EL3) && 8700 !arm_feature(env, ARM_FEATURE_EL2)) { 8701 ARMCPRegInfo el1_reset_regs[] = { 8702 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8703 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8704 .access = PL1_R, 8705 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8706 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8707 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8708 .access = PL1_RW, .type = ARM_CP_CONST, 8709 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8710 }; 8711 define_arm_cp_regs(cpu, el1_reset_regs); 8712 } 8713 define_arm_cp_regs(cpu, v8_idregs); 8714 define_arm_cp_regs(cpu, v8_cp_reginfo); 8715 8716 for (i = 4; i < 16; i++) { 8717 /* 8718 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8719 * For pre-v8 cores there are RAZ patterns for these in 8720 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8721 * v8 extends the "must RAZ" part of the ID register space 8722 * to also cover c0, 0, c{8-15}, {0-7}. 8723 * These are STATE_AA32 because in the AArch64 sysreg space 8724 * c4-c7 is where the AArch64 ID registers live (and we've 8725 * already defined those in v8_idregs[]), and c8-c15 are not 8726 * "must RAZ" for AArch64. 8727 */ 8728 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8729 ARMCPRegInfo v8_aa32_raz_idregs = { 8730 .name = name, 8731 .state = ARM_CP_STATE_AA32, 8732 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8733 .access = PL1_R, .type = ARM_CP_CONST, 8734 .accessfn = access_aa64_tid3, 8735 .resetvalue = 0 }; 8736 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8737 } 8738 } 8739 8740 /* 8741 * Register the base EL2 cpregs. 8742 * Pre v8, these registers are implemented only as part of the 8743 * Virtualization Extensions (EL2 present). Beginning with v8, 8744 * if EL2 is missing but EL3 is enabled, mostly these become 8745 * RES0 from EL3, with some specific exceptions. 8746 */ 8747 if (arm_feature(env, ARM_FEATURE_EL2) 8748 || (arm_feature(env, ARM_FEATURE_EL3) 8749 && arm_feature(env, ARM_FEATURE_V8))) { 8750 uint64_t vmpidr_def = mpidr_read_val(env); 8751 ARMCPRegInfo vpidr_regs[] = { 8752 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8753 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8754 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8755 .resetvalue = cpu->midr, 8756 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8757 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8758 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8759 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8760 .access = PL2_RW, .resetvalue = cpu->midr, 8761 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8762 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8763 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8764 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8765 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8766 .resetvalue = vmpidr_def, 8767 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8768 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8769 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8770 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8771 .access = PL2_RW, .resetvalue = vmpidr_def, 8772 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8773 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8774 }; 8775 /* 8776 * The only field of MDCR_EL2 that has a defined architectural reset 8777 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8778 */ 8779 ARMCPRegInfo mdcr_el2 = { 8780 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8781 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8782 .writefn = mdcr_el2_write, 8783 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8784 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8785 }; 8786 define_one_arm_cp_reg(cpu, &mdcr_el2); 8787 define_arm_cp_regs(cpu, vpidr_regs); 8788 define_arm_cp_regs(cpu, el2_cp_reginfo); 8789 if (arm_feature(env, ARM_FEATURE_V8)) { 8790 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8791 } 8792 if (cpu_isar_feature(aa64_sel2, cpu)) { 8793 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8794 } 8795 /* 8796 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 8797 * See commentary near RMR_EL1. 8798 */ 8799 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8800 static const ARMCPRegInfo el2_reset_regs[] = { 8801 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8802 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8803 .access = PL2_R, 8804 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8805 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8806 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8807 .access = PL2_R, 8808 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8809 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 8810 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 8811 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8812 }; 8813 define_arm_cp_regs(cpu, el2_reset_regs); 8814 } 8815 } 8816 8817 /* Register the base EL3 cpregs. */ 8818 if (arm_feature(env, ARM_FEATURE_EL3)) { 8819 define_arm_cp_regs(cpu, el3_cp_reginfo); 8820 ARMCPRegInfo el3_regs[] = { 8821 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8822 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8823 .access = PL3_R, 8824 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 8825 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 8826 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 8827 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8828 { .name = "RMR", .state = ARM_CP_STATE_AA32, 8829 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8830 .access = PL3_RW, .type = ARM_CP_CONST, 8831 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 8832 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8833 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8834 .access = PL3_RW, 8835 .raw_writefn = raw_write, .writefn = sctlr_write, 8836 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8837 .resetvalue = cpu->reset_sctlr }, 8838 }; 8839 8840 define_arm_cp_regs(cpu, el3_regs); 8841 } 8842 /* 8843 * The behaviour of NSACR is sufficiently various that we don't 8844 * try to describe it in a single reginfo: 8845 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8846 * reads as constant 0xc00 from NS EL1 and NS EL2 8847 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8848 * if v7 without EL3, register doesn't exist 8849 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8850 */ 8851 if (arm_feature(env, ARM_FEATURE_EL3)) { 8852 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8853 static const ARMCPRegInfo nsacr = { 8854 .name = "NSACR", .type = ARM_CP_CONST, 8855 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8856 .access = PL1_RW, .accessfn = nsacr_access, 8857 .resetvalue = 0xc00 8858 }; 8859 define_one_arm_cp_reg(cpu, &nsacr); 8860 } else { 8861 static const ARMCPRegInfo nsacr = { 8862 .name = "NSACR", 8863 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8864 .access = PL3_RW | PL1_R, 8865 .resetvalue = 0, 8866 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8867 }; 8868 define_one_arm_cp_reg(cpu, &nsacr); 8869 } 8870 } else { 8871 if (arm_feature(env, ARM_FEATURE_V8)) { 8872 static const ARMCPRegInfo nsacr = { 8873 .name = "NSACR", .type = ARM_CP_CONST, 8874 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8875 .access = PL1_R, 8876 .resetvalue = 0xc00 8877 }; 8878 define_one_arm_cp_reg(cpu, &nsacr); 8879 } 8880 } 8881 8882 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8883 if (arm_feature(env, ARM_FEATURE_V6)) { 8884 /* PMSAv6 not implemented */ 8885 assert(arm_feature(env, ARM_FEATURE_V7)); 8886 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8887 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8888 } else { 8889 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8890 } 8891 } else { 8892 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8893 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8894 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8895 if (cpu_isar_feature(aa32_hpd, cpu)) { 8896 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8897 } 8898 } 8899 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8900 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8901 } 8902 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8903 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8904 } 8905 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8906 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8907 } 8908 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8909 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8910 } 8911 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8912 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8913 } 8914 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8915 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8916 } 8917 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8918 define_arm_cp_regs(cpu, omap_cp_reginfo); 8919 } 8920 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8921 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8922 } 8923 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8924 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8925 } 8926 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8927 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8928 } 8929 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8930 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8931 } 8932 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8933 define_arm_cp_regs(cpu, jazelle_regs); 8934 } 8935 /* 8936 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8937 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8938 * be read-only (ie write causes UNDEF exception). 8939 */ 8940 { 8941 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8942 /* 8943 * Pre-v8 MIDR space. 8944 * Note that the MIDR isn't a simple constant register because 8945 * of the TI925 behaviour where writes to another register can 8946 * cause the MIDR value to change. 8947 * 8948 * Unimplemented registers in the c15 0 0 0 space default to 8949 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8950 * and friends override accordingly. 8951 */ 8952 { .name = "MIDR", 8953 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8954 .access = PL1_R, .resetvalue = cpu->midr, 8955 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8956 .readfn = midr_read, 8957 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8958 .type = ARM_CP_OVERRIDE }, 8959 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8960 { .name = "DUMMY", 8961 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8962 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8963 { .name = "DUMMY", 8964 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8965 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8966 { .name = "DUMMY", 8967 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8968 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8969 { .name = "DUMMY", 8970 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8971 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8972 { .name = "DUMMY", 8973 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8974 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8975 }; 8976 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8977 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8978 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8979 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8980 .fgt = FGT_MIDR_EL1, 8981 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8982 .readfn = midr_read }, 8983 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8984 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8985 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8986 .access = PL1_R, .resetvalue = cpu->midr }, 8987 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8988 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8989 .access = PL1_R, 8990 .accessfn = access_aa64_tid1, 8991 .fgt = FGT_REVIDR_EL1, 8992 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8993 }; 8994 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8995 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8996 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8997 .access = PL1_R, .resetvalue = cpu->midr 8998 }; 8999 ARMCPRegInfo id_cp_reginfo[] = { 9000 /* These are common to v8 and pre-v8 */ 9001 { .name = "CTR", 9002 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9003 .access = PL1_R, .accessfn = ctr_el0_access, 9004 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9005 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9006 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9007 .access = PL0_R, .accessfn = ctr_el0_access, 9008 .fgt = FGT_CTR_EL0, 9009 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9010 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9011 { .name = "TCMTR", 9012 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9013 .access = PL1_R, 9014 .accessfn = access_aa32_tid1, 9015 .type = ARM_CP_CONST, .resetvalue = 0 }, 9016 }; 9017 /* TLBTR is specific to VMSA */ 9018 ARMCPRegInfo id_tlbtr_reginfo = { 9019 .name = "TLBTR", 9020 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9021 .access = PL1_R, 9022 .accessfn = access_aa32_tid1, 9023 .type = ARM_CP_CONST, .resetvalue = 0, 9024 }; 9025 /* MPUIR is specific to PMSA V6+ */ 9026 ARMCPRegInfo id_mpuir_reginfo = { 9027 .name = "MPUIR", 9028 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9029 .access = PL1_R, .type = ARM_CP_CONST, 9030 .resetvalue = cpu->pmsav7_dregion << 8 9031 }; 9032 /* HMPUIR is specific to PMSA V8 */ 9033 ARMCPRegInfo id_hmpuir_reginfo = { 9034 .name = "HMPUIR", 9035 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9036 .access = PL2_R, .type = ARM_CP_CONST, 9037 .resetvalue = cpu->pmsav8r_hdregion 9038 }; 9039 static const ARMCPRegInfo crn0_wi_reginfo = { 9040 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9041 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9042 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9043 }; 9044 #ifdef CONFIG_USER_ONLY 9045 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9046 { .name = "MIDR_EL1", 9047 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9048 R_MIDR_EL1_PARTNUM_MASK | 9049 R_MIDR_EL1_ARCHITECTURE_MASK | 9050 R_MIDR_EL1_VARIANT_MASK | 9051 R_MIDR_EL1_IMPLEMENTER_MASK }, 9052 { .name = "REVIDR_EL1" }, 9053 }; 9054 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9055 #endif 9056 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9057 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9058 size_t i; 9059 /* 9060 * Register the blanket "writes ignored" value first to cover the 9061 * whole space. Then update the specific ID registers to allow write 9062 * access, so that they ignore writes rather than causing them to 9063 * UNDEF. 