xref: /openbmc/qemu/target/arm/helper.c (revision 9d1401b79463e74adbfac69d836789d4e103fb61)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "qemu/log.h"
12 #include "target/arm/idau.h"
13 #include "trace.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/timer.h"
20 #include "qemu/bitops.h"
21 #include "qemu/crc32c.h"
22 #include "qemu/qemu-print.h"
23 #include "exec/exec-all.h"
24 #include <zlib.h> /* For crc32 */
25 #include "hw/irq.h"
26 #include "semihosting/semihost.h"
27 #include "sysemu/cpus.h"
28 #include "sysemu/cpu-timers.h"
29 #include "sysemu/kvm.h"
30 #include "sysemu/tcg.h"
31 #include "qemu/range.h"
32 #include "qapi/qapi-commands-machine-target.h"
33 #include "qapi/error.h"
34 #include "qemu/guest-random.h"
35 #ifdef CONFIG_TCG
36 #include "arm_ldst.h"
37 #include "exec/cpu_ldst.h"
38 #include "semihosting/common-semi.h"
39 #endif
40 
41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
43 
44 #ifndef CONFIG_USER_ONLY
45 
46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
47                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
48                                bool s1_is_el0,
49                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
50                                target_ulong *page_size_ptr,
51                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
52     __attribute__((nonnull));
53 #endif
54 
55 static void switch_mode(CPUARMState *env, int mode);
56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
57 
58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
59 {
60     assert(ri->fieldoffset);
61     if (cpreg_field_is_64bit(ri)) {
62         return CPREG_FIELD64(env, ri);
63     } else {
64         return CPREG_FIELD32(env, ri);
65     }
66 }
67 
68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
69                       uint64_t value)
70 {
71     assert(ri->fieldoffset);
72     if (cpreg_field_is_64bit(ri)) {
73         CPREG_FIELD64(env, ri) = value;
74     } else {
75         CPREG_FIELD32(env, ri) = value;
76     }
77 }
78 
79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
80 {
81     return (char *)env + ri->fieldoffset;
82 }
83 
84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
85 {
86     /* Raw read of a coprocessor register (as needed for migration, etc). */
87     if (ri->type & ARM_CP_CONST) {
88         return ri->resetvalue;
89     } else if (ri->raw_readfn) {
90         return ri->raw_readfn(env, ri);
91     } else if (ri->readfn) {
92         return ri->readfn(env, ri);
93     } else {
94         return raw_read(env, ri);
95     }
96 }
97 
98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
99                              uint64_t v)
100 {
101     /* Raw write of a coprocessor register (as needed for migration, etc).
102      * Note that constant registers are treated as write-ignored; the
103      * caller should check for success by whether a readback gives the
104      * value written.
105      */
106     if (ri->type & ARM_CP_CONST) {
107         return;
108     } else if (ri->raw_writefn) {
109         ri->raw_writefn(env, ri, v);
110     } else if (ri->writefn) {
111         ri->writefn(env, ri, v);
112     } else {
113         raw_write(env, ri, v);
114     }
115 }
116 
117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
118 {
119    /* Return true if the regdef would cause an assertion if you called
120     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
121     * program bug for it not to have the NO_RAW flag).
122     * NB that returning false here doesn't necessarily mean that calling
123     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
124     * read/write access functions which are safe for raw use" from "has
125     * read/write access functions which have side effects but has forgotten
126     * to provide raw access functions".
127     * The tests here line up with the conditions in read/write_raw_cp_reg()
128     * and assertions in raw_read()/raw_write().
129     */
130     if ((ri->type & ARM_CP_CONST) ||
131         ri->fieldoffset ||
132         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
133         return false;
134     }
135     return true;
136 }
137 
138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
139 {
140     /* Write the coprocessor state from cpu->env to the (index,value) list. */
141     int i;
142     bool ok = true;
143 
144     for (i = 0; i < cpu->cpreg_array_len; i++) {
145         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
146         const ARMCPRegInfo *ri;
147         uint64_t newval;
148 
149         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
150         if (!ri) {
151             ok = false;
152             continue;
153         }
154         if (ri->type & ARM_CP_NO_RAW) {
155             continue;
156         }
157 
158         newval = read_raw_cp_reg(&cpu->env, ri);
159         if (kvm_sync) {
160             /*
161              * Only sync if the previous list->cpustate sync succeeded.
162              * Rather than tracking the success/failure state for every
163              * item in the list, we just recheck "does the raw write we must
164              * have made in write_list_to_cpustate() read back OK" here.
165              */
166             uint64_t oldval = cpu->cpreg_values[i];
167 
168             if (oldval == newval) {
169                 continue;
170             }
171 
172             write_raw_cp_reg(&cpu->env, ri, oldval);
173             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
174                 continue;
175             }
176 
177             write_raw_cp_reg(&cpu->env, ri, newval);
178         }
179         cpu->cpreg_values[i] = newval;
180     }
181     return ok;
182 }
183 
184 bool write_list_to_cpustate(ARMCPU *cpu)
185 {
186     int i;
187     bool ok = true;
188 
189     for (i = 0; i < cpu->cpreg_array_len; i++) {
190         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
191         uint64_t v = cpu->cpreg_values[i];
192         const ARMCPRegInfo *ri;
193 
194         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
195         if (!ri) {
196             ok = false;
197             continue;
198         }
199         if (ri->type & ARM_CP_NO_RAW) {
200             continue;
201         }
202         /* Write value and confirm it reads back as written
203          * (to catch read-only registers and partially read-only
204          * registers where the incoming migration value doesn't match)
205          */
206         write_raw_cp_reg(&cpu->env, ri, v);
207         if (read_raw_cp_reg(&cpu->env, ri) != v) {
208             ok = false;
209         }
210     }
211     return ok;
212 }
213 
214 static void add_cpreg_to_list(gpointer key, gpointer opaque)
215 {
216     ARMCPU *cpu = opaque;
217     uint64_t regidx;
218     const ARMCPRegInfo *ri;
219 
220     regidx = *(uint32_t *)key;
221     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
222 
223     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
224         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
225         /* The value array need not be initialized at this point */
226         cpu->cpreg_array_len++;
227     }
228 }
229 
230 static void count_cpreg(gpointer key, gpointer opaque)
231 {
232     ARMCPU *cpu = opaque;
233     uint64_t regidx;
234     const ARMCPRegInfo *ri;
235 
236     regidx = *(uint32_t *)key;
237     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
238 
239     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
240         cpu->cpreg_array_len++;
241     }
242 }
243 
244 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
245 {
246     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
247     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
248 
249     if (aidx > bidx) {
250         return 1;
251     }
252     if (aidx < bidx) {
253         return -1;
254     }
255     return 0;
256 }
257 
258 void init_cpreg_list(ARMCPU *cpu)
259 {
260     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
261      * Note that we require cpreg_tuples[] to be sorted by key ID.
262      */
263     GList *keys;
264     int arraylen;
265 
266     keys = g_hash_table_get_keys(cpu->cp_regs);
267     keys = g_list_sort(keys, cpreg_key_compare);
268 
269     cpu->cpreg_array_len = 0;
270 
271     g_list_foreach(keys, count_cpreg, cpu);
272 
273     arraylen = cpu->cpreg_array_len;
274     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
275     cpu->cpreg_values = g_new(uint64_t, arraylen);
276     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
277     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
278     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
279     cpu->cpreg_array_len = 0;
280 
281     g_list_foreach(keys, add_cpreg_to_list, cpu);
282 
283     assert(cpu->cpreg_array_len == arraylen);
284 
285     g_list_free(keys);
286 }
287 
288 /*
289  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
290  */
291 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
292                                         const ARMCPRegInfo *ri,
293                                         bool isread)
294 {
295     if (!is_a64(env) && arm_current_el(env) == 3 &&
296         arm_is_secure_below_el3(env)) {
297         return CP_ACCESS_TRAP_UNCATEGORIZED;
298     }
299     return CP_ACCESS_OK;
300 }
301 
302 /* Some secure-only AArch32 registers trap to EL3 if used from
303  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
304  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
305  * We assume that the .access field is set to PL1_RW.
306  */
307 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
308                                             const ARMCPRegInfo *ri,
309                                             bool isread)
310 {
311     if (arm_current_el(env) == 3) {
312         return CP_ACCESS_OK;
313     }
314     if (arm_is_secure_below_el3(env)) {
315         if (env->cp15.scr_el3 & SCR_EEL2) {
316             return CP_ACCESS_TRAP_EL2;
317         }
318         return CP_ACCESS_TRAP_EL3;
319     }
320     /* This will be EL1 NS and EL2 NS, which just UNDEF */
321     return CP_ACCESS_TRAP_UNCATEGORIZED;
322 }
323 
324 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
325 {
326     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
327 }
328 
329 /* Check for traps to "powerdown debug" registers, which are controlled
330  * by MDCR.TDOSA
331  */
332 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
333                                    bool isread)
334 {
335     int el = arm_current_el(env);
336     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
337     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
338         (arm_hcr_el2_eff(env) & HCR_TGE);
339 
340     if (el < 2 && mdcr_el2_tdosa) {
341         return CP_ACCESS_TRAP_EL2;
342     }
343     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
344         return CP_ACCESS_TRAP_EL3;
345     }
346     return CP_ACCESS_OK;
347 }
348 
349 /* Check for traps to "debug ROM" registers, which are controlled
350  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
351  */
352 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
353                                   bool isread)
354 {
355     int el = arm_current_el(env);
356     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
357     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
358         (arm_hcr_el2_eff(env) & HCR_TGE);
359 
360     if (el < 2 && mdcr_el2_tdra) {
361         return CP_ACCESS_TRAP_EL2;
362     }
363     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
364         return CP_ACCESS_TRAP_EL3;
365     }
366     return CP_ACCESS_OK;
367 }
368 
369 /* Check for traps to general debug registers, which are controlled
370  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
371  */
372 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
373                                   bool isread)
374 {
375     int el = arm_current_el(env);
376     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
377     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
378         (arm_hcr_el2_eff(env) & HCR_TGE);
379 
380     if (el < 2 && mdcr_el2_tda) {
381         return CP_ACCESS_TRAP_EL2;
382     }
383     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
384         return CP_ACCESS_TRAP_EL3;
385     }
386     return CP_ACCESS_OK;
387 }
388 
389 /* Check for traps to performance monitor registers, which are controlled
390  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
391  */
392 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
393                                  bool isread)
394 {
395     int el = arm_current_el(env);
396     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
397 
398     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
399         return CP_ACCESS_TRAP_EL2;
400     }
401     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
402         return CP_ACCESS_TRAP_EL3;
403     }
404     return CP_ACCESS_OK;
405 }
406 
407 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
408 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
409                                       bool isread)
410 {
411     if (arm_current_el(env) == 1) {
412         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
413         if (arm_hcr_el2_eff(env) & trap) {
414             return CP_ACCESS_TRAP_EL2;
415         }
416     }
417     return CP_ACCESS_OK;
418 }
419 
420 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
421 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
422                                  bool isread)
423 {
424     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
425         return CP_ACCESS_TRAP_EL2;
426     }
427     return CP_ACCESS_OK;
428 }
429 
430 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
431 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
432                                   bool isread)
433 {
434     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
435         return CP_ACCESS_TRAP_EL2;
436     }
437     return CP_ACCESS_OK;
438 }
439 
440 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
441 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
442                                   bool isread)
443 {
444     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
445         return CP_ACCESS_TRAP_EL2;
446     }
447     return CP_ACCESS_OK;
448 }
449 
450 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
451 {
452     ARMCPU *cpu = env_archcpu(env);
453 
454     raw_write(env, ri, value);
455     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
456 }
457 
458 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
459 {
460     ARMCPU *cpu = env_archcpu(env);
461 
462     if (raw_read(env, ri) != value) {
463         /* Unlike real hardware the qemu TLB uses virtual addresses,
464          * not modified virtual addresses, so this causes a TLB flush.
465          */
466         tlb_flush(CPU(cpu));
467         raw_write(env, ri, value);
468     }
469 }
470 
471 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
472                              uint64_t value)
473 {
474     ARMCPU *cpu = env_archcpu(env);
475 
476     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
477         && !extended_addresses_enabled(env)) {
478         /* For VMSA (when not using the LPAE long descriptor page table
479          * format) this register includes the ASID, so do a TLB flush.
480          * For PMSA it is purely a process ID and no action is needed.
481          */
482         tlb_flush(CPU(cpu));
483     }
484     raw_write(env, ri, value);
485 }
486 
487 /* IS variants of TLB operations must affect all cores */
488 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
489                              uint64_t value)
490 {
491     CPUState *cs = env_cpu(env);
492 
493     tlb_flush_all_cpus_synced(cs);
494 }
495 
496 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
497                              uint64_t value)
498 {
499     CPUState *cs = env_cpu(env);
500 
501     tlb_flush_all_cpus_synced(cs);
502 }
503 
504 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
505                              uint64_t value)
506 {
507     CPUState *cs = env_cpu(env);
508 
509     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
510 }
511 
512 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                              uint64_t value)
514 {
515     CPUState *cs = env_cpu(env);
516 
517     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
518 }
519 
520 /*
521  * Non-IS variants of TLB operations are upgraded to
522  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
523  * force broadcast of these operations.
524  */
525 static bool tlb_force_broadcast(CPUARMState *env)
526 {
527     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
528 }
529 
530 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
531                           uint64_t value)
532 {
533     /* Invalidate all (TLBIALL) */
534     CPUState *cs = env_cpu(env);
535 
536     if (tlb_force_broadcast(env)) {
537         tlb_flush_all_cpus_synced(cs);
538     } else {
539         tlb_flush(cs);
540     }
541 }
542 
543 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
544                           uint64_t value)
545 {
546     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
547     CPUState *cs = env_cpu(env);
548 
549     value &= TARGET_PAGE_MASK;
550     if (tlb_force_broadcast(env)) {
551         tlb_flush_page_all_cpus_synced(cs, value);
552     } else {
553         tlb_flush_page(cs, value);
554     }
555 }
556 
557 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
558                            uint64_t value)
559 {
560     /* Invalidate by ASID (TLBIASID) */
561     CPUState *cs = env_cpu(env);
562 
563     if (tlb_force_broadcast(env)) {
564         tlb_flush_all_cpus_synced(cs);
565     } else {
566         tlb_flush(cs);
567     }
568 }
569 
570 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
571                            uint64_t value)
572 {
573     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
574     CPUState *cs = env_cpu(env);
575 
576     value &= TARGET_PAGE_MASK;
577     if (tlb_force_broadcast(env)) {
578         tlb_flush_page_all_cpus_synced(cs, value);
579     } else {
580         tlb_flush_page(cs, value);
581     }
582 }
583 
584 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
585                                uint64_t value)
586 {
587     CPUState *cs = env_cpu(env);
588 
589     tlb_flush_by_mmuidx(cs,
590                         ARMMMUIdxBit_E10_1 |
591                         ARMMMUIdxBit_E10_1_PAN |
592                         ARMMMUIdxBit_E10_0);
593 }
594 
595 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596                                   uint64_t value)
597 {
598     CPUState *cs = env_cpu(env);
599 
600     tlb_flush_by_mmuidx_all_cpus_synced(cs,
601                                         ARMMMUIdxBit_E10_1 |
602                                         ARMMMUIdxBit_E10_1_PAN |
603                                         ARMMMUIdxBit_E10_0);
604 }
605 
606 
607 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
608                               uint64_t value)
609 {
610     CPUState *cs = env_cpu(env);
611 
612     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
613 }
614 
615 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
616                                  uint64_t value)
617 {
618     CPUState *cs = env_cpu(env);
619 
620     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
621 }
622 
623 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
624                               uint64_t value)
625 {
626     CPUState *cs = env_cpu(env);
627     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
628 
629     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
630 }
631 
632 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
633                                  uint64_t value)
634 {
635     CPUState *cs = env_cpu(env);
636     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
637 
638     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
639                                              ARMMMUIdxBit_E2);
640 }
641 
642 static const ARMCPRegInfo cp_reginfo[] = {
643     /* Define the secure and non-secure FCSE identifier CP registers
644      * separately because there is no secure bank in V8 (no _EL3).  This allows
645      * the secure register to be properly reset and migrated. There is also no
646      * v8 EL1 version of the register so the non-secure instance stands alone.
647      */
648     { .name = "FCSEIDR",
649       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
650       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
651       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
652       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
653     { .name = "FCSEIDR_S",
654       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
655       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
656       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
657       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
658     /* Define the secure and non-secure context identifier CP registers
659      * separately because there is no secure bank in V8 (no _EL3).  This allows
660      * the secure register to be properly reset and migrated.  In the
661      * non-secure case, the 32-bit register will have reset and migration
662      * disabled during registration as it is handled by the 64-bit instance.
663      */
664     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
665       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
666       .access = PL1_RW, .accessfn = access_tvm_trvm,
667       .secure = ARM_CP_SECSTATE_NS,
668       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
669       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
670     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
671       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
672       .access = PL1_RW, .accessfn = access_tvm_trvm,
673       .secure = ARM_CP_SECSTATE_S,
674       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
675       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
676     REGINFO_SENTINEL
677 };
678 
679 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
680     /* NB: Some of these registers exist in v8 but with more precise
681      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
682      */
683     /* MMU Domain access control / MPU write buffer control */
684     { .name = "DACR",
685       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
686       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
687       .writefn = dacr_write, .raw_writefn = raw_write,
688       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
689                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
690     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
691      * For v6 and v5, these mappings are overly broad.
692      */
693     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
694       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
695     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
696       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
697     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
698       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
699     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
700       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
701     /* Cache maintenance ops; some of this space may be overridden later. */
702     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
703       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
704       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
705     REGINFO_SENTINEL
706 };
707 
708 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
709     /* Not all pre-v6 cores implemented this WFI, so this is slightly
710      * over-broad.
711      */
712     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
713       .access = PL1_W, .type = ARM_CP_WFI },
714     REGINFO_SENTINEL
715 };
716 
717 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
718     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
719      * is UNPREDICTABLE; we choose to NOP as most implementations do).
720      */
721     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
722       .access = PL1_W, .type = ARM_CP_WFI },
723     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
724      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
725      * OMAPCP will override this space.
726      */
727     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
728       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
729       .resetvalue = 0 },
730     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
731       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
732       .resetvalue = 0 },
733     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
734     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
735       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
736       .resetvalue = 0 },
737     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
738      * implementing it as RAZ means the "debug architecture version" bits
739      * will read as a reserved value, which should cause Linux to not try
740      * to use the debug hardware.
741      */
742     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
743       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
744     /* MMU TLB control. Note that the wildcarding means we cover not just
745      * the unified TLB ops but also the dside/iside/inner-shareable variants.
746      */
747     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
748       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
749       .type = ARM_CP_NO_RAW },
750     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
751       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
752       .type = ARM_CP_NO_RAW },
753     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
754       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
755       .type = ARM_CP_NO_RAW },
756     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
757       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
758       .type = ARM_CP_NO_RAW },
759     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
760       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
761     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
762       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
763     REGINFO_SENTINEL
764 };
765 
766 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
767                         uint64_t value)
768 {
769     uint32_t mask = 0;
770 
771     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
772     if (!arm_feature(env, ARM_FEATURE_V8)) {
773         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
774          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
775          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
776          */
777         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
778             /* VFP coprocessor: cp10 & cp11 [23:20] */
779             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
780 
781             if (!arm_feature(env, ARM_FEATURE_NEON)) {
782                 /* ASEDIS [31] bit is RAO/WI */
783                 value |= (1 << 31);
784             }
785 
786             /* VFPv3 and upwards with NEON implement 32 double precision
787              * registers (D0-D31).
788              */
789             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
790                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
791                 value |= (1 << 30);
792             }
793         }
794         value &= mask;
795     }
796 
797     /*
798      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
799      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
800      */
801     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
802         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
803         value &= ~(0xf << 20);
804         value |= env->cp15.cpacr_el1 & (0xf << 20);
805     }
806 
807     env->cp15.cpacr_el1 = value;
808 }
809 
810 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
811 {
812     /*
813      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
814      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
815      */
816     uint64_t value = env->cp15.cpacr_el1;
817 
818     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
819         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
820         value &= ~(0xf << 20);
821     }
822     return value;
823 }
824 
825 
826 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
827 {
828     /* Call cpacr_write() so that we reset with the correct RAO bits set
829      * for our CPU features.
830      */
831     cpacr_write(env, ri, 0);
832 }
833 
834 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
835                                    bool isread)
836 {
837     if (arm_feature(env, ARM_FEATURE_V8)) {
838         /* Check if CPACR accesses are to be trapped to EL2 */
839         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
840             (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
841             return CP_ACCESS_TRAP_EL2;
842         /* Check if CPACR accesses are to be trapped to EL3 */
843         } else if (arm_current_el(env) < 3 &&
844                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
845             return CP_ACCESS_TRAP_EL3;
846         }
847     }
848 
849     return CP_ACCESS_OK;
850 }
851 
852 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
853                                   bool isread)
854 {
855     /* Check if CPTR accesses are set to trap to EL3 */
856     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
857         return CP_ACCESS_TRAP_EL3;
858     }
859 
860     return CP_ACCESS_OK;
861 }
862 
863 static const ARMCPRegInfo v6_cp_reginfo[] = {
864     /* prefetch by MVA in v6, NOP in v7 */
865     { .name = "MVA_prefetch",
866       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
867       .access = PL1_W, .type = ARM_CP_NOP },
868     /* We need to break the TB after ISB to execute self-modifying code
869      * correctly and also to take any pending interrupts immediately.
870      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
871      */
872     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
873       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
874     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
875       .access = PL0_W, .type = ARM_CP_NOP },
876     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
877       .access = PL0_W, .type = ARM_CP_NOP },
878     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
879       .access = PL1_RW, .accessfn = access_tvm_trvm,
880       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
881                              offsetof(CPUARMState, cp15.ifar_ns) },
882       .resetvalue = 0, },
883     /* Watchpoint Fault Address Register : should actually only be present
884      * for 1136, 1176, 11MPCore.
885      */
886     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
887       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
888     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
889       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
890       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
891       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
892     REGINFO_SENTINEL
893 };
894 
895 typedef struct pm_event {
896     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
897     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
898     bool (*supported)(CPUARMState *);
899     /*
900      * Retrieve the current count of the underlying event. The programmed
901      * counters hold a difference from the return value from this function
902      */
903     uint64_t (*get_count)(CPUARMState *);
904     /*
905      * Return how many nanoseconds it will take (at a minimum) for count events
906      * to occur. A negative value indicates the counter will never overflow, or
907      * that the counter has otherwise arranged for the overflow bit to be set
908      * and the PMU interrupt to be raised on overflow.
909      */
910     int64_t (*ns_per_count)(uint64_t);
911 } pm_event;
912 
913 static bool event_always_supported(CPUARMState *env)
914 {
915     return true;
916 }
917 
918 static uint64_t swinc_get_count(CPUARMState *env)
919 {
920     /*
921      * SW_INCR events are written directly to the pmevcntr's by writes to
922      * PMSWINC, so there is no underlying count maintained by the PMU itself
923      */
924     return 0;
925 }
926 
927 static int64_t swinc_ns_per(uint64_t ignored)
928 {
929     return -1;
930 }
931 
932 /*
933  * Return the underlying cycle count for the PMU cycle counters. If we're in
934  * usermode, simply return 0.
935  */
936 static uint64_t cycles_get_count(CPUARMState *env)
937 {
938 #ifndef CONFIG_USER_ONLY
939     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
940                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
941 #else
942     return cpu_get_host_ticks();
943 #endif
944 }
945 
946 #ifndef CONFIG_USER_ONLY
947 static int64_t cycles_ns_per(uint64_t cycles)
948 {
949     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
950 }
951 
952 static bool instructions_supported(CPUARMState *env)
953 {
954     return icount_enabled() == 1; /* Precise instruction counting */
955 }
956 
957 static uint64_t instructions_get_count(CPUARMState *env)
958 {
959     return (uint64_t)icount_get_raw();
960 }
961 
962 static int64_t instructions_ns_per(uint64_t icount)
963 {
964     return icount_to_ns((int64_t)icount);
965 }
966 #endif
967 
968 static bool pmu_8_1_events_supported(CPUARMState *env)
969 {
970     /* For events which are supported in any v8.1 PMU */
971     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
972 }
973 
974 static bool pmu_8_4_events_supported(CPUARMState *env)
975 {
976     /* For events which are supported in any v8.1 PMU */
977     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
978 }
979 
980 static uint64_t zero_event_get_count(CPUARMState *env)
981 {
982     /* For events which on QEMU never fire, so their count is always zero */
983     return 0;
984 }
985 
986 static int64_t zero_event_ns_per(uint64_t cycles)
987 {
988     /* An event which never fires can never overflow */
989     return -1;
990 }
991 
992 static const pm_event pm_events[] = {
993     { .number = 0x000, /* SW_INCR */
994       .supported = event_always_supported,
995       .get_count = swinc_get_count,
996       .ns_per_count = swinc_ns_per,
997     },
998 #ifndef CONFIG_USER_ONLY
999     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1000       .supported = instructions_supported,
1001       .get_count = instructions_get_count,
1002       .ns_per_count = instructions_ns_per,
1003     },
1004     { .number = 0x011, /* CPU_CYCLES, Cycle */
1005       .supported = event_always_supported,
1006       .get_count = cycles_get_count,
1007       .ns_per_count = cycles_ns_per,
1008     },
1009 #endif
1010     { .number = 0x023, /* STALL_FRONTEND */
1011       .supported = pmu_8_1_events_supported,
1012       .get_count = zero_event_get_count,
1013       .ns_per_count = zero_event_ns_per,
1014     },
1015     { .number = 0x024, /* STALL_BACKEND */
1016       .supported = pmu_8_1_events_supported,
1017       .get_count = zero_event_get_count,
1018       .ns_per_count = zero_event_ns_per,
1019     },
1020     { .number = 0x03c, /* STALL */
1021       .supported = pmu_8_4_events_supported,
1022       .get_count = zero_event_get_count,
1023       .ns_per_count = zero_event_ns_per,
1024     },
1025 };
1026 
1027 /*
1028  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1029  * events (i.e. the statistical profiling extension), this implementation
1030  * should first be updated to something sparse instead of the current
1031  * supported_event_map[] array.
1032  */
1033 #define MAX_EVENT_ID 0x3c
1034 #define UNSUPPORTED_EVENT UINT16_MAX
1035 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1036 
1037 /*
1038  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1039  * of ARM event numbers to indices in our pm_events array.
1040  *
1041  * Note: Events in the 0x40XX range are not currently supported.
1042  */
1043 void pmu_init(ARMCPU *cpu)
1044 {
1045     unsigned int i;
1046 
1047     /*
1048      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1049      * events to them
1050      */
1051     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1052         supported_event_map[i] = UNSUPPORTED_EVENT;
1053     }
1054     cpu->pmceid0 = 0;
1055     cpu->pmceid1 = 0;
1056 
1057     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1058         const pm_event *cnt = &pm_events[i];
1059         assert(cnt->number <= MAX_EVENT_ID);
1060         /* We do not currently support events in the 0x40xx range */
1061         assert(cnt->number <= 0x3f);
1062 
1063         if (cnt->supported(&cpu->env)) {
1064             supported_event_map[cnt->number] = i;
1065             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1066             if (cnt->number & 0x20) {
1067                 cpu->pmceid1 |= event_mask;
1068             } else {
1069                 cpu->pmceid0 |= event_mask;
1070             }
1071         }
1072     }
1073 }
1074 
1075 /*
1076  * Check at runtime whether a PMU event is supported for the current machine
1077  */
1078 static bool event_supported(uint16_t number)
1079 {
1080     if (number > MAX_EVENT_ID) {
1081         return false;
1082     }
1083     return supported_event_map[number] != UNSUPPORTED_EVENT;
1084 }
1085 
1086 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1087                                    bool isread)
1088 {
1089     /* Performance monitor registers user accessibility is controlled
1090      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1091      * trapping to EL2 or EL3 for other accesses.
1092      */
1093     int el = arm_current_el(env);
1094     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1095 
1096     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1097         return CP_ACCESS_TRAP;
1098     }
1099     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1100         return CP_ACCESS_TRAP_EL2;
1101     }
1102     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1103         return CP_ACCESS_TRAP_EL3;
1104     }
1105 
1106     return CP_ACCESS_OK;
1107 }
1108 
1109 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1110                                            const ARMCPRegInfo *ri,
1111                                            bool isread)
1112 {
1113     /* ER: event counter read trap control */
1114     if (arm_feature(env, ARM_FEATURE_V8)
1115         && arm_current_el(env) == 0
1116         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1117         && isread) {
1118         return CP_ACCESS_OK;
1119     }
1120 
1121     return pmreg_access(env, ri, isread);
1122 }
1123 
1124 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1125                                          const ARMCPRegInfo *ri,
1126                                          bool isread)
1127 {
1128     /* SW: software increment write trap control */
1129     if (arm_feature(env, ARM_FEATURE_V8)
1130         && arm_current_el(env) == 0
1131         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1132         && !isread) {
1133         return CP_ACCESS_OK;
1134     }
1135 
1136     return pmreg_access(env, ri, isread);
1137 }
1138 
1139 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1140                                         const ARMCPRegInfo *ri,
1141                                         bool isread)
1142 {
1143     /* ER: event counter read trap control */
1144     if (arm_feature(env, ARM_FEATURE_V8)
1145         && arm_current_el(env) == 0
1146         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1147         return CP_ACCESS_OK;
1148     }
1149 
1150     return pmreg_access(env, ri, isread);
1151 }
1152 
1153 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1154                                          const ARMCPRegInfo *ri,
1155                                          bool isread)
1156 {
1157     /* CR: cycle counter read trap control */
1158     if (arm_feature(env, ARM_FEATURE_V8)
1159         && arm_current_el(env) == 0
1160         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1161         && isread) {
1162         return CP_ACCESS_OK;
1163     }
1164 
1165     return pmreg_access(env, ri, isread);
1166 }
1167 
1168 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1169  * the current EL, security state, and register configuration.
1170  */
1171 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1172 {
1173     uint64_t filter;
1174     bool e, p, u, nsk, nsu, nsh, m;
1175     bool enabled, prohibited, filtered;
1176     bool secure = arm_is_secure(env);
1177     int el = arm_current_el(env);
1178     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1179     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1180 
1181     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1182         return false;
1183     }
1184 
1185     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1186             (counter < hpmn || counter == 31)) {
1187         e = env->cp15.c9_pmcr & PMCRE;
1188     } else {
1189         e = mdcr_el2 & MDCR_HPME;
1190     }
1191     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1192 
1193     if (!secure) {
1194         if (el == 2 && (counter < hpmn || counter == 31)) {
1195             prohibited = mdcr_el2 & MDCR_HPMD;
1196         } else {
1197             prohibited = false;
1198         }
1199     } else {
1200         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1201            !(env->cp15.mdcr_el3 & MDCR_SPME);
1202     }
1203 
1204     if (prohibited && counter == 31) {
1205         prohibited = env->cp15.c9_pmcr & PMCRDP;
1206     }
1207 
1208     if (counter == 31) {
1209         filter = env->cp15.pmccfiltr_el0;
1210     } else {
1211         filter = env->cp15.c14_pmevtyper[counter];
1212     }
1213 
1214     p   = filter & PMXEVTYPER_P;
1215     u   = filter & PMXEVTYPER_U;
1216     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1217     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1218     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1219     m   = arm_el_is_aa64(env, 1) &&
1220               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1221 
1222     if (el == 0) {
1223         filtered = secure ? u : u != nsu;
1224     } else if (el == 1) {
1225         filtered = secure ? p : p != nsk;
1226     } else if (el == 2) {
1227         filtered = !nsh;
1228     } else { /* EL3 */
1229         filtered = m != p;
1230     }
1231 
1232     if (counter != 31) {
1233         /*
1234          * If not checking PMCCNTR, ensure the counter is setup to an event we
1235          * support
1236          */
1237         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1238         if (!event_supported(event)) {
1239             return false;
1240         }
1241     }
1242 
1243     return enabled && !prohibited && !filtered;
1244 }
1245 
1246 static void pmu_update_irq(CPUARMState *env)
1247 {
1248     ARMCPU *cpu = env_archcpu(env);
1249     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1250             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1251 }
1252 
1253 /*
1254  * Ensure c15_ccnt is the guest-visible count so that operations such as
1255  * enabling/disabling the counter or filtering, modifying the count itself,
1256  * etc. can be done logically. This is essentially a no-op if the counter is
1257  * not enabled at the time of the call.
1258  */
1259 static void pmccntr_op_start(CPUARMState *env)
1260 {
1261     uint64_t cycles = cycles_get_count(env);
1262 
1263     if (pmu_counter_enabled(env, 31)) {
1264         uint64_t eff_cycles = cycles;
1265         if (env->cp15.c9_pmcr & PMCRD) {
1266             /* Increment once every 64 processor clock cycles */
1267             eff_cycles /= 64;
1268         }
1269 
1270         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1271 
1272         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1273                                  1ull << 63 : 1ull << 31;
1274         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1275             env->cp15.c9_pmovsr |= (1 << 31);
1276             pmu_update_irq(env);
1277         }
1278 
1279         env->cp15.c15_ccnt = new_pmccntr;
1280     }
1281     env->cp15.c15_ccnt_delta = cycles;
1282 }
1283 
1284 /*
1285  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1286  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1287  * pmccntr_op_start.
1288  */
1289 static void pmccntr_op_finish(CPUARMState *env)
1290 {
1291     if (pmu_counter_enabled(env, 31)) {
1292 #ifndef CONFIG_USER_ONLY
1293         /* Calculate when the counter will next overflow */
1294         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1295         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1296             remaining_cycles = (uint32_t)remaining_cycles;
1297         }
1298         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1299 
1300         if (overflow_in > 0) {
1301             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1302                 overflow_in;
1303             ARMCPU *cpu = env_archcpu(env);
1304             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1305         }
1306 #endif
1307 
1308         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1309         if (env->cp15.c9_pmcr & PMCRD) {
1310             /* Increment once every 64 processor clock cycles */
1311             prev_cycles /= 64;
1312         }
1313         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1314     }
1315 }
1316 
1317 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1318 {
1319 
1320     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1321     uint64_t count = 0;
1322     if (event_supported(event)) {
1323         uint16_t event_idx = supported_event_map[event];
1324         count = pm_events[event_idx].get_count(env);
1325     }
1326 
1327     if (pmu_counter_enabled(env, counter)) {
1328         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1329 
1330         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1331             env->cp15.c9_pmovsr |= (1 << counter);
1332             pmu_update_irq(env);
1333         }
1334         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1335     }
1336     env->cp15.c14_pmevcntr_delta[counter] = count;
1337 }
1338 
1339 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1340 {
1341     if (pmu_counter_enabled(env, counter)) {
1342 #ifndef CONFIG_USER_ONLY
1343         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1344         uint16_t event_idx = supported_event_map[event];
1345         uint64_t delta = UINT32_MAX -
1346             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1347         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1348 
1349         if (overflow_in > 0) {
1350             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1351                 overflow_in;
1352             ARMCPU *cpu = env_archcpu(env);
1353             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1354         }
1355 #endif
1356 
1357         env->cp15.c14_pmevcntr_delta[counter] -=
1358             env->cp15.c14_pmevcntr[counter];
1359     }
1360 }
1361 
1362 void pmu_op_start(CPUARMState *env)
1363 {
1364     unsigned int i;
1365     pmccntr_op_start(env);
1366     for (i = 0; i < pmu_num_counters(env); i++) {
1367         pmevcntr_op_start(env, i);
1368     }
1369 }
1370 
1371 void pmu_op_finish(CPUARMState *env)
1372 {
1373     unsigned int i;
1374     pmccntr_op_finish(env);
1375     for (i = 0; i < pmu_num_counters(env); i++) {
1376         pmevcntr_op_finish(env, i);
1377     }
1378 }
1379 
1380 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1381 {
1382     pmu_op_start(&cpu->env);
1383 }
1384 
1385 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1386 {
1387     pmu_op_finish(&cpu->env);
1388 }
1389 
1390 void arm_pmu_timer_cb(void *opaque)
1391 {
1392     ARMCPU *cpu = opaque;
1393 
1394     /*
1395      * Update all the counter values based on the current underlying counts,
1396      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1397      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1398      * counter may expire.
1399      */
1400     pmu_op_start(&cpu->env);
1401     pmu_op_finish(&cpu->env);
1402 }
1403 
1404 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1405                        uint64_t value)
1406 {
1407     pmu_op_start(env);
1408 
1409     if (value & PMCRC) {
1410         /* The counter has been reset */
1411         env->cp15.c15_ccnt = 0;
1412     }
1413 
1414     if (value & PMCRP) {
1415         unsigned int i;
1416         for (i = 0; i < pmu_num_counters(env); i++) {
1417             env->cp15.c14_pmevcntr[i] = 0;
1418         }
1419     }
1420 
1421     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1422     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1423 
1424     pmu_op_finish(env);
1425 }
1426 
1427 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1428                           uint64_t value)
1429 {
1430     unsigned int i;
1431     for (i = 0; i < pmu_num_counters(env); i++) {
1432         /* Increment a counter's count iff: */
1433         if ((value & (1 << i)) && /* counter's bit is set */
1434                 /* counter is enabled and not filtered */
1435                 pmu_counter_enabled(env, i) &&
1436                 /* counter is SW_INCR */
1437                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1438             pmevcntr_op_start(env, i);
1439 
1440             /*
1441              * Detect if this write causes an overflow since we can't predict
1442              * PMSWINC overflows like we can for other events
1443              */
1444             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1445 
1446             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1447                 env->cp15.c9_pmovsr |= (1 << i);
1448                 pmu_update_irq(env);
1449             }
1450 
1451             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1452 
1453             pmevcntr_op_finish(env, i);
1454         }
1455     }
1456 }
1457 
1458 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1459 {
1460     uint64_t ret;
1461     pmccntr_op_start(env);
1462     ret = env->cp15.c15_ccnt;
1463     pmccntr_op_finish(env);
1464     return ret;
1465 }
1466 
1467 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1468                          uint64_t value)
1469 {
1470     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1471      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1472      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1473      * accessed.
1474      */
1475     env->cp15.c9_pmselr = value & 0x1f;
1476 }
1477 
1478 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1479                         uint64_t value)
1480 {
1481     pmccntr_op_start(env);
1482     env->cp15.c15_ccnt = value;
1483     pmccntr_op_finish(env);
1484 }
1485 
1486 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1487                             uint64_t value)
1488 {
1489     uint64_t cur_val = pmccntr_read(env, NULL);
1490 
1491     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1492 }
1493 
1494 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1495                             uint64_t value)
1496 {
1497     pmccntr_op_start(env);
1498     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1499     pmccntr_op_finish(env);
1500 }
1501 
1502 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1503                             uint64_t value)
1504 {
1505     pmccntr_op_start(env);
1506     /* M is not accessible from AArch32 */
1507     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1508         (value & PMCCFILTR);
1509     pmccntr_op_finish(env);
1510 }
1511 
1512 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1513 {
1514     /* M is not visible in AArch32 */
1515     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1516 }
1517 
1518 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1519                             uint64_t value)
1520 {
1521     value &= pmu_counter_mask(env);
1522     env->cp15.c9_pmcnten |= value;
1523 }
1524 
1525 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1526                              uint64_t value)
1527 {
1528     value &= pmu_counter_mask(env);
1529     env->cp15.c9_pmcnten &= ~value;
1530 }
1531 
1532 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1533                          uint64_t value)
1534 {
1535     value &= pmu_counter_mask(env);
1536     env->cp15.c9_pmovsr &= ~value;
1537     pmu_update_irq(env);
1538 }
1539 
1540 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1541                          uint64_t value)
1542 {
1543     value &= pmu_counter_mask(env);
1544     env->cp15.c9_pmovsr |= value;
1545     pmu_update_irq(env);
1546 }
1547 
1548 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1549                              uint64_t value, const uint8_t counter)
1550 {
1551     if (counter == 31) {
1552         pmccfiltr_write(env, ri, value);
1553     } else if (counter < pmu_num_counters(env)) {
1554         pmevcntr_op_start(env, counter);
1555 
1556         /*
1557          * If this counter's event type is changing, store the current
1558          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1559          * pmevcntr_op_finish has the correct baseline when it converts back to
1560          * a delta.
1561          */
1562         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1563             PMXEVTYPER_EVTCOUNT;
1564         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1565         if (old_event != new_event) {
1566             uint64_t count = 0;
1567             if (event_supported(new_event)) {
1568                 uint16_t event_idx = supported_event_map[new_event];
1569                 count = pm_events[event_idx].get_count(env);
1570             }
1571             env->cp15.c14_pmevcntr_delta[counter] = count;
1572         }
1573 
1574         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1575         pmevcntr_op_finish(env, counter);
1576     }
1577     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1578      * PMSELR value is equal to or greater than the number of implemented
1579      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1580      */
1581 }
1582 
1583 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1584                                const uint8_t counter)
1585 {
1586     if (counter == 31) {
1587         return env->cp15.pmccfiltr_el0;
1588     } else if (counter < pmu_num_counters(env)) {
1589         return env->cp15.c14_pmevtyper[counter];
1590     } else {
1591       /*
1592        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1593        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1594        */
1595         return 0;
1596     }
1597 }
1598 
1599 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1600                               uint64_t value)
1601 {
1602     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1603     pmevtyper_write(env, ri, value, counter);
1604 }
1605 
1606 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1607                                uint64_t value)
1608 {
1609     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1610     env->cp15.c14_pmevtyper[counter] = value;
1611 
1612     /*
1613      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1614      * pmu_op_finish calls when loading saved state for a migration. Because
1615      * we're potentially updating the type of event here, the value written to
1616      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1617      * different counter type. Therefore, we need to set this value to the
1618      * current count for the counter type we're writing so that pmu_op_finish
1619      * has the correct count for its calculation.
1620      */
1621     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1622     if (event_supported(event)) {
1623         uint16_t event_idx = supported_event_map[event];
1624         env->cp15.c14_pmevcntr_delta[counter] =
1625             pm_events[event_idx].get_count(env);
1626     }
1627 }
1628 
1629 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1630 {
1631     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1632     return pmevtyper_read(env, ri, counter);
1633 }
1634 
1635 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636                              uint64_t value)
1637 {
1638     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1639 }
1640 
1641 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1642 {
1643     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1644 }
1645 
1646 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1647                              uint64_t value, uint8_t counter)
1648 {
1649     if (counter < pmu_num_counters(env)) {
1650         pmevcntr_op_start(env, counter);
1651         env->cp15.c14_pmevcntr[counter] = value;
1652         pmevcntr_op_finish(env, counter);
1653     }
1654     /*
1655      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1656      * are CONSTRAINED UNPREDICTABLE.
1657      */
1658 }
1659 
1660 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1661                               uint8_t counter)
1662 {
1663     if (counter < pmu_num_counters(env)) {
1664         uint64_t ret;
1665         pmevcntr_op_start(env, counter);
1666         ret = env->cp15.c14_pmevcntr[counter];
1667         pmevcntr_op_finish(env, counter);
1668         return ret;
1669     } else {
1670       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1671        * are CONSTRAINED UNPREDICTABLE. */
1672         return 0;
1673     }
1674 }
1675 
1676 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1677                              uint64_t value)
1678 {
1679     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1680     pmevcntr_write(env, ri, value, counter);
1681 }
1682 
1683 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1684 {
1685     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1686     return pmevcntr_read(env, ri, counter);
1687 }
1688 
1689 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1690                              uint64_t value)
1691 {
1692     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693     assert(counter < pmu_num_counters(env));
1694     env->cp15.c14_pmevcntr[counter] = value;
1695     pmevcntr_write(env, ri, value, counter);
1696 }
1697 
1698 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1699 {
1700     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1701     assert(counter < pmu_num_counters(env));
1702     return env->cp15.c14_pmevcntr[counter];
1703 }
1704 
1705 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706                              uint64_t value)
1707 {
1708     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1709 }
1710 
1711 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1712 {
1713     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1714 }
1715 
1716 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1717                             uint64_t value)
1718 {
1719     if (arm_feature(env, ARM_FEATURE_V8)) {
1720         env->cp15.c9_pmuserenr = value & 0xf;
1721     } else {
1722         env->cp15.c9_pmuserenr = value & 1;
1723     }
1724 }
1725 
1726 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1727                              uint64_t value)
1728 {
1729     /* We have no event counters so only the C bit can be changed */
1730     value &= pmu_counter_mask(env);
1731     env->cp15.c9_pminten |= value;
1732     pmu_update_irq(env);
1733 }
1734 
1735 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736                              uint64_t value)
1737 {
1738     value &= pmu_counter_mask(env);
1739     env->cp15.c9_pminten &= ~value;
1740     pmu_update_irq(env);
1741 }
1742 
1743 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1744                        uint64_t value)
1745 {
1746     /* Note that even though the AArch64 view of this register has bits
1747      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1748      * architectural requirements for bits which are RES0 only in some
1749      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1750      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1751      */
1752     raw_write(env, ri, value & ~0x1FULL);
1753 }
1754 
1755 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1756 {
1757     /* Begin with base v8.0 state.  */
1758     uint32_t valid_mask = 0x3fff;
1759     ARMCPU *cpu = env_archcpu(env);
1760 
1761     if (ri->state == ARM_CP_STATE_AA64) {
1762         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1763             !cpu_isar_feature(aa64_aa32_el1, cpu)) {
1764                 value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1765         }
1766         valid_mask &= ~SCR_NET;
1767 
1768         if (cpu_isar_feature(aa64_lor, cpu)) {
1769             valid_mask |= SCR_TLOR;
1770         }
1771         if (cpu_isar_feature(aa64_pauth, cpu)) {
1772             valid_mask |= SCR_API | SCR_APK;
1773         }
1774         if (cpu_isar_feature(aa64_sel2, cpu)) {
1775             valid_mask |= SCR_EEL2;
1776         }
1777         if (cpu_isar_feature(aa64_mte, cpu)) {
1778             valid_mask |= SCR_ATA;
1779         }
1780     } else {
1781         valid_mask &= ~(SCR_RW | SCR_ST);
1782     }
1783 
1784     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1785         valid_mask &= ~SCR_HCE;
1786 
1787         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1788          * supported if EL2 exists. The bit is UNK/SBZP when
1789          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1790          * when EL2 is unavailable.
1791          * On ARMv8, this bit is always available.