9064 */ 9065 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9066 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9067 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9068 } 9069 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9070 id_cp_reginfo[i].access = PL1_RW; 9071 } 9072 id_mpuir_reginfo.access = PL1_RW; 9073 id_tlbtr_reginfo.access = PL1_RW; 9074 } 9075 if (arm_feature(env, ARM_FEATURE_V8)) { 9076 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9077 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9078 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9079 } 9080 } else { 9081 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9082 } 9083 define_arm_cp_regs(cpu, id_cp_reginfo); 9084 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9085 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9086 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9087 arm_feature(env, ARM_FEATURE_V8)) { 9088 uint32_t i = 0; 9089 char *tmp_string; 9090 9091 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9092 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9093 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9094 9095 /* Register alias is only valid for first 32 indexes */ 9096 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9097 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9098 uint8_t opc1 = extract32(i, 4, 1); 9099 uint8_t opc2 = extract32(i, 0, 1) << 2; 9100 9101 tmp_string = g_strdup_printf("PRBAR%u", i); 9102 ARMCPRegInfo tmp_prbarn_reginfo = { 9103 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9104 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9105 .access = PL1_RW, .resetvalue = 0, 9106 .accessfn = access_tvm_trvm, 9107 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9108 }; 9109 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9110 g_free(tmp_string); 9111 9112 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9113 tmp_string = g_strdup_printf("PRLAR%u", i); 9114 ARMCPRegInfo tmp_prlarn_reginfo = { 9115 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9116 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9117 .access = PL1_RW, .resetvalue = 0, 9118 .accessfn = access_tvm_trvm, 9119 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9120 }; 9121 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9122 g_free(tmp_string); 9123 } 9124 9125 /* Register alias is only valid for first 32 indexes */ 9126 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9127 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9128 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9129 uint8_t opc2 = extract32(i, 0, 1) << 2; 9130 9131 tmp_string = g_strdup_printf("HPRBAR%u", i); 9132 ARMCPRegInfo tmp_hprbarn_reginfo = { 9133 .name = tmp_string, 9134 .type = ARM_CP_NO_RAW, 9135 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9136 .access = PL2_RW, .resetvalue = 0, 9137 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9138 }; 9139 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9140 g_free(tmp_string); 9141 9142 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9143 tmp_string = g_strdup_printf("HPRLAR%u", i); 9144 ARMCPRegInfo tmp_hprlarn_reginfo = { 9145 .name = tmp_string, 9146 .type = ARM_CP_NO_RAW, 9147 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9148 .access = PL2_RW, .resetvalue = 0, 9149 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9150 }; 9151 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9152 g_free(tmp_string); 9153 } 9154 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9155 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9156 } 9157 } 9158 9159 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9160 ARMCPRegInfo mpidr_cp_reginfo[] = { 9161 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9162 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9163 .fgt = FGT_MPIDR_EL1, 9164 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9165 }; 9166 #ifdef CONFIG_USER_ONLY 9167 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9168 { .name = "MPIDR_EL1", 9169 .fixed_bits = 0x0000000080000000 }, 9170 }; 9171 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9172 #endif 9173 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9174 } 9175 9176 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9177 ARMCPRegInfo auxcr_reginfo[] = { 9178 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9179 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9180 .access = PL1_RW, .accessfn = access_tacr, 9181 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9182 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9183 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9184 .access = PL2_RW, .type = ARM_CP_CONST, 9185 .resetvalue = 0 }, 9186 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9187 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9188 .access = PL3_RW, .type = ARM_CP_CONST, 9189 .resetvalue = 0 }, 9190 }; 9191 define_arm_cp_regs(cpu, auxcr_reginfo); 9192 if (cpu_isar_feature(aa32_ac2, cpu)) { 9193 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9194 } 9195 } 9196 9197 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9198 /* 9199 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9200 * There are two flavours: 9201 * (1) older 32-bit only cores have a simple 32-bit CBAR 9202 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9203 * 32-bit register visible to AArch32 at a different encoding 9204 * to the "flavour 1" register and with the bits rearranged to 9205 * be able to squash a 64-bit address into the 32-bit view. 9206 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9207 * in future if we support AArch32-only configs of some of the 9208 * AArch64 cores we might need to add a specific feature flag 9209 * to indicate cores with "flavour 2" CBAR. 9210 */ 9211 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9212 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9213 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9214 | extract64(cpu->reset_cbar, 32, 12); 9215 ARMCPRegInfo cbar_reginfo[] = { 9216 { .name = "CBAR", 9217 .type = ARM_CP_CONST, 9218 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9219 .access = PL1_R, .resetvalue = cbar32 }, 9220 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9221 .type = ARM_CP_CONST, 9222 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9223 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9224 }; 9225 /* We don't implement a r/w 64 bit CBAR currently */ 9226 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9227 define_arm_cp_regs(cpu, cbar_reginfo); 9228 } else { 9229 ARMCPRegInfo cbar = { 9230 .name = "CBAR", 9231 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9232 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9233 .fieldoffset = offsetof(CPUARMState, 9234 cp15.c15_config_base_address) 9235 }; 9236 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9237 cbar.access = PL1_R; 9238 cbar.fieldoffset = 0; 9239 cbar.type = ARM_CP_CONST; 9240 } 9241 define_one_arm_cp_reg(cpu, &cbar); 9242 } 9243 } 9244 9245 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9246 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9247 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9248 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9249 .access = PL1_RW, .writefn = vbar_write, 9250 .fgt = FGT_VBAR_EL1, 9251 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9252 offsetof(CPUARMState, cp15.vbar_ns) }, 9253 .resetvalue = 0 }, 9254 }; 9255 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9256 } 9257 9258 /* Generic registers whose values depend on the implementation */ 9259 { 9260 ARMCPRegInfo sctlr = { 9261 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9262 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9263 .access = PL1_RW, .accessfn = access_tvm_trvm, 9264 .fgt = FGT_SCTLR_EL1, 9265 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9266 offsetof(CPUARMState, cp15.sctlr_ns) }, 9267 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9268 .raw_writefn = raw_write, 9269 }; 9270 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9271 /* 9272 * Normally we would always end the TB on an SCTLR write, but Linux 9273 * arch/arm/mach-pxa/sleep.S expects two instructions following 9274 * an MMU enable to execute from cache. Imitate this behaviour. 9275 */ 9276 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9277 } 9278 define_one_arm_cp_reg(cpu, &sctlr); 9279 9280 if (arm_feature(env, ARM_FEATURE_PMSA) && 9281 arm_feature(env, ARM_FEATURE_V8)) { 9282 ARMCPRegInfo vsctlr = { 9283 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9284 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9285 .access = PL2_RW, .resetvalue = 0x0, 9286 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9287 }; 9288 define_one_arm_cp_reg(cpu, &vsctlr); 9289 } 9290 } 9291 9292 if (cpu_isar_feature(aa64_lor, cpu)) { 9293 define_arm_cp_regs(cpu, lor_reginfo); 9294 } 9295 if (cpu_isar_feature(aa64_pan, cpu)) { 9296 define_one_arm_cp_reg(cpu, &pan_reginfo); 9297 } 9298 #ifndef CONFIG_USER_ONLY 9299 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9300 define_arm_cp_regs(cpu, ats1e1_reginfo); 9301 } 9302 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9303 define_arm_cp_regs(cpu, ats1cp_reginfo); 9304 } 9305 #endif 9306 if (cpu_isar_feature(aa64_uao, cpu)) { 9307 define_one_arm_cp_reg(cpu, &uao_reginfo); 9308 } 9309 9310 if (cpu_isar_feature(aa64_dit, cpu)) { 9311 define_one_arm_cp_reg(cpu, &dit_reginfo); 9312 } 9313 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9314 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9315 } 9316 if (cpu_isar_feature(any_ras, cpu)) { 9317 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9318 } 9319 9320 if (cpu_isar_feature(aa64_vh, cpu) || 9321 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9322 define_one_arm_cp_reg(cpu, &contextidr_el2); 9323 } 9324 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9325 define_arm_cp_regs(cpu, vhe_reginfo); 9326 } 9327 9328 if (cpu_isar_feature(aa64_sve, cpu)) { 9329 define_arm_cp_regs(cpu, zcr_reginfo); 9330 } 9331 9332 if (cpu_isar_feature(aa64_hcx, cpu)) { 9333 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9334 } 9335 9336 #ifdef TARGET_AARCH64 9337 if (cpu_isar_feature(aa64_sme, cpu)) { 9338 define_arm_cp_regs(cpu, sme_reginfo); 9339 } 9340 if (cpu_isar_feature(aa64_pauth, cpu)) { 9341 define_arm_cp_regs(cpu, pauth_reginfo); 9342 } 9343 if (cpu_isar_feature(aa64_rndr, cpu)) { 9344 define_arm_cp_regs(cpu, rndr_reginfo); 9345 } 9346 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9347 define_arm_cp_regs(cpu, tlbirange_reginfo); 9348 } 9349 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9350 define_arm_cp_regs(cpu, tlbios_reginfo); 9351 } 9352 /* Data Cache clean instructions up to PoP */ 9353 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9354 define_one_arm_cp_reg(cpu, dcpop_reg); 9355 9356 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9357 define_one_arm_cp_reg(cpu, dcpodp_reg); 9358 } 9359 } 9360 9361 /* 9362 * If full MTE is enabled, add all of the system registers. 9363 * If only "instructions available at EL0" are enabled, 9364 * then define only a RAZ/WI version of PSTATE.TCO. 9365 */ 9366 if (cpu_isar_feature(aa64_mte, cpu)) { 9367 ARMCPRegInfo gmid_reginfo = { 9368 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9369 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9370 .access = PL1_R, .accessfn = access_aa64_tid5, 9371 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9372 }; 9373 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9374 define_arm_cp_regs(cpu, mte_reginfo); 9375 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9376 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9377 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9378 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9379 } 9380 9381 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9382 define_arm_cp_regs(cpu, scxtnum_reginfo); 9383 } 9384 9385 if (cpu_isar_feature(aa64_fgt, cpu)) { 9386 define_arm_cp_regs(cpu, fgt_reginfo); 9387 } 9388 9389 if (cpu_isar_feature(aa64_rme, cpu)) { 9390 define_arm_cp_regs(cpu, rme_reginfo); 9391 if (cpu_isar_feature(aa64_mte, cpu)) { 9392 define_arm_cp_regs(cpu, rme_mte_reginfo); 9393 } 9394 } 9395 #endif 9396 9397 if (cpu_isar_feature(any_predinv, cpu)) { 9398 define_arm_cp_regs(cpu, predinv_reginfo); 9399 } 9400 9401 if (cpu_isar_feature(any_ccidx, cpu)) { 9402 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9403 } 9404 9405 #ifndef CONFIG_USER_ONLY 9406 /* 9407 * Register redirections and aliases must be done last, 9408 * after the registers from the other extensions have been defined. 9409 */ 9410 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9411 define_arm_vh_e2h_redirects_aliases(cpu); 9412 } 9413 #endif 9414 } 9415 9416 /* Sort alphabetically by type name, except for "any". */ 9417 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9418 { 9419 ObjectClass *class_a = (ObjectClass *)a; 9420 ObjectClass *class_b = (ObjectClass *)b; 9421 const char *name_a, *name_b; 9422 9423 name_a = object_class_get_name(class_a); 9424 name_b = object_class_get_name(class_b); 9425 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9426 return 1; 9427 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9428 return -1; 9429 } else { 9430 return strcmp(name_a, name_b); 9431 } 9432 } 9433 9434 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9435 { 9436 ObjectClass *oc = data; 9437 CPUClass *cc = CPU_CLASS(oc); 9438 const char *typename; 9439 char *name; 9440 9441 typename = object_class_get_name(oc); 9442 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9443 if (cc->deprecation_note) { 9444 qemu_printf(" %s (deprecated)\n", name); 9445 } else { 9446 qemu_printf(" %s\n", name); 9447 } 9448 g_free(name); 9449 } 9450 9451 void arm_cpu_list(void) 9452 { 9453 GSList *list; 9454 9455 list = object_class_get_list(TYPE_ARM_CPU, false); 9456 list = g_slist_sort(list, arm_cpu_list_compare); 9457 qemu_printf("Available CPUs:\n"); 9458 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9459 g_slist_free(list); 9460 } 9461 9462 /* 9463 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9464 * add a single reginfo struct to the hash table. 