1792          */
1793         if (arm_feature(env, ARM_FEATURE_V7) &&
1794             !arm_feature(env, ARM_FEATURE_V8)) {
1795             valid_mask &= ~SCR_SMD;
1796         }
1797     }
1798 
1799     /* Clear all-context RES0 bits.  */
1800     value &= valid_mask;
1801     raw_write(env, ri, value);
1802 }
1803 
1804 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1805 {
1806     /*
1807      * scr_write will set the RES1 bits on an AArch64-only CPU.
1808      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1809      */
1810     scr_write(env, ri, 0);
1811 }
1812 
1813 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1814                                        const ARMCPRegInfo *ri,
1815                                        bool isread)
1816 {
1817     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1818         return CP_ACCESS_TRAP_EL2;
1819     }
1820 
1821     return CP_ACCESS_OK;
1822 }
1823 
1824 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1825 {
1826     ARMCPU *cpu = env_archcpu(env);
1827 
1828     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1829      * bank
1830      */
1831     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1832                                         ri->secure & ARM_CP_SECSTATE_S);
1833 
1834     return cpu->ccsidr[index];
1835 }
1836 
1837 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1838                          uint64_t value)
1839 {
1840     raw_write(env, ri, value & 0xf);
1841 }
1842 
1843 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1844 {
1845     CPUState *cs = env_cpu(env);
1846     bool el1 = arm_current_el(env) == 1;
1847     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1848     uint64_t ret = 0;
1849 
1850     if (hcr_el2 & HCR_IMO) {
1851         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1852             ret |= CPSR_I;
1853         }
1854     } else {
1855         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1856             ret |= CPSR_I;
1857         }
1858     }
1859 
1860     if (hcr_el2 & HCR_FMO) {
1861         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1862             ret |= CPSR_F;
1863         }
1864     } else {
1865         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1866             ret |= CPSR_F;
1867         }
1868     }
1869 
1870     /* External aborts are not possible in QEMU so A bit is always clear */
1871     return ret;
1872 }
1873 
1874 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1875                                        bool isread)
1876 {
1877     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1878         return CP_ACCESS_TRAP_EL2;
1879     }
1880 
1881     return CP_ACCESS_OK;
1882 }
1883 
1884 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1885                                        bool isread)
1886 {
1887     if (arm_feature(env, ARM_FEATURE_V8)) {
1888         return access_aa64_tid1(env, ri, isread);
1889     }
1890 
1891     return CP_ACCESS_OK;
1892 }
1893 
1894 static const ARMCPRegInfo v7_cp_reginfo[] = {
1895     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1896     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1897       .access = PL1_W, .type = ARM_CP_NOP },
1898     /* Performance monitors are implementation defined in v7,
1899      * but with an ARM recommended set of registers, which we
1900      * follow.
1901      *
1902      * Performance registers fall into three categories:
1903      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1904      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1905      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1906      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1907      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1908      */
1909     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1910       .access = PL0_RW, .type = ARM_CP_ALIAS,
1911       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1912       .writefn = pmcntenset_write,
1913       .accessfn = pmreg_access,
1914       .raw_writefn = raw_write },
1915     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1916       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1917       .access = PL0_RW, .accessfn = pmreg_access,
1918       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1919       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1920     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1921       .access = PL0_RW,
1922       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1923       .accessfn = pmreg_access,
1924       .writefn = pmcntenclr_write,
1925       .type = ARM_CP_ALIAS },
1926     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1927       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1928       .access = PL0_RW, .accessfn = pmreg_access,
1929       .type = ARM_CP_ALIAS,
1930       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1931       .writefn = pmcntenclr_write },
1932     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1933       .access = PL0_RW, .type = ARM_CP_IO,
1934       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1935       .accessfn = pmreg_access,
1936       .writefn = pmovsr_write,
1937       .raw_writefn = raw_write },
1938     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1939       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1940       .access = PL0_RW, .accessfn = pmreg_access,
1941       .type = ARM_CP_ALIAS | ARM_CP_IO,
1942       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1943       .writefn = pmovsr_write,
1944       .raw_writefn = raw_write },
1945     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1946       .access = PL0_W, .accessfn = pmreg_access_swinc,
1947       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1948       .writefn = pmswinc_write },
1949     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1950       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1951       .access = PL0_W, .accessfn = pmreg_access_swinc,
1952       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1953       .writefn = pmswinc_write },
1954     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1955       .access = PL0_RW, .type = ARM_CP_ALIAS,
1956       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1957       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1958       .raw_writefn = raw_write},
1959     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1960       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1961       .access = PL0_RW, .accessfn = pmreg_access_selr,
1962       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1963       .writefn = pmselr_write, .raw_writefn = raw_write, },
1964     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1965       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1966       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1967       .accessfn = pmreg_access_ccntr },
1968     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1969       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1970       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1971       .type = ARM_CP_IO,
1972       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1973       .readfn = pmccntr_read, .writefn = pmccntr_write,
1974       .raw_readfn = raw_read, .raw_writefn = raw_write, },
1975     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1976       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1977       .access = PL0_RW, .accessfn = pmreg_access,
1978       .type = ARM_CP_ALIAS | ARM_CP_IO,
1979       .resetvalue = 0, },
1980     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1981       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1982       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1983       .access = PL0_RW, .accessfn = pmreg_access,
1984       .type = ARM_CP_IO,
1985       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1986       .resetvalue = 0, },
1987     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1988       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1989       .accessfn = pmreg_access,
1990       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1991     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1992       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1993       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1994       .accessfn = pmreg_access,
1995       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1996     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1997       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1998       .accessfn = pmreg_access_xevcntr,
1999       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2000     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2001       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2002       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2003       .accessfn = pmreg_access_xevcntr,
2004       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2005     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2006       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2007       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2008       .resetvalue = 0,
2009       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2010     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2011       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2012       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2013       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2014       .resetvalue = 0,
2015       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2016     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2017       .access = PL1_RW, .accessfn = access_tpm,
2018       .type = ARM_CP_ALIAS | ARM_CP_IO,
2019       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2020       .resetvalue = 0,
2021       .writefn = pmintenset_write, .raw_writefn = raw_write },
2022     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2023       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2024       .access = PL1_RW, .accessfn = access_tpm,
2025       .type = ARM_CP_IO,
2026       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2027       .writefn = pmintenset_write, .raw_writefn = raw_write,
2028       .resetvalue = 0x0 },
2029     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2030       .access = PL1_RW, .accessfn = access_tpm,
2031       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2032       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2033       .writefn = pmintenclr_write, },
2034     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2035       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2036       .access = PL1_RW, .accessfn = access_tpm,
2037       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2038       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2039       .writefn = pmintenclr_write },
2040     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2041       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2042       .access = PL1_R,
2043       .accessfn = access_aa64_tid2,
2044       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2045     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2046       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2047       .access = PL1_RW,
2048       .accessfn = access_aa64_tid2,
2049       .writefn = csselr_write, .resetvalue = 0,
2050       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2051                              offsetof(CPUARMState, cp15.csselr_ns) } },
2052     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2053      * just RAZ for all cores:
2054      */
2055     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2056       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2057       .access = PL1_R, .type = ARM_CP_CONST,
2058       .accessfn = access_aa64_tid1,
2059       .resetvalue = 0 },
2060     /* Auxiliary fault status registers: these also are IMPDEF, and we
2061      * choose to RAZ/WI for all cores.
2062      */
2063     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2064       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2065       .access = PL1_RW, .accessfn = access_tvm_trvm,
2066       .type = ARM_CP_CONST, .resetvalue = 0 },
2067     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2068       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2069       .access = PL1_RW, .accessfn = access_tvm_trvm,
2070       .type = ARM_CP_CONST, .resetvalue = 0 },
2071     /* MAIR can just read-as-written because we don't implement caches
2072      * and so don't need to care about memory attributes.
2073      */
2074     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2075       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2076       .access = PL1_RW, .accessfn = access_tvm_trvm,
2077       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2078       .resetvalue = 0 },
2079     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2080       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2081       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2082       .resetvalue = 0 },
2083     /* For non-long-descriptor page tables these are PRRR and NMRR;
2084      * regardless they still act as reads-as-written for QEMU.
2085      */
2086      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2087       * allows them to assign the correct fieldoffset based on the endianness
2088       * handled in the field definitions.
2089       */
2090     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2091       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2092       .access = PL1_RW, .accessfn = access_tvm_trvm,
2093       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2094                              offsetof(CPUARMState, cp15.mair0_ns) },
2095       .resetfn = arm_cp_reset_ignore },
2096     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2097       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2098       .access = PL1_RW, .accessfn = access_tvm_trvm,
2099       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2100                              offsetof(CPUARMState, cp15.mair1_ns) },
2101       .resetfn = arm_cp_reset_ignore },
2102     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2103       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2104       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2105     /* 32 bit ITLB invalidates */
2106     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2107       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2108       .writefn = tlbiall_write },
2109     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2110       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2111       .writefn = tlbimva_write },
2112     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2113       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2114       .writefn = tlbiasid_write },
2115     /* 32 bit DTLB invalidates */
2116     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2117       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2118       .writefn = tlbiall_write },
2119     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2120       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2121       .writefn = tlbimva_write },
2122     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2123       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2124       .writefn = tlbiasid_write },
2125     /* 32 bit TLB invalidates */
2126     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2127       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2128       .writefn = tlbiall_write },
2129     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2130       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2131       .writefn = tlbimva_write },
2132     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2133       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2134       .writefn = tlbiasid_write },
2135     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2136       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2137       .writefn = tlbimvaa_write },
2138     REGINFO_SENTINEL
2139 };
2140 
2141 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2142     /* 32 bit TLB invalidates, Inner Shareable */
2143     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2144       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2145       .writefn = tlbiall_is_write },
2146     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2147       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2148       .writefn = tlbimva_is_write },
2149     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2150       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2151       .writefn = tlbiasid_is_write },
2152     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2153       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2154       .writefn = tlbimvaa_is_write },
2155     REGINFO_SENTINEL
2156 };
2157 
2158 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2159     /* PMOVSSET is not implemented in v7 before v7ve */
2160     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2161       .access = PL0_RW, .accessfn = pmreg_access,
2162       .type = ARM_CP_ALIAS | ARM_CP_IO,
2163       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2164       .writefn = pmovsset_write,
2165       .raw_writefn = raw_write },
2166     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2167       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2168       .access = PL0_RW, .accessfn = pmreg_access,
2169       .type = ARM_CP_ALIAS | ARM_CP_IO,
2170       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2171       .writefn = pmovsset_write,
2172       .raw_writefn = raw_write },
2173     REGINFO_SENTINEL
2174 };
2175 
2176 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2177                         uint64_t value)
2178 {
2179     value &= 1;
2180     env->teecr = value;
2181 }
2182 
2183 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2184                                    bool isread)
2185 {
2186     /*
2187      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2188      * at all, so we don't need to check whether we're v8A.
2189      */
2190     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2191         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2192         return CP_ACCESS_TRAP_EL2;
2193     }
2194     return CP_ACCESS_OK;
2195 }
2196 
2197 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2198                                     bool isread)
2199 {
2200     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2201         return CP_ACCESS_TRAP;
2202     }
2203     return teecr_access(env, ri, isread);
2204 }
2205 
2206 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2207     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2208       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2209       .resetvalue = 0,
2210       .writefn = teecr_write, .accessfn = teecr_access },
2211     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2212       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2213       .accessfn = teehbr_access, .resetvalue = 0 },
2214     REGINFO_SENTINEL
2215 };
2216 
2217 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2218     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2219       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2220       .access = PL0_RW,
2221       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2222     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2223       .access = PL0_RW,
2224       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2225                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2226       .resetfn = arm_cp_reset_ignore },
2227     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2228       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2229       .access = PL0_R|PL1_W,
2230       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2231       .resetvalue = 0},
2232     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2233       .access = PL0_R|PL1_W,
2234       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2235                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2236       .resetfn = arm_cp_reset_ignore },
2237     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2238       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2239       .access = PL1_RW,
2240       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2241     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2242       .access = PL1_RW,
2243       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2244                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2245       .resetvalue = 0 },
2246     REGINFO_SENTINEL
2247 };
2248 
2249 #ifndef CONFIG_USER_ONLY
2250 
2251 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2252                                        bool isread)
2253 {
2254     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2255      * Writable only at the highest implemented exception level.
2256      */
2257     int el = arm_current_el(env);
2258     uint64_t hcr;
2259     uint32_t cntkctl;
2260 
2261     switch (el) {
2262     case 0:
2263         hcr = arm_hcr_el2_eff(env);
2264         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2265             cntkctl = env->cp15.cnthctl_el2;
2266         } else {
2267             cntkctl = env->cp15.c14_cntkctl;
2268         }
2269         if (!extract32(cntkctl, 0, 2)) {
2270             return CP_ACCESS_TRAP;
2271         }
2272         break;
2273     case 1:
2274         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2275             arm_is_secure_below_el3(env)) {
2276             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2277             return CP_ACCESS_TRAP_UNCATEGORIZED;
2278         }
2279         break;
2280     case 2:
2281     case 3:
2282         break;
2283     }
2284 
2285     if (!isread && el < arm_highest_el(env)) {
2286         return CP_ACCESS_TRAP_UNCATEGORIZED;
2287     }
2288 
2289     return CP_ACCESS_OK;
2290 }
2291 
2292 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2293                                         bool isread)
2294 {
2295     unsigned int cur_el = arm_current_el(env);
2296     bool has_el2 = arm_is_el2_enabled(env);
2297     uint64_t hcr = arm_hcr_el2_eff(env);
2298 
2299     switch (cur_el) {
2300     case 0:
2301         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2302         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2303             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2304                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2305         }
2306 
2307         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2308         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2309             return CP_ACCESS_TRAP;
2310         }
2311 
2312         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2313         if (hcr & HCR_E2H) {
2314             if (timeridx == GTIMER_PHYS &&
2315                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2316                 return CP_ACCESS_TRAP_EL2;
2317             }
2318         } else {
2319             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2320             if (has_el2 && timeridx == GTIMER_PHYS &&
2321                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2322                 return CP_ACCESS_TRAP_EL2;
2323             }
2324         }
2325         break;
2326 
2327     case 1:
2328         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2329         if (has_el2 && timeridx == GTIMER_PHYS &&
2330             (hcr & HCR_E2H
2331              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2332              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2333             return CP_ACCESS_TRAP_EL2;
2334         }
2335         break;
2336     }
2337     return CP_ACCESS_OK;
2338 }
2339 
2340 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2341                                       bool isread)
2342 {
2343     unsigned int cur_el = arm_current_el(env);
2344     bool has_el2 = arm_is_el2_enabled(env);
2345     uint64_t hcr = arm_hcr_el2_eff(env);
2346 
2347     switch (cur_el) {
2348     case 0:
2349         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2350             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2351             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2352                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2353         }
2354 
2355         /*
2356          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2357          * EL0 if EL0[PV]TEN is zero.
2358          */
2359         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2360             return CP_ACCESS_TRAP;
2361         }
2362         /* fall through */
2363 
2364     case 1:
2365         if (has_el2 && timeridx == GTIMER_PHYS) {
2366             if (hcr & HCR_E2H) {
2367                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2368                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2369                     return CP_ACCESS_TRAP_EL2;
2370                 }
2371             } else {
2372                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2373                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2374                     return CP_ACCESS_TRAP_EL2;
2375                 }
2376             }
2377         }
2378         break;
2379     }
2380     return CP_ACCESS_OK;
2381 }
2382 
2383 static CPAccessResult gt_pct_access(CPUARMState *env,
2384                                     const ARMCPRegInfo *ri,
2385                                     bool isread)
2386 {
2387     return gt_counter_access(env, GTIMER_PHYS, isread);
2388 }
2389 
2390 static CPAccessResult gt_vct_access(CPUARMState *env,
2391                                     const ARMCPRegInfo *ri,
2392                                     bool isread)
2393 {
2394     return gt_counter_access(env, GTIMER_VIRT, isread);
2395 }
2396 
2397 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2398                                        bool isread)
2399 {
2400     return gt_timer_access(env, GTIMER_PHYS, isread);
2401 }
2402 
2403 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2404                                        bool isread)
2405 {
2406     return gt_timer_access(env, GTIMER_VIRT, isread);
2407 }
2408 
2409 static CPAccessResult gt_stimer_access(CPUARMState *env,
2410                                        const ARMCPRegInfo *ri,
2411                                        bool isread)
2412 {
2413     /* The AArch64 register view of the secure physical timer is
2414      * always accessible from EL3, and configurably accessible from
2415      * Secure EL1.
2416      */
2417     switch (arm_current_el(env)) {
2418     case 1:
2419         if (!arm_is_secure(env)) {
2420             return CP_ACCESS_TRAP;
2421         }
2422         if (!(env->cp15.scr_el3 & SCR_ST)) {
2423             return CP_ACCESS_TRAP_EL3;
2424         }
2425         return CP_ACCESS_OK;
2426     case 0:
2427     case 2:
2428         return CP_ACCESS_TRAP;
2429     case 3:
2430         return CP_ACCESS_OK;
2431     default:
2432         g_assert_not_reached();
2433     }
2434 }
2435 
2436 static uint64_t gt_get_countervalue(CPUARMState *env)
2437 {
2438     ARMCPU *cpu = env_archcpu(env);
2439 
2440     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2441 }
2442 
2443 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2444 {
2445     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2446 
2447     if (gt->ctl & 1) {
2448         /* Timer enabled: calculate and set current ISTATUS, irq, and
2449          * reset timer to when ISTATUS next has to change
2450          */
2451         uint64_t offset = timeridx == GTIMER_VIRT ?
2452                                       cpu->env.cp15.cntvoff_el2 : 0;
2453         uint64_t count = gt_get_countervalue(&cpu->env);
2454         /* Note that this must be unsigned 64 bit arithmetic: */
2455         int istatus = count - offset >= gt->cval;
2456         uint64_t nexttick;
2457         int irqstate;
2458 
2459         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2460 
2461         irqstate = (istatus && !(gt->ctl & 2));
2462         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2463 
2464         if (istatus) {
2465             /* Next transition is when count rolls back over to zero */
2466             nexttick = UINT64_MAX;
2467         } else {
2468             /* Next transition is when we hit cval */
2469             nexttick = gt->cval + offset;
2470         }
2471         /* Note that the desired next expiry time might be beyond the
2472          * signed-64-bit range of a QEMUTimer -- in this case we just
2473          * set the timer for as far in the future as possible. When the
2474          * timer expires we will reset the timer for any remaining period.
2475          */
2476         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2477             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2478         } else {
2479             timer_mod(cpu->gt_timer[timeridx], nexttick);
2480         }
2481         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2482     } else {
2483         /* Timer disabled: ISTATUS and timer output always clear */
2484         gt->ctl &= ~4;
2485         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2486         timer_del(cpu->gt_timer[timeridx]);
2487         trace_arm_gt_recalc_disabled(timeridx);
2488     }
2489 }
2490 
2491 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2492                            int timeridx)
2493 {
2494     ARMCPU *cpu = env_archcpu(env);
2495 
2496     timer_del(cpu->gt_timer[timeridx]);
2497 }
2498 
2499 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2500 {
2501     return gt_get_countervalue(env);
2502 }
2503 
2504 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2505 {
2506     uint64_t hcr;
2507 
2508     switch (arm_current_el(env)) {
2509     case 2:
2510         hcr = arm_hcr_el2_eff(env);
2511         if (hcr & HCR_E2H) {
2512             return 0;
2513         }
2514         break;
2515     case 0:
2516         hcr = arm_hcr_el2_eff(env);
2517         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2518             return 0;
2519         }
2520         break;
2521     }
2522 
2523     return env->cp15.cntvoff_el2;
2524 }
2525 
2526 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2527 {
2528     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2529 }
2530 
2531 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2532                           int timeridx,
2533                           uint64_t value)
2534 {
2535     trace_arm_gt_cval_write(timeridx, value);
2536     env->cp15.c14_timer[timeridx].cval = value;
2537     gt_recalc_timer(env_archcpu(env), timeridx);
2538 }
2539 
2540 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2541                              int timeridx)
2542 {
2543     uint64_t offset = 0;
2544 
2545     switch (timeridx) {
2546     case GTIMER_VIRT:
2547     case GTIMER_HYPVIRT:
2548         offset = gt_virt_cnt_offset(env);
2549         break;
2550     }
2551 
2552     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2553                       (gt_get_countervalue(env) - offset));
2554 }
2555 
2556 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2557                           int timeridx,
2558                           uint64_t value)
2559 {
2560     uint64_t offset = 0;
2561 
2562     switch (timeridx) {
2563     case GTIMER_VIRT:
2564     case GTIMER_HYPVIRT:
2565         offset = gt_virt_cnt_offset(env);
2566         break;
2567     }
2568 
2569     trace_arm_gt_tval_write(timeridx, value);
2570     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2571                                          sextract64(value, 0, 32);
2572     gt_recalc_timer(env_archcpu(env), timeridx);
2573 }
2574 
2575 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2576                          int timeridx,
2577                          uint64_t value)
2578 {
2579     ARMCPU *cpu = env_archcpu(env);
2580     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2581 
2582     trace_arm_gt_ctl_write(timeridx, value);
2583     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2584     if ((oldval ^ value) & 1) {
2585         /* Enable toggled */
2586         gt_recalc_timer(cpu, timeridx);
2587     } else if ((oldval ^ value) & 2) {
2588         /* IMASK toggled: don't need to recalculate,
2589          * just set the interrupt line based on ISTATUS
2590          */
2591         int irqstate = (oldval & 4) && !(value & 2);
2592 
2593         trace_arm_gt_imask_toggle(timeridx, irqstate);
2594         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2595     }
2596 }
2597 
2598 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2599 {
2600     gt_timer_reset(env, ri, GTIMER_PHYS);
2601 }
2602 
2603 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2604                                uint64_t value)
2605 {
2606     gt_cval_write(env, ri, GTIMER_PHYS, value);
2607 }
2608 
2609 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2610 {
2611     return gt_tval_read(env, ri, GTIMER_PHYS);
2612 }
2613 
2614 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2615                                uint64_t value)
2616 {
2617     gt_tval_write(env, ri, GTIMER_PHYS, value);
2618 }
2619 
2620 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2621                               uint64_t value)
2622 {
2623     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2624 }
2625 
2626 static int gt_phys_redir_timeridx(CPUARMState *env)
2627 {
2628     switch (arm_mmu_idx(env)) {
2629     case ARMMMUIdx_E20_0:
2630     case ARMMMUIdx_E20_2:
2631     case ARMMMUIdx_E20_2_PAN:
2632     case ARMMMUIdx_SE20_0:
2633     case ARMMMUIdx_SE20_2:
2634     case ARMMMUIdx_SE20_2_PAN:
2635         return GTIMER_HYP;
2636     default:
2637         return GTIMER_PHYS;
2638     }
2639 }
2640 
2641 static int gt_virt_redir_timeridx(CPUARMState *env)
2642 {
2643     switch (arm_mmu_idx(env)) {
2644     case ARMMMUIdx_E20_0:
2645     case ARMMMUIdx_E20_2:
2646     case ARMMMUIdx_E20_2_PAN:
2647     case ARMMMUIdx_SE20_0:
2648     case ARMMMUIdx_SE20_2:
2649     case ARMMMUIdx_SE20_2_PAN:
2650         return GTIMER_HYPVIRT;
2651     default:
2652         return GTIMER_VIRT;
2653     }
2654 }
2655 
2656 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2657                                         const ARMCPRegInfo *ri)
2658 {
2659     int timeridx = gt_phys_redir_timeridx(env);
2660     return env->cp15.c14_timer[timeridx].cval;
2661 }
2662 
2663 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2664                                      uint64_t value)
2665 {
2666     int timeridx = gt_phys_redir_timeridx(env);
2667     gt_cval_write(env, ri, timeridx, value);
2668 }
2669 
2670 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2671                                         const ARMCPRegInfo *ri)
2672 {
2673     int timeridx = gt_phys_redir_timeridx(env);
2674     return gt_tval_read(env, ri, timeridx);
2675 }
2676 
2677 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2678                                      uint64_t value)
2679 {
2680     int timeridx = gt_phys_redir_timeridx(env);
2681     gt_tval_write(env, ri, timeridx, value);
2682 }
2683 
2684 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2685                                        const ARMCPRegInfo *ri)
2686 {
2687     int timeridx = gt_phys_redir_timeridx(env);
2688     return env->cp15.c14_timer[timeridx].ctl;
2689 }
2690 
2691 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2692                                     uint64_t value)
2693 {
2694     int timeridx = gt_phys_redir_timeridx(env);
2695     gt_ctl_write(env, ri, timeridx, value);
2696 }
2697 
2698 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2699 {
2700     gt_timer_reset(env, ri, GTIMER_VIRT);
2701 }
2702 
2703 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2704                                uint64_t value)
2705 {
2706     gt_cval_write(env, ri, GTIMER_VIRT, value);
2707 }
2708 
2709 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2710 {
2711     return gt_tval_read(env, ri, GTIMER_VIRT);
2712 }
2713 
2714 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2715                                uint64_t value)
2716 {
2717     gt_tval_write(env, ri, GTIMER_VIRT, value);
2718 }
2719 
2720 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2721                               uint64_t value)
2722 {
2723     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2724 }
2725 
2726 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727                               uint64_t value)
2728 {
2729     ARMCPU *cpu = env_archcpu(env);
2730 
2731     trace_arm_gt_cntvoff_write(value);
2732     raw_write(env, ri, value);
2733     gt_recalc_timer(cpu, GTIMER_VIRT);
2734 }
2735 
2736 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2737                                         const ARMCPRegInfo *ri)
2738 {
2739     int timeridx = gt_virt_redir_timeridx(env);
2740     return env->cp15.c14_timer[timeridx].cval;
2741 }
2742 
2743 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2744                                      uint64_t value)
2745 {
2746     int timeridx = gt_virt_redir_timeridx(env);
2747     gt_cval_write(env, ri, timeridx, value);
2748 }
2749 
2750 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2751                                         const ARMCPRegInfo *ri)
2752 {
2753     int timeridx = gt_virt_redir_timeridx(env);
2754     return gt_tval_read(env, ri, timeridx);
2755 }
2756 
2757 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2758                                      uint64_t value)
2759 {
2760     int timeridx = gt_virt_redir_timeridx(env);
2761     gt_tval_write(env, ri, timeridx, value);
2762 }
2763 
2764 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2765                                        const ARMCPRegInfo *ri)
2766 {
2767     int timeridx = gt_virt_redir_timeridx(env);
2768     return env->cp15.c14_timer[timeridx].ctl;
2769 }
2770 
2771 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2772                                     uint64_t value)
2773 {
2774     int timeridx = gt_virt_redir_timeridx(env);
2775     gt_ctl_write(env, ri, timeridx, value);
2776 }
2777 
2778 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2779 {
2780     gt_timer_reset(env, ri, GTIMER_HYP);
2781 }
2782 
2783 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784                               uint64_t value)
2785 {
2786     gt_cval_write(env, ri, GTIMER_HYP, value);
2787 }
2788 
2789 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2790 {
2791     return gt_tval_read(env, ri, GTIMER_HYP);
2792 }
2793 
2794 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2795                               uint64_t value)
2796 {
2797     gt_tval_write(env, ri, GTIMER_HYP, value);
2798 }
2799 
2800 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2801                               uint64_t value)
2802 {
2803     gt_ctl_write(env, ri, GTIMER_HYP, value);
2804 }
2805 
2806 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2807 {
2808     gt_timer_reset(env, ri, GTIMER_SEC);
2809 }
2810 
2811 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2812                               uint64_t value)
2813 {
2814     gt_cval_write(env, ri, GTIMER_SEC, value);
2815 }
2816 
2817 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2818 {
2819     return gt_tval_read(env, ri, GTIMER_SEC);
2820 }
2821 
2822 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823                               uint64_t value)
2824 {
2825     gt_tval_write(env, ri, GTIMER_SEC, value);
2826 }
2827 
2828 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2829                               uint64_t value)
2830 {
2831     gt_ctl_write(env, ri, GTIMER_SEC, value);
2832 }
2833 
2834 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2835 {
2836     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2837 }
2838 
2839 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2840                              uint64_t value)
2841 {
2842     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2843 }
2844 
2845 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2846 {
2847     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2848 }
2849 
2850 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2851                              uint64_t value)
2852 {
2853     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2854 }
2855 
2856 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857                             uint64_t value)
2858 {
2859     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2860 }
2861 
2862 void arm_gt_ptimer_cb(void *opaque)
2863 {
2864     ARMCPU *cpu = opaque;
2865 
2866     gt_recalc_timer(cpu, GTIMER_PHYS);
2867 }
2868 
2869 void arm_gt_vtimer_cb(void *opaque)
2870 {
2871     ARMCPU *cpu = opaque;
2872 
2873     gt_recalc_timer(cpu, GTIMER_VIRT);
2874 }
2875 
2876 void arm_gt_htimer_cb(void *opaque)
2877 {
2878     ARMCPU *cpu = opaque;
2879 
2880     gt_recalc_timer(cpu, GTIMER_HYP);
2881 }
2882 
2883 void arm_gt_stimer_cb(void *opaque)
2884 {
2885     ARMCPU *cpu = opaque;
2886 
2887     gt_recalc_timer(cpu, GTIMER_SEC);
2888 }
2889 
2890 void arm_gt_hvtimer_cb(void *opaque)
2891 {
2892     ARMCPU *cpu = opaque;
2893 
2894     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2895 }
2896 
2897 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2898 {
2899     ARMCPU *cpu = env_archcpu(env);
2900 
2901     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2902 }
2903 
2904 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2905     /* Note that CNTFRQ is purely reads-as-written for the benefit
2906      * of software; writing it doesn't actually change the timer frequency.
2907      * Our reset value matches the fixed frequency we implement the timer at.
2908      */
2909     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2910       .type = ARM_CP_ALIAS,
2911       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2912       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2913     },
2914     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2915       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2916       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2917       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2918       .resetfn = arm_gt_cntfrq_reset,
2919     },
2920     /* overall control: mostly access permissions */
2921     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2922       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2923       .access = PL1_RW,
2924       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2925       .resetvalue = 0,
2926     },
2927     /* per-timer control */
2928     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2929       .secure = ARM_CP_SECSTATE_NS,
2930       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2931       .accessfn = gt_ptimer_access,
2932       .fieldoffset = offsetoflow32(CPUARMState,
2933                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2934       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2935       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2936     },
2937     { .name = "CNTP_CTL_S",
2938       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2939       .secure = ARM_CP_SECSTATE_S,
2940       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2941       .accessfn = gt_ptimer_access,
2942       .fieldoffset = offsetoflow32(CPUARMState,
2943                                    cp15.c14_timer[GTIMER_SEC].ctl),
2944       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2945     },
2946     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2947       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2948       .type = ARM_CP_IO, .access = PL0_RW,
2949       .accessfn = gt_ptimer_access,
2950       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2951       .resetvalue = 0,
2952       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2953       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2954     },
2955     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2956       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2957       .accessfn = gt_vtimer_access,
2958       .fieldoffset = offsetoflow32(CPUARMState,
2959                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2960       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2961       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2962     },
2963     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2964       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2965       .type = ARM_CP_IO, .access = PL0_RW,
2966       .accessfn = gt_vtimer_access,
2967       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2968       .resetvalue = 0,
2969       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2970       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2971     },
2972     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2973     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2974       .secure = ARM_CP_SECSTATE_NS,
2975       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2976       .accessfn = gt_ptimer_access,
2977       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2978     },
2979     { .name = "CNTP_TVAL_S",
2980       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2981       .secure = ARM_CP_SECSTATE_S,
2982       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2983       .accessfn = gt_ptimer_access,
2984       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2985     },
2986     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2987       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2988       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2989       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2990       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2991     },
2992     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2993       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2994       .accessfn = gt_vtimer_access,
2995       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2996     },
2997     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2998       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2999       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3000       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3001       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3002     },
3003     /* The counter itself */
3004     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3005       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3006       .accessfn = gt_pct_access,
3007       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3008     },
3009     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3010       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3011       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3012       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3013     },
3014     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3015       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3016       .accessfn = gt_vct_access,
3017       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3018     },
3019     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3020       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3021       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3022       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3023     },
3024     /* Comparison value, indicating when the timer goes off */
3025     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3026       .secure = ARM_CP_SECSTATE_NS,
3027       .access = PL0_RW,
3028       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3029       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3030       .accessfn = gt_ptimer_access,
3031       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3032       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3033     },
3034     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3035       .secure = ARM_CP_SECSTATE_S,
3036       .access = PL0_RW,
3037       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3038       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3039       .accessfn = gt_ptimer_access,
3040       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3041     },
3042     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3043       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3044       .access = PL0_RW,
3045       .type = ARM_CP_IO,
3046       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3047       .resetvalue = 0, .accessfn = gt_ptimer_access,
3048       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3049       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3050     },
3051     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3052       .access = PL0_RW,
3053       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3054       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3055       .accessfn = gt_vtimer_access,
3056       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3057       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3058     },
3059     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3060       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3061       .access = PL0_RW,
3062       .type = ARM_CP_IO,
3063       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3064       .resetvalue = 0, .accessfn = gt_vtimer_access,
3065       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3066       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3067     },
3068     /* Secure timer -- this is actually restricted to only EL3
3069      * and configurably Secure-EL1 via the accessfn.
3070      */
3071     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3072       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3073       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3074       .accessfn = gt_stimer_access,
3075       .readfn = gt_sec_tval_read,
3076       .writefn = gt_sec_tval_write,
3077       .resetfn = gt_sec_timer_reset,
3078     },
3079     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3080       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3081       .type = ARM_CP_IO, .access = PL1_RW,
3082       .accessfn = gt_stimer_access,
3083       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3084       .resetvalue = 0,
3085       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3086     },
3087     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3088       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3089       .type = ARM_CP_IO, .access = PL1_RW,
3090       .accessfn = gt_stimer_access,
3091       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3092       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3093     },
3094     REGINFO_SENTINEL
3095 };
3096 
3097 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3098                                  bool isread)
3099 {
3100     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3101         return CP_ACCESS_TRAP;
3102     }
3103     return CP_ACCESS_OK;
3104 }
3105 
3106 #else
3107 
3108 /* In user-mode most of the generic timer registers are inaccessible
3109  * however modern kernels (4.12+) allow access to cntvct_el0
3110  */
3111 
3112 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3113 {
3114     ARMCPU *cpu = env_archcpu(env);
3115 
3116     /* Currently we have no support for QEMUTimer in linux-user so we
3117      * can't call gt_get_countervalue(env), instead we directly
3118      * call the lower level functions.
3119      */
3120     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3121 }
3122 
3123 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3124     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3125       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3126       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3127       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3128       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3129     },
3130     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3131       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3132       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3133       .readfn = gt_virt_cnt_read,
3134     },
3135     REGINFO_SENTINEL
3136 };
3137 
3138 #endif
3139 
3140 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3141 {
3142     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3143         raw_write(env, ri, value);
3144     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3145         raw_write(env, ri, value & 0xfffff6ff);
3146     } else {
3147         raw_write(env, ri, value & 0xfffff1ff);
3148     }
3149 }
3150 
3151 #ifndef CONFIG_USER_ONLY
3152 /* get_phys_addr() isn't present for user-mode-only targets */
3153 
3154 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3155                                  bool isread)
3156 {
3157     if (ri->opc2 & 4) {
3158         /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3159          * Secure EL1 (which can only happen if EL3 is AArch64).
3160          * They are simply UNDEF if executed from NS EL1.
3161          * They function normally from EL2 or EL3.
3162          */
3163         if (arm_current_el(env) == 1) {
3164             if (arm_is_secure_below_el3(env)) {
3165                 if (env->cp15.scr_el3 & SCR_EEL2) {
3166                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3167                 }
3168                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3169             }
3170             return CP_ACCESS_TRAP_UNCATEGORIZED;
3171         }
3172     }
3173     return CP_ACCESS_OK;
3174 }
3175 
3176 #ifdef CONFIG_TCG
3177 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3178                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3179 {
3180     hwaddr phys_addr;
3181     target_ulong page_size;
3182     int prot;
3183     bool ret;
3184     uint64_t par64;
3185     bool format64 = false;
3186     MemTxAttrs attrs = {};
3187     ARMMMUFaultInfo fi = {};
3188     ARMCacheAttrs cacheattrs = {};
3189 
3190     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3191                         &prot, &page_size, &fi, &cacheattrs);
3192 
3193     if (ret) {
3194         /*
3195          * Some kinds of translation fault must cause exceptions rather
3196          * than being reported in the PAR.
3197          */
3198         int current_el = arm_current_el(env);
3199         int target_el;
3200         uint32_t syn, fsr, fsc;
3201         bool take_exc = false;
3202 
3203         if (fi.s1ptw && current_el == 1
3204             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3205             /*
3206              * Synchronous stage 2 fault on an access made as part of the
3207              * translation table walk for AT S1E0* or AT S1E1* insn
3208              * executed from NS EL1. If this is a synchronous external abort
3209              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3210              * to EL3. Otherwise the fault is taken as an exception to EL2,
3211              * and HPFAR_EL2 holds the faulting IPA.
3212              */
3213             if (fi.type == ARMFault_SyncExternalOnWalk &&
3214                 (env->cp15.scr_el3 & SCR_EA)) {
3215                 target_el = 3;
3216             } else {
3217                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3218                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3219                     env->cp15.hpfar_el2 |= HPFAR_NS;
3220                 }
3221                 target_el = 2;
3222             }
3223             take_exc = true;
3224         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3225             /*
3226              * Synchronous external aborts during a translation table walk
3227              * are taken as Data Abort exceptions.
3228              */
3229             if (fi.stage2) {
3230                 if (current_el == 3) {
3231                     target_el = 3;
3232                 } else {
3233                     target_el = 2;
3234                 }
3235             } else {
3236                 target_el = exception_target_el(env);
3237             }
3238             take_exc = true;
3239         }
3240 
3241         if (take_exc) {
3242             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3243             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3244                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3245                 fsr = arm_fi_to_lfsc(&fi);
3246                 fsc = extract32(fsr, 0, 6);
3247             } else {
3248                 fsr = arm_fi_to_sfsc(&fi);
3249                 fsc = 0x3f;
3250             }
3251             /*
3252              * Report exception with ESR indicating a fault due to a
3253              * translation table walk for a cache maintenance instruction.
3254              */
3255             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3256                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3257             env->exception.vaddress = value;
3258             env->exception.fsr = fsr;
3259             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3260         }
3261     }
3262 
3263     if (is_a64(env)) {
3264         format64 = true;
3265     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3266         /*
3267          * ATS1Cxx:
3268          * * TTBCR.EAE determines whether the result is returned using the
3269          *   32-bit or the 64-bit PAR format
3270          * * Instructions executed in Hyp mode always use the 64bit format
3271          *
3272          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3273          * * The Non-secure TTBCR.EAE bit is set to 1
3274          * * The implementation includes EL2, and the value of HCR.VM is 1
3275          *
3276          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3277          *
3278          * ATS1Hx always uses the 64bit format.
3279          */
3280         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3281 
3282         if (arm_feature(env, ARM_FEATURE_EL2)) {
3283             if (mmu_idx == ARMMMUIdx_E10_0 ||
3284                 mmu_idx == ARMMMUIdx_E10_1 ||
3285                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3286                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3287             } else {
3288                 format64 |= arm_current_el(env) == 2;
3289             }
3290         }
3291     }
3292 
3293     if (format64) {
3294         /* Create a 64-bit PAR */
3295         par64 = (1 << 11); /* LPAE bit always set */
3296         if (!ret) {
3297             par64 |= phys_addr & ~0xfffULL;
3298             if (!attrs.secure) {
3299                 par64 |= (1 << 9); /* NS */
3300             }
3301             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3302             par64 |= cacheattrs.shareability << 7; /* SH */
3303         } else {
3304             uint32_t fsr = arm_fi_to_lfsc(&fi);
3305 
3306             par64 |= 1; /* F */
3307             par64 |= (fsr & 0x3f) << 1; /* FS */
3308             if (fi.stage2) {
3309                 par64 |= (1 << 9); /* S */
3310             }
3311             if (fi.s1ptw) {
3312                 par64 |= (1 << 8); /* PTW */
3313             }
3314         }
3315     } else {
3316         /* fsr is a DFSR/IFSR value for the short descriptor
3317          * translation table format (with WnR always clear).
3318          * Convert it to a 32-bit PAR.
3319          */
3320         if (!ret) {
3321             /* We do not set any attribute bits in the PAR */
3322             if (page_size == (1 << 24)
3323                 && arm_feature(env, ARM_FEATURE_V7)) {
3324                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3325             } else {
3326                 par64 = phys_addr & 0xfffff000;
3327             }
3328             if (!attrs.secure) {
3329                 par64 |= (1 << 9); /* NS */
3330             }
3331         } else {
3332             uint32_t fsr = arm_fi_to_sfsc(&fi);
3333 
3334             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3335                     ((fsr & 0xf) << 1) | 1;
3336         }
3337     }
3338     return par64;
3339 }
3340 #endif /* CONFIG_TCG */
3341 
3342 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3343 {
3344 #ifdef CONFIG_TCG
3345     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3346     uint64_t par64;
3347     ARMMMUIdx mmu_idx;
3348     int el = arm_current_el(env);
3349     bool secure = arm_is_secure_below_el3(env);
3350 
3351     switch (ri->opc2 & 6) {
3352     case 0:
3353         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3354         switch (el) {
3355         case 3:
3356             mmu_idx = ARMMMUIdx_SE3;
3357             break;
3358         case 2:
3359             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3360             /* fall through */
3361         case 1:
3362             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3363                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3364                            : ARMMMUIdx_Stage1_E1_PAN);
3365             } else {
3366                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3367             }
3368             break;
3369         default:
3370             g_assert_not_reached();
3371         }
3372         break;
3373     case 2:
3374         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3375         switch (el) {
3376         case 3:
3377             mmu_idx = ARMMMUIdx_SE10_0;
3378             break;
3379         case 2:
3380             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3381             mmu_idx = ARMMMUIdx_Stage1_E0;
3382             break;
3383         case 1:
3384             mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3385             break;
3386         default:
3387             g_assert_not_reached();
3388         }
3389         break;
3390     case 4:
3391         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3392         mmu_idx = ARMMMUIdx_E10_1;
3393         break;
3394     case 6:
3395         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3396         mmu_idx = ARMMMUIdx_E10_0;
3397         break;
3398     default:
3399         g_assert_not_reached();
3400     }
3401 
3402     par64 = do_ats_write(env, value, access_type, mmu_idx);
3403 
3404     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3405 #else
3406     /* Handled by hardware accelerator. */
3407     g_assert_not_reached();
3408 #endif /* CONFIG_TCG */
3409 }
3410 
3411 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3412                         uint64_t value)
3413 {
3414 #ifdef CONFIG_TCG
3415     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3416     uint64_t par64;
3417 
3418     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3419 
3420     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3421 #else
3422     /* Handled by hardware accelerator. */
3423     g_assert_not_reached();
3424 #endif /* CONFIG_TCG */
3425 }
3426 
3427 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3428                                      bool isread)
3429 {
3430     if (arm_current_el(env) == 3 &&
3431         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3432         return CP_ACCESS_TRAP;
3433     }
3434     return CP_ACCESS_OK;
3435 }
3436 
3437 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3438                         uint64_t value)
3439 {
3440 #ifdef CONFIG_TCG
3441     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3442     ARMMMUIdx mmu_idx;
3443     int secure = arm_is_secure_below_el3(env);
3444 
3445     switch (ri->opc2 & 6) {
3446     case 0:
3447         switch (ri->opc1) {
3448         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3449             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3450                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3451                            : ARMMMUIdx_Stage1_E1_PAN);
3452             } else {
3453                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3454             }
3455             break;
3456         case 4: /* AT S1E2R, AT S1E2W */
3457             mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3458             break;
3459         case 6: /* AT S1E3R, AT S1E3W */
3460             mmu_idx = ARMMMUIdx_SE3;
3461             break;
3462         default:
3463             g_assert_not_reached();
3464         }
3465         break;
3466     case 2: /* AT S1E0R, AT S1E0W */
3467         mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3468         break;
3469     case 4: /* AT S12E1R, AT S12E1W */
3470         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3471         break;
3472     case 6: /* AT S12E0R, AT S12E0W */
3473         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3474         break;
3475     default:
3476         g_assert_not_reached();
3477     }
3478 
3479     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3480 #else
3481     /* Handled by hardware accelerator. */
3482     g_assert_not_reached();
3483 #endif /* CONFIG_TCG */
3484 }
3485 #endif
3486 
3487 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3488     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3489       .access = PL1_RW, .resetvalue = 0,
3490       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3491                              offsetoflow32(CPUARMState, cp15.par_ns) },
3492       .writefn = par_write },
3493 #ifndef CONFIG_USER_ONLY
3494     /* This underdecoding is safe because the reginfo is NO_RAW. */
3495     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3496       .access = PL1_W, .accessfn = ats_access,
3497       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3498 #endif
3499     REGINFO_SENTINEL
3500 };
3501 
3502 /* Return basic MPU access permission bits.  */
3503 static uint32_t simple_mpu_ap_bits(uint32_t val)
3504 {
3505     uint32_t ret;
3506     uint32_t mask;
3507     int i;
3508     ret = 0;
3509     mask = 3;
3510     for (i = 0; i < 16; i += 2) {
3511         ret |= (val >> i) & mask;
3512         mask <<= 2;
3513     }
3514     return ret;
3515 }
3516 
3517 /* Pad basic MPU access permission bits to extended format.  */
3518 static uint32_t extended_mpu_ap_bits(uint32_t val)
3519 {
3520     uint32_t ret;
3521     uint32_t mask;
3522     int i;
3523     ret = 0;
3524     mask = 3;
3525     for (i = 0; i < 16; i += 2) {
3526         ret |= (val & mask) << i;
3527         mask <<= 2;
3528     }
3529     return ret;
3530 }
3531 
3532 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3533                                  uint64_t value)
3534 {
3535     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3536 }
3537 
3538 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3539 {
3540     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3541 }
3542 
3543 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3544                                  uint64_t value)
3545 {
3546     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3547 }
3548 
3549 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3550 {
3551     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3552 }
3553 
3554 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3555 {
3556     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3557 
3558     if (!u32p) {
3559         return 0;
3560     }
3561 
3562     u32p += env->pmsav7.rnr[M_REG_NS];
3563     return *u32p;
3564 }
3565 
3566 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3567                          uint64_t value)
3568 {
3569     ARMCPU *cpu = env_archcpu(env);
3570     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3571 
3572     if (!u32p) {
3573         return;
3574     }
3575 
3576     u32p += env->pmsav7.rnr[M_REG_NS];
3577     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3578     *u32p = value;
3579 }
3580 
3581 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3582                               uint64_t value)
3583 {
3584     ARMCPU *cpu = env_archcpu(env);
3585     uint32_t nrgs = cpu->pmsav7_dregion;
3586 
3587     if (value >= nrgs) {
3588         qemu_log_mask(LOG_GUEST_ERROR,
3589                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3590                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3591         return;
3592     }
3593 
3594     raw_write(env, ri, value);
3595 }
3596 
3597 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3598     /* Reset for all these registers is handled in arm_cpu_reset(),
3599      * because the PMSAv7 is also used by M-profile CPUs, which do
3600      * not register cpregs but still need the state to be reset.