9465 */ 9466 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9467 void *opaque, CPState state, 9468 CPSecureState secstate, 9469 int crm, int opc1, int opc2, 9470 const char *name) 9471 { 9472 CPUARMState *env = &cpu->env; 9473 uint32_t key; 9474 ARMCPRegInfo *r2; 9475 bool is64 = r->type & ARM_CP_64BIT; 9476 bool ns = secstate & ARM_CP_SECSTATE_NS; 9477 int cp = r->cp; 9478 size_t name_len; 9479 bool make_const; 9480 9481 switch (state) { 9482 case ARM_CP_STATE_AA32: 9483 /* We assume it is a cp15 register if the .cp field is left unset. */ 9484 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9485 cp = 15; 9486 } 9487 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9488 break; 9489 case ARM_CP_STATE_AA64: 9490 /* 9491 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9492 * cp == 0 as equivalent to the value for "standard guest-visible 9493 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9494 * in their AArch64 view (the .cp value may be non-zero for the 9495 * benefit of the AArch32 view). 9496 */ 9497 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9498 cp = CP_REG_ARM64_SYSREG_CP; 9499 } 9500 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9501 break; 9502 default: 9503 g_assert_not_reached(); 9504 } 9505 9506 /* Overriding of an existing definition must be explicitly requested. */ 9507 if (!(r->type & ARM_CP_OVERRIDE)) { 9508 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9509 if (oldreg) { 9510 assert(oldreg->type & ARM_CP_OVERRIDE); 9511 } 9512 } 9513 9514 /* 9515 * Eliminate registers that are not present because the EL is missing. 9516 * Doing this here makes it easier to put all registers for a given 9517 * feature into the same ARMCPRegInfo array and define them all at once. 9518 */ 9519 make_const = false; 9520 if (arm_feature(env, ARM_FEATURE_EL3)) { 9521 /* 9522 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9523 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9524 */ 9525 int min_el = ctz32(r->access) / 2; 9526 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9527 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9528 return; 9529 } 9530 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9531 } 9532 } else { 9533 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9534 ? PL2_RW : PL1_RW); 9535 if ((r->access & max_el) == 0) { 9536 return; 9537 } 9538 } 9539 9540 /* Combine cpreg and name into one allocation. */ 9541 name_len = strlen(name) + 1; 9542 r2 = g_malloc(sizeof(*r2) + name_len); 9543 *r2 = *r; 9544 r2->name = memcpy(r2 + 1, name, name_len); 9545 9546 /* 9547 * Update fields to match the instantiation, overwiting wildcards 9548 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9549 */ 9550 r2->cp = cp; 9551 r2->crm = crm; 9552 r2->opc1 = opc1; 9553 r2->opc2 = opc2; 9554 r2->state = state; 9555 r2->secure = secstate; 9556 if (opaque) { 9557 r2->opaque = opaque; 9558 } 9559 9560 if (make_const) { 9561 /* This should not have been a very special register to begin. */ 9562 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9563 assert(old_special == 0 || old_special == ARM_CP_NOP); 9564 /* 9565 * Set the special function to CONST, retaining the other flags. 9566 * This is important for e.g. ARM_CP_SVE so that we still 9567 * take the SVE trap if CPTR_EL3.EZ == 0. 9568 */ 9569 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9570 /* 9571 * Usually, these registers become RES0, but there are a few 9572 * special cases like VPIDR_EL2 which have a constant non-zero 9573 * value with writes ignored. 9574 */ 9575 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9576 r2->resetvalue = 0; 9577 } 9578 /* 9579 * ARM_CP_CONST has precedence, so removing the callbacks and 9580 * offsets are not strictly necessary, but it is potentially 9581 * less confusing to debug later. 9582 */ 9583 r2->readfn = NULL; 9584 r2->writefn = NULL; 9585 r2->raw_readfn = NULL; 9586 r2->raw_writefn = NULL; 9587 r2->resetfn = NULL; 9588 r2->fieldoffset = 0; 9589 r2->bank_fieldoffsets[0] = 0; 9590 r2->bank_fieldoffsets[1] = 0; 9591 } else { 9592 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9593 9594 if (isbanked) { 9595 /* 9596 * Register is banked (using both entries in array). 9597 * Overwriting fieldoffset as the array is only used to define 9598 * banked registers but later only fieldoffset is used. 9599 */ 9600 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9601 } 9602 if (state == ARM_CP_STATE_AA32) { 9603 if (isbanked) { 9604 /* 9605 * If the register is banked then we don't need to migrate or 9606 * reset the 32-bit instance in certain cases: 9607 * 9608 * 1) If the register has both 32-bit and 64-bit instances 9609 * then we can count on the 64-bit instance taking care 9610 * of the non-secure bank. 9611 * 2) If ARMv8 is enabled then we can count on a 64-bit 9612 * version taking care of the secure bank. This requires 9613 * that separate 32 and 64-bit definitions are provided. 9614 */ 9615 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9616 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9617 r2->type |= ARM_CP_ALIAS; 9618 } 9619 } else if ((secstate != r->secure) && !ns) { 9620 /* 9621 * The register is not banked so we only want to allow 9622 * migration of the non-secure instance. 9623 */ 9624 r2->type |= ARM_CP_ALIAS; 9625 } 9626 9627 if (HOST_BIG_ENDIAN && 9628 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9629 r2->fieldoffset += sizeof(uint32_t); 9630 } 9631 } 9632 } 9633 9634 /* 9635 * By convention, for wildcarded registers only the first 9636 * entry is used for migration; the others are marked as 9637 * ALIAS so we don't try to transfer the register 9638 * multiple times. Special registers (ie NOP/WFI) are 9639 * never migratable and not even raw-accessible. 9640 */ 9641 if (r2->type & ARM_CP_SPECIAL_MASK) { 9642 r2->type |= ARM_CP_NO_RAW; 9643 } 9644 if (((r->crm == CP_ANY) && crm != 0) || 9645 ((r->opc1 == CP_ANY) && opc1 != 0) || 9646 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9647 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9648 } 9649 9650 /* 9651 * Check that raw accesses are either forbidden or handled. Note that 9652 * we can't assert this earlier because the setup of fieldoffset for 9653 * banked registers has to be done first. 9654 */ 9655 if (!(r2->type & ARM_CP_NO_RAW)) { 9656 assert(!raw_accessors_invalid(r2)); 9657 } 9658 9659 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9660 } 9661 9662 9663 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9664 const ARMCPRegInfo *r, void *opaque) 9665 { 9666 /* 9667 * Define implementations of coprocessor registers. 9668 * We store these in a hashtable because typically 9669 * there are less than 150 registers in a space which 9670 * is 16*16*16*8*8 = 262144 in size. 9671 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9672 * If a register is defined twice then the second definition is 9673 * used, so this can be used to define some generic registers and 9674 * then override them with implementation specific variations. 9675 * At least one of the original and the second definition should 9676 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9677 * against accidental use. 9678 * 9679 * The state field defines whether the register is to be 9680 * visible in the AArch32 or AArch64 execution state. If the 9681 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9682 * reginfo structure for the AArch32 view, which sees the lower 9683 * 32 bits of the 64 bit register. 9684 * 9685 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9686 * be wildcarded. AArch64 registers are always considered to be 64 9687 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9688 * the register, if any. 9689 */ 9690 int crm, opc1, opc2; 9691 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9692 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9693 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9694 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9695 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9696 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9697 CPState state; 9698 9699 /* 64 bit registers have only CRm and Opc1 fields */ 9700 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9701 /* op0 only exists in the AArch64 encodings */ 9702 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9703 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9704 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9705 /* 9706 * This API is only for Arm's system coprocessors (14 and 15) or 9707 * (M-profile or v7A-and-earlier only) for implementation defined 9708 * coprocessors in the range 0..7. Our decode assumes this, since 9709 * 8..13 can be used for other insns including VFP and Neon. See 9710 * valid_cp() in translate.c. Assert here that we haven't tried 9711 * to use an invalid coprocessor number. 9712 */ 9713 switch (r->state) { 9714 case ARM_CP_STATE_BOTH: 9715 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9716 if (r->cp == 0) { 9717 break; 9718 } 9719 /* fall through */ 9720 case ARM_CP_STATE_AA32: 9721 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9722 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9723 assert(r->cp >= 14 && r->cp <= 15); 9724 } else { 9725 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9726 } 9727 break; 9728 case ARM_CP_STATE_AA64: 9729 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9730 break; 9731 default: 9732 g_assert_not_reached(); 9733 } 9734 /* 9735 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9736 * encodes a minimum access level for the register. We roll this 9737 * runtime check into our general permission check code, so check 9738 * here that the reginfo's specified permissions are strict enough 9739 * to encompass the generic architectural permission check. 9740 */ 9741 if (r->state != ARM_CP_STATE_AA32) { 9742 CPAccessRights mask; 9743 switch (r->opc1) { 9744 case 0: 9745 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9746 mask = PL0U_R | PL1_RW; 9747 break; 9748 case 1: case 2: 9749 /* min_EL EL1 */ 9750 mask = PL1_RW; 9751 break; 9752 case 3: 9753 /* min_EL EL0 */ 9754 mask = PL0_RW; 9755 break; 9756 case 4: 9757 case 5: 9758 /* min_EL EL2 */ 9759 mask = PL2_RW; 9760 break; 9761 case 6: 9762 /* min_EL EL3 */ 9763 mask = PL3_RW; 9764 break; 9765 case 7: 9766 /* min_EL EL1, secure mode only (we don't check the latter) */ 9767 mask = PL1_RW; 9768 break; 9769 default: 9770 /* broken reginfo with out-of-range opc1 */ 9771 g_assert_not_reached(); 9772 } 9773 /* assert our permissions are not too lax (stricter is fine) */ 9774 assert((r->access & ~mask) == 0); 9775 } 9776 9777 /* 9778 * Check that the register definition has enough info to handle 9779 * reads and writes if they are permitted. 9780 */ 9781 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9782 if (r->access & PL3_R) { 9783 assert((r->fieldoffset || 9784 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9785 r->readfn); 9786 } 9787 if (r->access & PL3_W) { 9788 assert((r->fieldoffset || 9789 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9790 r->writefn); 9791 } 9792 } 9793 9794 for (crm = crmmin; crm <= crmmax; crm++) { 9795 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9796 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9797 for (state = ARM_CP_STATE_AA32; 9798 state <= ARM_CP_STATE_AA64; state++) { 9799 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9800 continue; 9801 } 9802 if (state == ARM_CP_STATE_AA32) { 9803 /* 9804 * Under AArch32 CP registers can be common 9805 * (same for secure and non-secure world) or banked. 9806 */ 9807 char *name; 9808 9809 switch (r->secure) { 9810 case ARM_CP_SECSTATE_S: 9811 case ARM_CP_SECSTATE_NS: 9812 add_cpreg_to_hashtable(cpu, r, opaque, state, 9813 r->secure, crm, opc1, opc2, 9814 r->name); 9815 break; 9816 case ARM_CP_SECSTATE_BOTH: 9817 name = g_strdup_printf("%s_S", r->name); 9818 add_cpreg_to_hashtable(cpu, r, opaque, state, 9819 ARM_CP_SECSTATE_S, 9820 crm, opc1, opc2, name); 9821 g_free(name); 9822 add_cpreg_to_hashtable(cpu, r, opaque, state, 9823 ARM_CP_SECSTATE_NS, 9824 crm, opc1, opc2, r->name); 9825 break; 9826 default: 9827 g_assert_not_reached(); 9828 } 9829 } else { 9830 /* 9831 * AArch64 registers get mapped to non-secure instance 9832 * of AArch32 9833 */ 9834 add_cpreg_to_hashtable(cpu, r, opaque, state, 9835 ARM_CP_SECSTATE_NS, 9836 crm, opc1, opc2, r->name); 9837 } 9838 } 9839 } 9840 } 9841 } 9842 } 9843 9844 /* Define a whole list of registers */ 9845 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9846 void *opaque, size_t len) 9847 { 9848 size_t i; 9849 for (i = 0; i < len; ++i) { 9850 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9851 } 9852 } 9853 9854 /* 9855 * Modify ARMCPRegInfo for access from userspace. 9856 * 9857 * This is a data driven modification directed by 9858 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9859 * user-space cannot alter any values and dynamic values pertaining to 9860 * execution state are hidden from user space view anyway. 9861 */ 9862 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9863 const ARMCPRegUserSpaceInfo *mods, 9864 size_t mods_len) 9865 { 9866 for (size_t mi = 0; mi < mods_len; ++mi) { 9867 const ARMCPRegUserSpaceInfo *m = mods + mi; 9868 GPatternSpec *pat = NULL; 9869 9870 if (m->is_glob) { 9871 pat = g_pattern_spec_new(m->name); 9872 } 9873 for (size_t ri = 0; ri < regs_len; ++ri) { 9874 ARMCPRegInfo *r = regs + ri; 9875 9876 if (pat && g_pattern_match_string(pat, r->name)) { 9877 r->type = ARM_CP_CONST; 9878 r->access = PL0U_R; 9879 r->resetvalue = 0; 9880 /* continue */ 9881 } else if (strcmp(r->name, m->name) == 0) { 9882 r->type = ARM_CP_CONST; 9883 r->access = PL0U_R; 9884 r->resetvalue &= m->exported_bits; 9885 r->resetvalue |= m->fixed_bits; 9886 break; 9887 } 9888 } 9889 if (pat) { 9890 g_pattern_spec_free(pat); 9891 } 9892 } 9893 } 9894 9895 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9896 { 9897 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9898 } 9899 9900 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9901 uint64_t value) 9902 { 9903 /* Helper coprocessor write function for write-ignore registers */ 9904 } 9905 9906 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9907 { 9908 /* Helper coprocessor write function for read-as-zero registers */ 9909 return 0; 9910 } 9911 9912 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9913 { 9914 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9915 } 9916 9917 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9918 { 9919 /* 9920 * Return true if it is not valid for us to switch to 9921 * this CPU mode (ie all the UNPREDICTABLE cases in 9922 * the ARM ARM CPSRWriteByInstr pseudocode). 9923 */ 9924 9925 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9926 if (write_type == CPSRWriteByInstr && 9927 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9928 mode == ARM_CPU_MODE_HYP)) { 9929 return 1; 9930 } 9931 9932 switch (mode) { 9933 case ARM_CPU_MODE_USR: 9934 return 0; 9935 case ARM_CPU_MODE_SYS: 9936 case ARM_CPU_MODE_SVC: 9937 case ARM_CPU_MODE_ABT: 9938 case ARM_CPU_MODE_UND: 9939 case ARM_CPU_MODE_IRQ: 9940 case ARM_CPU_MODE_FIQ: 9941 /* 9942 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9943 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9944 */ 9945 /* 9946 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9947 * and CPS are treated as illegal mode changes. 9948 */ 9949 if (write_type == CPSRWriteByInstr && 9950 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9951 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9952 return 1; 9953 } 9954 return 0; 9955 case ARM_CPU_MODE_HYP: 9956 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9957 case ARM_CPU_MODE_MON: 9958 return arm_current_el(env) < 3; 9959 default: 9960 return 1; 9961 } 9962 } 9963 9964 uint32_t cpsr_read(CPUARMState *env) 9965 { 9966 int ZF; 9967 ZF = (env->ZF == 0); 9968 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9969 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9970 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9971 | ((env->condexec_bits & 0xfc) << 8) 9972 | (env->GE << 16) | (env->daif & CPSR_AIF); 9973 } 9974 9975 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9976 CPSRWriteType write_type) 9977 { 9978 uint32_t changed_daif; 9979 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9980 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9981 9982 if (mask & CPSR_NZCV) { 9983 env->ZF = (~val) & CPSR_Z; 9984 env->NF = val; 9985 env->CF = (val >> 29) & 1; 9986 env->VF = (val << 3) & 0x80000000; 9987 } 9988 if (mask & CPSR_Q) { 9989 env->QF = ((val & CPSR_Q) != 0); 9990 } 9991 if (mask & CPSR_T) { 9992 env->thumb = ((val & CPSR_T) != 0); 9993 } 9994 if (mask & CPSR_IT_0_1) { 9995 env->condexec_bits &= ~3; 9996 env->condexec_bits |= (val >> 25) & 3; 9997 } 9998 if (mask & CPSR_IT_2_7) { 9999 env->condexec_bits &= 3; 10000 env->condexec_bits |= (val >> 8) & 0xfc; 10001 } 10002 if (mask & CPSR_GE) { 10003 env->GE = (val >> 16) & 0xf; 10004 } 10005 10006 /* 10007 * In a V7 implementation that includes the security extensions but does 10008 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10009 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10010 * bits respectively. 10011 * 10012 * In a V8 implementation, it is permitted for privileged software to 10013 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10014 */ 10015 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10016 arm_feature(env, ARM_FEATURE_EL3) && 10017 !arm_feature(env, ARM_FEATURE_EL2) && 10018 !arm_is_secure(env)) { 10019 10020 changed_daif = (env->daif ^ val) & mask; 10021 10022 if (changed_daif & CPSR_A) { 10023 /* 10024 * Check to see if we are allowed to change the masking of async 10025 * abort exceptions from a non-secure state. 10026 */ 10027 if (!(env->cp15.scr_el3 & SCR_AW)) { 10028 qemu_log_mask(LOG_GUEST_ERROR, 10029 "Ignoring attempt to switch CPSR_A flag from " 10030 "non-secure world with SCR.AW bit clear\n"); 10031 mask &= ~CPSR_A; 10032 } 10033 } 10034 10035 if (changed_daif & CPSR_F) { 10036 /* 10037 * Check to see if we are allowed to change the masking of FIQ 10038 * exceptions from a non-secure state. 10039 */ 10040 if (!(env->cp15.scr_el3 & SCR_FW)) { 10041 qemu_log_mask(LOG_GUEST_ERROR, 10042 "Ignoring attempt to switch CPSR_F flag from " 10043 "non-secure world with SCR.FW bit clear\n"); 10044 mask &= ~CPSR_F; 10045 } 10046 10047 /* 10048 * Check whether non-maskable FIQ (NMFI) support is enabled. 10049 * If this bit is set software is not allowed to mask 10050 * FIQs, but is allowed to set CPSR_F to 0. 10051 */ 10052 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10053 (val & CPSR_F)) { 10054 qemu_log_mask(LOG_GUEST_ERROR, 10055 "Ignoring attempt to enable CPSR_F flag " 10056 "(non-maskable FIQ [NMFI] support enabled)\n"); 10057 mask &= ~CPSR_F; 10058 } 10059 } 10060 } 10061 10062 env->daif &= ~(CPSR_AIF & mask); 10063 env->daif |= val & CPSR_AIF & mask; 10064 10065 if (write_type != CPSRWriteRaw && 10066 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10067 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10068 /* 10069 * Note that we can only get here in USR mode if this is a 10070 * gdb stub write; for this case we follow the architectural 10071 * behaviour for guest writes in USR mode of ignoring an attempt 10072 * to switch mode. (Those are caught by translate.c for writes 10073 * triggered by guest instructions.) 10074 */ 10075 mask &= ~CPSR_M; 10076 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10077 /* 10078 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10079 * v7, and has defined behaviour in v8: 10080 * + leave CPSR.M untouched 10081 * + allow changes to the other CPSR fields 10082 * + set PSTATE.IL 10083 * For user changes via the GDB stub, we don't set PSTATE.IL, 10084 * as this would be unnecessarily harsh for a user error. 10085 */ 10086 mask &= ~CPSR_M; 10087 if (write_type != CPSRWriteByGDBStub && 10088 arm_feature(env, ARM_FEATURE_V8)) { 10089 mask |= CPSR_IL; 10090 val |= CPSR_IL; 10091 } 10092 qemu_log_mask(LOG_GUEST_ERROR, 10093 "Illegal AArch32 mode switch attempt from %s to %s\n", 10094 aarch32_mode_name(env->uncached_cpsr), 10095 aarch32_mode_name(val)); 10096 } else { 10097 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10098 write_type == CPSRWriteExceptionReturn ? 10099 "Exception return from AArch32" : 10100 "AArch32 mode switch from", 10101 aarch32_mode_name(env->uncached_cpsr), 10102 aarch32_mode_name(val), env->regs[15]); 10103 switch_mode(env, val & CPSR_M); 10104 } 10105 } 10106 mask &= ~CACHED_CPSR_BITS; 10107 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10108 if (tcg_enabled() && rebuild_hflags) { 10109 arm_rebuild_hflags(env); 10110 } 10111 } 10112 10113 /* Sign/zero extend */ 10114 uint32_t HELPER(sxtb16)(uint32_t x) 10115 { 10116 uint32_t res; 10117 res = (uint16_t)(int8_t)x; 10118 res |= (uint32_t)(int8_t)(x >> 16) << 16; 10119 return res; 10120 } 10121 10122 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 10123 { 10124 /* 10125 * Take a division-by-zero exception if necessary; otherwise return 10126 * to get the usual non-trapping division behaviour (result of 0) 10127 */ 10128 if (arm_feature(env, ARM_FEATURE_M) 10129 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 10130 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 10131 } 10132 } 10133 10134 uint32_t HELPER(uxtb16)(uint32_t x) 10135 { 10136 uint32_t res; 10137 res = (uint16_t)(uint8_t)x; 10138 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 10139 return res; 10140 } 10141 10142 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 10143 { 10144 if (den == 0) { 10145 handle_possible_div0_trap(env, GETPC()); 10146 return 0; 10147 } 10148 if (num == INT_MIN && den == -1) { 10149 return INT_MIN; 10150 } 10151 return num / den; 10152 } 10153 10154 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 10155 { 10156 if (den == 0) { 10157 handle_possible_div0_trap(env, GETPC()); 10158 return 0; 10159 } 10160 return num / den; 10161 } 10162 10163 uint32_t HELPER(rbit)(uint32_t x) 10164 { 10165 return revbit32(x); 10166 } 10167 10168 #ifdef CONFIG_USER_ONLY 10169 10170 static void switch_mode(CPUARMState *env, int mode) 10171 { 10172 ARMCPU *cpu = env_archcpu(env); 10173 10174 if (mode != ARM_CPU_MODE_USR) { 10175 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10176 } 10177 } 10178 10179 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10180 uint32_t cur_el, bool secure) 10181 { 10182 return 1; 10183 } 10184 10185 void aarch64_sync_64_to_32(CPUARMState *env) 10186 { 10187 g_assert_not_reached(); 10188 } 10189 10190 #else 10191 10192 static void switch_mode(CPUARMState *env, int mode) 10193 { 10194 int old_mode; 10195 int i; 10196 10197 old_mode = env->uncached_cpsr & CPSR_M; 10198 if (mode == old_mode) { 10199 return; 10200 } 10201 10202 if (old_mode == ARM_CPU_MODE_FIQ) { 10203 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10204 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10205 } else if (mode == ARM_CPU_MODE_FIQ) { 10206 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10207 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10208 } 10209 10210 i = bank_number(old_mode); 10211 env->banked_r13[i] = env->regs[13]; 10212 env->banked_spsr[i] = env->spsr; 10213 10214 i = bank_number(mode); 10215 env->regs[13] = env->banked_r13[i]; 10216 env->spsr = env->banked_spsr[i]; 10217 10218 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10219 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10220 } 10221 10222 /* 10223 * Physical Interrupt Target EL Lookup Table 10224 * 10225 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10226 * 10227 * The below multi-dimensional table is used for looking up the target 10228 * exception level given numerous condition criteria. Specifically, the 10229 * target EL is based on SCR and HCR routing controls as well as the 10230 * currently executing EL and secure state. 10231 * 10232 * Dimensions: 10233 * target_el_table[2][2][2][2][2][4] 10234 * | | | | | +--- Current EL 10235 * | | | | +------ Non-secure(0)/Secure(1) 10236 * | | | +--------- HCR mask override 10237 * | | +------------ SCR exec state control 10238 * | +--------------- SCR mask override 10239 * +------------------ 32-bit(0)/64-bit(1) EL3 10240 * 10241 * The table values are as such: 10242 * 0-3 = EL0-EL3 10243 * -1 = Cannot occur 10244 * 10245 * The ARM ARM target EL table includes entries indicating that an "exception 10246 * is not taken". The two cases where this is applicable are: 10247 * 1) An exception is taken from EL3 but the SCR does not have the exception 10248 * routed to EL3. 10249 * 2) An exception is taken from EL2 but the HCR does not have the exception 10250 * routed to EL2. 10251 * In these two cases, the below table contain a target of EL1. This value is 10252 * returned as it is expected that the consumer of the table data will check 10253 * for "target EL >= current EL" to ensure the exception is not taken. 10254 * 10255 * SCR HCR 10256 * 64 EA AMO From 10257 * BIT IRQ IMO Non-secure Secure 10258 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10259 */ 10260 static const int8_t target_el_table[2][2][2][2][2][4] = { 10261 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10262 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10263 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10264 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10265 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10266 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10267 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10268 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10269 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10270 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10271 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10272 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10273 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10274 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10275 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10276 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10277 }; 10278 10279 /* 10280 * Determine the target EL for physical exceptions 10281 */ 10282 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10283 uint32_t cur_el, bool secure) 10284 { 10285 CPUARMState *env = cpu_env(cs); 10286 bool rw; 10287 bool scr; 10288 bool hcr; 10289 int target_el; 10290 /* Is the highest EL AArch64? */ 10291 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10292 uint64_t hcr_el2; 10293 10294 if (arm_feature(env, ARM_FEATURE_EL3)) { 10295 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10296 } else { 10297 /* 10298 * Either EL2 is the highest EL (and so the EL2 register width 10299 * is given by is64); or there is no EL2 or EL3, in which case 10300 * the value of 'rw' does not affect the table lookup anyway. 10301 */ 10302 rw = is64; 10303 } 10304 10305 hcr_el2 = arm_hcr_el2_eff(env); 10306 switch (excp_idx) { 10307 case EXCP_IRQ: 10308 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10309 hcr = hcr_el2 & HCR_IMO; 10310 break; 10311 case EXCP_FIQ: 10312 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10313 hcr = hcr_el2 & HCR_FMO; 10314 break; 10315 default: 10316 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10317 hcr = hcr_el2 & HCR_AMO; 10318 break; 10319 }; 10320 10321 /* 10322 * For these purposes, TGE and AMO/IMO/FMO both force the 10323 * interrupt to EL2. Fold TGE into the bit extracted above. 10324 */ 10325 hcr |= (hcr_el2 & HCR_TGE) != 0; 10326 10327 /* Perform a table-lookup for the target EL given the current state */ 10328 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10329 10330 assert(target_el > 0); 10331 10332 return target_el; 10333 } 10334 10335 void arm_log_exception(CPUState *cs) 10336 { 10337 int idx = cs->exception_index; 10338 10339 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10340 const char *exc = NULL; 10341 static const char * const excnames[] = { 10342 [EXCP_UDEF] = "Undefined Instruction", 10343 [EXCP_SWI] = "SVC", 10344 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10345 [EXCP_DATA_ABORT] = "Data Abort", 10346 [EXCP_IRQ] = "IRQ", 10347 [EXCP_FIQ] = "FIQ", 10348 [EXCP_BKPT] = "Breakpoint", 10349 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10350 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10351 [EXCP_HVC] = "Hypervisor Call", 10352 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10353 [EXCP_SMC] = "Secure Monitor Call", 10354 [EXCP_VIRQ] = "Virtual IRQ", 10355 [EXCP_VFIQ] = "Virtual FIQ", 10356 [EXCP_SEMIHOST] = "Semihosting call", 10357 [EXCP_NOCP] = "v7M NOCP UsageFault", 10358 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10359 [EXCP_STKOF] = "v8M STKOF UsageFault", 10360 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10361 [EXCP_LSERR] = "v8M LSERR UsageFault", 10362 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10363 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10364 [EXCP_VSERR] = "Virtual SERR", 10365 [EXCP_GPC] = "Granule Protection Check", 10366 }; 10367 10368 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10369 exc = excnames[idx]; 10370 } 10371 if (!exc) { 10372 exc = "unknown"; 10373 } 10374 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10375 idx, exc, cs->cpu_index); 10376 } 10377 } 10378 10379 /* 10380 * Function used to synchronize QEMU's AArch64 register set with AArch32 10381 * register set. This is necessary when switching between AArch32 and AArch64 10382 * execution state. 