3601      */
3602     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3603       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3604       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3605       .readfn = pmsav7_read, .writefn = pmsav7_write,
3606       .resetfn = arm_cp_reset_ignore },
3607     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3608       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3609       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3610       .readfn = pmsav7_read, .writefn = pmsav7_write,
3611       .resetfn = arm_cp_reset_ignore },
3612     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3613       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3614       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3615       .readfn = pmsav7_read, .writefn = pmsav7_write,
3616       .resetfn = arm_cp_reset_ignore },
3617     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3618       .access = PL1_RW,
3619       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3620       .writefn = pmsav7_rgnr_write,
3621       .resetfn = arm_cp_reset_ignore },
3622     REGINFO_SENTINEL
3623 };
3624 
3625 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3626     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3627       .access = PL1_RW, .type = ARM_CP_ALIAS,
3628       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3629       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3630     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3631       .access = PL1_RW, .type = ARM_CP_ALIAS,
3632       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3633       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3634     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3635       .access = PL1_RW,
3636       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3637       .resetvalue = 0, },
3638     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3639       .access = PL1_RW,
3640       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3641       .resetvalue = 0, },
3642     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3643       .access = PL1_RW,
3644       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3645     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3646       .access = PL1_RW,
3647       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3648     /* Protection region base and size registers */
3649     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3650       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3651       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3652     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3653       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3654       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3655     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3656       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3657       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3658     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3659       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3660       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3661     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3662       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3663       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3664     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3665       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3666       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3667     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3668       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3669       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3670     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3671       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3672       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3673     REGINFO_SENTINEL
3674 };
3675 
3676 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3677                                  uint64_t value)
3678 {
3679     TCR *tcr = raw_ptr(env, ri);
3680     int maskshift = extract32(value, 0, 3);
3681 
3682     if (!arm_feature(env, ARM_FEATURE_V8)) {
3683         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3684             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3685              * using Long-desciptor translation table format */
3686             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3687         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3688             /* In an implementation that includes the Security Extensions
3689              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3690              * Short-descriptor translation table format.
3691              */
3692             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3693         } else {
3694             value &= TTBCR_N;
3695         }
3696     }
3697 
3698     /* Update the masks corresponding to the TCR bank being written
3699      * Note that we always calculate mask and base_mask, but
3700      * they are only used for short-descriptor tables (ie if EAE is 0);
3701      * for long-descriptor tables the TCR fields are used differently
3702      * and the mask and base_mask values are meaningless.
3703      */
3704     tcr->raw_tcr = value;
3705     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3706     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3707 }
3708 
3709 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3710                              uint64_t value)
3711 {
3712     ARMCPU *cpu = env_archcpu(env);
3713     TCR *tcr = raw_ptr(env, ri);
3714 
3715     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3716         /* With LPAE the TTBCR could result in a change of ASID
3717          * via the TTBCR.A1 bit, so do a TLB flush.
3718          */
3719         tlb_flush(CPU(cpu));
3720     }
3721     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3722     value = deposit64(tcr->raw_tcr, 0, 32, value);
3723     vmsa_ttbcr_raw_write(env, ri, value);
3724 }
3725 
3726 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3727 {
3728     TCR *tcr = raw_ptr(env, ri);
3729 
3730     /* Reset both the TCR as well as the masks corresponding to the bank of
3731      * the TCR being reset.
3732      */
3733     tcr->raw_tcr = 0;
3734     tcr->mask = 0;
3735     tcr->base_mask = 0xffffc000u;
3736 }
3737 
3738 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3739                                uint64_t value)
3740 {
3741     ARMCPU *cpu = env_archcpu(env);
3742     TCR *tcr = raw_ptr(env, ri);
3743 
3744     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3745     tlb_flush(CPU(cpu));
3746     tcr->raw_tcr = value;
3747 }
3748 
3749 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3750                             uint64_t value)
3751 {
3752     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3753     if (cpreg_field_is_64bit(ri) &&
3754         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3755         ARMCPU *cpu = env_archcpu(env);
3756         tlb_flush(CPU(cpu));
3757     }
3758     raw_write(env, ri, value);
3759 }
3760 
3761 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3762                                     uint64_t value)
3763 {
3764     /*
3765      * If we are running with E2&0 regime, then an ASID is active.
3766      * Flush if that might be changing.  Note we're not checking
3767      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3768      * holds the active ASID, only checking the field that might.
3769      */
3770     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3771         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3772         uint16_t mask = ARMMMUIdxBit_E20_2 |
3773                         ARMMMUIdxBit_E20_2_PAN |
3774                         ARMMMUIdxBit_E20_0;
3775 
3776         if (arm_is_secure_below_el3(env)) {
3777             mask >>= ARM_MMU_IDX_A_NS;
3778         }
3779 
3780         tlb_flush_by_mmuidx(env_cpu(env), mask);
3781     }
3782     raw_write(env, ri, value);
3783 }
3784 
3785 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3786                         uint64_t value)
3787 {
3788     ARMCPU *cpu = env_archcpu(env);
3789     CPUState *cs = CPU(cpu);
3790 
3791     /*
3792      * A change in VMID to the stage2 page table (Stage2) invalidates
3793      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3794      */
3795     if (raw_read(env, ri) != value) {
3796         uint16_t mask = ARMMMUIdxBit_E10_1 |
3797                         ARMMMUIdxBit_E10_1_PAN |
3798                         ARMMMUIdxBit_E10_0;
3799 
3800         if (arm_is_secure_below_el3(env)) {
3801             mask >>= ARM_MMU_IDX_A_NS;
3802         }
3803 
3804         tlb_flush_by_mmuidx(cs, mask);
3805         raw_write(env, ri, value);
3806     }
3807 }
3808 
3809 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3810     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3811       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3812       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3813                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3814     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3815       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3816       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3817                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3818     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3819       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3820       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3821                              offsetof(CPUARMState, cp15.dfar_ns) } },
3822     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3823       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3824       .access = PL1_RW, .accessfn = access_tvm_trvm,
3825       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3826       .resetvalue = 0, },
3827     REGINFO_SENTINEL
3828 };
3829 
3830 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3831     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3832       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3833       .access = PL1_RW, .accessfn = access_tvm_trvm,
3834       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3835     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3836       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3837       .access = PL1_RW, .accessfn = access_tvm_trvm,
3838       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3839       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3840                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3841     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3842       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3843       .access = PL1_RW, .accessfn = access_tvm_trvm,
3844       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3845       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3846                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3847     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3848       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3849       .access = PL1_RW, .accessfn = access_tvm_trvm,
3850       .writefn = vmsa_tcr_el12_write,
3851       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3852       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3853     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3854       .access = PL1_RW, .accessfn = access_tvm_trvm,
3855       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3856       .raw_writefn = vmsa_ttbcr_raw_write,
3857       /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
3858       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
3859                              offsetof(CPUARMState, cp15.tcr_el[1])} },
3860     REGINFO_SENTINEL
3861 };
3862 
3863 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3864  * qemu tlbs nor adjusting cached masks.
3865  */
3866 static const ARMCPRegInfo ttbcr2_reginfo = {
3867     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3868     .access = PL1_RW, .accessfn = access_tvm_trvm,
3869     .type = ARM_CP_ALIAS,
3870     .bank_fieldoffsets = {
3871         offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
3872         offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
3873     },
3874 };
3875 
3876 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3877                                 uint64_t value)
3878 {
3879     env->cp15.c15_ticonfig = value & 0xe7;
3880     /* The OS_TYPE bit in this register changes the reported CPUID! */
3881     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3882         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3883 }
3884 
3885 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3886                                 uint64_t value)
3887 {
3888     env->cp15.c15_threadid = value & 0xffff;
3889 }
3890 
3891 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3892                            uint64_t value)
3893 {
3894     /* Wait-for-interrupt (deprecated) */
3895     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3896 }
3897 
3898 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3899                                   uint64_t value)
3900 {
3901     /* On OMAP there are registers indicating the max/min index of dcache lines
3902      * containing a dirty line; cache flush operations have to reset these.
3903      */
3904     env->cp15.c15_i_max = 0x000;
3905     env->cp15.c15_i_min = 0xff0;
3906 }
3907 
3908 static const ARMCPRegInfo omap_cp_reginfo[] = {
3909     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3910       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3911       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3912       .resetvalue = 0, },
3913     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3914       .access = PL1_RW, .type = ARM_CP_NOP },
3915     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3916       .access = PL1_RW,
3917       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3918       .writefn = omap_ticonfig_write },
3919     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3920       .access = PL1_RW,
3921       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3922     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3923       .access = PL1_RW, .resetvalue = 0xff0,
3924       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3925     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3926       .access = PL1_RW,
3927       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3928       .writefn = omap_threadid_write },
3929     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3930       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3931       .type = ARM_CP_NO_RAW,
3932       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3933     /* TODO: Peripheral port remap register:
3934      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3935      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3936      * when MMU is off.
3937      */
3938     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3939       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3940       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3941       .writefn = omap_cachemaint_write },
3942     { .name = "C9", .cp = 15, .crn = 9,
3943       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3944       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3945     REGINFO_SENTINEL
3946 };
3947 
3948 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3949                               uint64_t value)
3950 {
3951     env->cp15.c15_cpar = value & 0x3fff;
3952 }
3953 
3954 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3955     { .name = "XSCALE_CPAR",
3956       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3957       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3958       .writefn = xscale_cpar_write, },
3959     { .name = "XSCALE_AUXCR",
3960       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3961       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3962       .resetvalue = 0, },
3963     /* XScale specific cache-lockdown: since we have no cache we NOP these
3964      * and hope the guest does not really rely on cache behaviour.
3965      */
3966     { .name = "XSCALE_LOCK_ICACHE_LINE",
3967       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3968       .access = PL1_W, .type = ARM_CP_NOP },
3969     { .name = "XSCALE_UNLOCK_ICACHE",
3970       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3971       .access = PL1_W, .type = ARM_CP_NOP },
3972     { .name = "XSCALE_DCACHE_LOCK",
3973       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3974       .access = PL1_RW, .type = ARM_CP_NOP },
3975     { .name = "XSCALE_UNLOCK_DCACHE",
3976       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3977       .access = PL1_W, .type = ARM_CP_NOP },
3978     REGINFO_SENTINEL
3979 };
3980 
3981 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3982     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3983      * implementation of this implementation-defined space.
3984      * Ideally this should eventually disappear in favour of actually
3985      * implementing the correct behaviour for all cores.
3986      */
3987     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3988       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3989       .access = PL1_RW,
3990       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3991       .resetvalue = 0 },
3992     REGINFO_SENTINEL
3993 };
3994 
3995 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3996     /* Cache status: RAZ because we have no cache so it's always clean */
3997     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3998       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3999       .resetvalue = 0 },
4000     REGINFO_SENTINEL
4001 };
4002 
4003 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4004     /* We never have a a block transfer operation in progress */
4005     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4006       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4007       .resetvalue = 0 },
4008     /* The cache ops themselves: these all NOP for QEMU */
4009     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4010       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4011     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4012       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4013     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4014       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4015     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4016       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4017     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4018       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4019     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4020       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4021     REGINFO_SENTINEL
4022 };
4023 
4024 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4025     /* The cache test-and-clean instructions always return (1 << 30)
4026      * to indicate that there are no dirty cache lines.
4027      */
4028     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4029       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4030       .resetvalue = (1 << 30) },
4031     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4032       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4033       .resetvalue = (1 << 30) },
4034     REGINFO_SENTINEL
4035 };
4036 
4037 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4038     /* Ignore ReadBuffer accesses */
4039     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4040       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4041       .access = PL1_RW, .resetvalue = 0,
4042       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4043     REGINFO_SENTINEL
4044 };
4045 
4046 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4047 {
4048     unsigned int cur_el = arm_current_el(env);
4049 
4050     if (arm_is_el2_enabled(env) && cur_el == 1) {
4051         return env->cp15.vpidr_el2;
4052     }
4053     return raw_read(env, ri);
4054 }
4055 
4056 static uint64_t mpidr_read_val(CPUARMState *env)
4057 {
4058     ARMCPU *cpu = env_archcpu(env);
4059     uint64_t mpidr = cpu->mp_affinity;
4060 
4061     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4062         mpidr |= (1U << 31);
4063         /* Cores which are uniprocessor (non-coherent)
4064          * but still implement the MP extensions set
4065          * bit 30. (For instance, Cortex-R5).
4066          */
4067         if (cpu->mp_is_up) {
4068             mpidr |= (1u << 30);
4069         }
4070     }
4071     return mpidr;
4072 }
4073 
4074 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4075 {
4076     unsigned int cur_el = arm_current_el(env);
4077 
4078     if (arm_is_el2_enabled(env) && cur_el == 1) {
4079         return env->cp15.vmpidr_el2;
4080     }
4081     return mpidr_read_val(env);
4082 }
4083 
4084 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4085     /* NOP AMAIR0/1 */
4086     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4087       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4088       .access = PL1_RW, .accessfn = access_tvm_trvm,
4089       .type = ARM_CP_CONST, .resetvalue = 0 },
4090     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4091     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4092       .access = PL1_RW, .accessfn = access_tvm_trvm,
4093       .type = ARM_CP_CONST, .resetvalue = 0 },
4094     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4095       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4096       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4097                              offsetof(CPUARMState, cp15.par_ns)} },
4098     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4099       .access = PL1_RW, .accessfn = access_tvm_trvm,
4100       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4101       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4102                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4103       .writefn = vmsa_ttbr_write, },
4104     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4105       .access = PL1_RW, .accessfn = access_tvm_trvm,
4106       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4107       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4108                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4109       .writefn = vmsa_ttbr_write, },
4110     REGINFO_SENTINEL
4111 };
4112 
4113 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4114 {
4115     return vfp_get_fpcr(env);
4116 }
4117 
4118 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4119                             uint64_t value)
4120 {
4121     vfp_set_fpcr(env, value);
4122 }
4123 
4124 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4125 {
4126     return vfp_get_fpsr(env);
4127 }
4128 
4129 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4130                             uint64_t value)
4131 {
4132     vfp_set_fpsr(env, value);
4133 }
4134 
4135 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4136                                        bool isread)
4137 {
4138     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4139         return CP_ACCESS_TRAP;
4140     }
4141     return CP_ACCESS_OK;
4142 }
4143 
4144 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4145                             uint64_t value)
4146 {
4147     env->daif = value & PSTATE_DAIF;
4148 }
4149 
4150 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4151 {
4152     return env->pstate & PSTATE_PAN;
4153 }
4154 
4155 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4156                            uint64_t value)
4157 {
4158     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4159 }
4160 
4161 static const ARMCPRegInfo pan_reginfo = {
4162     .name = "PAN", .state = ARM_CP_STATE_AA64,
4163     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4164     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4165     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4166 };
4167 
4168 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4169 {
4170     return env->pstate & PSTATE_UAO;
4171 }
4172 
4173 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4174                            uint64_t value)
4175 {
4176     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4177 }
4178 
4179 static const ARMCPRegInfo uao_reginfo = {
4180     .name = "UAO", .state = ARM_CP_STATE_AA64,
4181     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4182     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4183     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4184 };
4185 
4186 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4187 {
4188     return env->pstate & PSTATE_DIT;
4189 }
4190 
4191 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4192                            uint64_t value)
4193 {
4194     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4195 }
4196 
4197 static const ARMCPRegInfo dit_reginfo = {
4198     .name = "DIT", .state = ARM_CP_STATE_AA64,
4199     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4200     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4201     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4202 };
4203 
4204 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4205 {
4206     return env->pstate & PSTATE_SSBS;
4207 }
4208 
4209 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4210                            uint64_t value)
4211 {
4212     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4213 }
4214 
4215 static const ARMCPRegInfo ssbs_reginfo = {
4216     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4217     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4218     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4219     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4220 };
4221 
4222 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4223                                               const ARMCPRegInfo *ri,
4224                                               bool isread)
4225 {
4226     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4227     switch (arm_current_el(env)) {
4228     case 0:
4229         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4230         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4231             return CP_ACCESS_TRAP;
4232         }
4233         /* fall through */
4234     case 1:
4235         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4236         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4237             return CP_ACCESS_TRAP_EL2;
4238         }
4239         break;
4240     }
4241     return CP_ACCESS_OK;
4242 }
4243 
4244 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4245                                               const ARMCPRegInfo *ri,
4246                                               bool isread)
4247 {
4248     /* Cache invalidate/clean to Point of Unification... */
4249     switch (arm_current_el(env)) {
4250     case 0:
4251         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4252         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4253             return CP_ACCESS_TRAP;
4254         }
4255         /* fall through */
4256     case 1:
4257         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4258         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4259             return CP_ACCESS_TRAP_EL2;
4260         }
4261         break;
4262     }
4263     return CP_ACCESS_OK;
4264 }
4265 
4266 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4267  * Page D4-1736 (DDI0487A.b)
4268  */
4269 
4270 static int vae1_tlbmask(CPUARMState *env)
4271 {
4272     uint64_t hcr = arm_hcr_el2_eff(env);
4273     uint16_t mask;
4274 
4275     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4276         mask = ARMMMUIdxBit_E20_2 |
4277                ARMMMUIdxBit_E20_2_PAN |
4278                ARMMMUIdxBit_E20_0;
4279     } else {
4280         mask = ARMMMUIdxBit_E10_1 |
4281                ARMMMUIdxBit_E10_1_PAN |
4282                ARMMMUIdxBit_E10_0;
4283     }
4284 
4285     if (arm_is_secure_below_el3(env)) {
4286         mask >>= ARM_MMU_IDX_A_NS;
4287     }
4288 
4289     return mask;
4290 }
4291 
4292 /* Return 56 if TBI is enabled, 64 otherwise. */
4293 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4294                               uint64_t addr)
4295 {
4296     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4297     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4298     int select = extract64(addr, 55, 1);
4299 
4300     return (tbi >> select) & 1 ? 56 : 64;
4301 }
4302 
4303 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4304 {
4305     uint64_t hcr = arm_hcr_el2_eff(env);
4306     ARMMMUIdx mmu_idx;
4307 
4308     /* Only the regime of the mmu_idx below is significant. */
4309     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4310         mmu_idx = ARMMMUIdx_E20_0;
4311     } else {
4312         mmu_idx = ARMMMUIdx_E10_0;
4313     }
4314 
4315     if (arm_is_secure_below_el3(env)) {
4316         mmu_idx &= ~ARM_MMU_IDX_A_NS;
4317     }
4318 
4319     return tlbbits_for_regime(env, mmu_idx, addr);
4320 }
4321 
4322 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4323                                       uint64_t value)
4324 {
4325     CPUState *cs = env_cpu(env);
4326     int mask = vae1_tlbmask(env);
4327 
4328     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4329 }
4330 
4331 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4332                                     uint64_t value)
4333 {
4334     CPUState *cs = env_cpu(env);
4335     int mask = vae1_tlbmask(env);
4336 
4337     if (tlb_force_broadcast(env)) {
4338         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4339     } else {
4340         tlb_flush_by_mmuidx(cs, mask);
4341     }
4342 }
4343 
4344 static int alle1_tlbmask(CPUARMState *env)
4345 {
4346     /*
4347      * Note that the 'ALL' scope must invalidate both stage 1 and
4348      * stage 2 translations, whereas most other scopes only invalidate
4349      * stage 1 translations.
4350      */
4351     if (arm_is_secure_below_el3(env)) {
4352         return ARMMMUIdxBit_SE10_1 |
4353                ARMMMUIdxBit_SE10_1_PAN |
4354                ARMMMUIdxBit_SE10_0;
4355     } else {
4356         return ARMMMUIdxBit_E10_1 |
4357                ARMMMUIdxBit_E10_1_PAN |
4358                ARMMMUIdxBit_E10_0;
4359     }
4360 }
4361 
4362 static int e2_tlbmask(CPUARMState *env)
4363 {
4364     if (arm_is_secure_below_el3(env)) {
4365         return ARMMMUIdxBit_SE20_0 |
4366                ARMMMUIdxBit_SE20_2 |
4367                ARMMMUIdxBit_SE20_2_PAN |
4368                ARMMMUIdxBit_SE2;
4369     } else {
4370         return ARMMMUIdxBit_E20_0 |
4371                ARMMMUIdxBit_E20_2 |
4372                ARMMMUIdxBit_E20_2_PAN |
4373                ARMMMUIdxBit_E2;
4374     }
4375 }
4376 
4377 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4378                                   uint64_t value)
4379 {
4380     CPUState *cs = env_cpu(env);
4381     int mask = alle1_tlbmask(env);
4382 
4383     tlb_flush_by_mmuidx(cs, mask);
4384 }
4385 
4386 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4387                                   uint64_t value)
4388 {
4389     CPUState *cs = env_cpu(env);
4390     int mask = e2_tlbmask(env);
4391 
4392     tlb_flush_by_mmuidx(cs, mask);
4393 }
4394 
4395 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4396                                   uint64_t value)
4397 {
4398     ARMCPU *cpu = env_archcpu(env);
4399     CPUState *cs = CPU(cpu);
4400 
4401     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4402 }
4403 
4404 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4405                                     uint64_t value)
4406 {
4407     CPUState *cs = env_cpu(env);
4408     int mask = alle1_tlbmask(env);
4409 
4410     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4411 }
4412 
4413 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4414                                     uint64_t value)
4415 {
4416     CPUState *cs = env_cpu(env);
4417     int mask = e2_tlbmask(env);
4418 
4419     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4420 }
4421 
4422 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423                                     uint64_t value)
4424 {
4425     CPUState *cs = env_cpu(env);
4426 
4427     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4428 }
4429 
4430 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4431                                  uint64_t value)
4432 {
4433     /* Invalidate by VA, EL2
4434      * Currently handles both VAE2 and VALE2, since we don't support
4435      * flush-last-level-only.
4436      */
4437     CPUState *cs = env_cpu(env);
4438     int mask = e2_tlbmask(env);
4439     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4440 
4441     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4442 }
4443 
4444 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4445                                  uint64_t value)
4446 {
4447     /* Invalidate by VA, EL3
4448      * Currently handles both VAE3 and VALE3, since we don't support
4449      * flush-last-level-only.
4450      */
4451     ARMCPU *cpu = env_archcpu(env);
4452     CPUState *cs = CPU(cpu);
4453     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4454 
4455     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4456 }
4457 
4458 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4459                                    uint64_t value)
4460 {
4461     CPUState *cs = env_cpu(env);
4462     int mask = vae1_tlbmask(env);
4463     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4464     int bits = vae1_tlbbits(env, pageaddr);
4465 
4466     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4467 }
4468 
4469 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4470                                  uint64_t value)
4471 {
4472     /* Invalidate by VA, EL1&0 (AArch64 version).
4473      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4474      * since we don't support flush-for-specific-ASID-only or
4475      * flush-last-level-only.
4476      */
4477     CPUState *cs = env_cpu(env);
4478     int mask = vae1_tlbmask(env);
4479     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4480     int bits = vae1_tlbbits(env, pageaddr);
4481 
4482     if (tlb_force_broadcast(env)) {
4483         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4484     } else {
4485         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4486     }
4487 }
4488 
4489 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4490                                    uint64_t value)
4491 {
4492     CPUState *cs = env_cpu(env);
4493     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4494     bool secure = arm_is_secure_below_el3(env);
4495     int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4496     int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4497                                   pageaddr);
4498 
4499     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4500 }
4501 
4502 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4503                                    uint64_t value)
4504 {
4505     CPUState *cs = env_cpu(env);
4506     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4507     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4508 
4509     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4510                                                   ARMMMUIdxBit_SE3, bits);
4511 }
4512 
4513 #ifdef TARGET_AARCH64
4514 typedef struct {
4515     uint64_t base;
4516     uint64_t length;
4517 } TLBIRange;
4518 
4519 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4520                                      uint64_t value)
4521 {
4522     unsigned int page_size_granule, page_shift, num, scale, exponent;
4523     /* Extract one bit to represent the va selector in use. */
4524     uint64_t select = sextract64(value, 36, 1);
4525     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4526     TLBIRange ret = { };
4527 
4528     page_size_granule = extract64(value, 46, 2);
4529 
4530     /* The granule encoded in value must match the granule in use. */
4531     if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) {
4532         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4533                       page_size_granule);
4534         return ret;
4535     }
4536 
4537     page_shift = (page_size_granule - 1) * 2 + 12;
4538     num = extract64(value, 39, 5);
4539     scale = extract64(value, 44, 2);
4540     exponent = (5 * scale) + 1;
4541 
4542     ret.length = (num + 1) << (exponent + page_shift);
4543 
4544     if (param.select) {
4545         ret.base = sextract64(value, 0, 37);
4546     } else {
4547         ret.base = extract64(value, 0, 37);
4548     }
4549     if (param.ds) {
4550         /*
4551          * With DS=1, BaseADDR is always shifted 16 so that it is able
4552          * to address all 52 va bits.  The input address is perforce
4553          * aligned on a 64k boundary regardless of translation granule.
4554          */
4555         page_shift = 16;
4556     }
4557     ret.base <<= page_shift;
4558 
4559     return ret;
4560 }
4561 
4562 static void do_rvae_write(CPUARMState *env, uint64_t value,
4563                           int idxmap, bool synced)
4564 {
4565     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4566     TLBIRange range;
4567     int bits;
4568 
4569     range = tlbi_aa64_get_range(env, one_idx, value);
4570     bits = tlbbits_for_regime(env, one_idx, range.base);
4571 
4572     if (synced) {
4573         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4574                                                   range.base,
4575                                                   range.length,
4576                                                   idxmap,
4577                                                   bits);
4578     } else {
4579         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4580                                   range.length, idxmap, bits);
4581     }
4582 }
4583 
4584 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4585                                   const ARMCPRegInfo *ri,
4586                                   uint64_t value)
4587 {
4588     /*
4589      * Invalidate by VA range, EL1&0.
4590      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4591      * since we don't support flush-for-specific-ASID-only or
4592      * flush-last-level-only.
4593      */
4594 
4595     do_rvae_write(env, value, vae1_tlbmask(env),
4596                   tlb_force_broadcast(env));
4597 }
4598 
4599 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4600                                     const ARMCPRegInfo *ri,
4601                                     uint64_t value)
4602 {
4603     /*
4604      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4605      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4606      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4607      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4608      * shareable specific flushes.
4609      */
4610 
4611     do_rvae_write(env, value, vae1_tlbmask(env), true);
4612 }
4613 
4614 static int vae2_tlbmask(CPUARMState *env)
4615 {
4616     return (arm_is_secure_below_el3(env)
4617             ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4618 }
4619 
4620 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4621                                   const ARMCPRegInfo *ri,
4622                                   uint64_t value)
4623 {
4624     /*
4625      * Invalidate by VA range, EL2.
4626      * Currently handles all of RVAE2 and RVALE2,
4627      * since we don't support flush-for-specific-ASID-only or
4628      * flush-last-level-only.
4629      */
4630 
4631     do_rvae_write(env, value, vae2_tlbmask(env),
4632                   tlb_force_broadcast(env));
4633 
4634 
4635 }
4636 
4637 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4638                                     const ARMCPRegInfo *ri,
4639                                     uint64_t value)
4640 {
4641     /*
4642      * Invalidate by VA range, Inner/Outer Shareable, EL2.
4643      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4644      * since we don't support flush-for-specific-ASID-only,
4645      * flush-last-level-only or inner/outer shareable specific flushes.
4646      */
4647 
4648     do_rvae_write(env, value, vae2_tlbmask(env), true);
4649 
4650 }
4651 
4652 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4653                                   const ARMCPRegInfo *ri,
4654                                   uint64_t value)
4655 {
4656     /*
4657      * Invalidate by VA range, EL3.
4658      * Currently handles all of RVAE3 and RVALE3,
4659      * since we don't support flush-for-specific-ASID-only or
4660      * flush-last-level-only.
4661      */
4662 
4663     do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4664                   tlb_force_broadcast(env));
4665 }
4666 
4667 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4668                                     const ARMCPRegInfo *ri,
4669                                     uint64_t value)
4670 {
4671     /*
4672      * Invalidate by VA range, EL3, Inner/Outer Shareable.
4673      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4674      * since we don't support flush-for-specific-ASID-only,
4675      * flush-last-level-only or inner/outer specific flushes.
4676      */
4677 
4678     do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4679 }
4680 #endif
4681 
4682 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4683                                       bool isread)
4684 {
4685     int cur_el = arm_current_el(env);
4686 
4687     if (cur_el < 2) {
4688         uint64_t hcr = arm_hcr_el2_eff(env);
4689 
4690         if (cur_el == 0) {
4691             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4692                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4693                     return CP_ACCESS_TRAP_EL2;
4694                 }
4695             } else {
4696                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4697                     return CP_ACCESS_TRAP;
4698                 }
4699                 if (hcr & HCR_TDZ) {
4700                     return CP_ACCESS_TRAP_EL2;
4701                 }
4702             }
4703         } else if (hcr & HCR_TDZ) {
4704             return CP_ACCESS_TRAP_EL2;
4705         }
4706     }
4707     return CP_ACCESS_OK;
4708 }
4709 
4710 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4711 {
4712     ARMCPU *cpu = env_archcpu(env);
4713     int dzp_bit = 1 << 4;
4714 
4715     /* DZP indicates whether DC ZVA access is allowed */
4716     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4717         dzp_bit = 0;
4718     }
4719     return cpu->dcz_blocksize | dzp_bit;
4720 }
4721 
4722 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4723                                     bool isread)
4724 {
4725     if (!(env->pstate & PSTATE_SP)) {
4726         /* Access to SP_EL0 is undefined if it's being used as
4727          * the stack pointer.
4728          */
4729         return CP_ACCESS_TRAP_UNCATEGORIZED;
4730     }
4731     return CP_ACCESS_OK;
4732 }
4733 
4734 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4735 {
4736     return env->pstate & PSTATE_SP;
4737 }
4738 
4739 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4740 {
4741     update_spsel(env, val);
4742 }
4743 
4744 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4745                         uint64_t value)
4746 {
4747     ARMCPU *cpu = env_archcpu(env);
4748 
4749     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4750         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4751         value &= ~SCTLR_M;
4752     }
4753 
4754     /* ??? Lots of these bits are not implemented.  */
4755 
4756     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4757         if (ri->opc1 == 6) { /* SCTLR_EL3 */
4758             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4759         } else {
4760             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4761                        SCTLR_ATA0 | SCTLR_ATA);
4762         }
4763     }
4764 
4765     if (raw_read(env, ri) == value) {
4766         /* Skip the TLB flush if nothing actually changed; Linux likes
4767          * to do a lot of pointless SCTLR writes.
4768          */
4769         return;
4770     }
4771 
4772     raw_write(env, ri, value);
4773 
4774     /* This may enable/disable the MMU, so do a TLB flush.  */
4775     tlb_flush(CPU(cpu));
4776 
4777     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4778         /*
4779          * Normally we would always end the TB on an SCTLR write; see the
4780          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4781          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4782          * of hflags from the translator, so do it here.
4783          */
4784         arm_rebuild_hflags(env);
4785     }
4786 }
4787 
4788 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4789                                      bool isread)
4790 {
4791     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4792         return CP_ACCESS_TRAP_FP_EL2;
4793     }
4794     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4795         return CP_ACCESS_TRAP_FP_EL3;
4796     }
4797     return CP_ACCESS_OK;
4798 }
4799 
4800 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4801                        uint64_t value)
4802 {
4803     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4804 }
4805 
4806 static const ARMCPRegInfo v8_cp_reginfo[] = {
4807     /* Minimal set of EL0-visible registers. This will need to be expanded
4808      * significantly for system emulation of AArch64 CPUs.
4809      */
4810     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4811       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4812       .access = PL0_RW, .type = ARM_CP_NZCV },
4813     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4814       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4815       .type = ARM_CP_NO_RAW,
4816       .access = PL0_RW, .accessfn = aa64_daif_access,
4817       .fieldoffset = offsetof(CPUARMState, daif),
4818       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4819     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4820       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4821       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4822       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4823     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4824       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4825       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4826       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4827     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4828       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4829       .access = PL0_R, .type = ARM_CP_NO_RAW,
4830       .readfn = aa64_dczid_read },
4831     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4832       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4833       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4834 #ifndef CONFIG_USER_ONLY
4835       /* Avoid overhead of an access check that always passes in user-mode */
4836       .accessfn = aa64_zva_access,
4837 #endif
4838     },
4839     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4840       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4841       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4842     /* Cache ops: all NOPs since we don't emulate caches */
4843     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4844       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4845       .access = PL1_W, .type = ARM_CP_NOP,
4846       .accessfn = aa64_cacheop_pou_access },
4847     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4848       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4849       .access = PL1_W, .type = ARM_CP_NOP,
4850       .accessfn = aa64_cacheop_pou_access },
4851     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4852       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4853       .access = PL0_W, .type = ARM_CP_NOP,
4854       .accessfn = aa64_cacheop_pou_access },
4855     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4856       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4857       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4858       .type = ARM_CP_NOP },
4859     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4860       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4861       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4862     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4863       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4864       .access = PL0_W, .type = ARM_CP_NOP,
4865       .accessfn = aa64_cacheop_poc_access },
4866     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4867       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4868       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4869     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4870       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4871       .access = PL0_W, .type = ARM_CP_NOP,
4872       .accessfn = aa64_cacheop_pou_access },
4873     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4874       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4875       .access = PL0_W, .type = ARM_CP_NOP,
4876       .accessfn = aa64_cacheop_poc_access },
4877     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4878       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4879       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4880     /* TLBI operations */
4881     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4882       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4883       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4884       .writefn = tlbi_aa64_vmalle1is_write },
4885     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4886       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4887       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4888       .writefn = tlbi_aa64_vae1is_write },
4889     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4890       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4891       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4892       .writefn = tlbi_aa64_vmalle1is_write },
4893     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4894       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4895       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4896       .writefn = tlbi_aa64_vae1is_write },
4897     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4898       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4899       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4900       .writefn = tlbi_aa64_vae1is_write },
4901     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4902       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4903       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4904       .writefn = tlbi_aa64_vae1is_write },
4905     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4906       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4907       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4908       .writefn = tlbi_aa64_vmalle1_write },
4909     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4910       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4911       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4912       .writefn = tlbi_aa64_vae1_write },
4913     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4914       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4915       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4916       .writefn = tlbi_aa64_vmalle1_write },
4917     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4918       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4919       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4920       .writefn = tlbi_aa64_vae1_write },
4921     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4922       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4923       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4924       .writefn = tlbi_aa64_vae1_write },
4925     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4926       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4927       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4928       .writefn = tlbi_aa64_vae1_write },
4929     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4930       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4931       .access = PL2_W, .type = ARM_CP_NOP },
4932     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4933       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4934       .access = PL2_W, .type = ARM_CP_NOP },
4935     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4936       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4937       .access = PL2_W, .type = ARM_CP_NO_RAW,
4938       .writefn = tlbi_aa64_alle1is_write },
4939     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4940       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4941       .access = PL2_W, .type = ARM_CP_NO_RAW,
4942       .writefn = tlbi_aa64_alle1is_write },
4943     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4944       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4945       .access = PL2_W, .type = ARM_CP_NOP },
4946     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4947       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4948       .access = PL2_W, .type = ARM_CP_NOP },
4949     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4950       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4951       .access = PL2_W, .type = ARM_CP_NO_RAW,
4952       .writefn = tlbi_aa64_alle1_write },
4953     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4954       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4955       .access = PL2_W, .type = ARM_CP_NO_RAW,
4956       .writefn = tlbi_aa64_alle1is_write },
4957 #ifndef CONFIG_USER_ONLY
4958     /* 64 bit address translation operations */
4959     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4960       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4961       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4962       .writefn = ats_write64 },
4963     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4964       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4965       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4966       .writefn = ats_write64 },
4967     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4968       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4969       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4970       .writefn = ats_write64 },
4971     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4972       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4973       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4974       .writefn = ats_write64 },
4975     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4976       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4977       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4978       .writefn = ats_write64 },
4979     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4980       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4981       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4982       .writefn = ats_write64 },
4983     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4984       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4985       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4986       .writefn = ats_write64 },
4987     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4988       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4989       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4990       .writefn = ats_write64 },
4991     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4992     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4993       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4994       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4995       .writefn = ats_write64 },
4996     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4997       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4998       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4999       .writefn = ats_write64 },
5000     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5001       .type = ARM_CP_ALIAS,
5002       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5003       .access = PL1_RW, .resetvalue = 0,
5004       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5005       .writefn = par_write },
5006 #endif
5007     /* TLB invalidate last level of translation table walk */
5008     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5009       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5010       .writefn = tlbimva_is_write },
5011     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5012       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5013       .writefn = tlbimvaa_is_write },
5014     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5015       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5016       .writefn = tlbimva_write },
5017     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5018       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5019       .writefn = tlbimvaa_write },
5020     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5021       .type = ARM_CP_NO_RAW, .access = PL2_W,
5022       .writefn = tlbimva_hyp_write },
5023     { .name = "TLBIMVALHIS",
5024       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5025       .type = ARM_CP_NO_RAW, .access = PL2_W,
5026       .writefn = tlbimva_hyp_is_write },
5027     { .name = "TLBIIPAS2",
5028       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5029       .type = ARM_CP_NOP, .access = PL2_W },
5030     { .name = "TLBIIPAS2IS",
5031       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5032       .type = ARM_CP_NOP, .access = PL2_W },
5033     { .name = "TLBIIPAS2L",
5034       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5035       .type = ARM_CP_NOP, .access = PL2_W },
5036     { .name = "TLBIIPAS2LIS",
5037       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5038       .type = ARM_CP_NOP, .access = PL2_W },
5039     /* 32 bit cache operations */
5040     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5041       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5042     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5043       .type = ARM_CP_NOP, .access = PL1_W },
5044     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5045       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5046     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5047       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5048     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5049       .type = ARM_CP_NOP, .access = PL1_W },
5050     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5051       .type = ARM_CP_NOP, .access = PL1_W },
5052     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5053       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5054     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5055       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5056     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5057       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5058     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5059       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5060     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5061       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5062     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5063       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5064     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5065       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5066     /* MMU Domain access control / MPU write buffer control */
5067     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5068       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5069       .writefn = dacr_write, .raw_writefn = raw_write,
5070       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5071                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5072     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5073       .type = ARM_CP_ALIAS,
5074       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5075       .access = PL1_RW,
5076       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5077     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5078       .type = ARM_CP_ALIAS,
5079       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5080       .access = PL1_RW,
5081       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5082     /* We rely on the access checks not allowing the guest to write to the
5083      * state field when SPSel indicates that it's being used as the stack
5084      * pointer.
5085      */
5086     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5087       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5088       .access = PL1_RW, .accessfn = sp_el0_access,
5089       .type = ARM_CP_ALIAS,
5090       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5091     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5092       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5093       .access = PL2_RW, .type = ARM_CP_ALIAS,
5094       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5095     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5096       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5097       .type = ARM_CP_NO_RAW,
5098       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5099     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5100       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5101       .type = ARM_CP_ALIAS,
5102       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5103       .access = PL2_RW, .accessfn = fpexc32_access },
5104     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5105       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5106       .access = PL2_RW, .resetvalue = 0,
5107       .writefn = dacr_write, .raw_writefn = raw_write,
5108       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5109     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5110       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5111       .access = PL2_RW, .resetvalue = 0,
5112       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5113     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5114       .type = ARM_CP_ALIAS,
5115       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5116       .access = PL2_RW,
5117       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5118     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5119       .type = ARM_CP_ALIAS,
5120       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5121       .access = PL2_RW,
5122       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5123     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5124       .type = ARM_CP_ALIAS,
5125       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5126       .access = PL2_RW,
5127       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5128     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5129       .type = ARM_CP_ALIAS,
5130       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5131       .access = PL2_RW,
5132       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5133     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5134       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5135       .resetvalue = 0,
5136       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5137     { .name = "SDCR", .type = ARM_CP_ALIAS,
5138       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5139       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5140       .writefn = sdcr_write,
5141       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5142     REGINFO_SENTINEL
5143 };
5144 
5145 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5146 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5147     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5148       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5149       .access = PL2_RW,
5150       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5151     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5152       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5153       .access = PL2_RW,
5154       .type = ARM_CP_CONST, .resetvalue = 0 },
5155     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5156       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5157       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5158     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5159       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5160       .access = PL2_RW,
5161       .type = ARM_CP_CONST, .resetvalue = 0 },
5162     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5163       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5164       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5165     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5166       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5167       .access = PL2_RW, .type = ARM_CP_CONST,
5168       .resetvalue = 0 },
5169     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5170       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5171       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5172     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5173       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5174       .access = PL2_RW, .type = ARM_CP_CONST,
5175       .resetvalue = 0 },
5176     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5177       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5178       .access = PL2_RW, .type = ARM_CP_CONST,
5179       .resetvalue = 0 },
5180     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5181       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5182       .access = PL2_RW, .type = ARM_CP_CONST,
5183       .resetvalue = 0 },
5184     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5185       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5186       .access = PL2_RW, .type = ARM_CP_CONST,
5187       .resetvalue = 0 },
5188     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5189       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5190       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5191     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5192       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5193       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5194       .type = ARM_CP_CONST, .resetvalue = 0 },
5195     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5196       .cp = 15, .opc1 = 6, .crm = 2,
5197       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5198       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5199     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5200       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5201       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5202     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5203       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5204       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5205     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5206       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5207       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5208     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5209       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5210       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5211     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5212       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5213       .resetvalue = 0 },
5214     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5215       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5216       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5217     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5218       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5219       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5220     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5221       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5222       .resetvalue = 0 },
5223     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5224       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5225       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5226     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5227       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5228       .resetvalue = 0 },
5229     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5230       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5231       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5232     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5233       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5234       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5235     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5236       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5237       .access = PL2_RW, .accessfn = access_tda,
5238       .type = ARM_CP_CONST, .resetvalue = 0 },
5239     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5240       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5241       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5242       .type = ARM_CP_CONST, .resetvalue = 0 },
5243     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5244       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5245       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5246     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5247       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5248       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5249     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5250       .type = ARM_CP_CONST,
5251       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5252       .access = PL2_RW, .resetvalue = 0 },
5253     REGINFO_SENTINEL
5254 };
5255 
5256 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5257 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5258     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5259       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5260       .access = PL2_RW,
5261       .type = ARM_CP_CONST, .resetvalue = 0 },
5262     REGINFO_SENTINEL
5263 };
5264 
5265 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5266 {
5267     ARMCPU *cpu = env_archcpu(env);
5268 
5269     if (arm_feature(env, ARM_FEATURE_V8)) {
5270         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5271     } else {
5272         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5273     }
5274 
5275     if (arm_feature(env, ARM_FEATURE_EL3)) {
5276         valid_mask &= ~HCR_HCD;
5277     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5278         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5279          * However, if we're using the SMC PSCI conduit then QEMU is
5280          * effectively acting like EL3 firmware and so the guest at
5281          * EL2 should retain the ability to prevent EL1 from being
5282          * able to make SMC calls into the ersatz firmware, so in
5283          * that case HCR.TSC should be read/write.
5284          */
5285         valid_mask &= ~HCR_TSC;
5286     }
5287 
5288     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5289         if (cpu_isar_feature(aa64_vh, cpu)) {
5290             valid_mask |= HCR_E2H;
5291         }
5292         if (cpu_isar_feature(aa64_lor, cpu)) {
5293             valid_mask |= HCR_TLOR;
5294         }
5295         if (cpu_isar_feature(aa64_pauth, cpu)) {
5296             valid_mask |= HCR_API | HCR_APK;
5297         }
5298         if (cpu_isar_feature(aa64_mte, cpu)) {
5299             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5300         }
5301     }
5302 
5303     /* Clear RES0 bits.  */
5304     value &= valid_mask;
5305 
5306     /*
5307      * These bits change the MMU setup:
5308      * HCR_VM enables stage 2 translation
5309      * HCR_PTW forbids certain page-table setups
5310      * HCR_DC disables stage1 and enables stage2 translation
5311      * HCR_DCT enables tagging on (disabled) stage1 translation
5312      */
5313     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5314         tlb_flush(CPU(cpu));
5315     }
5316     env->cp15.hcr_el2 = value;
5317 
5318     /*
5319      * Updates to VI and VF require us to update the status of
5320      * virtual interrupts, which are the logical OR of these bits
5321      * and the state of the input lines from the GIC. (This requires
5322      * that we have the iothread lock, which is done by marking the
5323      * reginfo structs as ARM_CP_IO.)
5324      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5325      * possible for it to be taken immediately, because VIRQ and
5326      * VFIQ are masked unless running at EL0 or EL1, and HCR
5327      * can only be written at EL2.
5328      */
5329     g_assert(qemu_mutex_iothread_locked());
5330     arm_cpu_update_virq(cpu);
5331     arm_cpu_update_vfiq(cpu);
5332 }
5333 
5334 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5335 {
5336     do_hcr_write(env, value, 0);
5337 }
5338 
5339 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5340                           uint64_t value)
5341 {
5342     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5343     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5344     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5345 }
5346 
5347 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5348                          uint64_t value)
5349 {
5350     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5351     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5352     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5353 }
5354 
5355 /*
5356  * Return the effective value of HCR_EL2.
5357  * Bits that are not included here:
5358  * RW       (read from SCR_EL3.RW as needed)
5359  */
5360 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5361 {
5362     uint64_t ret = env->cp15.hcr_el2;
5363 
5364     if (!arm_is_el2_enabled(env)) {
5365         /*
5366          * "This register has no effect if EL2 is not enabled in the
5367          * current Security state".  This is ARMv8.4-SecEL2 speak for
5368          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5369          *
5370          * Prior to that, the language was "In an implementation that
5371          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5372          * as if this field is 0 for all purposes other than a direct
5373          * read or write access of HCR_EL2".  With lots of enumeration
5374          * on a per-field basis.  In current QEMU, this is condition
5375          * is arm_is_secure_below_el3.
5376          *
5377          * Since the v8.4 language applies to the entire register, and
5378          * appears to be backward compatible, use that.
5379          */
5380         return 0;
5381     }
5382 
5383     /*
5384      * For a cpu that supports both aarch64 and aarch32, we can set bits
5385      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5386      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5387      */
5388     if (!arm_el_is_aa64(env, 2)) {
5389         uint64_t aa32_valid;
5390 
5391         /*
5392          * These bits are up-to-date as of ARMv8.6.
5393          * For HCR, it's easiest to list just the 2 bits that are invalid.
5394          * For HCR2, list those that are valid.
5395          */
5396         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5397         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5398                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5399         ret &= aa32_valid;
5400     }
5401 
5402     if (ret & HCR_TGE) {
5403         /* These bits are up-to-date as of ARMv8.6.  */
5404         if (ret & HCR_E2H) {
5405             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5406                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5407                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5408                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5409                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5410                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5411         } else {
5412             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5413         }
5414         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5415                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5416                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5417                  HCR_TLOR);
5418     }
5419 
5420     return ret;
5421 }
5422 
5423 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5424                            uint64_t value)
5425 {
5426     /*
5427      * For A-profile AArch32 EL3, if NSACR.CP10
5428      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5429      */
5430     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5431         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5432         value &= ~(0x3 << 10);
5433         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5434     }
5435     env->cp15.cptr_el[2] = value;
5436 }
5437 
5438 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5439 {
5440     /*
5441      * For A-profile AArch32 EL3, if NSACR.CP10
5442      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5443      */
5444     uint64_t value = env->cp15.cptr_el[2];
5445 
5446     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5447         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5448         value |= 0x3 << 10;
5449     }
5450     return value;
5451 }
5452 
5453 static const ARMCPRegInfo el2_cp_reginfo[] = {
5454     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5455       .type = ARM_CP_IO,
5456       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5457       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5458       .writefn = hcr_write },
5459     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5460       .type = ARM_CP_ALIAS | ARM_CP_IO,
5461       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5462       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5463       .writefn = hcr_writelow },
5464     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5465       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5466       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5467     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5468       .type = ARM_CP_ALIAS,
5469       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5470       .access = PL2_RW,
5471       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5472     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5473       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5474       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5475     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5476       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5477       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5478     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5479       .type = ARM_CP_ALIAS,
5480       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5481       .access = PL2_RW,
5482       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5483     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5484       .type = ARM_CP_ALIAS,
5485       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5486       .access = PL2_RW,
5487       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5488     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5489       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5490       .access = PL2_RW, .writefn = vbar_write,
5491       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5492       .resetvalue = 0 },
5493     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5494       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5495       .access = PL3_RW, .type = ARM_CP_ALIAS,
5496       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5497     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5498       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5499       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5500       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5501       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5502     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5503       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5504       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5505       .resetvalue = 0 },
5506     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5507       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5508       .access = PL2_RW, .type = ARM_CP_ALIAS,
5509       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5510     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5511       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5512       .access = PL2_RW, .type = ARM_CP_CONST,
5513       .resetvalue = 0 },
5514     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5515     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5516       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5517       .access = PL2_RW, .type = ARM_CP_CONST,
5518       .resetvalue = 0 },
5519     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5520       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5521       .access = PL2_RW, .type = ARM_CP_CONST,
5522       .resetvalue = 0 },
5523     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5524       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5525       .access = PL2_RW, .type = ARM_CP_CONST,
5526       .resetvalue = 0 },
5527     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5528       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5529       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5530       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5531       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5532     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5533       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5534       .type = ARM_CP_ALIAS,
5535       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5536       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5537     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5538       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5539       .access = PL2_RW,
5540       /* no .writefn needed as this can't cause an ASID change;
5541        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5542        */
5543       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5544     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5545       .cp = 15, .opc1 = 6, .crm = 2,
5546       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5547       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5548       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5549       .writefn = vttbr_write },
5550     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5551       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5552       .access = PL2_RW, .writefn = vttbr_write,
5553       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5554     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5555       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5556       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5557       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5558     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5559       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5560       .access = PL2_RW, .resetvalue = 0,
5561       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5562     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5563       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5564       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5565       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5566     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5567       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5568       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5569     { .name = "TLBIALLNSNH",
5570       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5571       .type = ARM_CP_NO_RAW, .access = PL2_W,
5572       .writefn = tlbiall_nsnh_write },
5573     { .name = "TLBIALLNSNHIS",
5574       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5575       .type = ARM_CP_NO_RAW, .access = PL2_W,
5576       .writefn = tlbiall_nsnh_is_write },
5577     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5578       .type = ARM_CP_NO_RAW, .access = PL2_W,
5579       .writefn = tlbiall_hyp_write },
5580     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5581       .type = ARM_CP_NO_RAW, .access = PL2_W,
5582       .writefn = tlbiall_hyp_is_write },
5583     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5584       .type = ARM_CP_NO_RAW, .access = PL2_W,
5585       .writefn = tlbimva_hyp_write },
5586     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5587       .type = ARM_CP_NO_RAW, .access = PL2_W,
5588       .writefn = tlbimva_hyp_is_write },
5589     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5590       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5591       .type = ARM_CP_NO_RAW, .access = PL2_W,
5592       .writefn = tlbi_aa64_alle2_write },
5593     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5594       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5595       .type = ARM_CP_NO_RAW, .access = PL2_W,
5596       .writefn = tlbi_aa64_vae2_write },
5597     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5598       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5599       .access = PL2_W, .type = ARM_CP_NO_RAW,
5600       .writefn = tlbi_aa64_vae2_write },
5601     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5602       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5603       .access = PL2_W, .type = ARM_CP_NO_RAW,
5604       .writefn = tlbi_aa64_alle2is_write },
5605     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5606       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5607       .type = ARM_CP_NO_RAW, .access = PL2_W,
5608       .writefn = tlbi_aa64_vae2is_write },
5609     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5610       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5611       .access = PL2_W, .type = ARM_CP_NO_RAW,
5612       .writefn = tlbi_aa64_vae2is_write },
5613 #ifndef CONFIG_USER_ONLY
5614     /* Unlike the other EL2-related AT operations, these must
5615      * UNDEF from EL3 if EL2 is not implemented, which is why we
5616      * define them here rather than with the rest of the AT ops.
5617      */
5618     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5619       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5620       .access = PL2_W, .accessfn = at_s1e2_access,
5621       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5622     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5623       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5624       .access = PL2_W, .accessfn = at_s1e2_access,
5625       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5626     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5627      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5628      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5629      * to behave as if SCR.NS was 1.
5630      */
5631     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5632       .access = PL2_W,
5633       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5634     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5635       .access = PL2_W,
5636       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5637     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5638       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5639       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5640        * reset values as IMPDEF. We choose to reset to 3 to comply with
5641        * both ARMv7 and ARMv8.
5642        */
5643       .access = PL2_RW, .resetvalue = 3,
5644       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5645     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5646       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5647       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5648       .writefn = gt_cntvoff_write,
5649       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5650     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5651       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5652       .writefn = gt_cntvoff_write,
5653       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5654     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5655       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5656       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5657       .type = ARM_CP_IO, .access = PL2_RW,
5658       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5659     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5660       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5661       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5662       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5663     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5664       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5665       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5666       .resetfn = gt_hyp_timer_reset,
5667       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5668     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5669       .type = ARM_CP_IO,
5670       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5671       .access = PL2_RW,
5672       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5673       .resetvalue = 0,
5674       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5675 #endif
5676     /* The only field of MDCR_EL2 that has a defined architectural reset value
5677      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5678      */
5679     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5680       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5681       .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5682       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5683     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5684       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5685       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5686       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5687     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5688       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5689       .access = PL2_RW,
5690       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5691     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5692       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5693       .access = PL2_RW,
5694       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5695     REGINFO_SENTINEL
5696 };
5697 
5698 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5699     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5700       .type = ARM_CP_ALIAS | ARM_CP_IO,
5701       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5702       .access = PL2_RW,
5703       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5704       .writefn = hcr_writehigh },
5705     REGINFO_SENTINEL
5706 };
5707 
5708 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5709                                   bool isread)
5710 {
5711     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5712         return CP_ACCESS_OK;
5713     }
5714     return CP_ACCESS_TRAP_UNCATEGORIZED;
5715 }
5716 
5717 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5718     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5719       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5720       .access = PL2_RW, .accessfn = sel2_access,
5721       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5722     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5723       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5724       .access = PL2_RW, .accessfn = sel2_access,
5725       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5726     REGINFO_SENTINEL
5727 };
5728 
5729 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5730                                    bool isread)
5731 {
5732     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5733      * At Secure EL1 it traps to EL3 or EL2.
5734      */
5735     if (arm_current_el(env) == 3) {
5736         return CP_ACCESS_OK;
5737     }
5738     if (arm_is_secure_below_el3(env)) {
5739         if (env->cp15.scr_el3 & SCR_EEL2) {
5740             return CP_ACCESS_TRAP_EL2;
5741         }
5742         return CP_ACCESS_TRAP_EL3;
5743     }
5744     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5745     if (isread) {
5746         return CP_ACCESS_OK;
5747     }
5748     return CP_ACCESS_TRAP_UNCATEGORIZED;
5749 }
5750 
5751 static const ARMCPRegInfo el3_cp_reginfo[] = {
5752     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5753       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5754       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5755       .resetfn = scr_reset, .writefn = scr_write },
5756     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5757       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5758       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5759       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5760       .writefn = scr_write },
5761     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5762       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5763       .access = PL3_RW, .resetvalue = 0,
5764       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5765     { .name = "SDER",
5766       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5767       .access = PL3_RW, .resetvalue = 0,
5768       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5769     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5770       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5771       .writefn = vbar_write, .resetvalue = 0,
5772       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5773     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5774       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5775       .access = PL3_RW, .resetvalue = 0,
5776       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5777     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5778       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5779       .access = PL3_RW,
5780       /* no .writefn needed as this can't cause an ASID change;
5781        * we must provide a .raw_writefn and .resetfn because we handle
5782        * reset and migration for the AArch32 TTBCR(S), which might be
5783        * using mask and base_mask.
5784        */
5785       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5786       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5787     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5788       .type = ARM_CP_ALIAS,
5789       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5790       .access = PL3_RW,
5791       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5792     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5793       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5794       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5795     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5796       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5797       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5798     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5799       .type = ARM_CP_ALIAS,
5800       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5801       .access = PL3_RW,
5802       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5803     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5804       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5805       .access = PL3_RW, .writefn = vbar_write,
5806       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5807       .resetvalue = 0 },
5808     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5809       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5810       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5811       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5812     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5813       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5814       .access = PL3_RW, .resetvalue = 0,
5815       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5816     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5817       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5818       .access = PL3_RW, .type = ARM_CP_CONST,
5819       .resetvalue = 0 },
5820     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5821       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5822       .access = PL3_RW, .type = ARM_CP_CONST,
5823       .resetvalue = 0 },
5824     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5825       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5826       .access = PL3_RW, .type = ARM_CP_CONST,
5827       .resetvalue = 0 },
5828     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5829       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5830       .access = PL3_W, .type = ARM_CP_NO_RAW,
5831       .writefn = tlbi_aa64_alle3is_write },
5832     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5833       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5834       .access = PL3_W, .type = ARM_CP_NO_RAW,
5835       .writefn = tlbi_aa64_vae3is_write },
5836     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5837       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5838       .access = PL3_W, .type = ARM_CP_NO_RAW,
5839       .writefn = tlbi_aa64_vae3is_write },
5840     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5841       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5842       .access = PL3_W, .type = ARM_CP_NO_RAW,
5843       .writefn = tlbi_aa64_alle3_write },
5844     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5845       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5846       .access = PL3_W, .type = ARM_CP_NO_RAW,
5847       .writefn = tlbi_aa64_vae3_write },
5848     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5849       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5850       .access = PL3_W, .type = ARM_CP_NO_RAW,
5851       .writefn = tlbi_aa64_vae3_write },
5852     REGINFO_SENTINEL
5853 };
5854 
5855 #ifndef CONFIG_USER_ONLY
5856 /* Test if system register redirection is to occur in the current state.  */
5857 static bool redirect_for_e2h(CPUARMState *env)
5858 {
5859     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5860 }
5861 
5862 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5863 {
5864     CPReadFn *readfn;
5865 
5866     if (redirect_for_e2h(env)) {
5867         /* Switch to the saved EL2 version of the register.  */
5868         ri = ri->opaque;
5869         readfn = ri->readfn;
5870     } else {
5871         readfn = ri->orig_readfn;
5872     }
5873     if (readfn == NULL) {
5874         readfn = raw_read;
5875     }
5876     return readfn(env, ri);
5877 }
5878 
5879 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5880                           uint64_t value)
5881 {
5882     CPWriteFn *writefn;
5883 
5884     if (redirect_for_e2h(env)) {
5885         /* Switch to the saved EL2 version of the register.  */
5886         ri = ri->opaque;
5887         writefn = ri->writefn;
5888     } else {
5889         writefn = ri->orig_writefn;
5890     }
5891     if (writefn == NULL) {
5892         writefn = raw_write;
5893     }
5894     writefn(env, ri, value);
5895 }
5896 
5897 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5898 {
5899     struct E2HAlias {
5900         uint32_t src_key, dst_key, new_key;
5901         const char *src_name, *dst_name, *new_name;
5902         bool (*feature)(const ARMISARegisters *id);
5903     };
5904 
5905 #define K(op0, op1, crn, crm, op2) \
5906     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5907 
5908     static const struct E2HAlias aliases[] = {
5909         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5910           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5911         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5912           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5913         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5914           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5915         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5916           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5917         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5918           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5919         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5920           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5921         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5922           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5923         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5924           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5925         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5926           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5927         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5928           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5929         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5930           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5931         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5932           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5933         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5934           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5935         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5936           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5937         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5938           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5939         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5940           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5941 
5942         /*
5943          * Note that redirection of ZCR is mentioned in the description
5944          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5945          * not in the summary table.
5946          */
5947         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5948           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5949 
5950         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
5951           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5952 
5953         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5954         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5955     };
5956 #undef K
5957 
5958     size_t i;
5959 
5960     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5961         const struct E2HAlias *a = &aliases[i];
5962         ARMCPRegInfo *src_reg, *dst_reg;
5963 
5964         if (a->feature && !a->feature(&cpu->isar)) {
5965             continue;
5966         }
5967 
5968         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5969         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5970         g_assert(src_reg != NULL);
5971         g_assert(dst_reg != NULL);
5972 
5973         /* Cross-compare names to detect typos in the keys.  */
5974         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5975         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5976 
5977         /* None of the core system registers use opaque; we will.  */
5978         g_assert(src_reg->opaque == NULL);
5979 
5980         /* Create alias before redirection so we dup the right data. */
5981         if (a->new_key) {
5982             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5983             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5984             bool ok;
5985 
5986             new_reg->name = a->new_name;
5987             new_reg->type |= ARM_CP_ALIAS;
5988             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5989             new_reg->access &= PL2_RW | PL3_RW;
5990 
5991             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5992             g_assert(ok);
5993         }
5994 
5995         src_reg->opaque = dst_reg;
5996         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5997         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5998         if (!src_reg->raw_readfn) {
5999             src_reg->raw_readfn = raw_read;
6000         }
6001         if (!src_reg->raw_writefn) {
6002             src_reg->raw_writefn = raw_write;
6003         }
6004         src_reg->readfn = el2_e2h_read;
6005         src_reg->writefn = el2_e2h_write;
6006     }
6007 }
6008 #endif
6009 
6010 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6011                                      bool isread)
6012 {
6013     int cur_el = arm_current_el(env);
6014 
6015     if (cur_el < 2) {
6016         uint64_t hcr = arm_hcr_el2_eff(env);
6017 
6018         if (cur_el == 0) {
6019             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6020                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6021                     return CP_ACCESS_TRAP_EL2;
6022                 }
6023             } else {
6024                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6025                     return CP_ACCESS_TRAP;
6026                 }
6027                 if (hcr & HCR_TID2) {
6028                     return CP_ACCESS_TRAP_EL2;
6029                 }
6030             }
6031         } else if (hcr & HCR_TID2) {
6032             return CP_ACCESS_TRAP_EL2;
6033         }
6034     }
6035 
6036     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6037         return CP_ACCESS_TRAP_EL2;
6038     }
6039 
6040     return CP_ACCESS_OK;
6041 }
6042 
6043 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6044                         uint64_t value)
6045 {
6046     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6047      * read via a bit in OSLSR_EL1.
6048      */
6049     int oslock;
6050 
6051     if (ri->state == ARM_CP_STATE_AA32) {
6052         oslock = (value == 0xC5ACCE55);
6053     } else {
6054         oslock = value & 1;
6055     }
6056 
6057     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6058 }
6059 
6060 static const ARMCPRegInfo debug_cp_reginfo[] = {
6061     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6062      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6063      * unlike DBGDRAR it is never accessible from EL0.
6064      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6065      * accessor.
6066      */
6067     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6068       .access = PL0_R, .accessfn = access_tdra,
6069       .type = ARM_CP_CONST, .resetvalue = 0 },
6070     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6071       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6072       .access = PL1_R, .accessfn = access_tdra,
6073       .type = ARM_CP_CONST, .resetvalue = 0 },
6074     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6075       .access = PL0_R, .accessfn = access_tdra,
6076       .type = ARM_CP_CONST, .resetvalue = 0 },
6077     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6078     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6079       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6080       .access = PL1_RW, .accessfn = access_tda,
6081       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6082       .resetvalue = 0 },
6083     /*
6084      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
6085      * Debug Communication Channel is not implemented.
6086      */
6087     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6088       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6089       .access = PL0_R, .accessfn = access_tda,
6090       .type = ARM_CP_CONST, .resetvalue = 0 },
6091     /*
6092      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
6093      * it is unlikely a guest will care.
6094      * We don't implement the configurable EL0 access.
6095      */
6096     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6097       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6098       .type = ARM_CP_ALIAS,
6099       .access = PL1_R, .accessfn = access_tda,
6100       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6101     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6102       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6103       .access = PL1_W, .type = ARM_CP_NO_RAW,
6104       .accessfn = access_tdosa,
6105       .writefn = oslar_write },
6106     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6107       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6108       .access = PL1_R, .resetvalue = 10,
6109       .accessfn = access_tdosa,
6110       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6111     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6112     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6113       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6114       .access = PL1_RW, .accessfn = access_tdosa,
6115       .type = ARM_CP_NOP },
6116     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6117      * implement vector catch debug events yet.
6118      */
6119     { .name = "DBGVCR",
6120       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6121       .access = PL1_RW, .accessfn = access_tda,
6122       .type = ARM_CP_NOP },
6123     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6124      * to save and restore a 32-bit guest's DBGVCR)
6125      */
6126     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6127       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6128       .access = PL2_RW, .accessfn = access_tda,
6129       .type = ARM_CP_NOP },
6130     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6131      * Channel but Linux may try to access this register. The 32-bit
6132      * alias is DBGDCCINT.
6133      */
6134     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6135       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6136       .access = PL1_RW, .accessfn = access_tda,
6137       .type = ARM_CP_NOP },
6138     REGINFO_SENTINEL
6139 };
6140 
6141 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6142     /* 64 bit access versions of the (dummy) debug registers */
6143     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6144       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6145     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6146       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6147     REGINFO_SENTINEL
6148 };
6149 
6150 /* Return the exception level to which exceptions should be taken
6151  * via SVEAccessTrap.  If an exception should be routed through
6152  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6153  * take care of raising that exception.
6154  * C.f. the ARM pseudocode function CheckSVEEnabled.
6155  */
6156 int sve_exception_el(CPUARMState *env, int el)
6157 {
6158 #ifndef CONFIG_USER_ONLY
6159     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6160 
6161     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6162         /* Check CPACR.ZEN.  */
6163         switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
6164         case 1:
6165             if (el != 0) {
6166                 break;
6167             }
6168             /* fall through */
6169         case 0:
6170         case 2:
6171             /* route_to_el2 */
6172             return hcr_el2 & HCR_TGE ? 2 : 1;
6173         }
6174 
6175         /* Check CPACR.FPEN.  */
6176         switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
6177         case 1:
6178             if (el != 0) {
6179                 break;
6180             }
6181             /* fall through */
6182         case 0:
6183         case 2:
6184             return 0;
6185         }
6186     }
6187 
6188     /*
6189      * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE).
6190      */
6191     if (el <= 2) {
6192         if (hcr_el2 & HCR_E2H) {
6193             /* Check CPTR_EL2.ZEN.  */
6194             switch (extract32(env->cp15.cptr_el[2], 16, 2)) {
6195             case 1:
6196                 if (el != 0 || !(hcr_el2 & HCR_TGE)) {
6197                     break;
6198                 }
6199                 /* fall through */
6200             case 0:
6201             case 2:
6202                 return 2;
6203             }
6204 
6205             /* Check CPTR_EL2.FPEN.  */
6206             switch (extract32(env->cp15.cptr_el[2], 20, 2)) {
6207             case 1:
6208                 if (el == 2 || !(hcr_el2 & HCR_TGE)) {
6209                     break;
6210                 }
6211                 /* fall through */
6212             case 0:
6213             case 2:
6214                 return 0;
6215             }
6216         } else if (arm_is_el2_enabled(env)) {
6217             if (env->cp15.cptr_el[2] & CPTR_TZ) {
6218                 return 2;
6219             }
6220             if (env->cp15.cptr_el[2] & CPTR_TFP) {
6221                 return 0;
6222             }
6223         }
6224     }
6225 
6226     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6227     if (arm_feature(env, ARM_FEATURE_EL3)
6228         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6229         return 3;
6230     }
6231 #endif
6232     return 0;
6233 }
6234 
6235 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6236 {
6237     uint32_t end_len;
6238 
6239     start_len = MIN(start_len, ARM_MAX_VQ - 1);
6240     end_len = start_len;
6241 
6242     if (!test_bit(start_len, cpu->sve_vq_map)) {
6243         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6244         assert(end_len < start_len);
6245     }
6246     return end_len;
6247 }
6248 
6249 /*
6250  * Given that SVE is enabled, return the vector length for EL.
6251  */
6252 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6253 {
6254     ARMCPU *cpu = env_archcpu(env);
6255     uint32_t zcr_len = cpu->sve_max_vq - 1;
6256 
6257     if (el <= 1 &&
6258         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6259         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6260     }
6261     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6262         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6263     }
6264     if (arm_feature(env, ARM_FEATURE_EL3)) {
6265         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6266     }
6267 
6268     return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6269 }
6270 
6271 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6272                       uint64_t value)
6273 {
6274     int cur_el = arm_current_el(env);
6275     int old_len = sve_zcr_len_for_el(env, cur_el);
6276     int new_len;
6277 
6278     /* Bits other than [3:0] are RAZ/WI.  */
6279     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6280     raw_write(env, ri, value & 0xf);
6281 
6282     /*
6283      * Because we arrived here, we know both FP and SVE are enabled;
6284      * otherwise we would have trapped access to the ZCR_ELn register.
6285      */
6286     new_len = sve_zcr_len_for_el(env, cur_el);
6287     if (new_len < old_len) {
6288         aarch64_sve_narrow_vq(env, new_len + 1);
6289     }
6290 }
6291 
6292 static const ARMCPRegInfo zcr_el1_reginfo = {
6293     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6294     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6295     .access = PL1_RW, .type = ARM_CP_SVE,
6296     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6297     .writefn = zcr_write, .raw_writefn = raw_write
6298 };
6299 
6300 static const ARMCPRegInfo zcr_el2_reginfo = {
6301     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6302     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6303     .access = PL2_RW, .type = ARM_CP_SVE,
6304     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6305     .writefn = zcr_write, .raw_writefn = raw_write
6306 };
6307 
6308 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6309     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6310     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6311     .access = PL2_RW, .type = ARM_CP_SVE,
6312     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6313 };
6314 
6315 static const ARMCPRegInfo zcr_el3_reginfo = {
6316     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6317     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6318     .access = PL3_RW, .type = ARM_CP_SVE,
6319     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6320     .writefn = zcr_write, .raw_writefn = raw_write
6321 };
6322 
6323 void hw_watchpoint_update(ARMCPU *cpu, int n)
6324 {
6325     CPUARMState *env = &cpu->env;
6326     vaddr len = 0;
6327     vaddr wvr = env->cp15.dbgwvr[n];
6328     uint64_t wcr = env->cp15.dbgwcr[n];
6329     int mask;
6330     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6331 
6332     if (env->cpu_watchpoint[n]) {
6333         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6334         env->cpu_watchpoint[n] = NULL;
6335     }
6336 
6337     if (!extract64(wcr, 0, 1)) {
6338         /* E bit clear : watchpoint disabled */
6339         return;
6340     }
6341 
6342     switch (extract64(wcr, 3, 2)) {
6343     case 0:
6344         /* LSC 00 is reserved and must behave as if the wp is disabled */
6345         return;
6346     case 1:
6347         flags |= BP_MEM_READ;
6348         break;
6349     case 2:
6350         flags |= BP_MEM_WRITE;
6351         break;
6352     case 3:
6353         flags |= BP_MEM_ACCESS;
6354         break;
6355     }
6356 
6357     /* Attempts to use both MASK and BAS fields simultaneously are
6358      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6359      * thus generating a watchpoint for every byte in the masked region.
6360      */
6361     mask = extract64(wcr, 24, 4);
6362     if (mask == 1 || mask == 2) {
6363         /* Reserved values of MASK; we must act as if the mask value was
6364          * some non-reserved value, or as if the watchpoint were disabled.
6365          * We choose the latter.
6366          */
6367         return;
6368     } else if (mask) {
6369         /* Watchpoint covers an aligned area up to 2GB in size */
6370         len = 1ULL << mask;
6371         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6372          * whether the watchpoint fires when the unmasked bits match; we opt
6373          * to generate the exceptions.
6374          */
6375         wvr &= ~(len - 1);
6376     } else {
6377         /* Watchpoint covers bytes defined by the byte address select bits */
6378         int bas = extract64(wcr, 5, 8);
6379         int basstart;
6380 
6381         if (extract64(wvr, 2, 1)) {
6382             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6383              * ignored, and BAS[3:0] define which bytes to watch.
6384              */
6385             bas &= 0xf;
6386         }
6387 
6388         if (bas == 0) {
6389             /* This must act as if the watchpoint is disabled */
6390             return;
6391         }
6392 
6393         /* The BAS bits are supposed to be programmed to indicate a contiguous
6394          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6395          * we fire for each byte in the word/doubleword addressed by the WVR.
6396          * We choose to ignore any non-zero bits after the first range of 1s.
6397          */
6398         basstart = ctz32(bas);
6399         len = cto32(bas >> basstart);
6400         wvr += basstart;
6401     }
6402 
6403     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6404                           &env->cpu_watchpoint[n]);
6405 }
6406 
6407 void hw_watchpoint_update_all(ARMCPU *cpu)
6408 {
6409     int i;
6410     CPUARMState *env = &cpu->env;
6411 
6412     /* Completely clear out existing QEMU watchpoints and our array, to
6413      * avoid possible stale entries following migration load.
6414      */
6415     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6416     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6417 
6418     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6419         hw_watchpoint_update(cpu, i);
6420     }
6421 }
6422 
6423 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6424                          uint64_t value)
6425 {
6426     ARMCPU *cpu = env_archcpu(env);
6427     int i = ri->crm;
6428 
6429     /*
6430      * Bits [1:0] are RES0.
6431      *
6432      * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
6433      * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
6434      * they contain the value written.  It is CONSTRAINED UNPREDICTABLE
6435      * whether the RESS bits are ignored when comparing an address.
6436      *
6437      * Therefore we are allowed to compare the entire register, which lets
6438      * us avoid considering whether or not FEAT_LVA is actually enabled.
6439      */
6440     value &= ~3ULL;
6441 
6442     raw_write(env, ri, value);
6443     hw_watchpoint_update(cpu, i);
6444 }
6445 
6446 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6447                          uint64_t value)
6448 {
6449     ARMCPU *cpu = env_archcpu(env);
6450     int i = ri->crm;
6451 
6452     raw_write(env, ri, value);
6453     hw_watchpoint_update(cpu, i);
6454 }
6455 
6456 void hw_breakpoint_update(ARMCPU *cpu, int n)
6457 {
6458     CPUARMState *env = &cpu->env;
6459     uint64_t bvr = env->cp15.dbgbvr[n];
6460     uint64_t bcr = env->cp15.dbgbcr[n];
6461     vaddr addr;
6462     int bt;
6463     int flags = BP_CPU;
6464 
6465     if (env->cpu_breakpoint[n]) {
6466         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6467         env->cpu_breakpoint[n] = NULL;
6468     }
6469 
6470     if (!extract64(bcr, 0, 1)) {
6471         /* E bit clear : watchpoint disabled */
6472         return;
6473     }
6474 
6475     bt = extract64(bcr, 20, 4);
6476 
6477     switch (bt) {
6478     case 4: /* unlinked address mismatch (reserved if AArch64) */
6479     case 5: /* linked address mismatch (reserved if AArch64) */
6480         qemu_log_mask(LOG_UNIMP,
6481                       "arm: address mismatch breakpoint types not implemented\n");
6482         return;
6483     case 0: /* unlinked address match */
6484     case 1: /* linked address match */
6485     {
6486         /*
6487          * Bits [1:0] are RES0.
6488          *
6489          * It is IMPLEMENTATION DEFINED whether bits [63:49]
6490          * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
6491          * of the VA field ([48] or [52] for FEAT_LVA), or whether the
6492          * value is read as written.  It is CONSTRAINED UNPREDICTABLE
6493          * whether the RESS bits are ignored when comparing an address.
6494          * Therefore we are allowed to compare the entire register, which
6495          * lets us avoid considering whether FEAT_LVA is actually enabled.
6496          *
6497          * The BAS field is used to allow setting breakpoints on 16-bit
6498          * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6499          * a bp will fire if the addresses covered by the bp and the addresses
6500          * covered by the insn overlap but the insn doesn't start at the
6501          * start of the bp address range. We choose to require the insn and
6502          * the bp to have the same address. The constraints on writing to
6503          * BAS enforced in dbgbcr_write mean we have only four cases:
6504          *  0b0000  => no breakpoint
6505          *  0b0011  => breakpoint on addr
6506          *  0b1100  => breakpoint on addr + 2
6507          *  0b1111  => breakpoint on addr
6508          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6509          */
6510         int bas = extract64(bcr, 5, 4);
6511         addr = bvr & ~3ULL;
6512         if (bas == 0) {
6513             return;
6514         }
6515         if (bas == 0xc) {
6516             addr += 2;
6517         }
6518         break;
6519     }
6520     case 2: /* unlinked context ID match */
6521     case 8: /* unlinked VMID match (reserved if no EL2) */
6522     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6523         qemu_log_mask(LOG_UNIMP,
6524                       "arm: unlinked context breakpoint types not implemented\n");
6525         return;
6526     case 9: /* linked VMID match (reserved if no EL2) */
6527     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6528     case 3: /* linked context ID match */
6529     default:
6530         /* We must generate no events for Linked context matches (unless
6531          * they are linked to by some other bp/wp, which is handled in
6532          * updates for the linking bp/wp). We choose to also generate no events
6533          * for reserved values.
6534          */
6535         return;
6536     }
6537 
6538     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6539 }
6540 
6541 void hw_breakpoint_update_all(ARMCPU *cpu)
6542 {
6543     int i;
6544     CPUARMState *env = &cpu->env;
6545 
6546     /* Completely clear out existing QEMU breakpoints and our array, to
6547      * avoid possible stale entries following migration load.
6548      */
6549     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6550     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6551 
6552     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6553         hw_breakpoint_update(cpu, i);
6554     }
6555 }
6556 
6557 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6558                          uint64_t value)
6559 {
6560     ARMCPU *cpu = env_archcpu(env);
6561     int i = ri->crm;
6562 
6563     raw_write(env, ri, value);
6564     hw_breakpoint_update(cpu, i);
6565 }
6566 
6567 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6568                          uint64_t value)
6569 {
6570     ARMCPU *cpu = env_archcpu(env);
6571     int i = ri->crm;
6572 
6573     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6574      * copy of BAS[0].
6575      */
6576     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6577     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6578 
6579     raw_write(env, ri, value);
6580     hw_breakpoint_update(cpu, i);
6581 }
6582 
6583 static void define_debug_regs(ARMCPU *cpu)
6584 {
6585     /* Define v7 and v8 architectural debug registers.
6586      * These are just dummy implementations for now.
6587      */
6588     int i;
6589     int wrps, brps, ctx_cmps;
6590 
6591     /*
6592      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6593      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6594      * the register must not exist for this cpu.
6595      */
6596     if (cpu->isar.dbgdidr != 0) {
6597         ARMCPRegInfo dbgdidr = {
6598             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6599             .opc1 = 0, .opc2 = 0,
6600             .access = PL0_R, .accessfn = access_tda,
6601             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6602         };
6603         define_one_arm_cp_reg(cpu, &dbgdidr);
6604     }
6605 
6606     /* Note that all these register fields hold "number of Xs minus 1". */
6607     brps = arm_num_brps(cpu);
6608     wrps = arm_num_wrps(cpu);
6609     ctx_cmps = arm_num_ctx_cmps(cpu);
6610 
6611     assert(ctx_cmps <= brps);
6612 
6613     define_arm_cp_regs(cpu, debug_cp_reginfo);
6614 
6615     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6616         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6617     }
6618 
6619     for (i = 0; i < brps; i++) {
6620         ARMCPRegInfo dbgregs[] = {
6621             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6622               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6623               .access = PL1_RW, .accessfn = access_tda,
6624               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6625               .writefn = dbgbvr_write, .raw_writefn = raw_write
6626             },
6627             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6628               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6629               .access = PL1_RW, .accessfn = access_tda,
6630               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6631               .writefn = dbgbcr_write, .raw_writefn = raw_write
6632             },
6633             REGINFO_SENTINEL
6634         };
6635         define_arm_cp_regs(cpu, dbgregs);
6636     }
6637 
6638     for (i = 0; i < wrps; i++) {
6639         ARMCPRegInfo dbgregs[] = {
6640             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6641               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6642               .access = PL1_RW, .accessfn = access_tda,
6643               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6644               .writefn = dbgwvr_write, .raw_writefn = raw_write
6645             },
6646             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6647               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6648               .access = PL1_RW, .accessfn = access_tda,
6649               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6650               .writefn = dbgwcr_write, .raw_writefn = raw_write
6651             },
6652             REGINFO_SENTINEL
6653         };
6654         define_arm_cp_regs(cpu, dbgregs);
6655     }
6656 }
6657 
6658 static void define_pmu_regs(ARMCPU *cpu)
6659 {
6660     /*
6661      * v7 performance monitor control register: same implementor
6662      * field as main ID register, and we implement four counters in
6663      * addition to the cycle count register.
6664      */
6665     unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6666     ARMCPRegInfo pmcr = {
6667         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6668         .access = PL0_RW,
6669         .type = ARM_CP_IO | ARM_CP_ALIAS,
6670         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6671         .accessfn = pmreg_access, .writefn = pmcr_write,
6672         .raw_writefn = raw_write,
6673     };
6674     ARMCPRegInfo pmcr64 = {
6675         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6676         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6677         .access = PL0_RW, .accessfn = pmreg_access,
6678         .type = ARM_CP_IO,
6679         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6680         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6681                       PMCRLC,
6682         .writefn = pmcr_write, .raw_writefn = raw_write,
6683     };
6684     define_one_arm_cp_reg(cpu, &pmcr);
6685     define_one_arm_cp_reg(cpu, &pmcr64);
6686     for (i = 0; i < pmcrn; i++) {
6687         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6688         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6689         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6690         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6691         ARMCPRegInfo pmev_regs[] = {
6692             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6693               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6694               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6695               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6696               .accessfn = pmreg_access },
6697             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6698               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6699               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6700               .type = ARM_CP_IO,
6701               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6702               .raw_readfn = pmevcntr_rawread,
6703               .raw_writefn = pmevcntr_rawwrite },
6704             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6705               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6706               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6707               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6708               .accessfn = pmreg_access },
6709             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6710               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6711               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6712               .type = ARM_CP_IO,
6713               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6714               .raw_writefn = pmevtyper_rawwrite },
6715             REGINFO_SENTINEL
6716         };
6717         define_arm_cp_regs(cpu, pmev_regs);
6718         g_free(pmevcntr_name);
6719         g_free(pmevcntr_el0_name);
6720         g_free(pmevtyper_name);
6721         g_free(pmevtyper_el0_name);
6722     }
6723     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6724         ARMCPRegInfo v81_pmu_regs[] = {
6725             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6726               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6727               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6728               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6729             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6730               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6731               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6732               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6733             REGINFO_SENTINEL
6734         };
6735         define_arm_cp_regs(cpu, v81_pmu_regs);
6736     }
6737     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6738         static const ARMCPRegInfo v84_pmmir = {
6739             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6740             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6741             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6742             .resetvalue = 0
6743         };
6744         define_one_arm_cp_reg(cpu, &v84_pmmir);
6745     }
6746 }
6747 
6748 /* We don't know until after realize whether there's a GICv3
6749  * attached, and that is what registers the gicv3 sysregs.
6750  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6751  * at runtime.
6752  */
6753 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6754 {
6755     ARMCPU *cpu = env_archcpu(env);
6756     uint64_t pfr1 = cpu->isar.id_pfr1;
6757 
6758     if (env->gicv3state) {
6759         pfr1 |= 1 << 28;
6760     }
6761     return pfr1;
6762 }
6763 
6764 #ifndef CONFIG_USER_ONLY
6765 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6766 {
6767     ARMCPU *cpu = env_archcpu(env);
6768     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6769 
6770     if (env->gicv3state) {
6771         pfr0 |= 1 << 24;
6772     }
6773     return pfr0;
6774 }
6775 #endif
6776 
6777 /* Shared logic between LORID and the rest of the LOR* registers.
6778  * Secure state exclusion has already been dealt with.
6779  */
6780 static CPAccessResult access_lor_ns(CPUARMState *env,
6781                                     const ARMCPRegInfo *ri, bool isread)
6782 {
6783     int el = arm_current_el(env);
6784 
6785     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6786         return CP_ACCESS_TRAP_EL2;
6787     }
6788     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6789         return CP_ACCESS_TRAP_EL3;
6790     }
6791     return CP_ACCESS_OK;
6792 }
6793 
6794 static CPAccessResult access_lor_other(CPUARMState *env,
6795                                        const ARMCPRegInfo *ri, bool isread)
6796 {
6797     if (arm_is_secure_below_el3(env)) {
6798         /* Access denied in secure mode.  */
6799         return CP_ACCESS_TRAP;
6800     }
6801     return access_lor_ns(env, ri, isread);
6802 }
6803 
6804 /*
6805  * A trivial implementation of ARMv8.1-LOR leaves all of these
6806  * registers fixed at 0, which indicates that there are zero
6807  * supported Limited Ordering regions.
6808  */
6809 static const ARMCPRegInfo lor_reginfo[] = {
6810     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6811       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6812       .access = PL1_RW, .accessfn = access_lor_other,
6813       .type = ARM_CP_CONST, .resetvalue = 0 },
6814     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6815       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6816       .access = PL1_RW, .accessfn = access_lor_other,
6817       .type = ARM_CP_CONST, .resetvalue = 0 },
6818     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6819       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6820       .access = PL1_RW, .accessfn = access_lor_other,
6821       .type = ARM_CP_CONST, .resetvalue = 0 },
6822     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6823       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6824       .access = PL1_RW, .accessfn = access_lor_other,
6825       .type = ARM_CP_CONST, .resetvalue = 0 },
6826     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6827       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6828       .access = PL1_R, .accessfn = access_lor_ns,
6829       .type = ARM_CP_CONST, .resetvalue = 0 },
6830     REGINFO_SENTINEL
6831 };
6832 
6833 #ifdef TARGET_AARCH64
6834 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6835                                    bool isread)
6836 {
6837     int el = arm_current_el(env);
6838 
6839     if (el < 2 &&
6840         arm_feature(env, ARM_FEATURE_EL2) &&
6841         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6842         return CP_ACCESS_TRAP_EL2;
6843     }
6844     if (el < 3 &&
6845         arm_feature(env, ARM_FEATURE_EL3) &&
6846         !(env->cp15.scr_el3 & SCR_APK)) {
6847         return CP_ACCESS_TRAP_EL3;
6848     }
6849     return CP_ACCESS_OK;
6850 }
6851 
6852 static const ARMCPRegInfo pauth_reginfo[] = {
6853     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6854       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6855       .access = PL1_RW, .accessfn = access_pauth,
6856       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6857     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6858       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6859       .access = PL1_RW, .accessfn = access_pauth,
6860       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6861     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6862       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6863       .access = PL1_RW, .accessfn = access_pauth,
6864       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6865     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6866       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6867       .access = PL1_RW, .accessfn = access_pauth,
6868       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6869     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6870       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6871       .access = PL1_RW, .accessfn = access_pauth,
6872       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6873     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6874       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6875       .access = PL1_RW, .accessfn = access_pauth,
6876       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6877     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6878       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6879       .access = PL1_RW, .accessfn = access_pauth,
6880       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6881     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6882       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6883       .access = PL1_RW, .accessfn = access_pauth,
6884       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6885     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6886       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6887       .access = PL1_RW, .accessfn = access_pauth,
6888       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6889     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6890       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6891       .access = PL1_RW, .accessfn = access_pauth,
6892       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6893     REGINFO_SENTINEL
6894 };
6895 
6896 static const ARMCPRegInfo tlbirange_reginfo[] = {
6897     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6898       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6899       .access = PL1_W, .type = ARM_CP_NO_RAW,
6900       .writefn = tlbi_aa64_rvae1is_write },
6901     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6902       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6903       .access = PL1_W, .type = ARM_CP_NO_RAW,
6904       .writefn = tlbi_aa64_rvae1is_write },
6905    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6906       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6907       .access = PL1_W, .type = ARM_CP_NO_RAW,
6908       .writefn = tlbi_aa64_rvae1is_write },
6909     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6910       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6911       .access = PL1_W, .type = ARM_CP_NO_RAW,
6912       .writefn = tlbi_aa64_rvae1is_write },
6913     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6914       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6915       .access = PL1_W, .type = ARM_CP_NO_RAW,
6916       .writefn = tlbi_aa64_rvae1is_write },
6917     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6918       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6919       .access = PL1_W, .type = ARM_CP_NO_RAW,
6920       .writefn = tlbi_aa64_rvae1is_write },
6921    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6922       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6923       .access = PL1_W, .type = ARM_CP_NO_RAW,
6924       .writefn = tlbi_aa64_rvae1is_write },
6925     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6926       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6927       .access = PL1_W, .type = ARM_CP_NO_RAW,
6928       .writefn = tlbi_aa64_rvae1is_write },
6929     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6930       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6931       .access = PL1_W, .type = ARM_CP_NO_RAW,
6932       .writefn = tlbi_aa64_rvae1_write },
6933     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6934       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6935       .access = PL1_W, .type = ARM_CP_NO_RAW,
6936       .writefn = tlbi_aa64_rvae1_write },
6937    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6938       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6939       .access = PL1_W, .type = ARM_CP_NO_RAW,
6940       .writefn = tlbi_aa64_rvae1_write },
6941     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6942       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6943       .access = PL1_W, .type = ARM_CP_NO_RAW,
6944       .writefn = tlbi_aa64_rvae1_write },
6945     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6946       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6947       .access = PL2_W, .type = ARM_CP_NOP },
6948     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6949       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6950       .access = PL2_W, .type = ARM_CP_NOP },
6951     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6952       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6953       .access = PL2_W, .type = ARM_CP_NO_RAW,
6954       .writefn = tlbi_aa64_rvae2is_write },
6955    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6956       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6957       .access = PL2_W, .type = ARM_CP_NO_RAW,
6958       .writefn = tlbi_aa64_rvae2is_write },
6959     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6960       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6961       .access = PL2_W, .type = ARM_CP_NOP },
6962    { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6963       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6964       .access = PL2_W, .type = ARM_CP_NOP },
6965    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6966       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6967       .access = PL2_W, .type = ARM_CP_NO_RAW,
6968       .writefn = tlbi_aa64_rvae2is_write },
6969    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6970       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6971       .access = PL2_W, .type = ARM_CP_NO_RAW,
6972       .writefn = tlbi_aa64_rvae2is_write },
6973     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6974       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6975       .access = PL2_W, .type = ARM_CP_NO_RAW,
6976       .writefn = tlbi_aa64_rvae2_write },
6977    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6978       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6979       .access = PL2_W, .type = ARM_CP_NO_RAW,
6980       .writefn = tlbi_aa64_rvae2_write },
6981    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6982       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6983       .access = PL3_W, .type = ARM_CP_NO_RAW,
6984       .writefn = tlbi_aa64_rvae3is_write },
6985    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6986       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6987       .access = PL3_W, .type = ARM_CP_NO_RAW,
6988       .writefn = tlbi_aa64_rvae3is_write },
6989    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6990       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6991       .access = PL3_W, .type = ARM_CP_NO_RAW,
6992       .writefn = tlbi_aa64_rvae3is_write },
6993    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6994       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6995       .access = PL3_W, .type = ARM_CP_NO_RAW,
6996       .writefn = tlbi_aa64_rvae3is_write },
6997    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6998       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6999       .access = PL3_W, .type = ARM_CP_NO_RAW,
7000       .writefn = tlbi_aa64_rvae3_write },
7001    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7002       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7003       .access = PL3_W, .type = ARM_CP_NO_RAW,
7004       .writefn = tlbi_aa64_rvae3_write },
7005     REGINFO_SENTINEL
7006 };
7007 
7008 static const ARMCPRegInfo tlbios_reginfo[] = {
7009     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7010       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7011       .access = PL1_W, .type = ARM_CP_NO_RAW,
7012       .writefn = tlbi_aa64_vmalle1is_write },
7013     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7014       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7015       .access = PL1_W, .type = ARM_CP_NO_RAW,
7016       .writefn = tlbi_aa64_vae1is_write },
7017     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7018       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7019       .access = PL1_W, .type = ARM_CP_NO_RAW,
7020       .writefn = tlbi_aa64_vmalle1is_write },
7021     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7022       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7023       .access = PL1_W, .type = ARM_CP_NO_RAW,
7024       .writefn = tlbi_aa64_vae1is_write },
7025     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7026       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7027       .access = PL1_W, .type = ARM_CP_NO_RAW,
7028       .writefn = tlbi_aa64_vae1is_write },
7029     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7030       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7031       .access = PL1_W, .type = ARM_CP_NO_RAW,
7032       .writefn = tlbi_aa64_vae1is_write },
7033     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7034       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7035       .access = PL2_W, .type = ARM_CP_NO_RAW,
7036       .writefn = tlbi_aa64_alle2is_write },
7037     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7038       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7039       .access = PL2_W, .type = ARM_CP_NO_RAW,
7040       .writefn = tlbi_aa64_vae2is_write },
7041    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7042       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7043       .access = PL2_W, .type = ARM_CP_NO_RAW,
7044       .writefn = tlbi_aa64_alle1is_write },
7045     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7046       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7047       .access = PL2_W, .type = ARM_CP_NO_RAW,
7048       .writefn = tlbi_aa64_vae2is_write },
7049     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7050       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7051       .access = PL2_W, .type = ARM_CP_NO_RAW,
7052       .writefn = tlbi_aa64_alle1is_write },
7053     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7054       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7055       .access = PL2_W, .type = ARM_CP_NOP },
7056     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7057       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7058       .access = PL2_W, .type = ARM_CP_NOP },
7059     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7060       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7061       .access = PL2_W, .type = ARM_CP_NOP },
7062     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7063       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7064       .access = PL2_W, .type = ARM_CP_NOP },
7065     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7066       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7067       .access = PL3_W, .type = ARM_CP_NO_RAW,
7068       .writefn = tlbi_aa64_alle3is_write },
7069     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7070       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7071       .access = PL3_W, .type = ARM_CP_NO_RAW,
7072       .writefn = tlbi_aa64_vae3is_write },
7073     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7074       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7075       .access = PL3_W, .type = ARM_CP_NO_RAW,
7076       .writefn = tlbi_aa64_vae3is_write },
7077     REGINFO_SENTINEL
7078 };
7079 
7080 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7081 {
7082     Error *err = NULL;
7083     uint64_t ret;
7084 
7085     /* Success sets NZCV = 0000.  */
7086     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7087 
7088     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7089         /*
7090          * ??? Failed, for unknown reasons in the crypto subsystem.