10383 */ 10384 void aarch64_sync_32_to_64(CPUARMState *env) 10385 { 10386 int i; 10387 uint32_t mode = env->uncached_cpsr & CPSR_M; 10388 10389 /* We can blanket copy R[0:7] to X[0:7] */ 10390 for (i = 0; i < 8; i++) { 10391 env->xregs[i] = env->regs[i]; 10392 } 10393 10394 /* 10395 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10396 * Otherwise, they come from the banked user regs. 10397 */ 10398 if (mode == ARM_CPU_MODE_FIQ) { 10399 for (i = 8; i < 13; i++) { 10400 env->xregs[i] = env->usr_regs[i - 8]; 10401 } 10402 } else { 10403 for (i = 8; i < 13; i++) { 10404 env->xregs[i] = env->regs[i]; 10405 } 10406 } 10407 10408 /* 10409 * Registers x13-x23 are the various mode SP and FP registers. Registers 10410 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10411 * from the mode banked register. 10412 */ 10413 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10414 env->xregs[13] = env->regs[13]; 10415 env->xregs[14] = env->regs[14]; 10416 } else { 10417 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10418 /* HYP is an exception in that it is copied from r14 */ 10419 if (mode == ARM_CPU_MODE_HYP) { 10420 env->xregs[14] = env->regs[14]; 10421 } else { 10422 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10423 } 10424 } 10425 10426 if (mode == ARM_CPU_MODE_HYP) { 10427 env->xregs[15] = env->regs[13]; 10428 } else { 10429 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10430 } 10431 10432 if (mode == ARM_CPU_MODE_IRQ) { 10433 env->xregs[16] = env->regs[14]; 10434 env->xregs[17] = env->regs[13]; 10435 } else { 10436 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10437 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10438 } 10439 10440 if (mode == ARM_CPU_MODE_SVC) { 10441 env->xregs[18] = env->regs[14]; 10442 env->xregs[19] = env->regs[13]; 10443 } else { 10444 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10445 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10446 } 10447 10448 if (mode == ARM_CPU_MODE_ABT) { 10449 env->xregs[20] = env->regs[14]; 10450 env->xregs[21] = env->regs[13]; 10451 } else { 10452 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10453 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10454 } 10455 10456 if (mode == ARM_CPU_MODE_UND) { 10457 env->xregs[22] = env->regs[14]; 10458 env->xregs[23] = env->regs[13]; 10459 } else { 10460 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10461 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10462 } 10463 10464 /* 10465 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10466 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10467 * FIQ bank for r8-r14. 10468 */ 10469 if (mode == ARM_CPU_MODE_FIQ) { 10470 for (i = 24; i < 31; i++) { 10471 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10472 } 10473 } else { 10474 for (i = 24; i < 29; i++) { 10475 env->xregs[i] = env->fiq_regs[i - 24]; 10476 } 10477 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10478 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10479 } 10480 10481 env->pc = env->regs[15]; 10482 } 10483 10484 /* 10485 * Function used to synchronize QEMU's AArch32 register set with AArch64 10486 * register set. This is necessary when switching between AArch32 and AArch64 10487 * execution state. 10488 */ 10489 void aarch64_sync_64_to_32(CPUARMState *env) 10490 { 10491 int i; 10492 uint32_t mode = env->uncached_cpsr & CPSR_M; 10493 10494 /* We can blanket copy X[0:7] to R[0:7] */ 10495 for (i = 0; i < 8; i++) { 10496 env->regs[i] = env->xregs[i]; 10497 } 10498 10499 /* 10500 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10501 * Otherwise, we copy x8-x12 into the banked user regs. 10502 */ 10503 if (mode == ARM_CPU_MODE_FIQ) { 10504 for (i = 8; i < 13; i++) { 10505 env->usr_regs[i - 8] = env->xregs[i]; 10506 } 10507 } else { 10508 for (i = 8; i < 13; i++) { 10509 env->regs[i] = env->xregs[i]; 10510 } 10511 } 10512 10513 /* 10514 * Registers r13 & r14 depend on the current mode. 10515 * If we are in a given mode, we copy the corresponding x registers to r13 10516 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10517 * for the mode. 10518 */ 10519 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10520 env->regs[13] = env->xregs[13]; 10521 env->regs[14] = env->xregs[14]; 10522 } else { 10523 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10524 10525 /* 10526 * HYP is an exception in that it does not have its own banked r14 but 10527 * shares the USR r14 10528 */ 10529 if (mode == ARM_CPU_MODE_HYP) { 10530 env->regs[14] = env->xregs[14]; 10531 } else { 10532 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10533 } 10534 } 10535 10536 if (mode == ARM_CPU_MODE_HYP) { 10537 env->regs[13] = env->xregs[15]; 10538 } else { 10539 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10540 } 10541 10542 if (mode == ARM_CPU_MODE_IRQ) { 10543 env->regs[14] = env->xregs[16]; 10544 env->regs[13] = env->xregs[17]; 10545 } else { 10546 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10547 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10548 } 10549 10550 if (mode == ARM_CPU_MODE_SVC) { 10551 env->regs[14] = env->xregs[18]; 10552 env->regs[13] = env->xregs[19]; 10553 } else { 10554 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10555 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10556 } 10557 10558 if (mode == ARM_CPU_MODE_ABT) { 10559 env->regs[14] = env->xregs[20]; 10560 env->regs[13] = env->xregs[21]; 10561 } else { 10562 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10563 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10564 } 10565 10566 if (mode == ARM_CPU_MODE_UND) { 10567 env->regs[14] = env->xregs[22]; 10568 env->regs[13] = env->xregs[23]; 10569 } else { 10570 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10571 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10572 } 10573 10574 /* 10575 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10576 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10577 * FIQ bank for r8-r14. 10578 */ 10579 if (mode == ARM_CPU_MODE_FIQ) { 10580 for (i = 24; i < 31; i++) { 10581 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10582 } 10583 } else { 10584 for (i = 24; i < 29; i++) { 10585 env->fiq_regs[i - 24] = env->xregs[i]; 10586 } 10587 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10588 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10589 } 10590 10591 env->regs[15] = env->pc; 10592 } 10593 10594 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10595 uint32_t mask, uint32_t offset, 10596 uint32_t newpc) 10597 { 10598 int new_el; 10599 10600 /* Change the CPU state so as to actually take the exception. */ 10601 switch_mode(env, new_mode); 10602 10603 /* 10604 * For exceptions taken to AArch32 we must clear the SS bit in both 10605 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10606 */ 10607 env->pstate &= ~PSTATE_SS; 10608 env->spsr = cpsr_read(env); 10609 /* Clear IT bits. */ 10610 env->condexec_bits = 0; 10611 /* Switch to the new mode, and to the correct instruction set. */ 10612 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10613 10614 /* This must be after mode switching. */ 10615 new_el = arm_current_el(env); 10616 10617 /* Set new mode endianness */ 10618 env->uncached_cpsr &= ~CPSR_E; 10619 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10620 env->uncached_cpsr |= CPSR_E; 10621 } 10622 /* J and IL must always be cleared for exception entry */ 10623 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10624 env->daif |= mask; 10625 10626 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10627 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10628 env->uncached_cpsr |= CPSR_SSBS; 10629 } else { 10630 env->uncached_cpsr &= ~CPSR_SSBS; 10631 } 10632 } 10633 10634 if (new_mode == ARM_CPU_MODE_HYP) { 10635 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10636 env->elr_el[2] = env->regs[15]; 10637 } else { 10638 /* CPSR.PAN is normally preserved preserved unless... */ 10639 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10640 switch (new_el) { 10641 case 3: 10642 if (!arm_is_secure_below_el3(env)) { 10643 /* ... the target is EL3, from non-secure state. */ 10644 env->uncached_cpsr &= ~CPSR_PAN; 10645 break; 10646 } 10647 /* ... the target is EL3, from secure state ... */ 10648 /* fall through */ 10649 case 1: 10650 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10651 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10652 env->uncached_cpsr |= CPSR_PAN; 10653 } 10654 break; 10655 } 10656 } 10657 /* 10658 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10659 * and we should just guard the thumb mode on V4 10660 */ 10661 if (arm_feature(env, ARM_FEATURE_V4T)) { 10662 env->thumb = 10663 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10664 } 10665 env->regs[14] = env->regs[15] + offset; 10666 } 10667 env->regs[15] = newpc; 10668 10669 if (tcg_enabled()) { 10670 arm_rebuild_hflags(env); 10671 } 10672 } 10673 10674 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10675 { 10676 /* 10677 * Handle exception entry to Hyp mode; this is sufficiently 10678 * different to entry to other AArch32 modes that we handle it 10679 * separately here. 10680 * 10681 * The vector table entry used is always the 0x14 Hyp mode entry point, 10682 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10683 * The offset applied to the preferred return address is always zero 10684 * (see DDI0487C.a section G1.12.3). 10685 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10686 */ 10687 uint32_t addr, mask; 10688 ARMCPU *cpu = ARM_CPU(cs); 10689 CPUARMState *env = &cpu->env; 10690 10691 switch (cs->exception_index) { 10692 case EXCP_UDEF: 10693 addr = 0x04; 10694 break; 10695 case EXCP_SWI: 10696 addr = 0x08; 10697 break; 10698 case EXCP_BKPT: 10699 /* Fall through to prefetch abort. */ 10700 case EXCP_PREFETCH_ABORT: 10701 env->cp15.ifar_s = env->exception.vaddress; 10702 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10703 (uint32_t)env->exception.vaddress); 10704 addr = 0x0c; 10705 break; 10706 case EXCP_DATA_ABORT: 10707 env->cp15.dfar_s = env->exception.vaddress; 10708 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10709 (uint32_t)env->exception.vaddress); 10710 addr = 0x10; 10711 break; 10712 case EXCP_IRQ: 10713 addr = 0x18; 10714 break; 10715 case EXCP_FIQ: 10716 addr = 0x1c; 10717 break; 10718 case EXCP_HVC: 10719 addr = 0x08; 10720 break; 10721 case EXCP_HYP_TRAP: 10722 addr = 0x14; 10723 break; 10724 default: 10725 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10726 } 10727 10728 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10729 if (!arm_feature(env, ARM_FEATURE_V8)) { 10730 /* 10731 * QEMU syndrome values are v8-style. v7 has the IL bit 10732 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10733 * If this is a v7 CPU, squash the IL bit in those cases. 10734 */ 10735 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10736 (cs->exception_index == EXCP_DATA_ABORT && 10737 !(env->exception.syndrome & ARM_EL_ISV)) || 10738 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10739 env->exception.syndrome &= ~ARM_EL_IL; 10740 } 10741 } 10742 env->cp15.esr_el[2] = env->exception.syndrome; 10743 } 10744 10745 if (arm_current_el(env) != 2 && addr < 0x14) { 10746 addr = 0x14; 10747 } 10748 10749 mask = 0; 10750 if (!(env->cp15.scr_el3 & SCR_EA)) { 10751 mask |= CPSR_A; 10752 } 10753 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10754 mask |= CPSR_I; 10755 } 10756 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10757 mask |= CPSR_F; 10758 } 10759 10760 addr += env->cp15.hvbar; 10761 10762 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10763 } 10764 10765 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10766 { 10767 ARMCPU *cpu = ARM_CPU(cs); 10768 CPUARMState *env = &cpu->env; 10769 uint32_t addr; 10770 uint32_t mask; 10771 int new_mode; 10772 uint32_t offset; 10773 uint32_t moe; 10774 10775 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10776 switch (syn_get_ec(env->exception.syndrome)) { 10777 case EC_BREAKPOINT: 10778 case EC_BREAKPOINT_SAME_EL: 10779 moe = 1; 10780 break; 10781 case EC_WATCHPOINT: 10782 case EC_WATCHPOINT_SAME_EL: 10783 moe = 10; 10784 break; 10785 case EC_AA32_BKPT: 10786 moe = 3; 10787 break; 10788 case EC_VECTORCATCH: 10789 moe = 5; 10790 break; 10791 default: 10792 moe = 0; 10793 break; 10794 } 10795 10796 if (moe) { 10797 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10798 } 10799 10800 if (env->exception.target_el == 2) { 10801 arm_cpu_do_interrupt_aarch32_hyp(cs); 10802 return; 10803 } 10804 10805 switch (cs->exception_index) { 10806 case EXCP_UDEF: 10807 new_mode = ARM_CPU_MODE_UND; 10808 addr = 0x04; 10809 mask = CPSR_I; 10810 if (env->thumb) { 10811 offset = 2; 10812 } else { 10813 offset = 4; 10814 } 10815 break; 10816 case EXCP_SWI: 10817 new_mode = ARM_CPU_MODE_SVC; 10818 addr = 0x08; 10819 mask = CPSR_I; 10820 /* The PC already points to the next instruction. */ 10821 offset = 0; 10822 break; 10823 case EXCP_BKPT: 10824 /* Fall through to prefetch abort. */ 10825 case EXCP_PREFETCH_ABORT: 10826 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10827 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10828 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10829 env->exception.fsr, (uint32_t)env->exception.vaddress); 10830 new_mode = ARM_CPU_MODE_ABT; 10831 addr = 0x0c; 10832 mask = CPSR_A | CPSR_I; 10833 offset = 4; 10834 break; 10835 case EXCP_DATA_ABORT: 10836 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10837 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10838 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10839 env->exception.fsr, 10840 (uint32_t)env->exception.vaddress); 10841 new_mode = ARM_CPU_MODE_ABT; 10842 addr = 0x10; 10843 mask = CPSR_A | CPSR_I; 10844 offset = 8; 10845 break; 10846 case EXCP_IRQ: 10847 new_mode = ARM_CPU_MODE_IRQ; 10848 addr = 0x18; 10849 /* Disable IRQ and imprecise data aborts. */ 10850 mask = CPSR_A | CPSR_I; 10851 offset = 4; 10852 if (env->cp15.scr_el3 & SCR_IRQ) { 10853 /* IRQ routed to monitor mode */ 10854 new_mode = ARM_CPU_MODE_MON; 10855 mask |= CPSR_F; 10856 } 10857 break; 10858 case EXCP_FIQ: 10859 new_mode = ARM_CPU_MODE_FIQ; 10860 addr = 0x1c; 10861 /* Disable FIQ, IRQ and imprecise data aborts. */ 10862 mask = CPSR_A | CPSR_I | CPSR_F; 10863 if (env->cp15.scr_el3 & SCR_FIQ) { 10864 /* FIQ routed to monitor mode */ 10865 new_mode = ARM_CPU_MODE_MON; 10866 } 10867 offset = 4; 10868 break; 10869 case EXCP_VIRQ: 10870 new_mode = ARM_CPU_MODE_IRQ; 10871 addr = 0x18; 10872 /* Disable IRQ and imprecise data aborts. */ 10873 mask = CPSR_A | CPSR_I; 10874 offset = 4; 10875 break; 10876 case EXCP_VFIQ: 10877 new_mode = ARM_CPU_MODE_FIQ; 10878 addr = 0x1c; 10879 /* Disable FIQ, IRQ and imprecise data aborts. */ 10880 mask = CPSR_A | CPSR_I | CPSR_F; 10881 offset = 4; 10882 break; 10883 case EXCP_VSERR: 10884 { 10885 /* 10886 * Note that this is reported as a data abort, but the DFAR 10887 * has an UNKNOWN value. Construct the SError syndrome from 10888 * AET and ExT fields. 