7091          * The best we can do is log the reason and return the
7092          * timed-out indication to the guest.  There is no reason
7093          * we know to expect this failure to be transitory, so the
7094          * guest may well hang retrying the operation.
7095          */
7096         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7097                       ri->name, error_get_pretty(err));
7098         error_free(err);
7099 
7100         env->ZF = 0; /* NZCF = 0100 */
7101         return 0;
7102     }
7103     return ret;
7104 }
7105 
7106 /* We do not support re-seeding, so the two registers operate the same.  */
7107 static const ARMCPRegInfo rndr_reginfo[] = {
7108     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7109       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7110       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7111       .access = PL0_R, .readfn = rndr_readfn },
7112     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7113       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7114       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7115       .access = PL0_R, .readfn = rndr_readfn },
7116     REGINFO_SENTINEL
7117 };
7118 
7119 #ifndef CONFIG_USER_ONLY
7120 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7121                           uint64_t value)
7122 {
7123     ARMCPU *cpu = env_archcpu(env);
7124     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7125     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7126     uint64_t vaddr_in = (uint64_t) value;
7127     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7128     void *haddr;
7129     int mem_idx = cpu_mmu_index(env, false);
7130 
7131     /* This won't be crossing page boundaries */
7132     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7133     if (haddr) {
7134 
7135         ram_addr_t offset;
7136         MemoryRegion *mr;
7137 
7138         /* RCU lock is already being held */
7139         mr = memory_region_from_host(haddr, &offset);
7140 
7141         if (mr) {
7142             memory_region_writeback(mr, offset, dline_size);
7143         }
7144     }
7145 }
7146 
7147 static const ARMCPRegInfo dcpop_reg[] = {
7148     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7149       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7150       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7151       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7152     REGINFO_SENTINEL
7153 };
7154 
7155 static const ARMCPRegInfo dcpodp_reg[] = {
7156     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7157       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7158       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7159       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7160     REGINFO_SENTINEL
7161 };
7162 #endif /*CONFIG_USER_ONLY*/
7163 
7164 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7165                                        bool isread)
7166 {
7167     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7168         return CP_ACCESS_TRAP_EL2;
7169     }
7170 
7171     return CP_ACCESS_OK;
7172 }
7173 
7174 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7175                                  bool isread)
7176 {
7177     int el = arm_current_el(env);
7178 
7179     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7180         uint64_t hcr = arm_hcr_el2_eff(env);
7181         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7182             return CP_ACCESS_TRAP_EL2;
7183         }
7184     }
7185     if (el < 3 &&
7186         arm_feature(env, ARM_FEATURE_EL3) &&
7187         !(env->cp15.scr_el3 & SCR_ATA)) {
7188         return CP_ACCESS_TRAP_EL3;
7189     }
7190     return CP_ACCESS_OK;
7191 }
7192 
7193 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7194 {
7195     return env->pstate & PSTATE_TCO;
7196 }
7197 
7198 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7199 {
7200     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7201 }
7202 
7203 static const ARMCPRegInfo mte_reginfo[] = {
7204     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7205       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7206       .access = PL1_RW, .accessfn = access_mte,
7207       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7208     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7209       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7210       .access = PL1_RW, .accessfn = access_mte,
7211       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7212     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7213       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7214       .access = PL2_RW, .accessfn = access_mte,
7215       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7216     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7217       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7218       .access = PL3_RW,
7219       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7220     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7221       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7222       .access = PL1_RW, .accessfn = access_mte,
7223       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7224     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7225       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7226       .access = PL1_RW, .accessfn = access_mte,
7227       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7228     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7229       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7230       .access = PL1_R, .accessfn = access_aa64_tid5,
7231       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7232     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7233       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7234       .type = ARM_CP_NO_RAW,
7235       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7236     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7237       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7238       .type = ARM_CP_NOP, .access = PL1_W,
7239       .accessfn = aa64_cacheop_poc_access },
7240     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7241       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7242       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7243     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7244       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7245       .type = ARM_CP_NOP, .access = PL1_W,
7246       .accessfn = aa64_cacheop_poc_access },
7247     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7248       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7249       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7250     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7251       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7252       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7253     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7254       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7255       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7256     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7257       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7258       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7259     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7260       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7261       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7262     REGINFO_SENTINEL
7263 };
7264 
7265 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7266     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7267       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7268       .type = ARM_CP_CONST, .access = PL0_RW, },
7269     REGINFO_SENTINEL
7270 };
7271 
7272 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7273     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7274       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7275       .type = ARM_CP_NOP, .access = PL0_W,
7276       .accessfn = aa64_cacheop_poc_access },
7277     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7278       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7279       .type = ARM_CP_NOP, .access = PL0_W,
7280       .accessfn = aa64_cacheop_poc_access },
7281     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7282       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7283       .type = ARM_CP_NOP, .access = PL0_W,
7284       .accessfn = aa64_cacheop_poc_access },
7285     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7286       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7287       .type = ARM_CP_NOP, .access = PL0_W,
7288       .accessfn = aa64_cacheop_poc_access },
7289     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7290       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7291       .type = ARM_CP_NOP, .access = PL0_W,
7292       .accessfn = aa64_cacheop_poc_access },
7293     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7294       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7295       .type = ARM_CP_NOP, .access = PL0_W,
7296       .accessfn = aa64_cacheop_poc_access },
7297     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7298       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7299       .type = ARM_CP_NOP, .access = PL0_W,
7300       .accessfn = aa64_cacheop_poc_access },
7301     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7302       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7303       .type = ARM_CP_NOP, .access = PL0_W,
7304       .accessfn = aa64_cacheop_poc_access },
7305     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7306       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7307       .access = PL0_W, .type = ARM_CP_DC_GVA,
7308 #ifndef CONFIG_USER_ONLY
7309       /* Avoid overhead of an access check that always passes in user-mode */
7310       .accessfn = aa64_zva_access,
7311 #endif
7312     },
7313     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7314       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7315       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7316 #ifndef CONFIG_USER_ONLY
7317       /* Avoid overhead of an access check that always passes in user-mode */
7318       .accessfn = aa64_zva_access,
7319 #endif
7320     },
7321     REGINFO_SENTINEL
7322 };
7323 
7324 #endif
7325 
7326 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7327                                      bool isread)
7328 {
7329     int el = arm_current_el(env);
7330 
7331     if (el == 0) {
7332         uint64_t sctlr = arm_sctlr(env, el);
7333         if (!(sctlr & SCTLR_EnRCTX)) {
7334             return CP_ACCESS_TRAP;
7335         }
7336     } else if (el == 1) {
7337         uint64_t hcr = arm_hcr_el2_eff(env);
7338         if (hcr & HCR_NV) {
7339             return CP_ACCESS_TRAP_EL2;
7340         }
7341     }
7342     return CP_ACCESS_OK;
7343 }
7344 
7345 static const ARMCPRegInfo predinv_reginfo[] = {
7346     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7347       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7348       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7349     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7350       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7351       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7352     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7353       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7354       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7355     /*
7356      * Note the AArch32 opcodes have a different OPC1.
7357      */
7358     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7359       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7360       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7361     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7362       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7363       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7364     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7365       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7366       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7367     REGINFO_SENTINEL
7368 };
7369 
7370 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7371 {
7372     /* Read the high 32 bits of the current CCSIDR */
7373     return extract64(ccsidr_read(env, ri), 32, 32);
7374 }
7375 
7376 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7377     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7378       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7379       .access = PL1_R,
7380       .accessfn = access_aa64_tid2,
7381       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7382     REGINFO_SENTINEL
7383 };
7384 
7385 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7386                                        bool isread)
7387 {
7388     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7389         return CP_ACCESS_TRAP_EL2;
7390     }
7391 
7392     return CP_ACCESS_OK;
7393 }
7394 
7395 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7396                                        bool isread)
7397 {
7398     if (arm_feature(env, ARM_FEATURE_V8)) {
7399         return access_aa64_tid3(env, ri, isread);
7400     }
7401 
7402     return CP_ACCESS_OK;
7403 }
7404 
7405 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7406                                      bool isread)
7407 {
7408     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7409         return CP_ACCESS_TRAP_EL2;
7410     }
7411 
7412     return CP_ACCESS_OK;
7413 }
7414 
7415 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7416                                         const ARMCPRegInfo *ri, bool isread)
7417 {
7418     /*
7419      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7420      * in v7A, not in v8A.
7421      */
7422     if (!arm_feature(env, ARM_FEATURE_V8) &&
7423         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7424         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7425         return CP_ACCESS_TRAP_EL2;
7426     }
7427     return CP_ACCESS_OK;
7428 }
7429 
7430 static const ARMCPRegInfo jazelle_regs[] = {
7431     { .name = "JIDR",
7432       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7433       .access = PL1_R, .accessfn = access_jazelle,
7434       .type = ARM_CP_CONST, .resetvalue = 0 },
7435     { .name = "JOSCR",
7436       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7437       .accessfn = access_joscr_jmcr,
7438       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7439     { .name = "JMCR",
7440       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7441       .accessfn = access_joscr_jmcr,
7442       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7443     REGINFO_SENTINEL
7444 };
7445 
7446 static const ARMCPRegInfo vhe_reginfo[] = {
7447     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7448       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7449       .access = PL2_RW,
7450       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7451     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7452       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7453       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7454       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7455 #ifndef CONFIG_USER_ONLY
7456     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7457       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7458       .fieldoffset =
7459         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7460       .type = ARM_CP_IO, .access = PL2_RW,
7461       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7462     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7463       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7464       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7465       .resetfn = gt_hv_timer_reset,
7466       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7467     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7468       .type = ARM_CP_IO,
7469       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7470       .access = PL2_RW,
7471       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7472       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7473     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7474       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7475       .type = ARM_CP_IO | ARM_CP_ALIAS,
7476       .access = PL2_RW, .accessfn = e2h_access,
7477       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7478       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7479     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7480       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7481       .type = ARM_CP_IO | ARM_CP_ALIAS,
7482       .access = PL2_RW, .accessfn = e2h_access,
7483       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7484       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7485     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7486       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7487       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7488       .access = PL2_RW, .accessfn = e2h_access,
7489       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7490     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7491       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7492       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7493       .access = PL2_RW, .accessfn = e2h_access,
7494       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7495     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7496       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7497       .type = ARM_CP_IO | ARM_CP_ALIAS,
7498       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7499       .access = PL2_RW, .accessfn = e2h_access,
7500       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7501     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7502       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7503       .type = ARM_CP_IO | ARM_CP_ALIAS,
7504       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7505       .access = PL2_RW, .accessfn = e2h_access,
7506       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7507 #endif
7508     REGINFO_SENTINEL
7509 };
7510 
7511 #ifndef CONFIG_USER_ONLY
7512 static const ARMCPRegInfo ats1e1_reginfo[] = {
7513     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7514       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7515       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7516       .writefn = ats_write64 },
7517     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7518       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7519       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7520       .writefn = ats_write64 },
7521     REGINFO_SENTINEL
7522 };
7523 
7524 static const ARMCPRegInfo ats1cp_reginfo[] = {
7525     { .name = "ATS1CPRP",
7526       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7527       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7528       .writefn = ats_write },
7529     { .name = "ATS1CPWP",
7530       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7531       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7532       .writefn = ats_write },
7533     REGINFO_SENTINEL
7534 };
7535 #endif
7536 
7537 /*
7538  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7539  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7540  * is non-zero, which is never for ARMv7, optionally in ARMv8
7541  * and mandatorily for ARMv8.2 and up.
7542  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7543  * implementation is RAZ/WI we can ignore this detail, as we
7544  * do for ACTLR.
7545  */
7546 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7547     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7548       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7549       .access = PL1_RW, .accessfn = access_tacr,
7550       .type = ARM_CP_CONST, .resetvalue = 0 },
7551     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7552       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7553       .access = PL2_RW, .type = ARM_CP_CONST,
7554       .resetvalue = 0 },
7555     REGINFO_SENTINEL
7556 };
7557 
7558 void register_cp_regs_for_features(ARMCPU *cpu)
7559 {
7560     /* Register all the coprocessor registers based on feature bits */
7561     CPUARMState *env = &cpu->env;
7562     if (arm_feature(env, ARM_FEATURE_M)) {
7563         /* M profile has no coprocessor registers */
7564         return;
7565     }
7566 
7567     define_arm_cp_regs(cpu, cp_reginfo);
7568     if (!arm_feature(env, ARM_FEATURE_V8)) {
7569         /* Must go early as it is full of wildcards that may be
7570          * overridden by later definitions.
7571          */
7572         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7573     }
7574 
7575     if (arm_feature(env, ARM_FEATURE_V6)) {
7576         /* The ID registers all have impdef reset values */
7577         ARMCPRegInfo v6_idregs[] = {
7578             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7579               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7580               .access = PL1_R, .type = ARM_CP_CONST,
7581               .accessfn = access_aa32_tid3,
7582               .resetvalue = cpu->isar.id_pfr0 },
7583             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7584              * the value of the GIC field until after we define these regs.
7585              */
7586             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7587               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7588               .access = PL1_R, .type = ARM_CP_NO_RAW,
7589               .accessfn = access_aa32_tid3,
7590               .readfn = id_pfr1_read,
7591               .writefn = arm_cp_write_ignore },
7592             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7593               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7594               .access = PL1_R, .type = ARM_CP_CONST,
7595               .accessfn = access_aa32_tid3,
7596               .resetvalue = cpu->isar.id_dfr0 },
7597             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7598               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7599               .access = PL1_R, .type = ARM_CP_CONST,
7600               .accessfn = access_aa32_tid3,
7601               .resetvalue = cpu->id_afr0 },
7602             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7603               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7604               .access = PL1_R, .type = ARM_CP_CONST,
7605               .accessfn = access_aa32_tid3,
7606               .resetvalue = cpu->isar.id_mmfr0 },
7607             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7608               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7609               .access = PL1_R, .type = ARM_CP_CONST,
7610               .accessfn = access_aa32_tid3,
7611               .resetvalue = cpu->isar.id_mmfr1 },
7612             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7613               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7614               .access = PL1_R, .type = ARM_CP_CONST,
7615               .accessfn = access_aa32_tid3,
7616               .resetvalue = cpu->isar.id_mmfr2 },
7617             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7618               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7619               .access = PL1_R, .type = ARM_CP_CONST,
7620               .accessfn = access_aa32_tid3,
7621               .resetvalue = cpu->isar.id_mmfr3 },
7622             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7623               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7624               .access = PL1_R, .type = ARM_CP_CONST,
7625               .accessfn = access_aa32_tid3,
7626               .resetvalue = cpu->isar.id_isar0 },
7627             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7628               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7629               .access = PL1_R, .type = ARM_CP_CONST,
7630               .accessfn = access_aa32_tid3,
7631               .resetvalue = cpu->isar.id_isar1 },
7632             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7633               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7634               .access = PL1_R, .type = ARM_CP_CONST,
7635               .accessfn = access_aa32_tid3,
7636               .resetvalue = cpu->isar.id_isar2 },
7637             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7638               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7639               .access = PL1_R, .type = ARM_CP_CONST,
7640               .accessfn = access_aa32_tid3,
7641               .resetvalue = cpu->isar.id_isar3 },
7642             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7643               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7644               .access = PL1_R, .type = ARM_CP_CONST,
7645               .accessfn = access_aa32_tid3,
7646               .resetvalue = cpu->isar.id_isar4 },
7647             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7648               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7649               .access = PL1_R, .type = ARM_CP_CONST,
7650               .accessfn = access_aa32_tid3,
7651               .resetvalue = cpu->isar.id_isar5 },
7652             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7653               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7654               .access = PL1_R, .type = ARM_CP_CONST,
7655               .accessfn = access_aa32_tid3,
7656               .resetvalue = cpu->isar.id_mmfr4 },
7657             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7658               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7659               .access = PL1_R, .type = ARM_CP_CONST,
7660               .accessfn = access_aa32_tid3,
7661               .resetvalue = cpu->isar.id_isar6 },
7662             REGINFO_SENTINEL
7663         };
7664         define_arm_cp_regs(cpu, v6_idregs);
7665         define_arm_cp_regs(cpu, v6_cp_reginfo);
7666     } else {
7667         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7668     }
7669     if (arm_feature(env, ARM_FEATURE_V6K)) {
7670         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7671     }
7672     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7673         !arm_feature(env, ARM_FEATURE_PMSA)) {
7674         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7675     }
7676     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7677         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7678     }
7679     if (arm_feature(env, ARM_FEATURE_V7)) {
7680         ARMCPRegInfo clidr = {
7681             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7682             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7683             .access = PL1_R, .type = ARM_CP_CONST,
7684             .accessfn = access_aa64_tid2,
7685             .resetvalue = cpu->clidr
7686         };
7687         define_one_arm_cp_reg(cpu, &clidr);
7688         define_arm_cp_regs(cpu, v7_cp_reginfo);
7689         define_debug_regs(cpu);
7690         define_pmu_regs(cpu);
7691     } else {
7692         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7693     }
7694     if (arm_feature(env, ARM_FEATURE_V8)) {
7695         /* AArch64 ID registers, which all have impdef reset values.
7696          * Note that within the ID register ranges the unused slots
7697          * must all RAZ, not UNDEF; future architecture versions may
7698          * define new registers here.
7699          */
7700         ARMCPRegInfo v8_idregs[] = {
7701             /*
7702              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7703              * emulation because we don't know the right value for the
7704              * GIC field until after we define these regs.
7705              */
7706             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7707               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7708               .access = PL1_R,
7709 #ifdef CONFIG_USER_ONLY
7710               .type = ARM_CP_CONST,
7711               .resetvalue = cpu->isar.id_aa64pfr0
7712 #else
7713               .type = ARM_CP_NO_RAW,
7714               .accessfn = access_aa64_tid3,
7715               .readfn = id_aa64pfr0_read,
7716               .writefn = arm_cp_write_ignore
7717 #endif
7718             },
7719             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7720               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7721               .access = PL1_R, .type = ARM_CP_CONST,
7722               .accessfn = access_aa64_tid3,
7723               .resetvalue = cpu->isar.id_aa64pfr1},
7724             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7725               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7726               .access = PL1_R, .type = ARM_CP_CONST,
7727               .accessfn = access_aa64_tid3,
7728               .resetvalue = 0 },
7729             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7730               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7731               .access = PL1_R, .type = ARM_CP_CONST,
7732               .accessfn = access_aa64_tid3,
7733               .resetvalue = 0 },
7734             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7735               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7736               .access = PL1_R, .type = ARM_CP_CONST,
7737               .accessfn = access_aa64_tid3,
7738               .resetvalue = cpu->isar.id_aa64zfr0 },
7739             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7740               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7741               .access = PL1_R, .type = ARM_CP_CONST,
7742               .accessfn = access_aa64_tid3,
7743               .resetvalue = 0 },
7744             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7745               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7746               .access = PL1_R, .type = ARM_CP_CONST,
7747               .accessfn = access_aa64_tid3,
7748               .resetvalue = 0 },
7749             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7750               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7751               .access = PL1_R, .type = ARM_CP_CONST,
7752               .accessfn = access_aa64_tid3,
7753               .resetvalue = 0 },
7754             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7755               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7756               .access = PL1_R, .type = ARM_CP_CONST,
7757               .accessfn = access_aa64_tid3,
7758               .resetvalue = cpu->isar.id_aa64dfr0 },
7759             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7760               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7761               .access = PL1_R, .type = ARM_CP_CONST,
7762               .accessfn = access_aa64_tid3,
7763               .resetvalue = cpu->isar.id_aa64dfr1 },
7764             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7765               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7766               .access = PL1_R, .type = ARM_CP_CONST,
7767               .accessfn = access_aa64_tid3,
7768               .resetvalue = 0 },
7769             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7770               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7771               .access = PL1_R, .type = ARM_CP_CONST,
7772               .accessfn = access_aa64_tid3,
7773               .resetvalue = 0 },
7774             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7775               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7776               .access = PL1_R, .type = ARM_CP_CONST,
7777               .accessfn = access_aa64_tid3,
7778               .resetvalue = cpu->id_aa64afr0 },
7779             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7780               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7781               .access = PL1_R, .type = ARM_CP_CONST,
7782               .accessfn = access_aa64_tid3,
7783               .resetvalue = cpu->id_aa64afr1 },
7784             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7785               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7786               .access = PL1_R, .type = ARM_CP_CONST,
7787               .accessfn = access_aa64_tid3,
7788               .resetvalue = 0 },
7789             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7790               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7791               .access = PL1_R, .type = ARM_CP_CONST,
7792               .accessfn = access_aa64_tid3,
7793               .resetvalue = 0 },
7794             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7795               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7796               .access = PL1_R, .type = ARM_CP_CONST,
7797               .accessfn = access_aa64_tid3,
7798               .resetvalue = cpu->isar.id_aa64isar0 },
7799             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7800               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7801               .access = PL1_R, .type = ARM_CP_CONST,
7802               .accessfn = access_aa64_tid3,
7803               .resetvalue = cpu->isar.id_aa64isar1 },
7804             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7805               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7806               .access = PL1_R, .type = ARM_CP_CONST,
7807               .accessfn = access_aa64_tid3,
7808               .resetvalue = 0 },
7809             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7810               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7811               .access = PL1_R, .type = ARM_CP_CONST,
7812               .accessfn = access_aa64_tid3,
7813               .resetvalue = 0 },
7814             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7815               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7816               .access = PL1_R, .type = ARM_CP_CONST,
7817               .accessfn = access_aa64_tid3,
7818               .resetvalue = 0 },
7819             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7820               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7821               .access = PL1_R, .type = ARM_CP_CONST,
7822               .accessfn = access_aa64_tid3,
7823               .resetvalue = 0 },
7824             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7825               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7826               .access = PL1_R, .type = ARM_CP_CONST,
7827               .accessfn = access_aa64_tid3,
7828               .resetvalue = 0 },
7829             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7830               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7831               .access = PL1_R, .type = ARM_CP_CONST,
7832               .accessfn = access_aa64_tid3,
7833               .resetvalue = 0 },
7834             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7835               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7836               .access = PL1_R, .type = ARM_CP_CONST,
7837               .accessfn = access_aa64_tid3,
7838               .resetvalue = cpu->isar.id_aa64mmfr0 },
7839             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7840               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7841               .access = PL1_R, .type = ARM_CP_CONST,
7842               .accessfn = access_aa64_tid3,
7843               .resetvalue = cpu->isar.id_aa64mmfr1 },
7844             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7845               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7846               .access = PL1_R, .type = ARM_CP_CONST,
7847               .accessfn = access_aa64_tid3,
7848               .resetvalue = cpu->isar.id_aa64mmfr2 },
7849             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7850               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7851               .access = PL1_R, .type = ARM_CP_CONST,
7852               .accessfn = access_aa64_tid3,
7853               .resetvalue = 0 },
7854             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7855               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7856               .access = PL1_R, .type = ARM_CP_CONST,
7857               .accessfn = access_aa64_tid3,
7858               .resetvalue = 0 },
7859             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7860               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7861               .access = PL1_R, .type = ARM_CP_CONST,
7862               .accessfn = access_aa64_tid3,
7863               .resetvalue = 0 },
7864             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7865               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7866               .access = PL1_R, .type = ARM_CP_CONST,
7867               .accessfn = access_aa64_tid3,
7868               .resetvalue = 0 },
7869             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7870               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7871               .access = PL1_R, .type = ARM_CP_CONST,
7872               .accessfn = access_aa64_tid3,
7873               .resetvalue = 0 },
7874             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7875               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7876               .access = PL1_R, .type = ARM_CP_CONST,
7877               .accessfn = access_aa64_tid3,
7878               .resetvalue = cpu->isar.mvfr0 },
7879             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7880               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7881               .access = PL1_R, .type = ARM_CP_CONST,
7882               .accessfn = access_aa64_tid3,
7883               .resetvalue = cpu->isar.mvfr1 },
7884             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7885               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7886               .access = PL1_R, .type = ARM_CP_CONST,
7887               .accessfn = access_aa64_tid3,
7888               .resetvalue = cpu->isar.mvfr2 },
7889             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7890               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7891               .access = PL1_R, .type = ARM_CP_CONST,
7892               .accessfn = access_aa64_tid3,
7893               .resetvalue = 0 },
7894             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7895               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7896               .access = PL1_R, .type = ARM_CP_CONST,
7897               .accessfn = access_aa64_tid3,
7898               .resetvalue = cpu->isar.id_pfr2 },
7899             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7900               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7901               .access = PL1_R, .type = ARM_CP_CONST,
7902               .accessfn = access_aa64_tid3,
7903               .resetvalue = 0 },
7904             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7905               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7906               .access = PL1_R, .type = ARM_CP_CONST,
7907               .accessfn = access_aa64_tid3,
7908               .resetvalue = 0 },
7909             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7910               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7911               .access = PL1_R, .type = ARM_CP_CONST,
7912               .accessfn = access_aa64_tid3,
7913               .resetvalue = 0 },
7914             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7915               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7916               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7917               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7918             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7919               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7920               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7921               .resetvalue = cpu->pmceid0 },
7922             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7923               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7924               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7925               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7926             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7927               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7928               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7929               .resetvalue = cpu->pmceid1 },
7930             REGINFO_SENTINEL
7931         };
7932 #ifdef CONFIG_USER_ONLY
7933         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7934             { .name = "ID_AA64PFR0_EL1",
7935               .exported_bits = 0x000f000f00ff0000,
7936               .fixed_bits    = 0x0000000000000011 },
7937             { .name = "ID_AA64PFR1_EL1",
7938               .exported_bits = 0x00000000000000f0 },
7939             { .name = "ID_AA64PFR*_EL1_RESERVED",
7940               .is_glob = true                     },
7941             { .name = "ID_AA64ZFR0_EL1"           },
7942             { .name = "ID_AA64MMFR0_EL1",
7943               .fixed_bits    = 0x00000000ff000000 },
7944             { .name = "ID_AA64MMFR1_EL1"          },
7945             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7946               .is_glob = true                     },
7947             { .name = "ID_AA64DFR0_EL1",
7948               .fixed_bits    = 0x0000000000000006 },
7949             { .name = "ID_AA64DFR1_EL1"           },
7950             { .name = "ID_AA64DFR*_EL1_RESERVED",
7951               .is_glob = true                     },
7952             { .name = "ID_AA64AFR*",
7953               .is_glob = true                     },
7954             { .name = "ID_AA64ISAR0_EL1",
7955               .exported_bits = 0x00fffffff0fffff0 },
7956             { .name = "ID_AA64ISAR1_EL1",
7957               .exported_bits = 0x000000f0ffffffff },
7958             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7959               .is_glob = true                     },
7960             REGUSERINFO_SENTINEL
7961         };
7962         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7963 #endif
7964         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7965         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7966             !arm_feature(env, ARM_FEATURE_EL2)) {
7967             ARMCPRegInfo rvbar = {
7968                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7969                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7970                 .access = PL1_R,
7971                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7972             };
7973             define_one_arm_cp_reg(cpu, &rvbar);
7974         }
7975         define_arm_cp_regs(cpu, v8_idregs);
7976         define_arm_cp_regs(cpu, v8_cp_reginfo);
7977     }
7978     if (arm_feature(env, ARM_FEATURE_EL2)) {
7979         uint64_t vmpidr_def = mpidr_read_val(env);
7980         ARMCPRegInfo vpidr_regs[] = {
7981             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7982               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7983               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7984               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7985               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7986             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7987               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7988               .access = PL2_RW, .resetvalue = cpu->midr,
7989               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7990             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7991               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7992               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7993               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7994               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7995             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7996               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7997               .access = PL2_RW,
7998               .resetvalue = vmpidr_def,
7999               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8000             REGINFO_SENTINEL
8001         };
8002         define_arm_cp_regs(cpu, vpidr_regs);
8003         define_arm_cp_regs(cpu, el2_cp_reginfo);
8004         if (arm_feature(env, ARM_FEATURE_V8)) {
8005             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8006         }
8007         if (cpu_isar_feature(aa64_sel2, cpu)) {
8008             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8009         }
8010         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8011         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8012             ARMCPRegInfo rvbar = {
8013                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8014                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8015                 .access = PL2_R,
8016                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8017             };
8018             define_one_arm_cp_reg(cpu, &rvbar);
8019         }
8020     } else {
8021         /* If EL2 is missing but higher ELs are enabled, we need to
8022          * register the no_el2 reginfos.
8023          */
8024         if (arm_feature(env, ARM_FEATURE_EL3)) {
8025             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
8026              * of MIDR_EL1 and MPIDR_EL1.
8027              */
8028             ARMCPRegInfo vpidr_regs[] = {
8029                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8030                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8031                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8032                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
8033                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8034                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8035                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8036                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8037                   .type = ARM_CP_NO_RAW,
8038                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
8039                 REGINFO_SENTINEL
8040             };
8041             define_arm_cp_regs(cpu, vpidr_regs);
8042             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
8043             if (arm_feature(env, ARM_FEATURE_V8)) {
8044                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
8045             }
8046         }
8047     }
8048     if (arm_feature(env, ARM_FEATURE_EL3)) {
8049         define_arm_cp_regs(cpu, el3_cp_reginfo);
8050         ARMCPRegInfo el3_regs[] = {
8051             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8052               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8053               .access = PL3_R,
8054               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8055             },
8056             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8057               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8058               .access = PL3_RW,
8059               .raw_writefn = raw_write, .writefn = sctlr_write,
8060               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8061               .resetvalue = cpu->reset_sctlr },
8062             REGINFO_SENTINEL
8063         };
8064 
8065         define_arm_cp_regs(cpu, el3_regs);
8066     }
8067     /* The behaviour of NSACR is sufficiently various that we don't
8068      * try to describe it in a single reginfo:
8069      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8070      *     reads as constant 0xc00 from NS EL1 and NS EL2
8071      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8072      *  if v7 without EL3, register doesn't exist
8073      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8074      */
8075     if (arm_feature(env, ARM_FEATURE_EL3)) {
8076         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8077             ARMCPRegInfo nsacr = {
8078                 .name = "NSACR", .type = ARM_CP_CONST,
8079                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8080                 .access = PL1_RW, .accessfn = nsacr_access,
8081                 .resetvalue = 0xc00
8082             };
8083             define_one_arm_cp_reg(cpu, &nsacr);
8084         } else {
8085             ARMCPRegInfo nsacr = {
8086                 .name = "NSACR",
8087                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8088                 .access = PL3_RW | PL1_R,
8089                 .resetvalue = 0,
8090                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8091             };
8092             define_one_arm_cp_reg(cpu, &nsacr);
8093         }
8094     } else {
8095         if (arm_feature(env, ARM_FEATURE_V8)) {
8096             ARMCPRegInfo nsacr = {
8097                 .name = "NSACR", .type = ARM_CP_CONST,
8098                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8099                 .access = PL1_R,
8100                 .resetvalue = 0xc00
8101             };
8102             define_one_arm_cp_reg(cpu, &nsacr);
8103         }
8104     }
8105 
8106     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8107         if (arm_feature(env, ARM_FEATURE_V6)) {
8108             /* PMSAv6 not implemented */
8109             assert(arm_feature(env, ARM_FEATURE_V7));
8110             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8111             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8112         } else {
8113             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8114         }
8115     } else {
8116         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8117         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8118         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8119         if (cpu_isar_feature(aa32_hpd, cpu)) {
8120             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8121         }
8122     }
8123     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8124         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8125     }
8126     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8127         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8128     }
8129     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8130         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8131     }
8132     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8133         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8134     }
8135     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8136         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8137     }
8138     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8139         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8140     }
8141     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8142         define_arm_cp_regs(cpu, omap_cp_reginfo);
8143     }
8144     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8145         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8146     }
8147     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8148         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8149     }
8150     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8151         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8152     }
8153     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8154         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8155     }
8156     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8157         define_arm_cp_regs(cpu, jazelle_regs);
8158     }
8159     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8160      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8161      * be read-only (ie write causes UNDEF exception).
8162      */
8163     {
8164         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8165             /* Pre-v8 MIDR space.
8166              * Note that the MIDR isn't a simple constant register because
8167              * of the TI925 behaviour where writes to another register can
8168              * cause the MIDR value to change.
8169              *
8170              * Unimplemented registers in the c15 0 0 0 space default to
8171              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8172              * and friends override accordingly.
8173              */
8174             { .name = "MIDR",
8175               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8176               .access = PL1_R, .resetvalue = cpu->midr,
8177               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8178               .readfn = midr_read,
8179               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8180               .type = ARM_CP_OVERRIDE },
8181             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8182             { .name = "DUMMY",
8183               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8184               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8185             { .name = "DUMMY",
8186               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8187               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8188             { .name = "DUMMY",
8189               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8190               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8191             { .name = "DUMMY",
8192               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8193               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8194             { .name = "DUMMY",
8195               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8196               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8197             REGINFO_SENTINEL
8198         };
8199         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8200             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8201               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8202               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8203               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8204               .readfn = midr_read },
8205             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8206             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8207               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8208               .access = PL1_R, .resetvalue = cpu->midr },
8209             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8210               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8211               .access = PL1_R, .resetvalue = cpu->midr },
8212             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8213               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8214               .access = PL1_R,
8215               .accessfn = access_aa64_tid1,
8216               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8217             REGINFO_SENTINEL
8218         };
8219         ARMCPRegInfo id_cp_reginfo[] = {
8220             /* These are common to v8 and pre-v8 */
8221             { .name = "CTR",
8222               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8223               .access = PL1_R, .accessfn = ctr_el0_access,
8224               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8225             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8226               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8227               .access = PL0_R, .accessfn = ctr_el0_access,
8228               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8229             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8230             { .name = "TCMTR",
8231               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8232               .access = PL1_R,
8233               .accessfn = access_aa32_tid1,
8234               .type = ARM_CP_CONST, .resetvalue = 0 },
8235             REGINFO_SENTINEL
8236         };
8237         /* TLBTR is specific to VMSA */
8238         ARMCPRegInfo id_tlbtr_reginfo = {
8239               .name = "TLBTR",
8240               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8241               .access = PL1_R,
8242               .accessfn = access_aa32_tid1,
8243               .type = ARM_CP_CONST, .resetvalue = 0,
8244         };
8245         /* MPUIR is specific to PMSA V6+ */
8246         ARMCPRegInfo id_mpuir_reginfo = {
8247               .name = "MPUIR",
8248               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8249               .access = PL1_R, .type = ARM_CP_CONST,
8250               .resetvalue = cpu->pmsav7_dregion << 8
8251         };
8252         ARMCPRegInfo crn0_wi_reginfo = {
8253             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8254             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8255             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8256         };
8257 #ifdef CONFIG_USER_ONLY
8258         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8259             { .name = "MIDR_EL1",
8260               .exported_bits = 0x00000000ffffffff },
8261             { .name = "REVIDR_EL1"                },
8262             REGUSERINFO_SENTINEL
8263         };
8264         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8265 #endif
8266         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8267             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8268             ARMCPRegInfo *r;
8269             /* Register the blanket "writes ignored" value first to cover the
8270              * whole space. Then update the specific ID registers to allow write
8271              * access, so that they ignore writes rather than causing them to
8272              * UNDEF.
8273              */
8274             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8275             for (r = id_pre_v8_midr_cp_reginfo;
8276                  r->type != ARM_CP_SENTINEL; r++) {
8277                 r->access = PL1_RW;
8278             }
8279             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8280                 r->access = PL1_RW;
8281             }
8282             id_mpuir_reginfo.access = PL1_RW;
8283             id_tlbtr_reginfo.access = PL1_RW;
8284         }
8285         if (arm_feature(env, ARM_FEATURE_V8)) {
8286             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8287         } else {
8288             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8289         }
8290         define_arm_cp_regs(cpu, id_cp_reginfo);
8291         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8292             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8293         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8294             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8295         }
8296     }
8297 
8298     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8299         ARMCPRegInfo mpidr_cp_reginfo[] = {
8300             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8301               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8302               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8303             REGINFO_SENTINEL
8304         };
8305 #ifdef CONFIG_USER_ONLY
8306         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8307             { .name = "MPIDR_EL1",
8308               .fixed_bits = 0x0000000080000000 },
8309             REGUSERINFO_SENTINEL
8310         };
8311         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8312 #endif
8313         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8314     }
8315 
8316     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8317         ARMCPRegInfo auxcr_reginfo[] = {
8318             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8319               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8320               .access = PL1_RW, .accessfn = access_tacr,
8321               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8322             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8323               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8324               .access = PL2_RW, .type = ARM_CP_CONST,
8325               .resetvalue = 0 },
8326             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8327               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8328               .access = PL3_RW, .type = ARM_CP_CONST,
8329               .resetvalue = 0 },
8330             REGINFO_SENTINEL
8331         };
8332         define_arm_cp_regs(cpu, auxcr_reginfo);
8333         if (cpu_isar_feature(aa32_ac2, cpu)) {
8334             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8335         }
8336     }
8337 
8338     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8339         /*
8340          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8341          * There are two flavours:
8342          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8343          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8344          *      32-bit register visible to AArch32 at a different encoding
8345          *      to the "flavour 1" register and with the bits rearranged to
8346          *      be able to squash a 64-bit address into the 32-bit view.
8347          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8348          * in future if we support AArch32-only configs of some of the
8349          * AArch64 cores we might need to add a specific feature flag
8350          * to indicate cores with "flavour 2" CBAR.
8351          */
8352         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8353             /* 32 bit view is [31:18] 0...0 [43:32]. */
8354             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8355                 | extract64(cpu->reset_cbar, 32, 12);
8356             ARMCPRegInfo cbar_reginfo[] = {
8357                 { .name = "CBAR",
8358                   .type = ARM_CP_CONST,
8359                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8360                   .access = PL1_R, .resetvalue = cbar32 },
8361                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8362                   .type = ARM_CP_CONST,
8363                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8364                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8365                 REGINFO_SENTINEL
8366             };
8367             /* We don't implement a r/w 64 bit CBAR currently */
8368             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8369             define_arm_cp_regs(cpu, cbar_reginfo);
8370         } else {
8371             ARMCPRegInfo cbar = {
8372                 .name = "CBAR",
8373                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8374                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8375                 .fieldoffset = offsetof(CPUARMState,
8376                                         cp15.c15_config_base_address)
8377             };
8378             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8379                 cbar.access = PL1_R;
8380                 cbar.fieldoffset = 0;
8381                 cbar.type = ARM_CP_CONST;
8382             }
8383             define_one_arm_cp_reg(cpu, &cbar);
8384         }
8385     }
8386 
8387     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8388         ARMCPRegInfo vbar_cp_reginfo[] = {
8389             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8390               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8391               .access = PL1_RW, .writefn = vbar_write,
8392               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8393                                      offsetof(CPUARMState, cp15.vbar_ns) },
8394               .resetvalue = 0 },
8395             REGINFO_SENTINEL
8396         };
8397         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8398     }
8399 
8400     /* Generic registers whose values depend on the implementation */
8401     {
8402         ARMCPRegInfo sctlr = {
8403             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8404             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8405             .access = PL1_RW, .accessfn = access_tvm_trvm,
8406             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8407                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8408             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8409             .raw_writefn = raw_write,
8410         };
8411         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8412             /* Normally we would always end the TB on an SCTLR write, but Linux
8413              * arch/arm/mach-pxa/sleep.S expects two instructions following
8414              * an MMU enable to execute from cache.  Imitate this behaviour.
8415              */
8416             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8417         }
8418         define_one_arm_cp_reg(cpu, &sctlr);
8419     }
8420 
8421     if (cpu_isar_feature(aa64_lor, cpu)) {
8422         define_arm_cp_regs(cpu, lor_reginfo);
8423     }
8424     if (cpu_isar_feature(aa64_pan, cpu)) {
8425         define_one_arm_cp_reg(cpu, &pan_reginfo);
8426     }
8427 #ifndef CONFIG_USER_ONLY
8428     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8429         define_arm_cp_regs(cpu, ats1e1_reginfo);
8430     }
8431     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8432         define_arm_cp_regs(cpu, ats1cp_reginfo);
8433     }
8434 #endif
8435     if (cpu_isar_feature(aa64_uao, cpu)) {
8436         define_one_arm_cp_reg(cpu, &uao_reginfo);
8437     }
8438 
8439     if (cpu_isar_feature(aa64_dit, cpu)) {
8440         define_one_arm_cp_reg(cpu, &dit_reginfo);
8441     }
8442     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8443         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8444     }
8445 
8446     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8447         define_arm_cp_regs(cpu, vhe_reginfo);
8448     }
8449 
8450     if (cpu_isar_feature(aa64_sve, cpu)) {
8451         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8452         if (arm_feature(env, ARM_FEATURE_EL2)) {
8453             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8454         } else {
8455             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8456         }
8457         if (arm_feature(env, ARM_FEATURE_EL3)) {
8458             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8459         }
8460     }
8461 
8462 #ifdef TARGET_AARCH64
8463     if (cpu_isar_feature(aa64_pauth, cpu)) {
8464         define_arm_cp_regs(cpu, pauth_reginfo);
8465     }
8466     if (cpu_isar_feature(aa64_rndr, cpu)) {
8467         define_arm_cp_regs(cpu, rndr_reginfo);
8468     }
8469     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8470         define_arm_cp_regs(cpu, tlbirange_reginfo);
8471     }
8472     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8473         define_arm_cp_regs(cpu, tlbios_reginfo);
8474     }
8475 #ifndef CONFIG_USER_ONLY
8476     /* Data Cache clean instructions up to PoP */
8477     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8478         define_one_arm_cp_reg(cpu, dcpop_reg);
8479 
8480         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8481             define_one_arm_cp_reg(cpu, dcpodp_reg);
8482         }
8483     }
8484 #endif /*CONFIG_USER_ONLY*/
8485 
8486     /*
8487      * If full MTE is enabled, add all of the system registers.
8488      * If only "instructions available at EL0" are enabled,
8489      * then define only a RAZ/WI version of PSTATE.TCO.
8490      */
8491     if (cpu_isar_feature(aa64_mte, cpu)) {
8492         define_arm_cp_regs(cpu, mte_reginfo);
8493         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8494     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8495         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8496         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8497     }
8498 #endif
8499 
8500     if (cpu_isar_feature(any_predinv, cpu)) {
8501         define_arm_cp_regs(cpu, predinv_reginfo);
8502     }
8503 
8504     if (cpu_isar_feature(any_ccidx, cpu)) {
8505         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8506     }
8507 
8508 #ifndef CONFIG_USER_ONLY
8509     /*
8510      * Register redirections and aliases must be done last,
8511      * after the registers from the other extensions have been defined.
8512      */
8513     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8514         define_arm_vh_e2h_redirects_aliases(cpu);
8515     }
8516 #endif
8517 }
8518 
8519 /* Sort alphabetically by type name, except for "any". */
8520 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8521 {
8522     ObjectClass *class_a = (ObjectClass *)a;
8523     ObjectClass *class_b = (ObjectClass *)b;
8524     const char *name_a, *name_b;
8525 
8526     name_a = object_class_get_name(class_a);
8527     name_b = object_class_get_name(class_b);
8528     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8529         return 1;
8530     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8531         return -1;
8532     } else {
8533         return strcmp(name_a, name_b);
8534     }
8535 }
8536 
8537 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8538 {
8539     ObjectClass *oc = data;
8540     const char *typename;
8541     char *name;
8542 
8543     typename = object_class_get_name(oc);
8544     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8545     qemu_printf("  %s\n", name);
8546     g_free(name);
8547 }
8548 
8549 void arm_cpu_list(void)
8550 {
8551     GSList *list;
8552 
8553     list = object_class_get_list(TYPE_ARM_CPU, false);
8554     list = g_slist_sort(list, arm_cpu_list_compare);
8555     qemu_printf("Available CPUs:\n");
8556     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8557     g_slist_free(list);
8558 }
8559 
8560 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8561 {
8562     ObjectClass *oc = data;
8563     CpuDefinitionInfoList **cpu_list = user_data;
8564     CpuDefinitionInfo *info;
8565     const char *typename;
8566 
8567     typename = object_class_get_name(oc);
8568     info = g_malloc0(sizeof(*info));
8569     info->name = g_strndup(typename,
8570                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8571     info->q_typename = g_strdup(typename);
8572 
8573     QAPI_LIST_PREPEND(*cpu_list, info);
8574 }
8575 
8576 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8577 {
8578     CpuDefinitionInfoList *cpu_list = NULL;
8579     GSList *list;
8580 
8581     list = object_class_get_list(TYPE_ARM_CPU, false);
8582     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8583     g_slist_free(list);
8584 
8585     return cpu_list;
8586 }
8587 
8588 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8589                                    void *opaque, int state, int secstate,
8590                                    int crm, int opc1, int opc2,
8591                                    const char *name)
8592 {
8593     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8594      * add a single reginfo struct to the hash table.
8595      */
8596     uint32_t *key = g_new(uint32_t, 1);
8597     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8598     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8599     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8600 
8601     r2->name = g_strdup(name);
8602     /* Reset the secure state to the specific incoming state.  This is
8603      * necessary as the register may have been defined with both states.
8604      */
8605     r2->secure = secstate;
8606 
8607     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8608         /* Register is banked (using both entries in array).
8609          * Overwriting fieldoffset as the array is only used to define
8610          * banked registers but later only fieldoffset is used.
8611          */
8612         r2->fieldoffset = r->bank_fieldoffsets[ns];
8613     }
8614 
8615     if (state == ARM_CP_STATE_AA32) {
8616         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8617             /* If the register is banked then we don't need to migrate or
8618              * reset the 32-bit instance in certain cases:
8619              *
8620              * 1) If the register has both 32-bit and 64-bit instances then we
8621              *    can count on the 64-bit instance taking care of the
8622              *    non-secure bank.
8623              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8624              *    taking care of the secure bank.  This requires that separate
8625              *    32 and 64-bit definitions are provided.
8626              */
8627             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8628                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8629                 r2->type |= ARM_CP_ALIAS;
8630             }
8631         } else if ((secstate != r->secure) && !ns) {
8632             /* The register is not banked so we only want to allow migration of
8633              * the non-secure instance.
8634              */
8635             r2->type |= ARM_CP_ALIAS;
8636         }
8637 
8638         if (r->state == ARM_CP_STATE_BOTH) {
8639             /* We assume it is a cp15 register if the .cp field is left unset.
8640              */
8641             if (r2->cp == 0) {
8642                 r2->cp = 15;
8643             }
8644 
8645 #ifdef HOST_WORDS_BIGENDIAN
8646             if (r2->fieldoffset) {
8647                 r2->fieldoffset += sizeof(uint32_t);
8648             }
8649 #endif
8650         }
8651     }
8652     if (state == ARM_CP_STATE_AA64) {
8653         /* To allow abbreviation of ARMCPRegInfo
8654          * definitions, we treat cp == 0 as equivalent to
8655          * the value for "standard guest-visible sysreg".
8656          * STATE_BOTH definitions are also always "standard
8657          * sysreg" in their AArch64 view (the .cp value may
8658          * be non-zero for the benefit of the AArch32 view).
8659          */
8660         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8661             r2->cp = CP_REG_ARM64_SYSREG_CP;
8662         }
8663         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8664                                   r2->opc0, opc1, opc2);
8665     } else {
8666         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8667     }
8668     if (opaque) {
8669         r2->opaque = opaque;
8670     }
8671     /* reginfo passed to helpers is correct for the actual access,
8672      * and is never ARM_CP_STATE_BOTH:
8673      */
8674     r2->state = state;
8675     /* Make sure reginfo passed to helpers for wildcarded regs
8676      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8677      */
8678     r2->crm = crm;
8679     r2->opc1 = opc1;
8680     r2->opc2 = opc2;
8681     /* By convention, for wildcarded registers only the first
8682      * entry is used for migration; the others are marked as
8683      * ALIAS so we don't try to transfer the register
8684      * multiple times. Special registers (ie NOP/WFI) are
8685      * never migratable and not even raw-accessible.
8686      */
8687     if ((r->type & ARM_CP_SPECIAL)) {
8688         r2->type |= ARM_CP_NO_RAW;
8689     }
8690     if (((r->crm == CP_ANY) && crm != 0) ||
8691         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8692         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8693         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8694     }
8695 
8696     /* Check that raw accesses are either forbidden or handled. Note that
8697      * we can't assert this earlier because the setup of fieldoffset for
8698      * banked registers has to be done first.
8699      */
8700     if (!(r2->type & ARM_CP_NO_RAW)) {
8701         assert(!raw_accessors_invalid(r2));
8702     }
8703 
8704     /* Overriding of an existing definition must be explicitly
8705      * requested.
8706      */
8707     if (!(r->type & ARM_CP_OVERRIDE)) {
8708         ARMCPRegInfo *oldreg;
8709         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8710         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8711             fprintf(stderr, "Register redefined: cp=%d %d bit "
8712                     "crn=%d crm=%d opc1=%d opc2=%d, "
8713                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8714                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8715                     oldreg->name, r2->name);
8716             g_assert_not_reached();
8717         }
8718     }
8719     g_hash_table_insert(cpu->cp_regs, key, r2);
8720 }
8721 
8722 
8723 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8724                                        const ARMCPRegInfo *r, void *opaque)
8725 {
8726     /* Define implementations of coprocessor registers.
8727      * We store these in a hashtable because typically
8728      * there are less than 150 registers in a space which
8729      * is 16*16*16*8*8 = 262144 in size.
8730      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8731      * If a register is defined twice then the second definition is
8732      * used, so this can be used to define some generic registers and
8733      * then override them with implementation specific variations.
8734      * At least one of the original and the second definition should
8735      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8736      * against accidental use.
8737      *
8738      * The state field defines whether the register is to be
8739      * visible in the AArch32 or AArch64 execution state. If the
8740      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8741      * reginfo structure for the AArch32 view, which sees the lower
8742      * 32 bits of the 64 bit register.
8743      *
8744      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8745      * be wildcarded. AArch64 registers are always considered to be 64
8746      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8747      * the register, if any.
8748      */
8749     int crm, opc1, opc2, state;
8750     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8751     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8752     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8753     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8754     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8755     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8756     /* 64 bit registers have only CRm and Opc1 fields */
8757     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8758     /* op0 only exists in the AArch64 encodings */
8759     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8760     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8761     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8762     /*
8763      * This API is only for Arm's system coprocessors (14 and 15) or
8764      * (M-profile or v7A-and-earlier only) for implementation defined
8765      * coprocessors in the range 0..7.  Our decode assumes this, since
8766      * 8..13 can be used for other insns including VFP and Neon. See
8767      * valid_cp() in translate.c.  Assert here that we haven't tried
8768      * to use an invalid coprocessor number.
8769      */
8770     switch (r->state) {
8771     case ARM_CP_STATE_BOTH:
8772         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8773         if (r->cp == 0) {
8774             break;
8775         }
8776         /* fall through */
8777     case ARM_CP_STATE_AA32:
8778         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8779             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8780             assert(r->cp >= 14 && r->cp <= 15);
8781         } else {
8782             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8783         }
8784         break;
8785     case ARM_CP_STATE_AA64:
8786         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8787         break;
8788     default:
8789         g_assert_not_reached();
8790     }
8791     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8792      * encodes a minimum access level for the register. We roll this
8793      * runtime check into our general permission check code, so check
8794      * here that the reginfo's specified permissions are strict enough
8795      * to encompass the generic architectural permission check.
8796      */
8797     if (r->state != ARM_CP_STATE_AA32) {
8798         int mask = 0;
8799         switch (r->opc1) {
8800         case 0:
8801             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8802             mask = PL0U_R | PL1_RW;
8803             break;
8804         case 1: case 2:
8805             /* min_EL EL1 */
8806             mask = PL1_RW;
8807             break;
8808         case 3:
8809             /* min_EL EL0 */
8810             mask = PL0_RW;
8811             break;
8812         case 4:
8813         case 5:
8814             /* min_EL EL2 */
8815             mask = PL2_RW;
8816             break;
8817         case 6:
8818             /* min_EL EL3 */
8819             mask = PL3_RW;
8820             break;
8821         case 7:
8822             /* min_EL EL1, secure mode only (we don't check the latter) */
8823             mask = PL1_RW;
8824             break;
8825         default:
8826             /* broken reginfo with out-of-range opc1 */
8827             assert(false);
8828             break;
8829         }
8830         /* assert our permissions are not too lax (stricter is fine) */
8831         assert((r->access & ~mask) == 0);
8832     }
8833 
8834     /* Check that the register definition has enough info to handle
8835      * reads and writes if they are permitted.
8836      */
8837     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8838         if (r->access & PL3_R) {
8839             assert((r->fieldoffset ||
8840                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8841                    r->readfn);
8842         }
8843         if (r->access & PL3_W) {
8844             assert((r->fieldoffset ||
8845                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8846                    r->writefn);
8847         }
8848     }
8849     /* Bad type field probably means missing sentinel at end of reg list */
8850     assert(cptype_valid(r->type));
8851     for (crm = crmmin; crm <= crmmax; crm++) {
8852         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8853             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8854                 for (state = ARM_CP_STATE_AA32;
8855                      state <= ARM_CP_STATE_AA64; state++) {
8856                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8857                         continue;
8858                     }
8859                     if (state == ARM_CP_STATE_AA32) {
8860                         /* Under AArch32 CP registers can be common
8861                          * (same for secure and non-secure world) or banked.
8862                          */
8863                         char *name;
8864 
8865                         switch (r->secure) {
8866                         case ARM_CP_SECSTATE_S:
8867                         case ARM_CP_SECSTATE_NS:
8868                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8869                                                    r->secure, crm, opc1, opc2,
8870                                                    r->name);
8871                             break;
8872                         default:
8873                             name = g_strdup_printf("%s_S", r->name);
8874                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8875                                                    ARM_CP_SECSTATE_S,
8876                                                    crm, opc1, opc2, name);
8877                             g_free(name);
8878                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8879                                                    ARM_CP_SECSTATE_NS,
8880                                                    crm, opc1, opc2, r->name);
8881                             break;
8882                         }
8883                     } else {
8884                         /* AArch64 registers get mapped to non-secure instance
8885                          * of AArch32 */
8886                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8887                                                ARM_CP_SECSTATE_NS,
8888                                                crm, opc1, opc2, r->name);
8889                     }
8890                 }
8891             }
8892         }
8893     }
8894 }
8895 
8896 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8897                                     const ARMCPRegInfo *regs, void *opaque)
8898 {
8899     /* Define a whole list of registers */
8900     const ARMCPRegInfo *r;
8901     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8902         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8903     }
8904 }
8905 
8906 /*
8907  * Modify ARMCPRegInfo for access from userspace.
8908  *
8909  * This is a data driven modification directed by
8910  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8911  * user-space cannot alter any values and dynamic values pertaining to
8912  * execution state are hidden from user space view anyway.
8913  */
8914 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8915 {
8916     const ARMCPRegUserSpaceInfo *m;
8917     ARMCPRegInfo *r;
8918 
8919     for (m = mods; m->name; m++) {
8920         GPatternSpec *pat = NULL;
8921         if (m->is_glob) {
8922             pat = g_pattern_spec_new(m->name);
8923         }
8924         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8925             if (pat && g_pattern_match_string(pat, r->name)) {
8926                 r->type = ARM_CP_CONST;
8927                 r->access = PL0U_R;
8928                 r->resetvalue = 0;
8929                 /* continue */
8930             } else if (strcmp(r->name, m->name) == 0) {
8931                 r->type = ARM_CP_CONST;
8932                 r->access = PL0U_R;
8933                 r->resetvalue &= m->exported_bits;
8934                 r->resetvalue |= m->fixed_bits;
8935                 break;
8936             }
8937         }
8938         if (pat) {
8939             g_pattern_spec_free(pat);
8940         }
8941     }
8942 }
8943 
8944 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8945 {
8946     return g_hash_table_lookup(cpregs, &encoded_cp);
8947 }
8948 
8949 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8950                          uint64_t value)
8951 {
8952     /* Helper coprocessor write function for write-ignore registers */
8953 }
8954 
8955 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8956 {
8957     /* Helper coprocessor write function for read-as-zero registers */
8958     return 0;
8959 }
8960 
8961 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8962 {
8963     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8964 }
8965 
8966 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8967 {
8968     /* Return true if it is not valid for us to switch to
8969      * this CPU mode (ie all the UNPREDICTABLE cases in
8970      * the ARM ARM CPSRWriteByInstr pseudocode).
8971      */
8972 
8973     /* Changes to or from Hyp via MSR and CPS are illegal. */
8974     if (write_type == CPSRWriteByInstr &&
8975         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8976          mode == ARM_CPU_MODE_HYP)) {
8977         return 1;
8978     }
8979 
8980     switch (mode) {
8981     case ARM_CPU_MODE_USR:
8982         return 0;
8983     case ARM_CPU_MODE_SYS:
8984     case ARM_CPU_MODE_SVC:
8985     case ARM_CPU_MODE_ABT:
8986     case ARM_CPU_MODE_UND:
8987     case ARM_CPU_MODE_IRQ:
8988     case ARM_CPU_MODE_FIQ:
8989         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8990          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8991          */
8992         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8993          * and CPS are treated as illegal mode changes.
8994          */
8995         if (write_type == CPSRWriteByInstr &&
8996             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8997             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8998             return 1;
8999         }
9000         return 0;
9001     case ARM_CPU_MODE_HYP:
9002         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9003     case ARM_CPU_MODE_MON:
9004         return arm_current_el(env) < 3;
9005     default:
9006         return 1;
9007     }
9008 }
9009 
9010 uint32_t cpsr_read(CPUARMState *env)
9011 {
9012     int ZF;
9013     ZF = (env->ZF == 0);
9014     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9015         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9016         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9017         | ((env->condexec_bits & 0xfc) << 8)
9018         | (env->GE << 16) | (env->daif & CPSR_AIF);
9019 }
9020 
9021 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9022                 CPSRWriteType write_type)
9023 {
9024     uint32_t changed_daif;
9025     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9026         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9027 
9028     if (mask & CPSR_NZCV) {
9029         env->ZF = (~val) & CPSR_Z;
9030         env->NF = val;
9031         env->CF = (val >> 29) & 1;
9032         env->VF = (val << 3) & 0x80000000;
9033     }
9034     if (mask & CPSR_Q)
9035         env->QF = ((val & CPSR_Q) != 0);
9036     if (mask & CPSR_T)
9037         env->thumb = ((val & CPSR_T) != 0);
9038     if (mask & CPSR_IT_0_1) {
9039         env->condexec_bits &= ~3;
9040         env->condexec_bits |= (val >> 25) & 3;
9041     }
9042     if (mask & CPSR_IT_2_7) {
9043         env->condexec_bits &= 3;
9044         env->condexec_bits |= (val >> 8) & 0xfc;
9045     }
9046     if (mask & CPSR_GE) {
9047         env->GE = (val >> 16) & 0xf;
9048     }
9049 
9050     /* In a V7 implementation that includes the security extensions but does
9051      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9052      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9053      * bits respectively.
9054      *
9055      * In a V8 implementation, it is permitted for privileged software to
9056      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9057      */
9058     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9059         arm_feature(env, ARM_FEATURE_EL3) &&
9060         !arm_feature(env, ARM_FEATURE_EL2) &&
9061         !arm_is_secure(env)) {
9062 
9063         changed_daif = (env->daif ^ val) & mask;
9064 
9065         if (changed_daif & CPSR_A) {
9066             /* Check to see if we are allowed to change the masking of async
9067              * abort exceptions from a non-secure state.
9068              */
9069             if (!(env->cp15.scr_el3 & SCR_AW)) {
9070                 qemu_log_mask(LOG_GUEST_ERROR,
9071                               "Ignoring attempt to switch CPSR_A flag from "
9072                               "non-secure world with SCR.AW bit clear\n");
9073                 mask &= ~CPSR_A;
9074             }
9075         }
9076 
9077         if (changed_daif & CPSR_F) {
9078             /* Check to see if we are allowed to change the masking of FIQ
9079              * exceptions from a non-secure state.
9080              */
9081             if (!(env->cp15.scr_el3 & SCR_FW)) {
9082                 qemu_log_mask(LOG_GUEST_ERROR,
9083                               "Ignoring attempt to switch CPSR_F flag from "
9084                               "non-secure world with SCR.FW bit clear\n");
9085                 mask &= ~CPSR_F;
9086             }
9087 
9088             /* Check whether non-maskable FIQ (NMFI) support is enabled.
9089              * If this bit is set software is not allowed to mask
9090              * FIQs, but is allowed to set CPSR_F to 0.
9091              */
9092             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9093                 (val & CPSR_F)) {
9094                 qemu_log_mask(LOG_GUEST_ERROR,
9095                               "Ignoring attempt to enable CPSR_F flag "
9096                               "(non-maskable FIQ [NMFI] support enabled)\n");
9097                 mask &= ~CPSR_F;
9098             }
9099         }
9100     }
9101 
9102     env->daif &= ~(CPSR_AIF & mask);
9103     env->daif |= val & CPSR_AIF & mask;
9104 
9105     if (write_type != CPSRWriteRaw &&
9106         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9107         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9108             /* Note that we can only get here in USR mode if this is a
9109              * gdb stub write; for this case we follow the architectural
9110              * behaviour for guest writes in USR mode of ignoring an attempt
9111              * to switch mode. (Those are caught by translate.c for writes
9112              * triggered by guest instructions.)
9113              */
9114             mask &= ~CPSR_M;
9115         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9116             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9117              * v7, and has defined behaviour in v8:
9118              *  + leave CPSR.M untouched
9119              *  + allow changes to the other CPSR fields
9120              *  + set PSTATE.IL
9121              * For user changes via the GDB stub, we don't set PSTATE.IL,
9122              * as this would be unnecessarily harsh for a user error.
9123              */
9124             mask &= ~CPSR_M;
9125             if (write_type != CPSRWriteByGDBStub &&
9126                 arm_feature(env, ARM_FEATURE_V8)) {
9127                 mask |= CPSR_IL;
9128                 val |= CPSR_IL;
9129             }
9130             qemu_log_mask(LOG_GUEST_ERROR,
9131                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9132                           aarch32_mode_name(env->uncached_cpsr),
9133                           aarch32_mode_name(val));
9134         } else {
9135             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9136                           write_type == CPSRWriteExceptionReturn ?
9137                           "Exception return from AArch32" :
9138                           "AArch32 mode switch from",
9139                           aarch32_mode_name(env->uncached_cpsr),
9140                           aarch32_mode_name(val), env->regs[15]);
9141             switch_mode(env, val & CPSR_M);
9142         }
9143     }
9144     mask &= ~CACHED_CPSR_BITS;
9145     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9146     if (rebuild_hflags) {
9147         arm_rebuild_hflags(env);
9148     }
9149 }
9150 
9151 /* Sign/zero extend */
9152 uint32_t HELPER(sxtb16)(uint32_t x)
9153 {
9154     uint32_t res;
9155     res = (uint16_t)(int8_t)x;
9156     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9157     return res;
9158 }
9159 
9160 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9161 {
9162     /*
9163      * Take a division-by-zero exception if necessary; otherwise return
9164      * to get the usual non-trapping division behaviour (result of 0)
9165      */
9166     if (arm_feature(env, ARM_FEATURE_M)
9167         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9168         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9169     }
9170 }
9171 
9172 uint32_t HELPER(uxtb16)(uint32_t x)
9173 {
9174     uint32_t res;
9175     res = (uint16_t)(uint8_t)x;
9176     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9177     return res;
9178 }
9179 
9180 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9181 {
9182     if (den == 0) {
9183         handle_possible_div0_trap(env, GETPC());
9184         return 0;
9185     }
9186     if (num == INT_MIN && den == -1) {
9187         return INT_MIN;
9188     }
9189     return num / den;
9190 }
9191 
9192 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9193 {
9194     if (den == 0) {
9195         handle_possible_div0_trap(env, GETPC());
9196         return 0;
9197     }
9198     return num / den;
9199 }
9200 
9201 uint32_t HELPER(rbit)(uint32_t x)
9202 {
9203     return revbit32(x);
9204 }
9205 
9206 #ifdef CONFIG_USER_ONLY
9207 
9208 static void switch_mode(CPUARMState *env, int mode)
9209 {
9210     ARMCPU *cpu = env_archcpu(env);
9211 
9212     if (mode != ARM_CPU_MODE_USR) {
9213         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9214     }
9215 }
9216 
9217 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9218                                  uint32_t cur_el, bool secure)
9219 {
9220     return 1;
9221 }
9222 
9223 void aarch64_sync_64_to_32(CPUARMState *env)
9224 {
9225     g_assert_not_reached();
9226 }
9227 
9228 #else
9229 
9230 static void switch_mode(CPUARMState *env, int mode)
9231 {
9232     int old_mode;
9233     int i;
9234 
9235     old_mode = env->uncached_cpsr & CPSR_M;
9236     if (mode == old_mode)
9237         return;
9238 
9239     if (old_mode == ARM_CPU_MODE_FIQ) {
9240         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9241         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9242     } else if (mode == ARM_CPU_MODE_FIQ) {
9243         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9244         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9245     }
9246 
9247     i = bank_number(old_mode);
9248     env->banked_r13[i] = env->regs[13];
9249     env->banked_spsr[i] = env->spsr;
9250 
9251     i = bank_number(mode);
9252     env->regs[13] = env->banked_r13[i];
9253     env->spsr = env->banked_spsr[i];
9254 
9255     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9256     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9257 }
9258 
9259 /* Physical Interrupt Target EL Lookup Table
9260  *
9261  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9262  *
9263  * The below multi-dimensional table is used for looking up the target
9264  * exception level given numerous condition criteria.  Specifically, the
9265  * target EL is based on SCR and HCR routing controls as well as the
9266  * currently executing EL and secure state.
9267  *
9268  *    Dimensions:
9269  *    target_el_table[2][2][2][2][2][4]
9270  *                    |  |  |  |  |  +--- Current EL
9271  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9272  *                    |  |  |  +--------- HCR mask override
9273  *                    |  |  +------------ SCR exec state control
9274  *                    |  +--------------- SCR mask override
9275  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9276  *
9277  *    The table values are as such:
9278  *    0-3 = EL0-EL3
9279  *     -1 = Cannot occur
9280  *
9281  * The ARM ARM target EL table includes entries indicating that an "exception
9282  * is not taken".  The two cases where this is applicable are:
9283  *    1) An exception is taken from EL3 but the SCR does not have the exception
9284  *    routed to EL3.
9285  *    2) An exception is taken from EL2 but the HCR does not have the exception
9286  *    routed to EL2.
9287  * In these two cases, the below table contain a target of EL1.  This value is
9288  * returned as it is expected that the consumer of the table data will check
9289  * for "target EL >= current EL" to ensure the exception is not taken.
9290  *
9291  *            SCR     HCR
9292  *         64  EA     AMO                 From
9293  *        BIT IRQ     IMO      Non-secure         Secure
9294  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9295  */
9296 static const int8_t target_el_table[2][2][2][2][2][4] = {
9297     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9298        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9299       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9300        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9301      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9302        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9303       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9304        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9305     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9306        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9307       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9308        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9309      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9310        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9311       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9312        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9313 };
9314 
9315 /*
9316  * Determine the target EL for physical exceptions
9317  */
9318 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9319                                  uint32_t cur_el, bool secure)
9320 {
9321     CPUARMState *env = cs->env_ptr;
9322     bool rw;
9323     bool scr;
9324     bool hcr;
9325     int target_el;
9326     /* Is the highest EL AArch64? */
9327     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9328     uint64_t hcr_el2;
9329 
9330     if (arm_feature(env, ARM_FEATURE_EL3)) {
9331         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9332     } else {
9333         /* Either EL2 is the highest EL (and so the EL2 register width
9334          * is given by is64); or there is no EL2 or EL3, in which case
9335          * the value of 'rw' does not affect the table lookup anyway.
9336          */
9337         rw = is64;
9338     }
9339 
9340     hcr_el2 = arm_hcr_el2_eff(env);
9341     switch (excp_idx) {
9342     case EXCP_IRQ:
9343         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9344         hcr = hcr_el2 & HCR_IMO;
9345         break;
9346     case EXCP_FIQ:
9347         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9348         hcr = hcr_el2 & HCR_FMO;
9349         break;
9350     default:
9351         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9352         hcr = hcr_el2 & HCR_AMO;
9353         break;
9354     };
9355 
9356     /*
9357      * For these purposes, TGE and AMO/IMO/FMO both force the
9358      * interrupt to EL2.  Fold TGE into the bit extracted above.
9359      */
9360     hcr |= (hcr_el2 & HCR_TGE) != 0;
9361 
9362     /* Perform a table-lookup for the target EL given the current state */
9363     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9364 
9365     assert(target_el > 0);
9366 
9367     return target_el;
9368 }
9369 
9370 void arm_log_exception(CPUState *cs)
9371 {
9372     int idx = cs->exception_index;
9373 
9374     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9375         const char *exc = NULL;
9376         static const char * const excnames[] = {
9377             [EXCP_UDEF] = "Undefined Instruction",
9378             [EXCP_SWI] = "SVC",
9379             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9380             [EXCP_DATA_ABORT] = "Data Abort",
9381             [EXCP_IRQ] = "IRQ",
9382             [EXCP_FIQ] = "FIQ",
9383             [EXCP_BKPT] = "Breakpoint",
9384             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9385             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9386             [EXCP_HVC] = "Hypervisor Call",
9387             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9388             [EXCP_SMC] = "Secure Monitor Call",
9389             [EXCP_VIRQ] = "Virtual IRQ",
9390             [EXCP_VFIQ] = "Virtual FIQ",
9391             [EXCP_SEMIHOST] = "Semihosting call",
9392             [EXCP_NOCP] = "v7M NOCP UsageFault",
9393             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9394             [EXCP_STKOF] = "v8M STKOF UsageFault",
9395             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9396             [EXCP_LSERR] = "v8M LSERR UsageFault",
9397             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9398             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9399         };
9400 
9401         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9402             exc = excnames[idx];
9403         }
9404         if (!exc) {
9405             exc = "unknown";
9406         }
9407         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9408                       idx, exc, cs->cpu_index);
9409     }
9410 }
9411 
9412 /*
9413  * Function used to synchronize QEMU's AArch64 register set with AArch32
9414  * register set.  This is necessary when switching between AArch32 and AArch64
9415  * execution state.
9416  */
9417 void aarch64_sync_32_to_64(CPUARMState *env)
9418 {
9419     int i;
9420     uint32_t mode = env->uncached_cpsr & CPSR_M;
9421 
9422     /* We can blanket copy R[0:7] to X[0:7] */
9423     for (i = 0; i < 8; i++) {
9424         env->xregs[i] = env->regs[i];
9425     }
9426 
9427     /*
9428      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9429      * Otherwise, they come from the banked user regs.
9430      */
9431     if (mode == ARM_CPU_MODE_FIQ) {
9432         for (i = 8; i < 13; i++) {
9433             env->xregs[i] = env->usr_regs[i - 8];
9434         }
9435     } else {
9436         for (i = 8; i < 13; i++) {
9437             env->xregs[i] = env->regs[i];
9438         }
9439     }
9440 
9441     /*
9442      * Registers x13-x23 are the various mode SP and FP registers. Registers
9443      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9444      * from the mode banked register.
9445      */
9446     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9447         env->xregs[13] = env->regs[13];
9448         env->xregs[14] = env->regs[14];
9449     } else {
9450         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9451         /* HYP is an exception in that it is copied from r14 */
9452         if (mode == ARM_CPU_MODE_HYP) {
9453             env->xregs[14] = env->regs[14];
9454         } else {
9455             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9456         }
9457     }
9458 
9459     if (mode == ARM_CPU_MODE_HYP) {
9460         env->xregs[15] = env->regs[13];
9461     } else {
9462         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9463     }
9464 
9465     if (mode == ARM_CPU_MODE_IRQ) {
9466         env->xregs[16] = env->regs[14];
9467         env->xregs[17] = env->regs[13];
9468     } else {
9469         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9470         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9471     }
9472 
9473     if (mode == ARM_CPU_MODE_SVC) {
9474         env->xregs[18] = env->regs[14];
9475         env->xregs[19] = env->regs[13];
9476     } else {
9477         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9478         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9479     }
9480 
9481     if (mode == ARM_CPU_MODE_ABT) {
9482         env->xregs[20] = env->regs[14];
9483         env->xregs[21] = env->regs[13];
9484     } else {
9485         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9486         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9487     }
9488 
9489     if (mode == ARM_CPU_MODE_UND) {
9490         env->xregs[22] = env->regs[14];
9491         env->xregs[23] = env->regs[13];
9492     } else {
9493         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9494         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9495     }
9496 
9497     /*
9498      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9499      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9500      * FIQ bank for r8-r14.
9501      */
9502     if (mode == ARM_CPU_MODE_FIQ) {
9503         for (i = 24; i < 31; i++) {
9504             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9505         }
9506     } else {
9507         for (i = 24; i < 29; i++) {
9508             env->xregs[i] = env->fiq_regs[i - 24];
9509         }
9510         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9511         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9512     }
9513 
9514     env->pc = env->regs[15];
9515 }
9516 
9517 /*
9518  * Function used to synchronize QEMU's AArch32 register set with AArch64
9519  * register set.  This is necessary when switching between AArch32 and AArch64
9520  * execution state.
9521  */
9522 void aarch64_sync_64_to_32(CPUARMState *env)
9523 {
9524     int i;
9525     uint32_t mode = env->uncached_cpsr & CPSR_M;
9526 
9527     /* We can blanket copy X[0:7] to R[0:7] */
9528     for (i = 0; i < 8; i++) {
9529         env->regs[i] = env->xregs[i];
9530     }
9531 
9532     /*
9533      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9534      * Otherwise, we copy x8-x12 into the banked user regs.
9535      */
9536     if (mode == ARM_CPU_MODE_FIQ) {
9537         for (i = 8; i < 13; i++) {
9538             env->usr_regs[i - 8] = env->xregs[i];
9539         }
9540     } else {
9541         for (i = 8; i < 13; i++) {
9542             env->regs[i] = env->xregs[i];
9543         }
9544     }
9545 
9546     /*
9547      * Registers r13 & r14 depend on the current mode.
9548      * If we are in a given mode, we copy the corresponding x registers to r13
9549      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9550      * for the mode.
9551      */
9552     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9553         env->regs[13] = env->xregs[13];
9554         env->regs[14] = env->xregs[14];
9555     } else {
9556         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9557 
9558         /*
9559          * HYP is an exception in that it does not have its own banked r14 but
9560          * shares the USR r14
9561          */
9562         if (mode == ARM_CPU_MODE_HYP) {
9563             env->regs[14] = env->xregs[14];
9564         } else {
9565             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9566         }
9567     }
9568 
9569     if (mode == ARM_CPU_MODE_HYP) {
9570         env->regs[13] = env->xregs[15];
9571     } else {
9572         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9573     }
9574 
9575     if (mode == ARM_CPU_MODE_IRQ) {
9576         env->regs[14] = env->xregs[16];
9577         env->regs[13] = env->xregs[17];
9578     } else {
9579         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9580         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9581     }
9582 
9583     if (mode == ARM_CPU_MODE_SVC) {
9584         env->regs[14] = env->xregs[18];
9585         env->regs[13] = env->xregs[19];
9586     } else {
9587         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9588         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9589     }
9590 
9591     if (mode == ARM_CPU_MODE_ABT) {
9592         env->regs[14] = env->xregs[20];
9593         env->regs[13] = env->xregs[21];
9594     } else {
9595         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9596         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9597     }
9598 
9599     if (mode == ARM_CPU_MODE_UND) {
9600         env->regs[14] = env->xregs[22];
9601         env->regs[13] = env->xregs[23];
9602     } else {
9603         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9604         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9605     }
9606 
9607     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9608      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9609      * FIQ bank for r8-r14.
9610      */
9611     if (mode == ARM_CPU_MODE_FIQ) {
9612         for (i = 24; i < 31; i++) {
9613             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9614         }
9615     } else {
9616         for (i = 24; i < 29; i++) {
9617             env->fiq_regs[i - 24] = env->xregs[i];
9618         }
9619         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9620         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9621     }
9622 
9623     env->regs[15] = env->pc;
9624 }
9625 
9626 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9627                                    uint32_t mask, uint32_t offset,
9628                                    uint32_t newpc)
9629 {
9630     int new_el;
9631 
9632     /* Change the CPU state so as to actually take the exception. */
9633     switch_mode(env, new_mode);
9634 
9635     /*
9636      * For exceptions taken to AArch32 we must clear the SS bit in both
9637      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9638      */
9639     env->pstate &= ~PSTATE_SS;
9640     env->spsr = cpsr_read(env);
9641     /* Clear IT bits.  */
9642     env->condexec_bits = 0;
9643     /* Switch to the new mode, and to the correct instruction set.  */
9644     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9645 
9646     /* This must be after mode switching. */
9647     new_el = arm_current_el(env);
9648 
9649     /* Set new mode endianness */
9650     env->uncached_cpsr &= ~CPSR_E;
9651     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9652         env->uncached_cpsr |= CPSR_E;
9653     }
9654     /* J and IL must always be cleared for exception entry */
9655     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9656     env->daif |= mask;
9657 
9658     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9659         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9660             env->uncached_cpsr |= CPSR_SSBS;
9661         } else {
9662             env->uncached_cpsr &= ~CPSR_SSBS;
9663         }
9664     }
9665 
9666     if (new_mode == ARM_CPU_MODE_HYP) {
9667         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9668         env->elr_el[2] = env->regs[15];
9669     } else {
9670         /* CPSR.PAN is normally preserved preserved unless...  */
9671         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9672             switch (new_el) {
9673             case 3:
9674                 if (!arm_is_secure_below_el3(env)) {
9675                     /* ... the target is EL3, from non-secure state.  */
9676                     env->uncached_cpsr &= ~CPSR_PAN;
9677                     break;
9678                 }
9679                 /* ... the target is EL3, from secure state ... */
9680                 /* fall through */
9681             case 1:
9682                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9683                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9684                     env->uncached_cpsr |= CPSR_PAN;
9685                 }
9686                 break;
9687             }
9688         }
9689         /*
9690          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9691          * and we should just guard the thumb mode on V4
9692          */
9693         if (arm_feature(env, ARM_FEATURE_V4T)) {
9694             env->thumb =
9695                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9696         }
9697         env->regs[14] = env->regs[15] + offset;
9698     }
9699     env->regs[15] = newpc;
9700     arm_rebuild_hflags(env);
9701 }
9702 
9703 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9704 {
9705     /*
9706      * Handle exception entry to Hyp mode; this is sufficiently
9707      * different to entry to other AArch32 modes that we handle it
9708      * separately here.
9709      *
9710      * The vector table entry used is always the 0x14 Hyp mode entry point,
9711      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9712      * The offset applied to the preferred return address is always zero
9713      * (see DDI0487C.a section G1.12.3).
9714      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9715      */
9716     uint32_t addr, mask;
9717     ARMCPU *cpu = ARM_CPU(cs);
9718     CPUARMState *env = &cpu->env;
9719 
9720     switch (cs->exception_index) {
9721     case EXCP_UDEF:
9722         addr = 0x04;
9723         break;
9724     case EXCP_SWI:
9725         addr = 0x08;
9726         break;
9727     case EXCP_BKPT:
9728         /* Fall through to prefetch abort.  */
9729     case EXCP_PREFETCH_ABORT:
9730         env->cp15.ifar_s = env->exception.vaddress;
9731         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9732                       (uint32_t)env->exception.vaddress);
9733         addr = 0x0c;
9734         break;
9735     case EXCP_DATA_ABORT:
9736         env->cp15.dfar_s = env->exception.vaddress;
9737         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9738                       (uint32_t)env->exception.vaddress);
9739         addr = 0x10;
9740         break;
9741     case EXCP_IRQ:
9742         addr = 0x18;
9743         break;
9744     case EXCP_FIQ:
9745         addr = 0x1c;
9746         break;
9747     case EXCP_HVC:
9748         addr = 0x08;
9749         break;
9750     case EXCP_HYP_TRAP:
9751         addr = 0x14;
9752         break;
9753     default:
9754         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9755     }
9756 
9757     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9758         if (!arm_feature(env, ARM_FEATURE_V8)) {
9759             /*
9760              * QEMU syndrome values are v8-style. v7 has the IL bit
9761              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9762              * If this is a v7 CPU, squash the IL bit in those cases.
9763              */
9764             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9765                 (cs->exception_index == EXCP_DATA_ABORT &&
9766                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9767                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9768                 env->exception.syndrome &= ~ARM_EL_IL;
9769             }
9770         }
9771         env->cp15.esr_el[2] = env->exception.syndrome;
9772     }
9773 
9774     if (arm_current_el(env) != 2 && addr < 0x14) {
9775         addr = 0x14;
9776     }
9777 
9778     mask = 0;
9779     if (!(env->cp15.scr_el3 & SCR_EA)) {
9780         mask |= CPSR_A;
9781     }
9782     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9783         mask |= CPSR_I;
9784     }
9785     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9786         mask |= CPSR_F;
9787     }
9788 
9789     addr += env->cp15.hvbar;
9790 
9791     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9792 }
9793 
9794 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9795 {
9796     ARMCPU *cpu = ARM_CPU(cs);
9797     CPUARMState *env = &cpu->env;
9798     uint32_t addr;
9799     uint32_t mask;
9800     int new_mode;
9801     uint32_t offset;
9802     uint32_t moe;
9803 
9804     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9805     switch (syn_get_ec(env->exception.syndrome)) {
9806     case EC_BREAKPOINT:
9807     case EC_BREAKPOINT_SAME_EL:
9808         moe = 1;
9809         break;
9810     case EC_WATCHPOINT:
9811     case EC_WATCHPOINT_SAME_EL:
9812         moe = 10;
9813         break;
9814     case EC_AA32_BKPT:
9815         moe = 3;
9816         break;
9817     case EC_VECTORCATCH:
9818         moe = 5;
9819         break;
9820     default:
9821         moe = 0;
9822         break;
9823     }
9824 
9825     if (moe) {
9826         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9827     }
9828 
9829     if (env->exception.target_el == 2) {
9830         arm_cpu_do_interrupt_aarch32_hyp(cs);
9831         return;
9832     }
9833 
9834     switch (cs->exception_index) {
9835     case EXCP_UDEF:
9836         new_mode = ARM_CPU_MODE_UND;
9837         addr = 0x04;
9838         mask = CPSR_I;
9839         if (env->thumb)
9840             offset = 2;
9841         else
9842             offset = 4;
9843         break;
9844     case EXCP_SWI:
9845         new_mode = ARM_CPU_MODE_SVC;
9846         addr = 0x08;
9847         mask = CPSR_I;
9848         /* The PC already points to the next instruction.  */
9849         offset = 0;
9850         break;
9851     case EXCP_BKPT:
9852         /* Fall through to prefetch abort.  */
9853     case EXCP_PREFETCH_ABORT:
9854         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9855         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9856         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9857                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9858         new_mode = ARM_CPU_MODE_ABT;
9859         addr = 0x0c;
9860         mask = CPSR_A | CPSR_I;
9861         offset = 4;
9862         break;
9863     case EXCP_DATA_ABORT:
9864         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9865         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9866         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9867                       env->exception.fsr,
9868                       (uint32_t)env->exception.vaddress);
9869         new_mode = ARM_CPU_MODE_ABT;
9870         addr = 0x10;
9871         mask = CPSR_A | CPSR_I;
9872         offset = 8;
9873         break;
9874     case EXCP_IRQ:
9875         new_mode = ARM_CPU_MODE_IRQ;
9876         addr = 0x18;
9877         /* Disable IRQ and imprecise data aborts.  */
9878         mask = CPSR_A | CPSR_I;
9879         offset = 4;
9880         if (env->cp15.scr_el3 & SCR_IRQ) {
9881             /* IRQ routed to monitor mode */
9882             new_mode = ARM_CPU_MODE_MON;
9883             mask |= CPSR_F;
9884         }
9885         break;
9886     case EXCP_FIQ:
9887         new_mode = ARM_CPU_MODE_FIQ;
9888         addr = 0x1c;
9889         /* Disable FIQ, IRQ and imprecise data aborts.  */
9890         mask = CPSR_A | CPSR_I | CPSR_F;
9891         if (env->cp15.scr_el3 & SCR_FIQ) {
9892             /* FIQ routed to monitor mode */
9893             new_mode = ARM_CPU_MODE_MON;
9894         }
9895         offset = 4;
9896         break;
9897     case EXCP_VIRQ:
9898         new_mode = ARM_CPU_MODE_IRQ;
9899         addr = 0x18;
9900         /* Disable IRQ and imprecise data aborts.  */
9901         mask = CPSR_A | CPSR_I;
9902         offset = 4;
9903         break;
9904     case EXCP_VFIQ:
9905         new_mode = ARM_CPU_MODE_FIQ;
9906         addr = 0x1c;
9907         /* Disable FIQ, IRQ and imprecise data aborts.  */
9908         mask = CPSR_A | CPSR_I | CPSR_F;
9909         offset = 4;
9910         break;
9911     case EXCP_SMC:
9912         new_mode = ARM_CPU_MODE_MON;
9913         addr = 0x08;
9914         mask = CPSR_A | CPSR_I | CPSR_F;
9915         offset = 0;
9916         break;
9917     default:
9918         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9919         return; /* Never happens.  Keep compiler happy.  */
9920     }
9921 
9922     if (new_mode == ARM_CPU_MODE_MON) {
9923         addr += env->cp15.mvbar;
9924     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9925         /* High vectors. When enabled, base address cannot be remapped. */
9926         addr += 0xffff0000;
9927     } else {
9928         /* ARM v7 architectures provide a vector base address register to remap
9929          * the interrupt vector table.
9930          * This register is only followed in non-monitor mode, and is banked.
9931          * Note: only bits 31:5 are valid.
9932          */
9933         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9934     }
9935 
9936     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9937         env->cp15.scr_el3 &= ~SCR_NS;
9938     }
9939 
9940     take_aarch32_exception(env, new_mode, mask, offset, addr);
9941 }
9942 
9943 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9944 {
9945     /*
9946      * Return the register number of the AArch64 view of the AArch32
9947      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9948      * be that of the AArch32 mode the exception came from.
9949      */
9950     int mode = env->uncached_cpsr & CPSR_M;
9951 
9952     switch (aarch32_reg) {
9953     case 0 ... 7:
9954         return aarch32_reg;
9955     case 8 ... 12:
9956         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9957     case 13:
9958         switch (mode) {
9959         case ARM_CPU_MODE_USR:
9960         case ARM_CPU_MODE_SYS:
9961             return 13;
9962         case ARM_CPU_MODE_HYP:
9963             return 15;
9964         case ARM_CPU_MODE_IRQ:
9965             return 17;
9966         case ARM_CPU_MODE_SVC:
9967             return 19;
9968         case ARM_CPU_MODE_ABT:
9969             return 21;
9970         case ARM_CPU_MODE_UND:
9971             return 23;
9972         case ARM_CPU_MODE_FIQ:
9973             return 29;
9974         default:
9975             g_assert_not_reached();
9976         }
9977     case 14:
9978         switch (mode) {
9979         case ARM_CPU_MODE_USR:
9980         case ARM_CPU_MODE_SYS:
9981         case ARM_CPU_MODE_HYP:
9982             return 14;
9983         case ARM_CPU_MODE_IRQ:
9984             return 16;
9985         case ARM_CPU_MODE_SVC:
9986             return 18;
9987         case ARM_CPU_MODE_ABT:
9988             return 20;
9989         case ARM_CPU_MODE_UND:
9990             return 22;
9991         case ARM_CPU_MODE_FIQ:
9992             return 30;
9993         default:
9994             g_assert_not_reached();
9995         }
9996     case 15:
9997         return 31;
9998     default:
9999         g_assert_not_reached();
10000     }
10001 }
10002 
10003 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10004 {
10005     uint32_t ret = cpsr_read(env);
10006 
10007     /* Move DIT to the correct location for SPSR_ELx */
10008     if (ret & CPSR_DIT) {
10009         ret &= ~CPSR_DIT;
10010         ret |= PSTATE_DIT;
10011     }
10012     /* Merge PSTATE.SS into SPSR_ELx */
10013     ret |= env->pstate & PSTATE_SS;
10014 
10015     return ret;
10016 }
10017 
10018 /* Handle exception entry to a target EL which is using AArch64 */
10019 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10020 {
10021     ARMCPU *cpu = ARM_CPU(cs);
10022     CPUARMState *env = &cpu->env;
10023     unsigned int new_el = env->exception.target_el;
10024     target_ulong addr = env->cp15.vbar_el[new_el];
10025     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10026     unsigned int old_mode;
10027     unsigned int cur_el = arm_current_el(env);
10028     int rt;
10029 
10030     /*
10031      * Note that new_el can never be 0.  If cur_el is 0, then
10032      * el0_a64 is is_a64(), else el0_a64 is ignored.
10033      */
10034     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10035 
10036     if (cur_el < new_el) {
10037         /* Entry vector offset depends on whether the implemented EL
10038          * immediately lower than the target level is using AArch32 or AArch64
10039          */
10040         bool is_aa64;
10041         uint64_t hcr;
10042 
10043         switch (new_el) {
10044         case 3:
10045             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10046             break;
10047         case 2:
10048             hcr = arm_hcr_el2_eff(env);
10049             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10050                 is_aa64 = (hcr & HCR_RW) != 0;
10051                 break;
10052             }
10053             /* fall through */
10054         case 1:
10055             is_aa64 = is_a64(env);
10056             break;
10057         default:
10058             g_assert_not_reached();
10059         }
10060 
10061         if (is_aa64) {
10062             addr += 0x400;
10063         } else {
10064             addr += 0x600;
10065         }
10066     } else if (pstate_read(env) & PSTATE_SP) {
10067         addr += 0x200;
10068     }
10069 
10070     switch (cs->exception_index) {
10071     case EXCP_PREFETCH_ABORT:
10072     case EXCP_DATA_ABORT:
10073         env->cp15.far_el[new_el] = env->exception.vaddress;
10074         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10075                       env->cp15.far_el[new_el]);
10076         /* fall through */
10077     case EXCP_BKPT:
10078     case EXCP_UDEF:
10079     case EXCP_SWI:
10080     case EXCP_HVC:
10081     case EXCP_HYP_TRAP:
10082     case EXCP_SMC:
10083         switch (syn_get_ec(env->exception.syndrome)) {
10084         case EC_ADVSIMDFPACCESSTRAP:
10085             /*
10086              * QEMU internal FP/SIMD syndromes from AArch32 include the
10087              * TA and coproc fields which are only exposed if the exception
10088              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10089              * AArch64 format syndrome.
10090              */
10091             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10092             break;
10093         case EC_CP14RTTRAP:
10094         case EC_CP15RTTRAP:
10095         case EC_CP14DTTRAP:
10096             /*
10097              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10098              * the raw register field from the insn; when taking this to
10099              * AArch64 we must convert it to the AArch64 view of the register
10100              * number. Notice that we read a 4-bit AArch32 register number and
10101              * write back a 5-bit AArch64 one.