10889 */ 10890 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10891 10892 if (extended_addresses_enabled(env)) { 10893 env->exception.fsr = arm_fi_to_lfsc(&fi); 10894 } else { 10895 env->exception.fsr = arm_fi_to_sfsc(&fi); 10896 } 10897 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10898 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10899 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10900 env->exception.fsr); 10901 10902 new_mode = ARM_CPU_MODE_ABT; 10903 addr = 0x10; 10904 mask = CPSR_A | CPSR_I; 10905 offset = 8; 10906 } 10907 break; 10908 case EXCP_SMC: 10909 new_mode = ARM_CPU_MODE_MON; 10910 addr = 0x08; 10911 mask = CPSR_A | CPSR_I | CPSR_F; 10912 offset = 0; 10913 break; 10914 default: 10915 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10916 return; /* Never happens. Keep compiler happy. */ 10917 } 10918 10919 if (new_mode == ARM_CPU_MODE_MON) { 10920 addr += env->cp15.mvbar; 10921 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10922 /* High vectors. When enabled, base address cannot be remapped. */ 10923 addr += 0xffff0000; 10924 } else { 10925 /* 10926 * ARM v7 architectures provide a vector base address register to remap 10927 * the interrupt vector table. 10928 * This register is only followed in non-monitor mode, and is banked. 10929 * Note: only bits 31:5 are valid. 10930 */ 10931 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10932 } 10933 10934 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10935 env->cp15.scr_el3 &= ~SCR_NS; 10936 } 10937 10938 take_aarch32_exception(env, new_mode, mask, offset, addr); 10939 } 10940 10941 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10942 { 10943 /* 10944 * Return the register number of the AArch64 view of the AArch32 10945 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10946 * be that of the AArch32 mode the exception came from. 10947 */ 10948 int mode = env->uncached_cpsr & CPSR_M; 10949 10950 switch (aarch32_reg) { 10951 case 0 ... 7: 10952 return aarch32_reg; 10953 case 8 ... 12: 10954 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10955 case 13: 10956 switch (mode) { 10957 case ARM_CPU_MODE_USR: 10958 case ARM_CPU_MODE_SYS: 10959 return 13; 10960 case ARM_CPU_MODE_HYP: 10961 return 15; 10962 case ARM_CPU_MODE_IRQ: 10963 return 17; 10964 case ARM_CPU_MODE_SVC: 10965 return 19; 10966 case ARM_CPU_MODE_ABT: 10967 return 21; 10968 case ARM_CPU_MODE_UND: 10969 return 23; 10970 case ARM_CPU_MODE_FIQ: 10971 return 29; 10972 default: 10973 g_assert_not_reached(); 10974 } 10975 case 14: 10976 switch (mode) { 10977 case ARM_CPU_MODE_USR: 10978 case ARM_CPU_MODE_SYS: 10979 case ARM_CPU_MODE_HYP: 10980 return 14; 10981 case ARM_CPU_MODE_IRQ: 10982 return 16; 10983 case ARM_CPU_MODE_SVC: 10984 return 18; 10985 case ARM_CPU_MODE_ABT: 10986 return 20; 10987 case ARM_CPU_MODE_UND: 10988 return 22; 10989 case ARM_CPU_MODE_FIQ: 10990 return 30; 10991 default: 10992 g_assert_not_reached(); 10993 } 10994 case 15: 10995 return 31; 10996 default: 10997 g_assert_not_reached(); 10998 } 10999 } 11000 11001 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11002 { 11003 uint32_t ret = cpsr_read(env); 11004 11005 /* Move DIT to the correct location for SPSR_ELx */ 11006 if (ret & CPSR_DIT) { 11007 ret &= ~CPSR_DIT; 11008 ret |= PSTATE_DIT; 11009 } 11010 /* Merge PSTATE.SS into SPSR_ELx */ 11011 ret |= env->pstate & PSTATE_SS; 11012 11013 return ret; 11014 } 11015 11016 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11017 { 11018 /* Return true if this syndrome value is a synchronous external abort */ 11019 switch (syn_get_ec(syndrome)) { 11020 case EC_INSNABORT: 11021 case EC_INSNABORT_SAME_EL: 11022 case EC_DATAABORT: 11023 case EC_DATAABORT_SAME_EL: 11024 /* Look at fault status code for all the synchronous ext abort cases */ 11025 switch (syndrome & 0x3f) { 11026 case 0x10: 11027 case 0x13: 11028 case 0x14: 11029 case 0x15: 11030 case 0x16: 11031 case 0x17: 11032 return true; 11033 default: 11034 return false; 11035 } 11036 default: 11037 return false; 11038 } 11039 } 11040 11041 /* Handle exception entry to a target EL which is using AArch64 */ 11042 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11043 { 11044 ARMCPU *cpu = ARM_CPU(cs); 11045 CPUARMState *env = &cpu->env; 11046 unsigned int new_el = env->exception.target_el; 11047 target_ulong addr = env->cp15.vbar_el[new_el]; 11048 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11049 unsigned int old_mode; 11050 unsigned int cur_el = arm_current_el(env); 11051 int rt; 11052 11053 if (tcg_enabled()) { 11054 /* 11055 * Note that new_el can never be 0. If cur_el is 0, then 11056 * el0_a64 is is_a64(), else el0_a64 is ignored. 11057 */ 11058 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11059 } 11060 11061 if (cur_el < new_el) { 11062 /* 11063 * Entry vector offset depends on whether the implemented EL 11064 * immediately lower than the target level is using AArch32 or AArch64 11065 */ 11066 bool is_aa64; 11067 uint64_t hcr; 11068 11069 switch (new_el) { 11070 case 3: 11071 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11072 break; 11073 case 2: 11074 hcr = arm_hcr_el2_eff(env); 11075 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11076 is_aa64 = (hcr & HCR_RW) != 0; 11077 break; 11078 } 11079 /* fall through */ 11080 case 1: 11081 is_aa64 = is_a64(env); 11082 break; 11083 default: 11084 g_assert_not_reached(); 11085 } 11086 11087 if (is_aa64) { 11088 addr += 0x400; 11089 } else { 11090 addr += 0x600; 11091 } 11092 } else if (pstate_read(env) & PSTATE_SP) { 11093 addr += 0x200; 11094 } 11095 11096 switch (cs->exception_index) { 11097 case EXCP_GPC: 11098 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11099 env->cp15.mfar_el3); 11100 /* fall through */ 11101 case EXCP_PREFETCH_ABORT: 11102 case EXCP_DATA_ABORT: 11103 /* 11104 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11105 * to be taken to the SError vector entrypoint. 11106 */ 11107 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11108 syndrome_is_sync_extabt(env->exception.syndrome)) { 11109 addr += 0x180; 11110 } 11111 env->cp15.far_el[new_el] = env->exception.vaddress; 11112 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11113 env->cp15.far_el[new_el]); 11114 /* fall through */ 11115 case EXCP_BKPT: 11116 case EXCP_UDEF: 11117 case EXCP_SWI: 11118 case EXCP_HVC: 11119 case EXCP_HYP_TRAP: 11120 case EXCP_SMC: 11121 switch (syn_get_ec(env->exception.syndrome)) { 11122 case EC_ADVSIMDFPACCESSTRAP: 11123 /* 11124 * QEMU internal FP/SIMD syndromes from AArch32 include the 11125 * TA and coproc fields which are only exposed if the exception 11126 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11127 * AArch64 format syndrome. 11128 */ 11129 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11130 break; 11131 case EC_CP14RTTRAP: 11132 case EC_CP15RTTRAP: 11133 case EC_CP14DTTRAP: 11134 /* 11135 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11136 * the raw register field from the insn; when taking this to 11137 * AArch64 we must convert it to the AArch64 view of the register 11138 * number. Notice that we read a 4-bit AArch32 register number and 11139 * write back a 5-bit AArch64 one. 11140 */ 11141 rt = extract32(env->exception.syndrome, 5, 4); 11142 rt = aarch64_regnum(env, rt); 11143 env->exception.syndrome = deposit32(env->exception.syndrome, 11144 5, 5, rt); 11145 break; 11146 case EC_CP15RRTTRAP: 11147 case EC_CP14RRTTRAP: 11148 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11149 rt = extract32(env->exception.syndrome, 5, 4); 11150 rt = aarch64_regnum(env, rt); 11151 env->exception.syndrome = deposit32(env->exception.syndrome, 11152 5, 5, rt); 11153 rt = extract32(env->exception.syndrome, 10, 4); 11154 rt = aarch64_regnum(env, rt); 11155 env->exception.syndrome = deposit32(env->exception.syndrome, 11156 10, 5, rt); 11157 break; 11158 } 11159 env->cp15.esr_el[new_el] = env->exception.syndrome; 11160 break; 11161 case EXCP_IRQ: 11162 case EXCP_VIRQ: 11163 addr += 0x80; 11164 break; 11165 case EXCP_FIQ: 11166 case EXCP_VFIQ: 11167 addr += 0x100; 11168 break; 11169 case EXCP_VSERR: 11170 addr += 0x180; 11171 /* Construct the SError syndrome from IDS and ISS fields. */ 11172 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11173 env->cp15.esr_el[new_el] = env->exception.syndrome; 11174 break; 11175 default: 11176 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11177 } 11178 11179 if (is_a64(env)) { 11180 old_mode = pstate_read(env); 11181 aarch64_save_sp(env, arm_current_el(env)); 11182 env->elr_el[new_el] = env->pc; 11183 } else { 11184 old_mode = cpsr_read_for_spsr_elx(env); 11185 env->elr_el[new_el] = env->regs[15]; 11186 11187 aarch64_sync_32_to_64(env); 11188 11189 env->condexec_bits = 0; 11190 } 11191 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11192 11193 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11194 env->elr_el[new_el]); 11195 11196 if (cpu_isar_feature(aa64_pan, cpu)) { 11197 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11198 new_mode |= old_mode & PSTATE_PAN; 11199 switch (new_el) { 11200 case 2: 11201 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11202 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11203 != (HCR_E2H | HCR_TGE)) { 11204 break; 11205 } 11206 /* fall through */ 11207 case 1: 11208 /* ... the target is EL1 ... */ 11209 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11210 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11211 new_mode |= PSTATE_PAN; 11212 } 11213 break; 11214 } 11215 } 11216 if (cpu_isar_feature(aa64_mte, cpu)) { 11217 new_mode |= PSTATE_TCO; 11218 } 11219 11220 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11221 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11222 new_mode |= PSTATE_SSBS; 11223 } else { 11224 new_mode &= ~PSTATE_SSBS; 11225 } 11226 } 11227 11228 pstate_write(env, PSTATE_DAIF | new_mode); 11229 env->aarch64 = true; 11230 aarch64_restore_sp(env, new_el); 11231 11232 if (tcg_enabled()) { 11233 helper_rebuild_hflags_a64(env, new_el); 11234 } 11235 11236 env->pc = addr; 11237 11238 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11239 new_el, env->pc, pstate_read(env)); 11240 } 11241 11242 /* 11243 * Do semihosting call and set the appropriate return value. All the 11244 * permission and validity checks have been done at translate time. 11245 * 11246 * We only see semihosting exceptions in TCG only as they are not 11247 * trapped to the hypervisor in KVM. 11248 */ 11249 #ifdef CONFIG_TCG 11250 static void tcg_handle_semihosting(CPUState *cs) 11251 { 11252 ARMCPU *cpu = ARM_CPU(cs); 11253 CPUARMState *env = &cpu->env; 11254 11255 if (is_a64(env)) { 11256 qemu_log_mask(CPU_LOG_INT, 11257 "...handling as semihosting call 0x%" PRIx64 "\n", 11258 env->xregs[0]); 11259 do_common_semihosting(cs); 11260 env->pc += 4; 11261 } else { 11262 qemu_log_mask(CPU_LOG_INT, 11263 "...handling as semihosting call 0x%x\n", 11264 env->regs[0]); 11265 do_common_semihosting(cs); 11266 env->regs[15] += env->thumb ? 2 : 4; 11267 } 11268 } 11269 #endif 11270 11271 /* 11272 * Handle a CPU exception for A and R profile CPUs. 11273 * Do any appropriate logging, handle PSCI calls, and then hand off 11274 * to the AArch64-entry or AArch32-entry function depending on the 11275 * target exception level's register width. 11276 * 11277 * Note: this is used for both TCG (as the do_interrupt tcg op), 11278 * and KVM to re-inject guest debug exceptions, and to 11279 * inject a Synchronous-External-Abort. 11280 */ 11281 void arm_cpu_do_interrupt(CPUState *cs) 11282 { 11283 ARMCPU *cpu = ARM_CPU(cs); 11284 CPUARMState *env = &cpu->env; 11285 unsigned int new_el = env->exception.target_el; 11286 11287 assert(!arm_feature(env, ARM_FEATURE_M)); 11288 11289 arm_log_exception(cs); 11290 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11291 new_el); 11292 if (qemu_loglevel_mask(CPU_LOG_INT) 11293 && !excp_is_internal(cs->exception_index)) { 11294 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11295 syn_get_ec(env->exception.syndrome), 11296 env->exception.syndrome); 11297 } 11298 11299 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11300 arm_handle_psci_call(cpu); 11301 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11302 return; 11303 } 11304 11305 /* 11306 * Semihosting semantics depend on the register width of the code 11307 * that caused the exception, not the target exception level, so 11308 * must be handled here. 11309 */ 11310 #ifdef CONFIG_TCG 11311 if (cs->exception_index == EXCP_SEMIHOST) { 11312 tcg_handle_semihosting(cs); 11313 return; 11314 } 11315 #endif 11316 11317 /* 11318 * Hooks may change global state so BQL should be held, also the 11319 * BQL needs to be held for any modification of 11320 * cs->interrupt_request. 