10102              */
10103             rt = extract32(env->exception.syndrome, 5, 4);
10104             rt = aarch64_regnum(env, rt);
10105             env->exception.syndrome = deposit32(env->exception.syndrome,
10106                                                 5, 5, rt);
10107             break;
10108         case EC_CP15RRTTRAP:
10109         case EC_CP14RRTTRAP:
10110             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10111             rt = extract32(env->exception.syndrome, 5, 4);
10112             rt = aarch64_regnum(env, rt);
10113             env->exception.syndrome = deposit32(env->exception.syndrome,
10114                                                 5, 5, rt);
10115             rt = extract32(env->exception.syndrome, 10, 4);
10116             rt = aarch64_regnum(env, rt);
10117             env->exception.syndrome = deposit32(env->exception.syndrome,
10118                                                 10, 5, rt);
10119             break;
10120         }
10121         env->cp15.esr_el[new_el] = env->exception.syndrome;
10122         break;
10123     case EXCP_IRQ:
10124     case EXCP_VIRQ:
10125         addr += 0x80;
10126         break;
10127     case EXCP_FIQ:
10128     case EXCP_VFIQ:
10129         addr += 0x100;
10130         break;
10131     default:
10132         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10133     }
10134 
10135     if (is_a64(env)) {
10136         old_mode = pstate_read(env);
10137         aarch64_save_sp(env, arm_current_el(env));
10138         env->elr_el[new_el] = env->pc;
10139     } else {
10140         old_mode = cpsr_read_for_spsr_elx(env);
10141         env->elr_el[new_el] = env->regs[15];
10142 
10143         aarch64_sync_32_to_64(env);
10144 
10145         env->condexec_bits = 0;
10146     }
10147     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10148 
10149     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10150                   env->elr_el[new_el]);
10151 
10152     if (cpu_isar_feature(aa64_pan, cpu)) {
10153         /* The value of PSTATE.PAN is normally preserved, except when ... */
10154         new_mode |= old_mode & PSTATE_PAN;
10155         switch (new_el) {
10156         case 2:
10157             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10158             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10159                 != (HCR_E2H | HCR_TGE)) {
10160                 break;
10161             }
10162             /* fall through */
10163         case 1:
10164             /* ... the target is EL1 ... */
10165             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10166             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10167                 new_mode |= PSTATE_PAN;
10168             }
10169             break;
10170         }
10171     }
10172     if (cpu_isar_feature(aa64_mte, cpu)) {
10173         new_mode |= PSTATE_TCO;
10174     }
10175 
10176     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10177         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10178             new_mode |= PSTATE_SSBS;
10179         } else {
10180             new_mode &= ~PSTATE_SSBS;
10181         }
10182     }
10183 
10184     pstate_write(env, PSTATE_DAIF | new_mode);
10185     env->aarch64 = 1;
10186     aarch64_restore_sp(env, new_el);
10187     helper_rebuild_hflags_a64(env, new_el);
10188 
10189     env->pc = addr;
10190 
10191     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10192                   new_el, env->pc, pstate_read(env));
10193 }
10194 
10195 /*
10196  * Do semihosting call and set the appropriate return value. All the
10197  * permission and validity checks have been done at translate time.
10198  *
10199  * We only see semihosting exceptions in TCG only as they are not
10200  * trapped to the hypervisor in KVM.
10201  */
10202 #ifdef CONFIG_TCG
10203 static void handle_semihosting(CPUState *cs)
10204 {
10205     ARMCPU *cpu = ARM_CPU(cs);
10206     CPUARMState *env = &cpu->env;
10207 
10208     if (is_a64(env)) {
10209         qemu_log_mask(CPU_LOG_INT,
10210                       "...handling as semihosting call 0x%" PRIx64 "\n",
10211                       env->xregs[0]);
10212         env->xregs[0] = do_common_semihosting(cs);
10213         env->pc += 4;
10214     } else {
10215         qemu_log_mask(CPU_LOG_INT,
10216                       "...handling as semihosting call 0x%x\n",
10217                       env->regs[0]);
10218         env->regs[0] = do_common_semihosting(cs);
10219         env->regs[15] += env->thumb ? 2 : 4;
10220     }
10221 }
10222 #endif
10223 
10224 /* Handle a CPU exception for A and R profile CPUs.
10225  * Do any appropriate logging, handle PSCI calls, and then hand off
10226  * to the AArch64-entry or AArch32-entry function depending on the
10227  * target exception level's register width.
10228  *
10229  * Note: this is used for both TCG (as the do_interrupt tcg op),
10230  *       and KVM to re-inject guest debug exceptions, and to
10231  *       inject a Synchronous-External-Abort.
10232  */
10233 void arm_cpu_do_interrupt(CPUState *cs)
10234 {
10235     ARMCPU *cpu = ARM_CPU(cs);
10236     CPUARMState *env = &cpu->env;
10237     unsigned int new_el = env->exception.target_el;
10238 
10239     assert(!arm_feature(env, ARM_FEATURE_M));
10240 
10241     arm_log_exception(cs);
10242     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10243                   new_el);
10244     if (qemu_loglevel_mask(CPU_LOG_INT)
10245         && !excp_is_internal(cs->exception_index)) {
10246         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10247                       syn_get_ec(env->exception.syndrome),
10248                       env->exception.syndrome);
10249     }
10250 
10251     if (arm_is_psci_call(cpu, cs->exception_index)) {
10252         arm_handle_psci_call(cpu);
10253         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10254         return;
10255     }
10256 
10257     /*
10258      * Semihosting semantics depend on the register width of the code
10259      * that caused the exception, not the target exception level, so
10260      * must be handled here.
10261      */
10262 #ifdef CONFIG_TCG
10263     if (cs->exception_index == EXCP_SEMIHOST) {
10264         handle_semihosting(cs);
10265         return;
10266     }
10267 #endif
10268 
10269     /* Hooks may change global state so BQL should be held, also the
10270      * BQL needs to be held for any modification of
10271      * cs->interrupt_request.
10272      */
10273     g_assert(qemu_mutex_iothread_locked());
10274 
10275     arm_call_pre_el_change_hook(cpu);
10276 
10277     assert(!excp_is_internal(cs->exception_index));
10278     if (arm_el_is_aa64(env, new_el)) {
10279         arm_cpu_do_interrupt_aarch64(cs);
10280     } else {
10281         arm_cpu_do_interrupt_aarch32(cs);
10282     }
10283 
10284     arm_call_el_change_hook(cpu);
10285 
10286     if (!kvm_enabled()) {
10287         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10288     }
10289 }
10290 #endif /* !CONFIG_USER_ONLY */
10291 
10292 uint64_t arm_sctlr(CPUARMState *env, int el)
10293 {
10294     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10295     if (el == 0) {
10296         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10297         el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10298              ? 2 : 1;
10299     }
10300     return env->cp15.sctlr_el[el];
10301 }
10302 
10303 /* Return the SCTLR value which controls this address translation regime */
10304 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10305 {
10306     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10307 }
10308 
10309 #ifndef CONFIG_USER_ONLY
10310 
10311 /* Return true if the specified stage of address translation is disabled */
10312 static inline bool regime_translation_disabled(CPUARMState *env,
10313                                                ARMMMUIdx mmu_idx)
10314 {
10315     uint64_t hcr_el2;
10316 
10317     if (arm_feature(env, ARM_FEATURE_M)) {
10318         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10319                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10320         case R_V7M_MPU_CTRL_ENABLE_MASK:
10321             /* Enabled, but not for HardFault and NMI */
10322             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10323         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10324             /* Enabled for all cases */
10325             return false;
10326         case 0:
10327         default:
10328             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10329              * we warned about that in armv7m_nvic.c when the guest set it.
10330              */
10331             return true;
10332         }
10333     }
10334 
10335     hcr_el2 = arm_hcr_el2_eff(env);
10336 
10337     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10338         /* HCR.DC means HCR.VM behaves as 1 */
10339         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10340     }
10341 
10342     if (hcr_el2 & HCR_TGE) {
10343         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10344         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10345             return true;
10346         }
10347     }
10348 
10349     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10350         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10351         return true;
10352     }
10353 
10354     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10355 }
10356 
10357 static inline bool regime_translation_big_endian(CPUARMState *env,
10358                                                  ARMMMUIdx mmu_idx)
10359 {
10360     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10361 }
10362 
10363 /* Return the TTBR associated with this translation regime */
10364 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10365                                    int ttbrn)
10366 {
10367     if (mmu_idx == ARMMMUIdx_Stage2) {
10368         return env->cp15.vttbr_el2;
10369     }
10370     if (mmu_idx == ARMMMUIdx_Stage2_S) {
10371         return env->cp15.vsttbr_el2;
10372     }
10373     if (ttbrn == 0) {
10374         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10375     } else {
10376         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10377     }
10378 }
10379 
10380 #endif /* !CONFIG_USER_ONLY */
10381 
10382 /* Convert a possible stage1+2 MMU index into the appropriate
10383  * stage 1 MMU index
10384  */
10385 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10386 {
10387     switch (mmu_idx) {
10388     case ARMMMUIdx_SE10_0:
10389         return ARMMMUIdx_Stage1_SE0;
10390     case ARMMMUIdx_SE10_1:
10391         return ARMMMUIdx_Stage1_SE1;
10392     case ARMMMUIdx_SE10_1_PAN:
10393         return ARMMMUIdx_Stage1_SE1_PAN;
10394     case ARMMMUIdx_E10_0:
10395         return ARMMMUIdx_Stage1_E0;
10396     case ARMMMUIdx_E10_1:
10397         return ARMMMUIdx_Stage1_E1;
10398     case ARMMMUIdx_E10_1_PAN:
10399         return ARMMMUIdx_Stage1_E1_PAN;
10400     default:
10401         return mmu_idx;
10402     }
10403 }
10404 
10405 /* Return true if the translation regime is using LPAE format page tables */
10406 static inline bool regime_using_lpae_format(CPUARMState *env,
10407                                             ARMMMUIdx mmu_idx)
10408 {
10409     int el = regime_el(env, mmu_idx);
10410     if (el == 2 || arm_el_is_aa64(env, el)) {
10411         return true;
10412     }
10413     if (arm_feature(env, ARM_FEATURE_LPAE)
10414         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10415         return true;
10416     }
10417     return false;
10418 }
10419 
10420 /* Returns true if the stage 1 translation regime is using LPAE format page
10421  * tables. Used when raising alignment exceptions, whose FSR changes depending
10422  * on whether the long or short descriptor format is in use. */
10423 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10424 {
10425     mmu_idx = stage_1_mmu_idx(mmu_idx);
10426 
10427     return regime_using_lpae_format(env, mmu_idx);
10428 }
10429 
10430 #ifndef CONFIG_USER_ONLY
10431 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10432 {
10433     switch (mmu_idx) {
10434     case ARMMMUIdx_SE10_0:
10435     case ARMMMUIdx_E20_0:
10436     case ARMMMUIdx_SE20_0:
10437     case ARMMMUIdx_Stage1_E0:
10438     case ARMMMUIdx_Stage1_SE0:
10439     case ARMMMUIdx_MUser:
10440     case ARMMMUIdx_MSUser:
10441     case ARMMMUIdx_MUserNegPri:
10442     case ARMMMUIdx_MSUserNegPri:
10443         return true;
10444     default:
10445         return false;
10446     case ARMMMUIdx_E10_0:
10447     case ARMMMUIdx_E10_1:
10448     case ARMMMUIdx_E10_1_PAN:
10449         g_assert_not_reached();
10450     }
10451 }
10452 
10453 /* Translate section/page access permissions to page
10454  * R/W protection flags
10455  *
10456  * @env:         CPUARMState
10457  * @mmu_idx:     MMU index indicating required translation regime
10458  * @ap:          The 3-bit access permissions (AP[2:0])
10459  * @domain_prot: The 2-bit domain access permissions
10460  */
10461 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10462                                 int ap, int domain_prot)
10463 {
10464     bool is_user = regime_is_user(env, mmu_idx);
10465 
10466     if (domain_prot == 3) {
10467         return PAGE_READ | PAGE_WRITE;
10468     }
10469 
10470     switch (ap) {
10471     case 0:
10472         if (arm_feature(env, ARM_FEATURE_V7)) {
10473             return 0;
10474         }
10475         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10476         case SCTLR_S:
10477             return is_user ? 0 : PAGE_READ;
10478         case SCTLR_R:
10479             return PAGE_READ;
10480         default:
10481             return 0;
10482         }
10483     case 1:
10484         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10485     case 2:
10486         if (is_user) {
10487             return PAGE_READ;
10488         } else {
10489             return PAGE_READ | PAGE_WRITE;
10490         }
10491     case 3:
10492         return PAGE_READ | PAGE_WRITE;
10493     case 4: /* Reserved.  */
10494         return 0;
10495     case 5:
10496         return is_user ? 0 : PAGE_READ;
10497     case 6:
10498         return PAGE_READ;
10499     case 7:
10500         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10501             return 0;
10502         }
10503         return PAGE_READ;
10504     default:
10505         g_assert_not_reached();
10506     }
10507 }
10508 
10509 /* Translate section/page access permissions to page
10510  * R/W protection flags.
10511  *
10512  * @ap:      The 2-bit simple AP (AP[2:1])
10513  * @is_user: TRUE if accessing from PL0
10514  */
10515 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10516 {
10517     switch (ap) {
10518     case 0:
10519         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10520     case 1:
10521         return PAGE_READ | PAGE_WRITE;
10522     case 2:
10523         return is_user ? 0 : PAGE_READ;
10524     case 3:
10525         return PAGE_READ;
10526     default:
10527         g_assert_not_reached();
10528     }
10529 }
10530 
10531 static inline int
10532 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10533 {
10534     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10535 }
10536 
10537 /* Translate S2 section/page access permissions to protection flags
10538  *
10539  * @env:     CPUARMState
10540  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10541  * @xn:      XN (execute-never) bits
10542  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10543  */
10544 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10545 {
10546     int prot = 0;
10547 
10548     if (s2ap & 1) {
10549         prot |= PAGE_READ;
10550     }
10551     if (s2ap & 2) {
10552         prot |= PAGE_WRITE;
10553     }
10554 
10555     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10556         switch (xn) {
10557         case 0:
10558             prot |= PAGE_EXEC;
10559             break;
10560         case 1:
10561             if (s1_is_el0) {
10562                 prot |= PAGE_EXEC;
10563             }
10564             break;
10565         case 2:
10566             break;
10567         case 3:
10568             if (!s1_is_el0) {
10569                 prot |= PAGE_EXEC;
10570             }
10571             break;
10572         default:
10573             g_assert_not_reached();
10574         }
10575     } else {
10576         if (!extract32(xn, 1, 1)) {
10577             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10578                 prot |= PAGE_EXEC;
10579             }
10580         }
10581     }
10582     return prot;
10583 }
10584 
10585 /* Translate section/page access permissions to protection flags
10586  *
10587  * @env:     CPUARMState
10588  * @mmu_idx: MMU index indicating required translation regime
10589  * @is_aa64: TRUE if AArch64
10590  * @ap:      The 2-bit simple AP (AP[2:1])
10591  * @ns:      NS (non-secure) bit
10592  * @xn:      XN (execute-never) bit
10593  * @pxn:     PXN (privileged execute-never) bit
10594  */
10595 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10596                       int ap, int ns, int xn, int pxn)
10597 {
10598     bool is_user = regime_is_user(env, mmu_idx);
10599     int prot_rw, user_rw;
10600     bool have_wxn;
10601     int wxn = 0;
10602 
10603     assert(mmu_idx != ARMMMUIdx_Stage2);
10604     assert(mmu_idx != ARMMMUIdx_Stage2_S);
10605 
10606     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10607     if (is_user) {
10608         prot_rw = user_rw;
10609     } else {
10610         if (user_rw && regime_is_pan(env, mmu_idx)) {
10611             /* PAN forbids data accesses but doesn't affect insn fetch */
10612             prot_rw = 0;
10613         } else {
10614             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10615         }
10616     }
10617 
10618     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10619         return prot_rw;
10620     }
10621 
10622     /* TODO have_wxn should be replaced with
10623      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10624      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10625      * compatible processors have EL2, which is required for [U]WXN.
10626      */
10627     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10628 
10629     if (have_wxn) {
10630         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10631     }
10632 
10633     if (is_aa64) {
10634         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10635             xn = pxn || (user_rw & PAGE_WRITE);
10636         }
10637     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10638         switch (regime_el(env, mmu_idx)) {
10639         case 1:
10640         case 3:
10641             if (is_user) {
10642                 xn = xn || !(user_rw & PAGE_READ);
10643             } else {
10644                 int uwxn = 0;
10645                 if (have_wxn) {
10646                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10647                 }
10648                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10649                      (uwxn && (user_rw & PAGE_WRITE));
10650             }
10651             break;
10652         case 2:
10653             break;
10654         }
10655     } else {
10656         xn = wxn = 0;
10657     }
10658 
10659     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10660         return prot_rw;
10661     }
10662     return prot_rw | PAGE_EXEC;
10663 }
10664 
10665 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10666                                      uint32_t *table, uint32_t address)
10667 {
10668     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10669     TCR *tcr = regime_tcr(env, mmu_idx);
10670 
10671     if (address & tcr->mask) {
10672         if (tcr->raw_tcr & TTBCR_PD1) {
10673             /* Translation table walk disabled for TTBR1 */
10674             return false;
10675         }
10676         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10677     } else {
10678         if (tcr->raw_tcr & TTBCR_PD0) {
10679             /* Translation table walk disabled for TTBR0 */
10680             return false;
10681         }
10682         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10683     }
10684     *table |= (address >> 18) & 0x3ffc;
10685     return true;
10686 }
10687 
10688 /* Translate a S1 pagetable walk through S2 if needed.  */
10689 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10690                                hwaddr addr, bool *is_secure,
10691                                ARMMMUFaultInfo *fi)
10692 {
10693     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10694         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10695         target_ulong s2size;
10696         hwaddr s2pa;
10697         int s2prot;
10698         int ret;
10699         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10700                                           : ARMMMUIdx_Stage2;
10701         ARMCacheAttrs cacheattrs = {};
10702         MemTxAttrs txattrs = {};
10703 
10704         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10705                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10706                                  &cacheattrs);
10707         if (ret) {
10708             assert(fi->type != ARMFault_None);
10709             fi->s2addr = addr;
10710             fi->stage2 = true;
10711             fi->s1ptw = true;
10712             fi->s1ns = !*is_secure;
10713             return ~0;
10714         }
10715         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10716             (cacheattrs.attrs & 0xf0) == 0) {
10717             /*
10718              * PTW set and S1 walk touched S2 Device memory:
10719              * generate Permission fault.
10720              */
10721             fi->type = ARMFault_Permission;
10722             fi->s2addr = addr;
10723             fi->stage2 = true;
10724             fi->s1ptw = true;
10725             fi->s1ns = !*is_secure;
10726             return ~0;
10727         }
10728 
10729         if (arm_is_secure_below_el3(env)) {
10730             /* Check if page table walk is to secure or non-secure PA space. */
10731             if (*is_secure) {
10732                 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10733             } else {
10734                 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10735             }
10736         } else {
10737             assert(!*is_secure);
10738         }
10739 
10740         addr = s2pa;
10741     }
10742     return addr;
10743 }
10744 
10745 /* All loads done in the course of a page table walk go through here. */
10746 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10747                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10748 {
10749     ARMCPU *cpu = ARM_CPU(cs);
10750     CPUARMState *env = &cpu->env;
10751     MemTxAttrs attrs = {};
10752     MemTxResult result = MEMTX_OK;
10753     AddressSpace *as;
10754     uint32_t data;
10755 
10756     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10757     attrs.secure = is_secure;
10758     as = arm_addressspace(cs, attrs);
10759     if (fi->s1ptw) {
10760         return 0;
10761     }
10762     if (regime_translation_big_endian(env, mmu_idx)) {
10763         data = address_space_ldl_be(as, addr, attrs, &result);
10764     } else {
10765         data = address_space_ldl_le(as, addr, attrs, &result);
10766     }
10767     if (result == MEMTX_OK) {
10768         return data;
10769     }
10770     fi->type = ARMFault_SyncExternalOnWalk;
10771     fi->ea = arm_extabort_type(result);
10772     return 0;
10773 }
10774 
10775 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10776                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10777 {
10778     ARMCPU *cpu = ARM_CPU(cs);
10779     CPUARMState *env = &cpu->env;
10780     MemTxAttrs attrs = {};
10781     MemTxResult result = MEMTX_OK;
10782     AddressSpace *as;
10783     uint64_t data;
10784 
10785     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10786     attrs.secure = is_secure;
10787     as = arm_addressspace(cs, attrs);
10788     if (fi->s1ptw) {
10789         return 0;
10790     }
10791     if (regime_translation_big_endian(env, mmu_idx)) {
10792         data = address_space_ldq_be(as, addr, attrs, &result);
10793     } else {
10794         data = address_space_ldq_le(as, addr, attrs, &result);
10795     }
10796     if (result == MEMTX_OK) {
10797         return data;
10798     }
10799     fi->type = ARMFault_SyncExternalOnWalk;
10800     fi->ea = arm_extabort_type(result);
10801     return 0;
10802 }
10803 
10804 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10805                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10806                              hwaddr *phys_ptr, int *prot,
10807                              target_ulong *page_size,
10808                              ARMMMUFaultInfo *fi)
10809 {
10810     CPUState *cs = env_cpu(env);
10811     int level = 1;
10812     uint32_t table;
10813     uint32_t desc;
10814     int type;
10815     int ap;
10816     int domain = 0;
10817     int domain_prot;
10818     hwaddr phys_addr;
10819     uint32_t dacr;
10820 
10821     /* Pagetable walk.  */
10822     /* Lookup l1 descriptor.  */
10823     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10824         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10825         fi->type = ARMFault_Translation;
10826         goto do_fault;
10827     }
10828     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10829                        mmu_idx, fi);
10830     if (fi->type != ARMFault_None) {
10831         goto do_fault;
10832     }
10833     type = (desc & 3);
10834     domain = (desc >> 5) & 0x0f;
10835     if (regime_el(env, mmu_idx) == 1) {
10836         dacr = env->cp15.dacr_ns;
10837     } else {
10838         dacr = env->cp15.dacr_s;
10839     }
10840     domain_prot = (dacr >> (domain * 2)) & 3;
10841     if (type == 0) {
10842         /* Section translation fault.  */
10843         fi->type = ARMFault_Translation;
10844         goto do_fault;
10845     }
10846     if (type != 2) {
10847         level = 2;
10848     }
10849     if (domain_prot == 0 || domain_prot == 2) {
10850         fi->type = ARMFault_Domain;
10851         goto do_fault;
10852     }
10853     if (type == 2) {
10854         /* 1Mb section.  */
10855         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10856         ap = (desc >> 10) & 3;
10857         *page_size = 1024 * 1024;
10858     } else {
10859         /* Lookup l2 entry.  */
10860         if (type == 1) {
10861             /* Coarse pagetable.  */
10862             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10863         } else {
10864             /* Fine pagetable.  */
10865             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10866         }
10867         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10868                            mmu_idx, fi);
10869         if (fi->type != ARMFault_None) {
10870             goto do_fault;
10871         }
10872         switch (desc & 3) {
10873         case 0: /* Page translation fault.  */
10874             fi->type = ARMFault_Translation;
10875             goto do_fault;
10876         case 1: /* 64k page.  */
10877             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10878             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10879             *page_size = 0x10000;
10880             break;
10881         case 2: /* 4k page.  */
10882             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10883             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10884             *page_size = 0x1000;
10885             break;
10886         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10887             if (type == 1) {
10888                 /* ARMv6/XScale extended small page format */
10889                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10890                     || arm_feature(env, ARM_FEATURE_V6)) {
10891                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10892                     *page_size = 0x1000;
10893                 } else {
10894                     /* UNPREDICTABLE in ARMv5; we choose to take a
10895                      * page translation fault.
10896                      */
10897                     fi->type = ARMFault_Translation;
10898                     goto do_fault;
10899                 }
10900             } else {
10901                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10902                 *page_size = 0x400;
10903             }
10904             ap = (desc >> 4) & 3;
10905             break;
10906         default:
10907             /* Never happens, but compiler isn't smart enough to tell.  */
10908             abort();
10909         }
10910     }
10911     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10912     *prot |= *prot ? PAGE_EXEC : 0;
10913     if (!(*prot & (1 << access_type))) {
10914         /* Access permission fault.  */
10915         fi->type = ARMFault_Permission;
10916         goto do_fault;
10917     }
10918     *phys_ptr = phys_addr;
10919     return false;
10920 do_fault:
10921     fi->domain = domain;
10922     fi->level = level;
10923     return true;
10924 }
10925 
10926 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10927                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10928                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10929                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10930 {
10931     CPUState *cs = env_cpu(env);
10932     ARMCPU *cpu = env_archcpu(env);
10933     int level = 1;
10934     uint32_t table;
10935     uint32_t desc;
10936     uint32_t xn;
10937     uint32_t pxn = 0;
10938     int type;
10939     int ap;
10940     int domain = 0;
10941     int domain_prot;
10942     hwaddr phys_addr;
10943     uint32_t dacr;
10944     bool ns;
10945 
10946     /* Pagetable walk.  */
10947     /* Lookup l1 descriptor.  */
10948     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10949         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10950         fi->type = ARMFault_Translation;
10951         goto do_fault;
10952     }
10953     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10954                        mmu_idx, fi);
10955     if (fi->type != ARMFault_None) {
10956         goto do_fault;
10957     }
10958     type = (desc & 3);
10959     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10960         /* Section translation fault, or attempt to use the encoding
10961          * which is Reserved on implementations without PXN.
10962          */
10963         fi->type = ARMFault_Translation;
10964         goto do_fault;
10965     }
10966     if ((type == 1) || !(desc & (1 << 18))) {
10967         /* Page or Section.  */
10968         domain = (desc >> 5) & 0x0f;
10969     }
10970     if (regime_el(env, mmu_idx) == 1) {
10971         dacr = env->cp15.dacr_ns;
10972     } else {
10973         dacr = env->cp15.dacr_s;
10974     }
10975     if (type == 1) {
10976         level = 2;
10977     }
10978     domain_prot = (dacr >> (domain * 2)) & 3;
10979     if (domain_prot == 0 || domain_prot == 2) {
10980         /* Section or Page domain fault */
10981         fi->type = ARMFault_Domain;
10982         goto do_fault;
10983     }
10984     if (type != 1) {
10985         if (desc & (1 << 18)) {
10986             /* Supersection.  */
10987             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10988             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10989             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10990             *page_size = 0x1000000;
10991         } else {
10992             /* Section.  */
10993             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10994             *page_size = 0x100000;
10995         }
10996         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10997         xn = desc & (1 << 4);
10998         pxn = desc & 1;
10999         ns = extract32(desc, 19, 1);
11000     } else {
11001         if (cpu_isar_feature(aa32_pxn, cpu)) {
11002             pxn = (desc >> 2) & 1;
11003         }
11004         ns = extract32(desc, 3, 1);
11005         /* Lookup l2 entry.  */
11006         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11007         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11008                            mmu_idx, fi);
11009         if (fi->type != ARMFault_None) {
11010             goto do_fault;
11011         }
11012         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11013         switch (desc & 3) {
11014         case 0: /* Page translation fault.  */
11015             fi->type = ARMFault_Translation;
11016             goto do_fault;
11017         case 1: /* 64k page.  */
11018             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11019             xn = desc & (1 << 15);
11020             *page_size = 0x10000;
11021             break;
11022         case 2: case 3: /* 4k page.  */
11023             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11024             xn = desc & 1;
11025             *page_size = 0x1000;
11026             break;
11027         default:
11028             /* Never happens, but compiler isn't smart enough to tell.  */
11029             abort();
11030         }
11031     }
11032     if (domain_prot == 3) {
11033         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11034     } else {
11035         if (pxn && !regime_is_user(env, mmu_idx)) {
11036             xn = 1;
11037         }
11038         if (xn && access_type == MMU_INST_FETCH) {
11039             fi->type = ARMFault_Permission;
11040             goto do_fault;
11041         }
11042 
11043         if (arm_feature(env, ARM_FEATURE_V6K) &&
11044                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11045             /* The simplified model uses AP[0] as an access control bit.  */
11046             if ((ap & 1) == 0) {
11047                 /* Access flag fault.  */
11048                 fi->type = ARMFault_AccessFlag;
11049                 goto do_fault;
11050             }
11051             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11052         } else {
11053             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11054         }
11055         if (*prot && !xn) {
11056             *prot |= PAGE_EXEC;
11057         }
11058         if (!(*prot & (1 << access_type))) {
11059             /* Access permission fault.  */
11060             fi->type = ARMFault_Permission;
11061             goto do_fault;
11062         }
11063     }
11064     if (ns) {
11065         /* The NS bit will (as required by the architecture) have no effect if
11066          * the CPU doesn't support TZ or this is a non-secure translation
11067          * regime, because the attribute will already be non-secure.
11068          */
11069         attrs->secure = false;
11070     }
11071     *phys_ptr = phys_addr;
11072     return false;
11073 do_fault:
11074     fi->domain = domain;
11075     fi->level = level;
11076     return true;
11077 }
11078 
11079 /*
11080  * check_s2_mmu_setup
11081  * @cpu:        ARMCPU
11082  * @is_aa64:    True if the translation regime is in AArch64 state
11083  * @startlevel: Suggested starting level
11084  * @inputsize:  Bitsize of IPAs
11085  * @stride:     Page-table stride (See the ARM ARM)
11086  *
11087  * Returns true if the suggested S2 translation parameters are OK and
11088  * false otherwise.
11089  */
11090 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11091                                int inputsize, int stride, int outputsize)
11092 {
11093     const int grainsize = stride + 3;
11094     int startsizecheck;
11095 
11096     /*
11097      * Negative levels are usually not allowed...
11098      * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
11099      * begins with level -1.  Note that previous feature tests will have
11100      * eliminated this combination if it is not enabled.
11101      */
11102     if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
11103         return false;
11104     }
11105 
11106     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11107     if (startsizecheck < 1 || startsizecheck > stride + 4) {
11108         return false;
11109     }
11110 
11111     if (is_aa64) {
11112         switch (stride) {
11113         case 13: /* 64KB Pages.  */
11114             if (level == 0 || (level == 1 && outputsize <= 42)) {
11115                 return false;
11116             }
11117             break;
11118         case 11: /* 16KB Pages.  */
11119             if (level == 0 || (level == 1 && outputsize <= 40)) {
11120                 return false;
11121             }
11122             break;
11123         case 9: /* 4KB Pages.  */
11124             if (level == 0 && outputsize <= 42) {
11125                 return false;
11126             }
11127             break;
11128         default:
11129             g_assert_not_reached();
11130         }
11131 
11132         /* Inputsize checks.  */
11133         if (inputsize > outputsize &&
11134             (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
11135             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11136             return false;
11137         }
11138     } else {
11139         /* AArch32 only supports 4KB pages. Assert on that.  */
11140         assert(stride == 9);
11141 
11142         if (level == 0) {
11143             return false;
11144         }
11145     }
11146     return true;
11147 }
11148 
11149 /* Translate from the 4-bit stage 2 representation of
11150  * memory attributes (without cache-allocation hints) to
11151  * the 8-bit representation of the stage 1 MAIR registers
11152  * (which includes allocation hints).
11153  *
11154  * ref: shared/translation/attrs/S2AttrDecode()
11155  *      .../S2ConvertAttrsHints()
11156  */
11157 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11158 {
11159     uint8_t hiattr = extract32(s2attrs, 2, 2);
11160     uint8_t loattr = extract32(s2attrs, 0, 2);
11161     uint8_t hihint = 0, lohint = 0;
11162 
11163     if (hiattr != 0) { /* normal memory */
11164         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11165             hiattr = loattr = 1; /* non-cacheable */
11166         } else {
11167             if (hiattr != 1) { /* Write-through or write-back */
11168                 hihint = 3; /* RW allocate */
11169             }
11170             if (loattr != 1) { /* Write-through or write-back */
11171                 lohint = 3; /* RW allocate */
11172             }
11173         }
11174     }
11175 
11176     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11177 }
11178 #endif /* !CONFIG_USER_ONLY */
11179 
11180 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
11181 static const uint8_t pamax_map[] = {
11182     [0] = 32,
11183     [1] = 36,
11184     [2] = 40,
11185     [3] = 42,
11186     [4] = 44,
11187     [5] = 48,
11188     [6] = 52,
11189 };
11190 
11191 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
11192 unsigned int arm_pamax(ARMCPU *cpu)
11193 {
11194     unsigned int parange =
11195         FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
11196 
11197     /*
11198      * id_aa64mmfr0 is a read-only register so values outside of the
11199      * supported mappings can be considered an implementation error.
11200      */
11201     assert(parange < ARRAY_SIZE(pamax_map));
11202     return pamax_map[parange];
11203 }
11204 
11205 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11206 {
11207     if (regime_has_2_ranges(mmu_idx)) {
11208         return extract64(tcr, 37, 2);
11209     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11210         return 0; /* VTCR_EL2 */
11211     } else {
11212         /* Replicate the single TBI bit so we always have 2 bits.  */
11213         return extract32(tcr, 20, 1) * 3;
11214     }
11215 }
11216 
11217 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11218 {
11219     if (regime_has_2_ranges(mmu_idx)) {
11220         return extract64(tcr, 51, 2);
11221     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11222         return 0; /* VTCR_EL2 */
11223     } else {
11224         /* Replicate the single TBID bit so we always have 2 bits.  */
11225         return extract32(tcr, 29, 1) * 3;
11226     }
11227 }
11228 
11229 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11230 {
11231     if (regime_has_2_ranges(mmu_idx)) {
11232         return extract64(tcr, 57, 2);
11233     } else {
11234         /* Replicate the single TCMA bit so we always have 2 bits.  */
11235         return extract32(tcr, 30, 1) * 3;
11236     }
11237 }
11238 
11239 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11240                                    ARMMMUIdx mmu_idx, bool data)
11241 {
11242     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11243     bool epd, hpd, using16k, using64k, tsz_oob, ds;
11244     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11245     ARMCPU *cpu = env_archcpu(env);
11246 
11247     if (!regime_has_2_ranges(mmu_idx)) {
11248         select = 0;
11249         tsz = extract32(tcr, 0, 6);
11250         using64k = extract32(tcr, 14, 1);
11251         using16k = extract32(tcr, 15, 1);
11252         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11253             /* VTCR_EL2 */
11254             hpd = false;
11255         } else {
11256             hpd = extract32(tcr, 24, 1);
11257         }
11258         epd = false;
11259         sh = extract32(tcr, 12, 2);
11260         ps = extract32(tcr, 16, 3);
11261         ds = extract64(tcr, 32, 1);
11262     } else {
11263         /*
11264          * Bit 55 is always between the two regions, and is canonical for
11265          * determining if address tagging is enabled.
11266          */
11267         select = extract64(va, 55, 1);
11268         if (!select) {
11269             tsz = extract32(tcr, 0, 6);
11270             epd = extract32(tcr, 7, 1);
11271             sh = extract32(tcr, 12, 2);
11272             using64k = extract32(tcr, 14, 1);
11273             using16k = extract32(tcr, 15, 1);
11274             hpd = extract64(tcr, 41, 1);
11275         } else {
11276             int tg = extract32(tcr, 30, 2);
11277             using16k = tg == 1;
11278             using64k = tg == 3;
11279             tsz = extract32(tcr, 16, 6);
11280             epd = extract32(tcr, 23, 1);
11281             sh = extract32(tcr, 28, 2);
11282             hpd = extract64(tcr, 42, 1);
11283         }
11284         ps = extract64(tcr, 32, 3);
11285         ds = extract64(tcr, 59, 1);
11286     }
11287 
11288     if (cpu_isar_feature(aa64_st, cpu)) {
11289         max_tsz = 48 - using64k;
11290     } else {
11291         max_tsz = 39;
11292     }
11293 
11294     /*
11295      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11296      * adjust the effective value of DS, as documented.
11297      */
11298     min_tsz = 16;
11299     if (using64k) {
11300         if (cpu_isar_feature(aa64_lva, cpu)) {
11301             min_tsz = 12;
11302         }
11303         ds = false;
11304     } else if (ds) {
11305         switch (mmu_idx) {
11306         case ARMMMUIdx_Stage2:
11307         case ARMMMUIdx_Stage2_S:
11308             if (using16k) {
11309                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11310             } else {
11311                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11312             }
11313             break;
11314         default:
11315             if (using16k) {
11316                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11317             } else {
11318                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11319             }
11320             break;
11321         }
11322         if (ds) {
11323             min_tsz = 12;
11324         }
11325     }
11326 
11327     if (tsz > max_tsz) {
11328         tsz = max_tsz;
11329         tsz_oob = true;
11330     } else if (tsz < min_tsz) {
11331         tsz = min_tsz;
11332         tsz_oob = true;
11333     } else {
11334         tsz_oob = false;
11335     }
11336 
11337     /* Present TBI as a composite with TBID.  */
11338     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11339     if (!data) {
11340         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11341     }
11342     tbi = (tbi >> select) & 1;
11343 
11344     return (ARMVAParameters) {
11345         .tsz = tsz,
11346         .ps = ps,
11347         .sh = sh,
11348         .select = select,
11349         .tbi = tbi,
11350         .epd = epd,
11351         .hpd = hpd,
11352         .using16k = using16k,
11353         .using64k = using64k,
11354         .tsz_oob = tsz_oob,
11355         .ds = ds,
11356     };
11357 }
11358 
11359 #ifndef CONFIG_USER_ONLY
11360 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11361                                           ARMMMUIdx mmu_idx)
11362 {
11363     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11364     uint32_t el = regime_el(env, mmu_idx);
11365     int select, tsz;
11366     bool epd, hpd;
11367 
11368     assert(mmu_idx != ARMMMUIdx_Stage2_S);
11369 
11370     if (mmu_idx == ARMMMUIdx_Stage2) {
11371         /* VTCR */
11372         bool sext = extract32(tcr, 4, 1);
11373         bool sign = extract32(tcr, 3, 1);
11374 
11375         /*
11376          * If the sign-extend bit is not the same as t0sz[3], the result
11377          * is unpredictable. Flag this as a guest error.
11378          */
11379         if (sign != sext) {
11380             qemu_log_mask(LOG_GUEST_ERROR,
11381                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11382         }
11383         tsz = sextract32(tcr, 0, 4) + 8;
11384         select = 0;
11385         hpd = false;
11386         epd = false;
11387     } else if (el == 2) {
11388         /* HTCR */
11389         tsz = extract32(tcr, 0, 3);
11390         select = 0;
11391         hpd = extract64(tcr, 24, 1);
11392         epd = false;
11393     } else {
11394         int t0sz = extract32(tcr, 0, 3);
11395         int t1sz = extract32(tcr, 16, 3);
11396 
11397         if (t1sz == 0) {
11398             select = va > (0xffffffffu >> t0sz);
11399         } else {
11400             /* Note that we will detect errors later.  */
11401             select = va >= ~(0xffffffffu >> t1sz);
11402         }
11403         if (!select) {
11404             tsz = t0sz;
11405             epd = extract32(tcr, 7, 1);
11406             hpd = extract64(tcr, 41, 1);
11407         } else {
11408             tsz = t1sz;
11409             epd = extract32(tcr, 23, 1);
11410             hpd = extract64(tcr, 42, 1);
11411         }
11412         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11413         hpd &= extract32(tcr, 6, 1);
11414     }
11415 
11416     return (ARMVAParameters) {
11417         .tsz = tsz,
11418         .select = select,
11419         .epd = epd,
11420         .hpd = hpd,
11421     };
11422 }
11423 
11424 /**
11425  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11426  *
11427  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11428  * prot and page_size may not be filled in, and the populated fsr value provides
11429  * information on why the translation aborted, in the format of a long-format
11430  * DFSR/IFSR fault register, with the following caveats:
11431  *  * the WnR bit is never set (the caller must do this).
11432  *
11433  * @env: CPUARMState
11434  * @address: virtual address to get physical address for
11435  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11436  * @mmu_idx: MMU index indicating required translation regime
11437  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11438  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11439  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11440  * @phys_ptr: set to the physical address corresponding to the virtual address
11441  * @attrs: set to the memory transaction attributes to use
11442  * @prot: set to the permissions for the page containing phys_ptr
11443  * @page_size_ptr: set to the size of the page containing phys_ptr
11444  * @fi: set to fault info if the translation fails
11445  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11446  */
11447 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11448                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11449                                bool s1_is_el0,
11450                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11451                                target_ulong *page_size_ptr,
11452                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11453 {
11454     ARMCPU *cpu = env_archcpu(env);
11455     CPUState *cs = CPU(cpu);
11456     /* Read an LPAE long-descriptor translation table. */
11457     ARMFaultType fault_type = ARMFault_Translation;
11458     uint32_t level;
11459     ARMVAParameters param;
11460     uint64_t ttbr;
11461     hwaddr descaddr, indexmask, indexmask_grainsize;
11462     uint32_t tableattrs;
11463     target_ulong page_size;
11464     uint32_t attrs;
11465     int32_t stride;
11466     int addrsize, inputsize, outputsize;
11467     TCR *tcr = regime_tcr(env, mmu_idx);
11468     int ap, ns, xn, pxn;
11469     uint32_t el = regime_el(env, mmu_idx);
11470     uint64_t descaddrmask;
11471     bool aarch64 = arm_el_is_aa64(env, el);
11472     bool guarded = false;
11473 
11474     /* TODO: This code does not support shareability levels. */
11475     if (aarch64) {
11476         int ps;
11477 
11478         param = aa64_va_parameters(env, address, mmu_idx,
11479                                    access_type != MMU_INST_FETCH);
11480         level = 0;
11481 
11482         /*
11483          * If TxSZ is programmed to a value larger than the maximum,
11484          * or smaller than the effective minimum, it is IMPLEMENTATION
11485          * DEFINED whether we behave as if the field were programmed
11486          * within bounds, or if a level 0 Translation fault is generated.
11487          *
11488          * With FEAT_LVA, fault on less than minimum becomes required,
11489          * so our choice is to always raise the fault.
11490          */
11491         if (param.tsz_oob) {
11492             fault_type = ARMFault_Translation;
11493             goto do_fault;
11494         }
11495 
11496         addrsize = 64 - 8 * param.tbi;
11497         inputsize = 64 - param.tsz;
11498 
11499         /*
11500          * Bound PS by PARANGE to find the effective output address size.
11501          * ID_AA64MMFR0 is a read-only register so values outside of the
11502          * supported mappings can be considered an implementation error.
11503          */
11504         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
11505         ps = MIN(ps, param.ps);
11506         assert(ps < ARRAY_SIZE(pamax_map));
11507         outputsize = pamax_map[ps];
11508     } else {
11509         param = aa32_va_parameters(env, address, mmu_idx);
11510         level = 1;
11511         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11512         inputsize = addrsize - param.tsz;
11513         outputsize = 40;
11514     }
11515 
11516     /*
11517      * We determined the region when collecting the parameters, but we
11518      * have not yet validated that the address is valid for the region.
11519      * Extract the top bits and verify that they all match select.
11520      *
11521      * For aa32, if inputsize == addrsize, then we have selected the
11522      * region by exclusion in aa32_va_parameters and there is no more
11523      * validation to do here.
11524      */
11525     if (inputsize < addrsize) {
11526         target_ulong top_bits = sextract64(address, inputsize,
11527                                            addrsize - inputsize);
11528         if (-top_bits != param.select) {
11529             /* The gap between the two regions is a Translation fault */
11530             fault_type = ARMFault_Translation;
11531             goto do_fault;
11532         }
11533     }
11534 
11535     if (param.using64k) {
11536         stride = 13;
11537     } else if (param.using16k) {
11538         stride = 11;
11539     } else {
11540         stride = 9;
11541     }
11542 
11543     /* Note that QEMU ignores shareability and cacheability attributes,
11544      * so we don't need to do anything with the SH, ORGN, IRGN fields
11545      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11546      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11547      * implement any ASID-like capability so we can ignore it (instead
11548      * we will always flush the TLB any time the ASID is changed).
11549      */
11550     ttbr = regime_ttbr(env, mmu_idx, param.select);
11551 
11552     /* Here we should have set up all the parameters for the translation:
11553      * inputsize, ttbr, epd, stride, tbi
11554      */
11555 
11556     if (param.epd) {
11557         /* Translation table walk disabled => Translation fault on TLB miss
11558          * Note: This is always 0 on 64-bit EL2 and EL3.
11559          */
11560         goto do_fault;
11561     }
11562 
11563     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11564         /* The starting level depends on the virtual address size (which can
11565          * be up to 48 bits) and the translation granule size. It indicates
11566          * the number of strides (stride bits at a time) needed to
11567          * consume the bits of the input address. In the pseudocode this is:
11568          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11569          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11570          * our 'stride + 3' and 'stride' is our 'stride'.
11571          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11572          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11573          * = 4 - (inputsize - 4) / stride;
11574          */
11575         level = 4 - (inputsize - 4) / stride;
11576     } else {
11577         /* For stage 2 translations the starting level is specified by the
11578          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11579          */
11580         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11581         uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1);
11582         uint32_t startlevel;
11583         bool ok;
11584 
11585         /* SL2 is RES0 unless DS=1 & 4kb granule. */
11586         if (param.ds && stride == 9 && sl2) {
11587             if (sl0 != 0) {
11588                 level = 0;
11589                 fault_type = ARMFault_Translation;
11590                 goto do_fault;
11591             }
11592             startlevel = -1;
11593         } else if (!aarch64 || stride == 9) {
11594             /* AArch32 or 4KB pages */
11595             startlevel = 2 - sl0;
11596 
11597             if (cpu_isar_feature(aa64_st, cpu)) {
11598                 startlevel &= 3;
11599             }
11600         } else {
11601             /* 16KB or 64KB pages */
11602             startlevel = 3 - sl0;
11603         }
11604 
11605         /* Check that the starting level is valid. */
11606         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11607                                 inputsize, stride, outputsize);
11608         if (!ok) {
11609             fault_type = ARMFault_Translation;
11610             goto do_fault;
11611         }
11612         level = startlevel;
11613     }
11614 
11615     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
11616     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
11617 
11618     /* Now we can extract the actual base address from the TTBR */
11619     descaddr = extract64(ttbr, 0, 48);
11620 
11621     /*
11622      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
11623      *
11624      * Otherwise, if the base address is out of range, raise AddressSizeFault.
11625      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
11626      * but we've just cleared the bits above 47, so simplify the test.