11321 */ 11322 g_assert(qemu_mutex_iothread_locked()); 11323 11324 arm_call_pre_el_change_hook(cpu); 11325 11326 assert(!excp_is_internal(cs->exception_index)); 11327 if (arm_el_is_aa64(env, new_el)) { 11328 arm_cpu_do_interrupt_aarch64(cs); 11329 } else { 11330 arm_cpu_do_interrupt_aarch32(cs); 11331 } 11332 11333 arm_call_el_change_hook(cpu); 11334 11335 if (!kvm_enabled()) { 11336 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11337 } 11338 } 11339 #endif /* !CONFIG_USER_ONLY */ 11340 11341 uint64_t arm_sctlr(CPUARMState *env, int el) 11342 { 11343 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11344 if (el == 0) { 11345 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11346 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11347 } 11348 return env->cp15.sctlr_el[el]; 11349 } 11350 11351 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11352 { 11353 if (regime_has_2_ranges(mmu_idx)) { 11354 return extract64(tcr, 37, 2); 11355 } else if (regime_is_stage2(mmu_idx)) { 11356 return 0; /* VTCR_EL2 */ 11357 } else { 11358 /* Replicate the single TBI bit so we always have 2 bits. */ 11359 return extract32(tcr, 20, 1) * 3; 11360 } 11361 } 11362 11363 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11364 { 11365 if (regime_has_2_ranges(mmu_idx)) { 11366 return extract64(tcr, 51, 2); 11367 } else if (regime_is_stage2(mmu_idx)) { 11368 return 0; /* VTCR_EL2 */ 11369 } else { 11370 /* Replicate the single TBID bit so we always have 2 bits. */ 11371 return extract32(tcr, 29, 1) * 3; 11372 } 11373 } 11374 11375 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11376 { 11377 if (regime_has_2_ranges(mmu_idx)) { 11378 return extract64(tcr, 57, 2); 11379 } else { 11380 /* Replicate the single TCMA bit so we always have 2 bits. */ 11381 return extract32(tcr, 30, 1) * 3; 11382 } 11383 } 11384 11385 static ARMGranuleSize tg0_to_gran_size(int tg) 11386 { 11387 switch (tg) { 11388 case 0: 11389 return Gran4K; 11390 case 1: 11391 return Gran64K; 11392 case 2: 11393 return Gran16K; 11394 default: 11395 return GranInvalid; 11396 } 11397 } 11398 11399 static ARMGranuleSize tg1_to_gran_size(int tg) 11400 { 11401 switch (tg) { 11402 case 1: 11403 return Gran16K; 11404 case 2: 11405 return Gran4K; 11406 case 3: 11407 return Gran64K; 11408 default: 11409 return GranInvalid; 11410 } 11411 } 11412 11413 static inline bool have4k(ARMCPU *cpu, bool stage2) 11414 { 11415 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11416 : cpu_isar_feature(aa64_tgran4, cpu); 11417 } 11418 11419 static inline bool have16k(ARMCPU *cpu, bool stage2) 11420 { 11421 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11422 : cpu_isar_feature(aa64_tgran16, cpu); 11423 } 11424 11425 static inline bool have64k(ARMCPU *cpu, bool stage2) 11426 { 11427 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11428 : cpu_isar_feature(aa64_tgran64, cpu); 11429 } 11430 11431 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11432 bool stage2) 11433 { 11434 switch (gran) { 11435 case Gran4K: 11436 if (have4k(cpu, stage2)) { 11437 return gran; 11438 } 11439 break; 11440 case Gran16K: 11441 if (have16k(cpu, stage2)) { 11442 return gran; 11443 } 11444 break; 11445 case Gran64K: 11446 if (have64k(cpu, stage2)) { 11447 return gran; 11448 } 11449 break; 11450 case GranInvalid: 11451 break; 11452 } 11453 /* 11454 * If the guest selects a granule size that isn't implemented, 11455 * the architecture requires that we behave as if it selected one 11456 * that is (with an IMPDEF choice of which one to pick). We choose 11457 * to implement the smallest supported granule size. 11458 */ 11459 if (have4k(cpu, stage2)) { 11460 return Gran4K; 11461 } 11462 if (have16k(cpu, stage2)) { 11463 return Gran16K; 11464 } 11465 assert(have64k(cpu, stage2)); 11466 return Gran64K; 11467 } 11468 11469 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11470 ARMMMUIdx mmu_idx, bool data, 11471 bool el1_is_aa32) 11472 { 11473 uint64_t tcr = regime_tcr(env, mmu_idx); 11474 bool epd, hpd, tsz_oob, ds, ha, hd; 11475 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11476 ARMGranuleSize gran; 11477 ARMCPU *cpu = env_archcpu(env); 11478 bool stage2 = regime_is_stage2(mmu_idx); 11479 11480 if (!regime_has_2_ranges(mmu_idx)) { 11481 select = 0; 11482 tsz = extract32(tcr, 0, 6); 11483 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11484 if (stage2) { 11485 /* VTCR_EL2 */ 11486 hpd = false; 11487 } else { 11488 hpd = extract32(tcr, 24, 1); 11489 } 11490 epd = false; 11491 sh = extract32(tcr, 12, 2); 11492 ps = extract32(tcr, 16, 3); 11493 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11494 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11495 ds = extract64(tcr, 32, 1); 11496 } else { 11497 bool e0pd; 11498 11499 /* 11500 * Bit 55 is always between the two regions, and is canonical for 11501 * determining if address tagging is enabled. 11502 */ 11503 select = extract64(va, 55, 1); 11504 if (!select) { 11505 tsz = extract32(tcr, 0, 6); 11506 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11507 epd = extract32(tcr, 7, 1); 11508 sh = extract32(tcr, 12, 2); 11509 hpd = extract64(tcr, 41, 1); 11510 e0pd = extract64(tcr, 55, 1); 11511 } else { 11512 tsz = extract32(tcr, 16, 6); 11513 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11514 epd = extract32(tcr, 23, 1); 11515 sh = extract32(tcr, 28, 2); 11516 hpd = extract64(tcr, 42, 1); 11517 e0pd = extract64(tcr, 56, 1); 11518 } 11519 ps = extract64(tcr, 32, 3); 11520 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11521 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11522 ds = extract64(tcr, 59, 1); 11523 11524 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11525 regime_is_user(env, mmu_idx)) { 11526 epd = true; 11527 } 11528 } 11529 11530 gran = sanitize_gran_size(cpu, gran, stage2); 11531 11532 if (cpu_isar_feature(aa64_st, cpu)) { 11533 max_tsz = 48 - (gran == Gran64K); 11534 } else { 11535 max_tsz = 39; 11536 } 11537 11538 /* 11539 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11540 * adjust the effective value of DS, as documented. 11541 */ 11542 min_tsz = 16; 11543 if (gran == Gran64K) { 11544 if (cpu_isar_feature(aa64_lva, cpu)) { 11545 min_tsz = 12; 11546 } 11547 ds = false; 11548 } else if (ds) { 11549 if (regime_is_stage2(mmu_idx)) { 11550 if (gran == Gran16K) { 11551 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11552 } else { 11553 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11554 } 11555 } else { 11556 if (gran == Gran16K) { 11557 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11558 } else { 11559 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11560 } 11561 } 11562 if (ds) { 11563 min_tsz = 12; 11564 } 11565 } 11566 11567 if (stage2 && el1_is_aa32) { 11568 /* 11569 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11570 * are loosened: a configured IPA of 40 bits is permitted even if 11571 * the implemented PA is less than that (and so a 40 bit IPA would 11572 * fault for an AArch64 EL1). See R_DTLMN. 11573 */ 11574 min_tsz = MIN(min_tsz, 24); 11575 } 11576 11577 if (tsz > max_tsz) { 11578 tsz = max_tsz; 11579 tsz_oob = true; 11580 } else if (tsz < min_tsz) { 11581 tsz = min_tsz; 11582 tsz_oob = true; 11583 } else { 11584 tsz_oob = false; 11585 } 11586 11587 /* Present TBI as a composite with TBID. */ 11588 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11589 if (!data) { 11590 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11591 } 11592 tbi = (tbi >> select) & 1; 11593 11594 return (ARMVAParameters) { 11595 .tsz = tsz, 11596 .ps = ps, 11597 .sh = sh, 11598 .select = select, 11599 .tbi = tbi, 11600 .epd = epd, 11601 .hpd = hpd, 11602 .tsz_oob = tsz_oob, 11603 .ds = ds, 11604 .ha = ha, 11605 .hd = ha && hd, 11606 .gran = gran, 11607 }; 11608 } 11609 11610 /* 11611 * Note that signed overflow is undefined in C. The following routines are 11612 * careful to use unsigned types where modulo arithmetic is required. 11613 * Failure to do so _will_ break on newer gcc. 11614 */ 11615 11616 /* Signed saturating arithmetic. */ 11617 11618 /* Perform 16-bit signed saturating addition. */ 11619 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11620 { 11621 uint16_t res; 11622 11623 res = a + b; 11624 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11625 if (a & 0x8000) { 11626 res = 0x8000; 11627 } else { 11628 res = 0x7fff; 11629 } 11630 } 11631 return res; 11632 } 11633 11634 /* Perform 8-bit signed saturating addition. */ 11635 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11636 { 11637 uint8_t res; 11638 11639 res = a + b; 11640 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11641 if (a & 0x80) { 11642 res = 0x80; 11643 } else { 11644 res = 0x7f; 11645 } 11646 } 11647 return res; 11648 } 11649 11650 /* Perform 16-bit signed saturating subtraction. */ 11651 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11652 { 11653 uint16_t res; 11654 11655 res = a - b; 11656 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11657 if (a & 0x8000) { 11658 res = 0x8000; 11659 } else { 11660 res = 0x7fff; 11661 } 11662 } 11663 return res; 11664 } 11665 11666 /* Perform 8-bit signed saturating subtraction. */ 11667 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11668 { 11669 uint8_t res; 11670 11671 res = a - b; 11672 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11673 if (a & 0x80) { 11674 res = 0x80; 11675 } else { 11676 res = 0x7f; 11677 } 11678 } 11679 return res; 11680 } 11681 11682 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11683 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11684 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11685 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11686 #define PFX q 11687 11688 #include "op_addsub.h" 11689 11690 /* Unsigned saturating arithmetic. */ 11691 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11692 { 11693 uint16_t res; 11694 res = a + b; 11695 if (res < a) { 11696 res = 0xffff; 11697 } 11698 return res; 11699 } 11700 11701 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11702 { 11703 if (a > b) { 11704 return a - b; 11705 } else { 11706 return 0; 11707 } 11708 } 11709 11710 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11711 { 11712 uint8_t res; 11713 res = a + b; 11714 if (res < a) { 11715 res = 0xff; 11716 } 11717 return res; 11718 } 11719 11720 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11721 { 11722 if (a > b) { 11723 return a - b; 11724 } else { 11725 return 0; 11726 } 11727 } 11728 11729 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11730 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11731 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11732 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11733 #define PFX uq 11734 11735 #include "op_addsub.h" 11736 11737 /* Signed modulo arithmetic. */ 11738 #define SARITH16(a, b, n, op) do { \ 11739 int32_t sum; \ 11740 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11741 RESULT(sum, n, 16); \ 11742 if (sum >= 0) \ 11743 ge |= 3 << (n * 2); \ 11744 } while (0) 11745 11746 #define SARITH8(a, b, n, op) do { \ 11747 int32_t sum; \ 11748 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11749 RESULT(sum, n, 8); \ 11750 if (sum >= 0) \ 11751 ge |= 1 << n; \ 11752 } while (0) 11753 11754 11755 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11756 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11757 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11758 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11759 #define PFX s 11760 #define ARITH_GE 11761 11762 #include "op_addsub.h" 11763 11764 /* Unsigned modulo arithmetic. */ 11765 #define ADD16(a, b, n) do { \ 11766 uint32_t sum; \ 11767 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11768 RESULT(sum, n, 16); \ 11769 if ((sum >> 16) == 1) \ 11770 ge |= 3 << (n * 2); \ 11771 } while (0) 11772 11773 #define ADD8(a, b, n) do { \ 11774 uint32_t sum; \ 11775 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11776 RESULT(sum, n, 8); \ 11777 if ((sum >> 8) == 1) \ 11778 ge |= 1 << n; \ 11779 } while (0) 11780 11781 #define SUB16(a, b, n) do { \ 11782 uint32_t sum; \ 11783 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11784 RESULT(sum, n, 16); \ 11785 if ((sum >> 16) == 0) \ 11786 ge |= 3 << (n * 2); \ 11787 } while (0) 11788 11789 #define SUB8(a, b, n) do { \ 11790 uint32_t sum; \ 11791 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11792 RESULT(sum, n, 8); \ 11793 if ((sum >> 8) == 0) \ 11794 ge |= 1 << n; \ 11795 } while (0) 11796 11797 #define PFX u 11798 #define ARITH_GE 11799 11800 #include "op_addsub.h" 11801 11802 /* Halved signed arithmetic. */ 11803 #define ADD16(a, b, n) \ 11804 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11805 #define SUB16(a, b, n) \ 11806 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11807 #define ADD8(a, b, n) \ 11808 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11809 #define SUB8(a, b, n) \ 11810 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11811 #define PFX sh 11812 11813 #include "op_addsub.h" 11814 11815 /* Halved unsigned arithmetic. */ 11816 #define ADD16(a, b, n) \ 11817 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11818 #define SUB16(a, b, n) \ 11819 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11820 #define ADD8(a, b, n) \ 11821 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11822 #define SUB8(a, b, n) \ 11823 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11824 #define PFX uh 11825 11826 #include "op_addsub.h" 11827 11828 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11829 { 11830 if (a > b) { 11831 return a - b; 11832 } else { 11833 return b - a; 11834 } 11835 } 11836 11837 /* Unsigned sum of absolute byte differences. */ 11838 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11839 { 11840 uint32_t sum; 11841 sum = do_usad(a, b); 11842 sum += do_usad(a >> 8, b >> 8); 11843 sum += do_usad(a >> 16, b >> 16); 11844 sum += do_usad(a >> 24, b >> 24); 11845 return sum; 11846 } 11847 11848 /* For ARMv6 SEL instruction. */ 11849 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11850 { 11851 uint32_t mask; 11852 11853 mask = 0; 11854 if (flags & 1) { 11855 mask |= 0xff; 11856 } 11857 if (flags & 2) { 11858 mask |= 0xff00; 11859 } 11860 if (flags & 4) { 11861 mask |= 0xff0000; 11862 } 11863 if (flags & 8) { 11864 mask |= 0xff000000; 11865 } 11866 return (a & mask) | (b & ~mask); 11867 } 11868 11869 /* 11870 * CRC helpers. 11871 * The upper bytes of val (above the number specified by 'bytes') must have 11872 * been zeroed out by the caller. 11873 */ 11874 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11875 { 11876 uint8_t buf[4]; 11877 11878 stl_le_p(buf, val); 11879 11880 /* zlib crc32 converts the accumulator and output to one's complement. */ 11881 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11882 } 11883 11884 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11885 { 11886 uint8_t buf[4]; 11887 11888 stl_le_p(buf, val); 11889 11890 /* Linux crc32c converts the output to one's complement. */ 11891 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11892 } 11893 11894 /* 11895 * Return the exception level to which FP-disabled exceptions should 11896 * be taken, or 0 if FP is enabled. 11897 */ 11898 int fp_exception_el(CPUARMState *env, int cur_el) 11899 { 11900 #ifndef CONFIG_USER_ONLY 11901 uint64_t hcr_el2; 11902 11903 /* 11904 * CPACR and the CPTR registers don't exist before v6, so FP is 11905 * always accessible 11906 */ 11907 if (!arm_feature(env, ARM_FEATURE_V6)) { 11908 return 0; 11909 } 11910 11911 if (arm_feature(env, ARM_FEATURE_M)) { 11912 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11913 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11914 return 1; 11915 } 11916 11917 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11918 if (!extract32(env->v7m.nsacr, 10, 1)) { 11919 /* FP insns cause a NOCP UsageFault taken to Secure */ 11920 return 3; 11921 } 11922 } 11923 11924 return 0; 11925 } 11926 11927 hcr_el2 = arm_hcr_el2_eff(env); 11928 11929 /* 11930 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11931 * 0, 2 : trap EL0 and EL1/PL1 accesses 11932 * 1 : trap only EL0 accesses 11933 * 3 : trap no accesses 11934 * This register is ignored if E2H+TGE are both set. 11935 */ 11936 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11937 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11938 11939 switch (fpen) { 11940 case 1: 11941 if (cur_el != 0) { 11942 break; 11943 } 11944 /* fall through */ 11945 case 0: 11946 case 2: 11947 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11948 if (!arm_el_is_aa64(env, 3) 11949 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11950 return 3; 11951 } 11952 if (cur_el <= 1) { 11953 return 1; 11954 } 11955 break; 11956 } 11957 } 11958 11959 /* 11960 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11961 * to control non-secure access to the FPU. It doesn't have any 11962 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11963 */ 11964 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11965 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11966 if (!extract32(env->cp15.nsacr, 10, 1)) { 11967 /* FP insns act as UNDEF */ 11968 return cur_el == 2 ? 2 : 1; 11969 } 11970 } 11971 11972 /* 11973 * CPTR_EL2 is present in v7VE or v8, and changes format 11974 * with HCR_EL2.E2H (regardless of TGE). 11975 */ 11976 if (cur_el <= 2) { 11977 if (hcr_el2 & HCR_E2H) { 11978 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11979 case 1: 11980 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11981 break; 11982 } 11983 /* fall through */ 11984 case 0: 11985 case 2: 11986 return 2; 11987 } 11988 } else if (arm_is_el2_enabled(env)) { 11989 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11990 return 2; 11991 } 11992 } 11993 } 11994 11995 /* CPTR_EL3 : present in v8 */ 11996 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11997 /* Trap all FP ops to EL3 */ 11998 return 3; 11999 } 12000 #endif 12001 return 0; 12002 } 12003 12004 /* Return the exception level we're running at if this is our mmu_idx */ 12005 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12006 { 12007 if (mmu_idx & ARM_MMU_IDX_M) { 12008 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12009 } 12010 12011 switch (mmu_idx) { 12012 case ARMMMUIdx_E10_0: 12013 case ARMMMUIdx_E20_0: 12014 return 0; 12015 case ARMMMUIdx_E10_1: 12016 case ARMMMUIdx_E10_1_PAN: 12017 return 1; 12018 case ARMMMUIdx_E2: 12019 case ARMMMUIdx_E20_2: 12020 case ARMMMUIdx_E20_2_PAN: 12021 return 2; 12022 case ARMMMUIdx_E3: 12023 return 3; 12024 default: 12025 g_assert_not_reached(); 12026 } 12027 } 12028 12029 #ifndef CONFIG_TCG 12030 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12031 { 12032 g_assert_not_reached(); 12033 } 12034 #endif 12035 12036 static bool arm_pan_enabled(CPUARMState *env) 12037 { 12038 if (is_a64(env)) { 12039 return env->pstate & PSTATE_PAN; 12040 } else { 12041 return env->uncached_cpsr & CPSR_PAN; 12042 } 12043 } 12044 12045 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12046 { 12047 ARMMMUIdx idx; 12048 uint64_t hcr; 12049 12050 if (arm_feature(env, ARM_FEATURE_M)) { 12051 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12052 } 12053 12054 /* See ARM pseudo-function ELIsInHost. */ 12055 switch (el) { 12056 case 0: 12057 hcr = arm_hcr_el2_eff(env); 12058 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12059 idx = ARMMMUIdx_E20_0; 12060 } else { 12061 idx = ARMMMUIdx_E10_0; 12062 } 12063 break; 12064 case 1: 12065 if (arm_pan_enabled(env)) { 12066 idx = ARMMMUIdx_E10_1_PAN; 12067 } else { 12068 idx = ARMMMUIdx_E10_1; 12069 } 12070 break; 12071 case 2: 12072 /* Note that TGE does not apply at EL2. */ 12073 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12074 if (arm_pan_enabled(env)) { 12075 idx = ARMMMUIdx_E20_2_PAN; 12076 } else { 12077 idx = ARMMMUIdx_E20_2; 12078 } 12079 } else { 12080 idx = ARMMMUIdx_E2; 12081 } 12082 break; 12083 case 3: 12084 return ARMMMUIdx_E3; 12085 default: 12086 g_assert_not_reached(); 12087 } 12088 12089 return idx; 12090 } 12091 12092 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12093 { 12094 return arm_mmu_idx_el(env, arm_current_el(env)); 12095 } 12096 12097 static bool mve_no_pred(CPUARMState *env) 12098 { 12099 /* 12100 * Return true if there is definitely no predication of MVE 12101 * instructions by VPR or LTPSIZE. (Returning false even if there 12102 * isn't any predication is OK; generated code will just be 12103 * a little worse.) 12104 * If the CPU does not implement MVE then this TB flag is always 0. 12105 * 12106 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12107 * logic in gen_update_fp_context() needs to be updated to match. 12108 * 12109 * We do not include the effect of the ECI bits here -- they are 12110 * tracked in other TB flags. This simplifies the logic for 12111 * "when did we emit code that changes the MVE_NO_PRED TB flag 12112 * and thus need to end the TB?". 12113 */ 12114 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12115 return false; 12116 } 12117 if (env->v7m.vpr) { 12118 return false; 12119 } 12120 if (env->v7m.ltpsize < 4) { 12121 return false; 12122 } 12123 return true; 12124 } 12125 12126 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12127 uint64_t *cs_base, uint32_t *pflags) 12128 { 12129 CPUARMTBFlags flags; 12130 12131 assert_hflags_rebuild_correctly(env); 12132 flags = env->hflags; 12133 12134 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12135 *pc = env->pc; 12136 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12137 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12138 } 12139 } else { 12140 *pc = env->regs[15]; 12141 12142 if (arm_feature(env, ARM_FEATURE_M)) { 12143 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12144 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12145 != env->v7m.secure) { 12146 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12147 } 12148 12149 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12150 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12151 (env->v7m.secure && 12152 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12153 /* 12154 * ASPEN is set, but FPCA/SFPA indicate that there is no 12155 * active FP context; we must create a new FP context before 12156 * executing any FP insn. 12157 */ 12158 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12159 } 12160 12161 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12162 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12163 DP_TBFLAG_M32(flags, LSPACT, 1); 12164 } 12165 12166 if (mve_no_pred(env)) { 12167 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12168 } 12169 } else { 12170 /* 12171 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12172 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12173 */ 12174 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12175 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12176 } else { 12177 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12178 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12179 } 12180 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12181 DP_TBFLAG_A32(flags, VFPEN, 1); 12182 } 12183 } 12184 12185 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12186 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12187 } 12188 12189 /* 12190 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12191 * states defined in the ARM ARM for software singlestep: 12192 * SS_ACTIVE PSTATE.SS State 12193 * 0 x Inactive (the TB flag for SS is always 0) 12194 * 1 0 Active-pending 12195 * 1 1 Active-not-pending 12196 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12197 */ 12198 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12199 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12200 } 12201 12202 *pflags = flags.flags; 12203 *cs_base = flags.flags2; 12204 } 12205 12206 #ifdef TARGET_AARCH64 12207 /* 12208 * The manual says that when SVE is enabled and VQ is widened the 12209 * implementation is allowed to zero the previously inaccessible 12210 * portion of the registers. The corollary to that is that when 12211 * SVE is enabled and VQ is narrowed we are also allowed to zero 12212 * the now inaccessible portion of the registers. 12213 * 12214 * The intent of this is that no predicate bit beyond VQ is ever set. 12215 * Which means that some operations on predicate registers themselves 12216 * may operate on full uint64_t or even unrolled across the maximum 12217 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12218 * may well be cheaper than conditionals to restrict the operation 12219 * to the relevant portion of a uint16_t[16]. 12220 */ 12221 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12222 { 12223 int i, j; 12224 uint64_t pmask; 12225 12226 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12227 assert(vq <= env_archcpu(env)->sve_max_vq); 12228 12229 /* Zap the high bits of the zregs. */ 12230 for (i = 0; i < 32; i++) { 12231 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12232 } 12233 12234 /* Zap the high bits of the pregs and ffr. */ 12235 pmask = 0; 12236 if (vq & 3) { 12237 pmask = ~(-1ULL << (16 * (vq & 3))); 12238 } 12239 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12240 for (i = 0; i < 17; ++i) { 12241 env->vfp.pregs[i].p[j] &= pmask; 12242 } 12243 pmask = 0; 12244 } 12245 } 12246 12247 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12248 { 12249 int exc_el; 12250 12251 if (sm) { 12252 exc_el = sme_exception_el(env, el); 12253 } else { 12254 exc_el = sve_exception_el(env, el); 12255 } 12256 if (exc_el) { 12257 return 0; /* disabled */ 12258 } 12259 return sve_vqm1_for_el_sm(env, el, sm); 12260 } 12261 12262 /* 12263 * Notice a change in SVE vector size when changing EL. 12264 */ 12265 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12266 int new_el, bool el0_a64) 12267 { 12268 ARMCPU *cpu = env_archcpu(env); 12269 int old_len, new_len; 12270 bool old_a64, new_a64, sm; 12271 12272 /* Nothing to do if no SVE. */ 12273 if (!cpu_isar_feature(aa64_sve, cpu)) { 12274 return; 12275 } 12276 12277 /* Nothing to do if FP is disabled in either EL. */ 12278 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12279 return; 12280 } 12281 12282 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12283 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12284 12285 /* 12286 * Both AArch64.TakeException and AArch64.ExceptionReturn 12287 * invoke ResetSVEState when taking an exception from, or 12288 * returning to, AArch32 state when PSTATE.SM is enabled. 12289 */ 12290 sm = FIELD_EX64(env->svcr, SVCR, SM); 12291 if (old_a64 != new_a64 && sm) { 12292 arm_reset_sve_state(env); 12293 return; 12294 } 12295 12296 /* 12297 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12298 * at ELx, or not available because the EL is in AArch32 state, then 12299 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12300 * has an effective value of 0". 12301 * 12302 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12303 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12304 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12305 * we already have the correct register contents when encountering the 12306 * vq0->vq0 transition between EL0->EL1. 12307 */ 12308 old_len = new_len = 0; 12309 if (old_a64) { 12310 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12311 } 12312 if (new_a64) { 12313 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12314 } 12315 12316 /* When changing vector length, clear inaccessible state. */ 12317 if (new_len < old_len) { 12318 aarch64_sve_narrow_vq(env, new_len + 1); 12319 } 12320 } 12321 #endif 12322 12323 #ifndef CONFIG_USER_ONLY 12324 ARMSecuritySpace arm_security_space(CPUARMState *env) 12325 { 12326 if (arm_feature(env, ARM_FEATURE_M)) { 12327 return arm_secure_to_space(env->v7m.secure); 12328 } 12329 12330 /* 12331 * If EL3 is not supported then the secure state is implementation 12332 * defined, in which case QEMU defaults to non-secure. 12333 */ 12334 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12335 return ARMSS_NonSecure; 12336 } 12337 12338 /* Check for AArch64 EL3 or AArch32 Mon. */ 12339 if (is_a64(env)) { 12340 if (extract32(env->pstate, 2, 2) == 3) { 12341 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12342 return ARMSS_Root; 12343 } else { 12344 return ARMSS_Secure; 12345 } 12346 } 12347 } else { 12348 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12349 return ARMSS_Secure; 12350 } 12351 } 12352 12353 return arm_security_space_below_el3(env); 12354 } 12355 12356 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12357 { 12358 assert(!arm_feature(env, ARM_FEATURE_M)); 12359 12360 /* 12361 * If EL3 is not supported then the secure state is implementation 12362 * defined, in which case QEMU defaults to non-secure. 12363 */ 12364 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12365 return ARMSS_NonSecure; 12366 } 12367 12368 /* 12369 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12370 * Ignoring NSE when !NS retains consistency without having to 12371 * modify other predicates. 12372 */ 12373 if (!(env->cp15.scr_el3 & SCR_NS)) { 12374 return ARMSS_Secure; 12375 } else if (env->cp15.scr_el3 & SCR_NSE) { 12376 return ARMSS_Realm; 12377 } else { 12378 return ARMSS_NonSecure; 12379 } 12380 } 12381 #endif /* !CONFIG_USER_ONLY */ 12382