11627      */
11628     if (outputsize > 48) {
11629         descaddr |= extract64(ttbr, 2, 4) << 48;
11630     } else if (descaddr >> outputsize) {
11631         level = 0;
11632         fault_type = ARMFault_AddressSize;
11633         goto do_fault;
11634     }
11635 
11636     /*
11637      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11638      * and also to mask out CnP (bit 0) which could validly be non-zero.
11639      */
11640     descaddr &= ~indexmask;
11641 
11642     /*
11643      * For AArch32, the address field in the descriptor goes up to bit 39
11644      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
11645      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
11646      * bits as part of the address, which will be checked via outputsize.
11647      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
11648      * the highest bits of a 52-bit output are placed elsewhere.
11649      */
11650     if (param.ds) {
11651         descaddrmask = MAKE_64BIT_MASK(0, 50);
11652     } else if (arm_feature(env, ARM_FEATURE_V8)) {
11653         descaddrmask = MAKE_64BIT_MASK(0, 48);
11654     } else {
11655         descaddrmask = MAKE_64BIT_MASK(0, 40);
11656     }
11657     descaddrmask &= ~indexmask_grainsize;
11658 
11659     /* Secure accesses start with the page table in secure memory and
11660      * can be downgraded to non-secure at any step. Non-secure accesses
11661      * remain non-secure. We implement this by just ORing in the NSTable/NS
11662      * bits at each step.
11663      */
11664     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11665     for (;;) {
11666         uint64_t descriptor;
11667         bool nstable;
11668 
11669         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11670         descaddr &= ~7ULL;
11671         nstable = extract32(tableattrs, 4, 1);
11672         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11673         if (fi->type != ARMFault_None) {
11674             goto do_fault;
11675         }
11676 
11677         if (!(descriptor & 1) ||
11678             (!(descriptor & 2) && (level == 3))) {
11679             /* Invalid, or the Reserved level 3 encoding */
11680             goto do_fault;
11681         }
11682 
11683         descaddr = descriptor & descaddrmask;
11684 
11685         /*
11686          * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
11687          * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
11688          * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
11689          * raise AddressSizeFault.
11690          */
11691         if (outputsize > 48) {
11692             if (param.ds) {
11693                 descaddr |= extract64(descriptor, 8, 2) << 50;
11694             } else {
11695                 descaddr |= extract64(descriptor, 12, 4) << 48;
11696             }
11697         } else if (descaddr >> outputsize) {
11698             fault_type = ARMFault_AddressSize;
11699             goto do_fault;
11700         }
11701 
11702         if ((descriptor & 2) && (level < 3)) {
11703             /* Table entry. The top five bits are attributes which may
11704              * propagate down through lower levels of the table (and
11705              * which are all arranged so that 0 means "no effect", so
11706              * we can gather them up by ORing in the bits at each level).
11707              */
11708             tableattrs |= extract64(descriptor, 59, 5);
11709             level++;
11710             indexmask = indexmask_grainsize;
11711             continue;
11712         }
11713         /*
11714          * Block entry at level 1 or 2, or page entry at level 3.
11715          * These are basically the same thing, although the number
11716          * of bits we pull in from the vaddr varies. Note that although
11717          * descaddrmask masks enough of the low bits of the descriptor
11718          * to give a correct page or table address, the address field
11719          * in a block descriptor is smaller; so we need to explicitly
11720          * clear the lower bits here before ORing in the low vaddr bits.
11721          */
11722         page_size = (1ULL << ((stride * (4 - level)) + 3));
11723         descaddr &= ~(page_size - 1);
11724         descaddr |= (address & (page_size - 1));
11725         /* Extract attributes from the descriptor */
11726         attrs = extract64(descriptor, 2, 10)
11727             | (extract64(descriptor, 52, 12) << 10);
11728 
11729         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11730             /* Stage 2 table descriptors do not include any attribute fields */
11731             break;
11732         }
11733         /* Merge in attributes from table descriptors */
11734         attrs |= nstable << 3; /* NS */
11735         guarded = extract64(descriptor, 50, 1);  /* GP */
11736         if (param.hpd) {
11737             /* HPD disables all the table attributes except NSTable.  */
11738             break;
11739         }
11740         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11741         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11742          * means "force PL1 access only", which means forcing AP[1] to 0.
11743          */
11744         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11745         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11746         break;
11747     }
11748     /* Here descaddr is the final physical address, and attributes
11749      * are all in attrs.
11750      */
11751     fault_type = ARMFault_AccessFlag;
11752     if ((attrs & (1 << 8)) == 0) {
11753         /* Access flag */
11754         goto do_fault;
11755     }
11756 
11757     ap = extract32(attrs, 4, 2);
11758 
11759     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11760         ns = mmu_idx == ARMMMUIdx_Stage2;
11761         xn = extract32(attrs, 11, 2);
11762         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11763     } else {
11764         ns = extract32(attrs, 3, 1);
11765         xn = extract32(attrs, 12, 1);
11766         pxn = extract32(attrs, 11, 1);
11767         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11768     }
11769 
11770     fault_type = ARMFault_Permission;
11771     if (!(*prot & (1 << access_type))) {
11772         goto do_fault;
11773     }
11774 
11775     if (ns) {
11776         /* The NS bit will (as required by the architecture) have no effect if
11777          * the CPU doesn't support TZ or this is a non-secure translation
11778          * regime, because the attribute will already be non-secure.
11779          */
11780         txattrs->secure = false;
11781     }
11782     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11783     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11784         arm_tlb_bti_gp(txattrs) = true;
11785     }
11786 
11787     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11788         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11789     } else {
11790         /* Index into MAIR registers for cache attributes */
11791         uint8_t attrindx = extract32(attrs, 0, 3);
11792         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11793         assert(attrindx <= 7);
11794         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11795     }
11796 
11797     /*
11798      * For FEAT_LPA2 and effective DS, the SH field in the attributes
11799      * was re-purposed for output address bits.  The SH attribute in
11800      * that case comes from TCR_ELx, which we extracted earlier.
11801      */
11802     if (param.ds) {
11803         cacheattrs->shareability = param.sh;
11804     } else {
11805         cacheattrs->shareability = extract32(attrs, 6, 2);
11806     }
11807 
11808     *phys_ptr = descaddr;
11809     *page_size_ptr = page_size;
11810     return false;
11811 
11812 do_fault:
11813     fi->type = fault_type;
11814     fi->level = level;
11815     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11816     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11817                                mmu_idx == ARMMMUIdx_Stage2_S);
11818     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11819     return true;
11820 }
11821 
11822 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11823                                                 ARMMMUIdx mmu_idx,
11824                                                 int32_t address, int *prot)
11825 {
11826     if (!arm_feature(env, ARM_FEATURE_M)) {
11827         *prot = PAGE_READ | PAGE_WRITE;
11828         switch (address) {
11829         case 0xF0000000 ... 0xFFFFFFFF:
11830             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11831                 /* hivecs execing is ok */
11832                 *prot |= PAGE_EXEC;
11833             }
11834             break;
11835         case 0x00000000 ... 0x7FFFFFFF:
11836             *prot |= PAGE_EXEC;
11837             break;
11838         }
11839     } else {
11840         /* Default system address map for M profile cores.
11841          * The architecture specifies which regions are execute-never;
11842          * at the MPU level no other checks are defined.
11843          */
11844         switch (address) {
11845         case 0x00000000 ... 0x1fffffff: /* ROM */
11846         case 0x20000000 ... 0x3fffffff: /* SRAM */
11847         case 0x60000000 ... 0x7fffffff: /* RAM */
11848         case 0x80000000 ... 0x9fffffff: /* RAM */
11849             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11850             break;
11851         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11852         case 0xa0000000 ... 0xbfffffff: /* Device */
11853         case 0xc0000000 ... 0xdfffffff: /* Device */
11854         case 0xe0000000 ... 0xffffffff: /* System */
11855             *prot = PAGE_READ | PAGE_WRITE;
11856             break;
11857         default:
11858             g_assert_not_reached();
11859         }
11860     }
11861 }
11862 
11863 static bool pmsav7_use_background_region(ARMCPU *cpu,
11864                                          ARMMMUIdx mmu_idx, bool is_user)
11865 {
11866     /* Return true if we should use the default memory map as a
11867      * "background" region if there are no hits against any MPU regions.
11868      */
11869     CPUARMState *env = &cpu->env;
11870 
11871     if (is_user) {
11872         return false;
11873     }
11874 
11875     if (arm_feature(env, ARM_FEATURE_M)) {
11876         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11877             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11878     } else {
11879         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11880     }
11881 }
11882 
11883 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11884 {
11885     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11886     return arm_feature(env, ARM_FEATURE_M) &&
11887         extract32(address, 20, 12) == 0xe00;
11888 }
11889 
11890 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11891 {
11892     /* True if address is in the M profile system region
11893      * 0xe0000000 - 0xffffffff
11894      */
11895     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11896 }
11897 
11898 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11899                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11900                                  hwaddr *phys_ptr, int *prot,
11901                                  target_ulong *page_size,
11902                                  ARMMMUFaultInfo *fi)
11903 {
11904     ARMCPU *cpu = env_archcpu(env);
11905     int n;
11906     bool is_user = regime_is_user(env, mmu_idx);
11907 
11908     *phys_ptr = address;
11909     *page_size = TARGET_PAGE_SIZE;
11910     *prot = 0;
11911 
11912     if (regime_translation_disabled(env, mmu_idx) ||
11913         m_is_ppb_region(env, address)) {
11914         /* MPU disabled or M profile PPB access: use default memory map.
11915          * The other case which uses the default memory map in the
11916          * v7M ARM ARM pseudocode is exception vector reads from the vector
11917          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11918          * which always does a direct read using address_space_ldl(), rather
11919          * than going via this function, so we don't need to check that here.
11920          */
11921         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11922     } else { /* MPU enabled */
11923         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11924             /* region search */
11925             uint32_t base = env->pmsav7.drbar[n];
11926             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11927             uint32_t rmask;
11928             bool srdis = false;
11929 
11930             if (!(env->pmsav7.drsr[n] & 0x1)) {
11931                 continue;
11932             }
11933 
11934             if (!rsize) {
11935                 qemu_log_mask(LOG_GUEST_ERROR,
11936                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11937                 continue;
11938             }
11939             rsize++;
11940             rmask = (1ull << rsize) - 1;
11941 
11942             if (base & rmask) {
11943                 qemu_log_mask(LOG_GUEST_ERROR,
11944                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11945                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11946                               n, base, rmask);
11947                 continue;
11948             }
11949 
11950             if (address < base || address > base + rmask) {
11951                 /*
11952                  * Address not in this region. We must check whether the
11953                  * region covers addresses in the same page as our address.
11954                  * In that case we must not report a size that covers the
11955                  * whole page for a subsequent hit against a different MPU
11956                  * region or the background region, because it would result in
11957                  * incorrect TLB hits for subsequent accesses to addresses that
11958                  * are in this MPU region.
11959                  */
11960                 if (ranges_overlap(base, rmask,
11961                                    address & TARGET_PAGE_MASK,
11962                                    TARGET_PAGE_SIZE)) {
11963                     *page_size = 1;
11964                 }
11965                 continue;
11966             }
11967 
11968             /* Region matched */
11969 
11970             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11971                 int i, snd;
11972                 uint32_t srdis_mask;
11973 
11974                 rsize -= 3; /* sub region size (power of 2) */
11975                 snd = ((address - base) >> rsize) & 0x7;
11976                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11977 
11978                 srdis_mask = srdis ? 0x3 : 0x0;
11979                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11980                     /* This will check in groups of 2, 4 and then 8, whether
11981                      * the subregion bits are consistent. rsize is incremented
11982                      * back up to give the region size, considering consistent
11983                      * adjacent subregions as one region. Stop testing if rsize
11984                      * is already big enough for an entire QEMU page.
11985                      */
11986                     int snd_rounded = snd & ~(i - 1);
11987                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11988                                                      snd_rounded + 8, i);
11989                     if (srdis_mask ^ srdis_multi) {
11990                         break;
11991                     }
11992                     srdis_mask = (srdis_mask << i) | srdis_mask;
11993                     rsize++;
11994                 }
11995             }
11996             if (srdis) {
11997                 continue;
11998             }
11999             if (rsize < TARGET_PAGE_BITS) {
12000                 *page_size = 1 << rsize;
12001             }
12002             break;
12003         }
12004 
12005         if (n == -1) { /* no hits */
12006             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12007                 /* background fault */
12008                 fi->type = ARMFault_Background;
12009                 return true;
12010             }
12011             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12012         } else { /* a MPU hit! */
12013             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12014             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12015 
12016             if (m_is_system_region(env, address)) {
12017                 /* System space is always execute never */
12018                 xn = 1;
12019             }
12020 
12021             if (is_user) { /* User mode AP bit decoding */
12022                 switch (ap) {
12023                 case 0:
12024                 case 1:
12025                 case 5:
12026                     break; /* no access */
12027                 case 3:
12028                     *prot |= PAGE_WRITE;
12029                     /* fall through */
12030                 case 2:
12031                 case 6:
12032                     *prot |= PAGE_READ | PAGE_EXEC;
12033                     break;
12034                 case 7:
12035                     /* for v7M, same as 6; for R profile a reserved value */
12036                     if (arm_feature(env, ARM_FEATURE_M)) {
12037                         *prot |= PAGE_READ | PAGE_EXEC;
12038                         break;
12039                     }
12040                     /* fall through */
12041                 default:
12042                     qemu_log_mask(LOG_GUEST_ERROR,
12043                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12044                                   PRIx32 "\n", n, ap);
12045                 }
12046             } else { /* Priv. mode AP bits decoding */
12047                 switch (ap) {
12048                 case 0:
12049                     break; /* no access */
12050                 case 1:
12051                 case 2:
12052                 case 3:
12053                     *prot |= PAGE_WRITE;
12054                     /* fall through */
12055                 case 5:
12056                 case 6:
12057                     *prot |= PAGE_READ | PAGE_EXEC;
12058                     break;
12059                 case 7:
12060                     /* for v7M, same as 6; for R profile a reserved value */
12061                     if (arm_feature(env, ARM_FEATURE_M)) {
12062                         *prot |= PAGE_READ | PAGE_EXEC;
12063                         break;
12064                     }
12065                     /* fall through */
12066                 default:
12067                     qemu_log_mask(LOG_GUEST_ERROR,
12068                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12069                                   PRIx32 "\n", n, ap);
12070                 }
12071             }
12072 
12073             /* execute never */
12074             if (xn) {
12075                 *prot &= ~PAGE_EXEC;
12076             }
12077         }
12078     }
12079 
12080     fi->type = ARMFault_Permission;
12081     fi->level = 1;
12082     return !(*prot & (1 << access_type));
12083 }
12084 
12085 static bool v8m_is_sau_exempt(CPUARMState *env,
12086                               uint32_t address, MMUAccessType access_type)
12087 {
12088     /* The architecture specifies that certain address ranges are
12089      * exempt from v8M SAU/IDAU checks.
12090      */
12091     return
12092         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12093         (address >= 0xe0000000 && address <= 0xe0002fff) ||
12094         (address >= 0xe000e000 && address <= 0xe000efff) ||
12095         (address >= 0xe002e000 && address <= 0xe002efff) ||
12096         (address >= 0xe0040000 && address <= 0xe0041fff) ||
12097         (address >= 0xe00ff000 && address <= 0xe00fffff);
12098 }
12099 
12100 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12101                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12102                                 V8M_SAttributes *sattrs)
12103 {
12104     /* Look up the security attributes for this address. Compare the
12105      * pseudocode SecurityCheck() function.
12106      * We assume the caller has zero-initialized *sattrs.
12107      */
12108     ARMCPU *cpu = env_archcpu(env);
12109     int r;
12110     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12111     int idau_region = IREGION_NOTVALID;
12112     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12113     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12114 
12115     if (cpu->idau) {
12116         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12117         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12118 
12119         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12120                    &idau_nsc);
12121     }
12122 
12123     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12124         /* 0xf0000000..0xffffffff is always S for insn fetches */
12125         return;
12126     }
12127 
12128     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12129         sattrs->ns = !regime_is_secure(env, mmu_idx);
12130         return;
12131     }
12132 
12133     if (idau_region != IREGION_NOTVALID) {
12134         sattrs->irvalid = true;
12135         sattrs->iregion = idau_region;
12136     }
12137 
12138     switch (env->sau.ctrl & 3) {
12139     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12140         break;
12141     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12142         sattrs->ns = true;
12143         break;
12144     default: /* SAU.ENABLE == 1 */
12145         for (r = 0; r < cpu->sau_sregion; r++) {
12146             if (env->sau.rlar[r] & 1) {
12147                 uint32_t base = env->sau.rbar[r] & ~0x1f;
12148                 uint32_t limit = env->sau.rlar[r] | 0x1f;
12149 
12150                 if (base <= address && limit >= address) {
12151                     if (base > addr_page_base || limit < addr_page_limit) {
12152                         sattrs->subpage = true;
12153                     }
12154                     if (sattrs->srvalid) {
12155                         /* If we hit in more than one region then we must report
12156                          * as Secure, not NS-Callable, with no valid region
12157                          * number info.
12158                          */
12159                         sattrs->ns = false;
12160                         sattrs->nsc = false;
12161                         sattrs->sregion = 0;
12162                         sattrs->srvalid = false;
12163                         break;
12164                     } else {
12165                         if (env->sau.rlar[r] & 2) {
12166                             sattrs->nsc = true;
12167                         } else {
12168                             sattrs->ns = true;
12169                         }
12170                         sattrs->srvalid = true;
12171                         sattrs->sregion = r;
12172                     }
12173                 } else {
12174                     /*
12175                      * Address not in this region. We must check whether the
12176                      * region covers addresses in the same page as our address.
12177                      * In that case we must not report a size that covers the
12178                      * whole page for a subsequent hit against a different MPU
12179                      * region or the background region, because it would result
12180                      * in incorrect TLB hits for subsequent accesses to
12181                      * addresses that are in this MPU region.
12182                      */
12183                     if (limit >= base &&
12184                         ranges_overlap(base, limit - base + 1,
12185                                        addr_page_base,
12186                                        TARGET_PAGE_SIZE)) {
12187                         sattrs->subpage = true;
12188                     }
12189                 }
12190             }
12191         }
12192         break;
12193     }
12194 
12195     /*
12196      * The IDAU will override the SAU lookup results if it specifies
12197      * higher security than the SAU does.
12198      */
12199     if (!idau_ns) {
12200         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12201             sattrs->ns = false;
12202             sattrs->nsc = idau_nsc;
12203         }
12204     }
12205 }
12206 
12207 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12208                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
12209                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
12210                               int *prot, bool *is_subpage,
12211                               ARMMMUFaultInfo *fi, uint32_t *mregion)
12212 {
12213     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12214      * that a full phys-to-virt translation does).
12215      * mregion is (if not NULL) set to the region number which matched,
12216      * or -1 if no region number is returned (MPU off, address did not
12217      * hit a region, address hit in multiple regions).
12218      * We set is_subpage to true if the region hit doesn't cover the
12219      * entire TARGET_PAGE the address is within.
12220      */
12221     ARMCPU *cpu = env_archcpu(env);
12222     bool is_user = regime_is_user(env, mmu_idx);
12223     uint32_t secure = regime_is_secure(env, mmu_idx);
12224     int n;
12225     int matchregion = -1;
12226     bool hit = false;
12227     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12228     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12229 
12230     *is_subpage = false;
12231     *phys_ptr = address;
12232     *prot = 0;
12233     if (mregion) {
12234         *mregion = -1;
12235     }
12236 
12237     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12238      * was an exception vector read from the vector table (which is always
12239      * done using the default system address map), because those accesses
12240      * are done in arm_v7m_load_vector(), which always does a direct
12241      * read using address_space_ldl(), rather than going via this function.
12242      */
12243     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12244         hit = true;
12245     } else if (m_is_ppb_region(env, address)) {
12246         hit = true;
12247     } else {
12248         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12249             hit = true;
12250         }
12251 
12252         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12253             /* region search */
12254             /* Note that the base address is bits [31:5] from the register
12255              * with bits [4:0] all zeroes, but the limit address is bits
12256              * [31:5] from the register with bits [4:0] all ones.
12257              */
12258             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12259             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12260 
12261             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12262                 /* Region disabled */
12263                 continue;
12264             }
12265 
12266             if (address < base || address > limit) {
12267                 /*
12268                  * Address not in this region. We must check whether the
12269                  * region covers addresses in the same page as our address.
12270                  * In that case we must not report a size that covers the
12271                  * whole page for a subsequent hit against a different MPU
12272                  * region or the background region, because it would result in
12273                  * incorrect TLB hits for subsequent accesses to addresses that
12274                  * are in this MPU region.
12275                  */
12276                 if (limit >= base &&
12277                     ranges_overlap(base, limit - base + 1,
12278                                    addr_page_base,
12279                                    TARGET_PAGE_SIZE)) {
12280                     *is_subpage = true;
12281                 }
12282                 continue;
12283             }
12284 
12285             if (base > addr_page_base || limit < addr_page_limit) {
12286                 *is_subpage = true;
12287             }
12288 
12289             if (matchregion != -1) {
12290                 /* Multiple regions match -- always a failure (unlike
12291                  * PMSAv7 where highest-numbered-region wins)
12292                  */
12293                 fi->type = ARMFault_Permission;
12294                 fi->level = 1;
12295                 return true;
12296             }
12297 
12298             matchregion = n;
12299             hit = true;
12300         }
12301     }
12302 
12303     if (!hit) {
12304         /* background fault */
12305         fi->type = ARMFault_Background;
12306         return true;
12307     }
12308 
12309     if (matchregion == -1) {
12310         /* hit using the background region */
12311         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12312     } else {
12313         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12314         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12315         bool pxn = false;
12316 
12317         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12318             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12319         }
12320 
12321         if (m_is_system_region(env, address)) {
12322             /* System space is always execute never */
12323             xn = 1;
12324         }
12325 
12326         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12327         if (*prot && !xn && !(pxn && !is_user)) {
12328             *prot |= PAGE_EXEC;
12329         }
12330         /* We don't need to look the attribute up in the MAIR0/MAIR1
12331          * registers because that only tells us about cacheability.
12332          */
12333         if (mregion) {
12334             *mregion = matchregion;
12335         }
12336     }
12337 
12338     fi->type = ARMFault_Permission;
12339     fi->level = 1;
12340     return !(*prot & (1 << access_type));
12341 }
12342 
12343 
12344 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12345                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12346                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12347                                  int *prot, target_ulong *page_size,
12348                                  ARMMMUFaultInfo *fi)
12349 {
12350     uint32_t secure = regime_is_secure(env, mmu_idx);
12351     V8M_SAttributes sattrs = {};
12352     bool ret;
12353     bool mpu_is_subpage;
12354 
12355     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12356         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12357         if (access_type == MMU_INST_FETCH) {
12358             /* Instruction fetches always use the MMU bank and the
12359              * transaction attribute determined by the fetch address,
12360              * regardless of CPU state. This is painful for QEMU
12361              * to handle, because it would mean we need to encode
12362              * into the mmu_idx not just the (user, negpri) information
12363              * for the current security state but also that for the
12364              * other security state, which would balloon the number
12365              * of mmu_idx values needed alarmingly.
12366              * Fortunately we can avoid this because it's not actually
12367              * possible to arbitrarily execute code from memory with
12368              * the wrong security attribute: it will always generate
12369              * an exception of some kind or another, apart from the
12370              * special case of an NS CPU executing an SG instruction
12371              * in S&NSC memory. So we always just fail the translation
12372              * here and sort things out in the exception handler
12373              * (including possibly emulating an SG instruction).
12374              */
12375             if (sattrs.ns != !secure) {
12376                 if (sattrs.nsc) {
12377                     fi->type = ARMFault_QEMU_NSCExec;
12378                 } else {
12379                     fi->type = ARMFault_QEMU_SFault;
12380                 }
12381                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12382                 *phys_ptr = address;
12383                 *prot = 0;
12384                 return true;
12385             }
12386         } else {
12387             /* For data accesses we always use the MMU bank indicated
12388              * by the current CPU state, but the security attributes
12389              * might downgrade a secure access to nonsecure.
12390              */
12391             if (sattrs.ns) {
12392                 txattrs->secure = false;
12393             } else if (!secure) {
12394                 /* NS access to S memory must fault.
12395                  * Architecturally we should first check whether the
12396                  * MPU information for this address indicates that we
12397                  * are doing an unaligned access to Device memory, which
12398                  * should generate a UsageFault instead. QEMU does not
12399                  * currently check for that kind of unaligned access though.
12400                  * If we added it we would need to do so as a special case
12401                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12402                  */
12403                 fi->type = ARMFault_QEMU_SFault;
12404                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12405                 *phys_ptr = address;
12406                 *prot = 0;
12407                 return true;
12408             }
12409         }
12410     }
12411 
12412     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12413                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12414     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12415     return ret;
12416 }
12417 
12418 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12419                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12420                                  hwaddr *phys_ptr, int *prot,
12421                                  ARMMMUFaultInfo *fi)
12422 {
12423     int n;
12424     uint32_t mask;
12425     uint32_t base;
12426     bool is_user = regime_is_user(env, mmu_idx);
12427 
12428     if (regime_translation_disabled(env, mmu_idx)) {
12429         /* MPU disabled.  */
12430         *phys_ptr = address;
12431         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12432         return false;
12433     }
12434 
12435     *phys_ptr = address;
12436     for (n = 7; n >= 0; n--) {
12437         base = env->cp15.c6_region[n];
12438         if ((base & 1) == 0) {
12439             continue;
12440         }
12441         mask = 1 << ((base >> 1) & 0x1f);
12442         /* Keep this shift separate from the above to avoid an
12443            (undefined) << 32.  */
12444         mask = (mask << 1) - 1;
12445         if (((base ^ address) & ~mask) == 0) {
12446             break;
12447         }
12448     }
12449     if (n < 0) {
12450         fi->type = ARMFault_Background;
12451         return true;
12452     }
12453 
12454     if (access_type == MMU_INST_FETCH) {
12455         mask = env->cp15.pmsav5_insn_ap;
12456     } else {
12457         mask = env->cp15.pmsav5_data_ap;
12458     }
12459     mask = (mask >> (n * 4)) & 0xf;
12460     switch (mask) {
12461     case 0:
12462         fi->type = ARMFault_Permission;
12463         fi->level = 1;
12464         return true;
12465     case 1:
12466         if (is_user) {
12467             fi->type = ARMFault_Permission;
12468             fi->level = 1;
12469             return true;
12470         }
12471         *prot = PAGE_READ | PAGE_WRITE;
12472         break;
12473     case 2:
12474         *prot = PAGE_READ;
12475         if (!is_user) {
12476             *prot |= PAGE_WRITE;
12477         }
12478         break;
12479     case 3:
12480         *prot = PAGE_READ | PAGE_WRITE;
12481         break;
12482     case 5:
12483         if (is_user) {
12484             fi->type = ARMFault_Permission;
12485             fi->level = 1;
12486             return true;
12487         }
12488         *prot = PAGE_READ;
12489         break;
12490     case 6:
12491         *prot = PAGE_READ;
12492         break;
12493     default:
12494         /* Bad permission.  */
12495         fi->type = ARMFault_Permission;
12496         fi->level = 1;
12497         return true;
12498     }
12499     *prot |= PAGE_EXEC;
12500     return false;
12501 }
12502 
12503 /* Combine either inner or outer cacheability attributes for normal
12504  * memory, according to table D4-42 and pseudocode procedure
12505  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12506  *
12507  * NB: only stage 1 includes allocation hints (RW bits), leading to
12508  * some asymmetry.
12509  */
12510 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12511 {
12512     if (s1 == 4 || s2 == 4) {
12513         /* non-cacheable has precedence */
12514         return 4;
12515     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12516         /* stage 1 write-through takes precedence */
12517         return s1;
12518     } else if (extract32(s2, 2, 2) == 2) {
12519         /* stage 2 write-through takes precedence, but the allocation hint
12520          * is still taken from stage 1
12521          */
12522         return (2 << 2) | extract32(s1, 0, 2);
12523     } else { /* write-back */
12524         return s1;
12525     }
12526 }
12527 
12528 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12529  * and CombineS1S2Desc()
12530  *
12531  * @s1:      Attributes from stage 1 walk
12532  * @s2:      Attributes from stage 2 walk
12533  */
12534 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12535 {
12536     uint8_t s1lo, s2lo, s1hi, s2hi;
12537     ARMCacheAttrs ret;
12538     bool tagged = false;
12539 
12540     if (s1.attrs == 0xf0) {
12541         tagged = true;
12542         s1.attrs = 0xff;
12543     }
12544 
12545     s1lo = extract32(s1.attrs, 0, 4);
12546     s2lo = extract32(s2.attrs, 0, 4);
12547     s1hi = extract32(s1.attrs, 4, 4);
12548     s2hi = extract32(s2.attrs, 4, 4);
12549 
12550     /* Combine shareability attributes (table D4-43) */
12551     if (s1.shareability == 2 || s2.shareability == 2) {
12552         /* if either are outer-shareable, the result is outer-shareable */
12553         ret.shareability = 2;
12554     } else if (s1.shareability == 3 || s2.shareability == 3) {
12555         /* if either are inner-shareable, the result is inner-shareable */
12556         ret.shareability = 3;
12557     } else {
12558         /* both non-shareable */
12559         ret.shareability = 0;
12560     }
12561 
12562     /* Combine memory type and cacheability attributes */
12563     if (s1hi == 0 || s2hi == 0) {
12564         /* Device has precedence over normal */
12565         if (s1lo == 0 || s2lo == 0) {
12566             /* nGnRnE has precedence over anything */
12567             ret.attrs = 0;
12568         } else if (s1lo == 4 || s2lo == 4) {
12569             /* non-Reordering has precedence over Reordering */
12570             ret.attrs = 4;  /* nGnRE */
12571         } else if (s1lo == 8 || s2lo == 8) {
12572             /* non-Gathering has precedence over Gathering */
12573             ret.attrs = 8;  /* nGRE */
12574         } else {
12575             ret.attrs = 0xc; /* GRE */
12576         }
12577 
12578         /* Any location for which the resultant memory type is any
12579          * type of Device memory is always treated as Outer Shareable.
12580          */
12581         ret.shareability = 2;
12582     } else { /* Normal memory */
12583         /* Outer/inner cacheability combine independently */
12584         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12585                   | combine_cacheattr_nibble(s1lo, s2lo);
12586 
12587         if (ret.attrs == 0x44) {
12588             /* Any location for which the resultant memory type is Normal
12589              * Inner Non-cacheable, Outer Non-cacheable is always treated
12590              * as Outer Shareable.
12591              */
12592             ret.shareability = 2;
12593         }
12594     }
12595 
12596     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12597     if (tagged && ret.attrs == 0xff) {
12598         ret.attrs = 0xf0;
12599     }
12600 
12601     return ret;
12602 }
12603 
12604 
12605 /* get_phys_addr - get the physical address for this virtual address
12606  *
12607  * Find the physical address corresponding to the given virtual address,
12608  * by doing a translation table walk on MMU based systems or using the
12609  * MPU state on MPU based systems.
12610  *
12611  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12612  * prot and page_size may not be filled in, and the populated fsr value provides
12613  * information on why the translation aborted, in the format of a
12614  * DFSR/IFSR fault register, with the following caveats:
12615  *  * we honour the short vs long DFSR format differences.
12616  *  * the WnR bit is never set (the caller must do this).
12617  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12618  *    value.
12619  *
12620  * @env: CPUARMState
12621  * @address: virtual address to get physical address for
12622  * @access_type: 0 for read, 1 for write, 2 for execute
12623  * @mmu_idx: MMU index indicating required translation regime
12624  * @phys_ptr: set to the physical address corresponding to the virtual address
12625  * @attrs: set to the memory transaction attributes to use
12626  * @prot: set to the permissions for the page containing phys_ptr
12627  * @page_size: set to the size of the page containing phys_ptr
12628  * @fi: set to fault info if the translation fails
12629  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12630  */
12631 bool get_phys_addr(CPUARMState *env, target_ulong address,
12632                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12633                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12634                    target_ulong *page_size,
12635                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12636 {
12637     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12638 
12639     if (mmu_idx != s1_mmu_idx) {
12640         /* Call ourselves recursively to do the stage 1 and then stage 2
12641          * translations if mmu_idx is a two-stage regime.
12642          */
12643         if (arm_feature(env, ARM_FEATURE_EL2)) {
12644             hwaddr ipa;
12645             int s2_prot;
12646             int ret;
12647             ARMCacheAttrs cacheattrs2 = {};
12648             ARMMMUIdx s2_mmu_idx;
12649             bool is_el0;
12650 
12651             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12652                                 attrs, prot, page_size, fi, cacheattrs);
12653 
12654             /* If S1 fails or S2 is disabled, return early.  */
12655             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12656                 *phys_ptr = ipa;
12657                 return ret;
12658             }
12659 
12660             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12661             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12662 
12663             /* S1 is done. Now do S2 translation.  */
12664             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12665                                      phys_ptr, attrs, &s2_prot,
12666                                      page_size, fi, &cacheattrs2);
12667             fi->s2addr = ipa;
12668             /* Combine the S1 and S2 perms.  */
12669             *prot &= s2_prot;
12670 
12671             /* If S2 fails, return early.  */
12672             if (ret) {
12673                 return ret;
12674             }
12675 
12676             /* Combine the S1 and S2 cache attributes. */
12677             if (arm_hcr_el2_eff(env) & HCR_DC) {
12678                 /*
12679                  * HCR.DC forces the first stage attributes to
12680                  *  Normal Non-Shareable,
12681                  *  Inner Write-Back Read-Allocate Write-Allocate,
12682                  *  Outer Write-Back Read-Allocate Write-Allocate.
12683                  * Do not overwrite Tagged within attrs.
12684                  */
12685                 if (cacheattrs->attrs != 0xf0) {
12686                     cacheattrs->attrs = 0xff;
12687                 }
12688                 cacheattrs->shareability = 0;
12689             }
12690             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12691 
12692             /* Check if IPA translates to secure or non-secure PA space. */
12693             if (arm_is_secure_below_el3(env)) {
12694                 if (attrs->secure) {
12695                     attrs->secure =
12696                         !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12697                 } else {
12698                     attrs->secure =
12699                         !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12700                         || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12701                 }
12702             }
12703             return 0;
12704         } else {
12705             /*
12706              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12707              */
12708             mmu_idx = stage_1_mmu_idx(mmu_idx);
12709         }
12710     }
12711 
12712     /* The page table entries may downgrade secure to non-secure, but
12713      * cannot upgrade an non-secure translation regime's attributes
12714      * to secure.
12715      */
12716     attrs->secure = regime_is_secure(env, mmu_idx);
12717     attrs->user = regime_is_user(env, mmu_idx);
12718 
12719     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12720      * In v7 and earlier it affects all stage 1 translations.
12721      */
12722     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12723         && !arm_feature(env, ARM_FEATURE_V8)) {
12724         if (regime_el(env, mmu_idx) == 3) {
12725             address += env->cp15.fcseidr_s;
12726         } else {
12727             address += env->cp15.fcseidr_ns;
12728         }
12729     }
12730 
12731     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12732         bool ret;
12733         *page_size = TARGET_PAGE_SIZE;
12734 
12735         if (arm_feature(env, ARM_FEATURE_V8)) {
12736             /* PMSAv8 */
12737             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12738                                        phys_ptr, attrs, prot, page_size, fi);
12739         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12740             /* PMSAv7 */
12741             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12742                                        phys_ptr, prot, page_size, fi);
12743         } else {
12744             /* Pre-v7 MPU */
12745             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12746                                        phys_ptr, prot, fi);
12747         }
12748         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12749                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12750                       access_type == MMU_DATA_LOAD ? "reading" :
12751                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12752                       (uint32_t)address, mmu_idx,
12753                       ret ? "Miss" : "Hit",
12754                       *prot & PAGE_READ ? 'r' : '-',
12755                       *prot & PAGE_WRITE ? 'w' : '-',
12756                       *prot & PAGE_EXEC ? 'x' : '-');
12757 
12758         return ret;
12759     }
12760 
12761     /* Definitely a real MMU, not an MPU */
12762 
12763     if (regime_translation_disabled(env, mmu_idx)) {
12764         uint64_t hcr;
12765         uint8_t memattr;
12766 
12767         /*
12768          * MMU disabled.  S1 addresses within aa64 translation regimes are
12769          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12770          */
12771         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12772             int r_el = regime_el(env, mmu_idx);
12773             if (arm_el_is_aa64(env, r_el)) {
12774                 int pamax = arm_pamax(env_archcpu(env));
12775                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12776                 int addrtop, tbi;
12777 
12778                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12779                 if (access_type == MMU_INST_FETCH) {
12780                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12781                 }
12782                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12783                 addrtop = (tbi ? 55 : 63);
12784 
12785                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12786                     fi->type = ARMFault_AddressSize;
12787                     fi->level = 0;
12788                     fi->stage2 = false;
12789                     return 1;
12790                 }
12791 
12792                 /*
12793                  * When TBI is disabled, we've just validated that all of the
12794                  * bits above PAMax are zero, so logically we only need to
12795                  * clear the top byte for TBI.  But it's clearer to follow
12796                  * the pseudocode set of addrdesc.paddress.
12797                  */
12798                 address = extract64(address, 0, 52);
12799             }
12800         }
12801         *phys_ptr = address;
12802         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12803         *page_size = TARGET_PAGE_SIZE;
12804 
12805         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12806         hcr = arm_hcr_el2_eff(env);
12807         cacheattrs->shareability = 0;
12808         if (hcr & HCR_DC) {
12809             if (hcr & HCR_DCT) {
12810                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12811             } else {
12812                 memattr = 0xff;  /* Normal, WB, RWA */
12813             }
12814         } else if (access_type == MMU_INST_FETCH) {
12815             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12816                 memattr = 0xee;  /* Normal, WT, RA, NT */
12817             } else {
12818                 memattr = 0x44;  /* Normal, NC, No */
12819             }
12820             cacheattrs->shareability = 2; /* outer sharable */
12821         } else {
12822             memattr = 0x00;      /* Device, nGnRnE */
12823         }
12824         cacheattrs->attrs = memattr;
12825         return 0;
12826     }
12827 
12828     if (regime_using_lpae_format(env, mmu_idx)) {
12829         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12830                                   phys_ptr, attrs, prot, page_size,
12831                                   fi, cacheattrs);
12832     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12833         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12834                                 phys_ptr, attrs, prot, page_size, fi);
12835     } else {
12836         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12837                                     phys_ptr, prot, page_size, fi);
12838     }
12839 }
12840 
12841 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12842                                          MemTxAttrs *attrs)
12843 {
12844     ARMCPU *cpu = ARM_CPU(cs);
12845     CPUARMState *env = &cpu->env;
12846     hwaddr phys_addr;
12847     target_ulong page_size;
12848     int prot;
12849     bool ret;
12850     ARMMMUFaultInfo fi = {};
12851     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12852     ARMCacheAttrs cacheattrs = {};
12853 
12854     *attrs = (MemTxAttrs) {};
12855 
12856     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12857                         attrs, &prot, &page_size, &fi, &cacheattrs);
12858 
12859     if (ret) {
12860         return -1;
12861     }
12862     return phys_addr;
12863 }
12864 
12865 #endif
12866 
12867 /* Note that signed overflow is undefined in C.  The following routines are
12868    careful to use unsigned types where modulo arithmetic is required.
12869    Failure to do so _will_ break on newer gcc.  */
12870 
12871 /* Signed saturating arithmetic.  */
12872 
12873 /* Perform 16-bit signed saturating addition.  */
12874 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12875 {
12876     uint16_t res;
12877 
12878     res = a + b;
12879     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12880         if (a & 0x8000)
12881             res = 0x8000;
12882         else
12883             res = 0x7fff;
12884     }
12885     return res;
12886 }
12887 
12888 /* Perform 8-bit signed saturating addition.  */
12889 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12890 {
12891     uint8_t res;
12892 
12893     res = a + b;
12894     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12895         if (a & 0x80)
12896             res = 0x80;
12897         else
12898             res = 0x7f;
12899     }
12900     return res;
12901 }
12902 
12903 /* Perform 16-bit signed saturating subtraction.  */
12904 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12905 {
12906     uint16_t res;
12907 
12908     res = a - b;
12909     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12910         if (a & 0x8000)
12911             res = 0x8000;
12912         else
12913             res = 0x7fff;
12914     }
12915     return res;
12916 }
12917 
12918 /* Perform 8-bit signed saturating subtraction.  */
12919 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12920 {
12921     uint8_t res;
12922 
12923     res = a - b;
12924     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12925         if (a & 0x80)
12926             res = 0x80;
12927         else
12928             res = 0x7f;
12929     }
12930     return res;
12931 }
12932 
12933 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12934 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12935 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12936 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12937 #define PFX q
12938 
12939 #include "op_addsub.h"
12940 
12941 /* Unsigned saturating arithmetic.  */
12942 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12943 {
12944     uint16_t res;
12945     res = a + b;
12946     if (res < a)
12947         res = 0xffff;
12948     return res;
12949 }
12950 
12951 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12952 {
12953     if (a > b)
12954         return a - b;
12955     else
12956         return 0;
12957 }
12958 
12959 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12960 {
12961     uint8_t res;
12962     res = a + b;
12963     if (res < a)
12964         res = 0xff;
12965     return res;
12966 }
12967 
12968 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12969 {
12970     if (a > b)
12971         return a - b;
12972     else
12973         return 0;
12974 }
12975 
12976 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12977 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12978 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12979 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12980 #define PFX uq
12981 
12982 #include "op_addsub.h"
12983 
12984 /* Signed modulo arithmetic.  */
12985 #define SARITH16(a, b, n, op) do { \
12986     int32_t sum; \
12987     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12988     RESULT(sum, n, 16); \
12989     if (sum >= 0) \
12990         ge |= 3 << (n * 2); \
12991     } while(0)
12992 
12993 #define SARITH8(a, b, n, op) do { \
12994     int32_t sum; \
12995     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12996     RESULT(sum, n, 8); \
12997     if (sum >= 0) \
12998         ge |= 1 << n; \
12999     } while(0)
13000 
13001 
13002 #define ADD16(a, b, n) SARITH16(a, b, n, +)
13003 #define SUB16(a, b, n) SARITH16(a, b, n, -)
13004 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
13005 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
13006 #define PFX s
13007 #define ARITH_GE
13008 
13009 #include "op_addsub.h"
13010 
13011 /* Unsigned modulo arithmetic.  */
13012 #define ADD16(a, b, n) do { \
13013     uint32_t sum; \
13014     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13015     RESULT(sum, n, 16); \
13016     if ((sum >> 16) == 1) \
13017         ge |= 3 << (n * 2); \
13018     } while(0)
13019 
13020 #define ADD8(a, b, n) do { \
13021     uint32_t sum; \
13022     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13023     RESULT(sum, n, 8); \
13024     if ((sum >> 8) == 1) \
13025         ge |= 1 << n; \
13026     } while(0)
13027 
13028 #define SUB16(a, b, n) do { \
13029     uint32_t sum; \
13030     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13031     RESULT(sum, n, 16); \
13032     if ((sum >> 16) == 0) \
13033         ge |= 3 << (n * 2); \
13034     } while(0)
13035 
13036 #define SUB8(a, b, n) do { \
13037     uint32_t sum; \
13038     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13039     RESULT(sum, n, 8); \
13040     if ((sum >> 8) == 0) \
13041         ge |= 1 << n; \
13042     } while(0)
13043 
13044 #define PFX u
13045 #define ARITH_GE
13046 
13047 #include "op_addsub.h"
13048 
13049 /* Halved signed arithmetic.  */
13050 #define ADD16(a, b, n) \
13051   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13052 #define SUB16(a, b, n) \
13053   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13054 #define ADD8(a, b, n) \
13055   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13056 #define SUB8(a, b, n) \
13057   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13058 #define PFX sh
13059 
13060 #include "op_addsub.h"
13061 
13062 /* Halved unsigned arithmetic.  */
13063 #define ADD16(a, b, n) \
13064   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13065 #define SUB16(a, b, n) \
13066   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13067 #define ADD8(a, b, n) \
13068   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13069 #define SUB8(a, b, n) \
13070   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13071 #define PFX uh
13072 
13073 #include "op_addsub.h"
13074 
13075 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13076 {
13077     if (a > b)
13078         return a - b;
13079     else
13080         return b - a;
13081 }
13082 
13083 /* Unsigned sum of absolute byte differences.  */
13084 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13085 {
13086     uint32_t sum;
13087     sum = do_usad(a, b);
13088     sum += do_usad(a >> 8, b >> 8);
13089     sum += do_usad(a >> 16, b >> 16);
13090     sum += do_usad(a >> 24, b >> 24);
13091     return sum;
13092 }
13093 
13094 /* For ARMv6 SEL instruction.  */
13095 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13096 {
13097     uint32_t mask;
13098 
13099     mask = 0;
13100     if (flags & 1)
13101         mask |= 0xff;
13102     if (flags & 2)
13103         mask |= 0xff00;
13104     if (flags & 4)
13105         mask |= 0xff0000;
13106     if (flags & 8)
13107         mask |= 0xff000000;
13108     return (a & mask) | (b & ~mask);
13109 }
13110 
13111 /* CRC helpers.
13112  * The upper bytes of val (above the number specified by 'bytes') must have
13113  * been zeroed out by the caller.
13114  */
13115 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13116 {
13117     uint8_t buf[4];
13118 
13119     stl_le_p(buf, val);
13120 
13121     /* zlib crc32 converts the accumulator and output to one's complement.  */
13122     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13123 }
13124 
13125 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13126 {
13127     uint8_t buf[4];
13128 
13129     stl_le_p(buf, val);
13130 
13131     /* Linux crc32c converts the output to one's complement.  */
13132     return crc32c(acc, buf, bytes) ^ 0xffffffff;
13133 }
13134 
13135 /* Return the exception level to which FP-disabled exceptions should
13136  * be taken, or 0 if FP is enabled.
13137  */
13138 int fp_exception_el(CPUARMState *env, int cur_el)
13139 {
13140 #ifndef CONFIG_USER_ONLY
13141     uint64_t hcr_el2;
13142 
13143     /* CPACR and the CPTR registers don't exist before v6, so FP is
13144      * always accessible
13145      */
13146     if (!arm_feature(env, ARM_FEATURE_V6)) {
13147         return 0;
13148     }
13149 
13150     if (arm_feature(env, ARM_FEATURE_M)) {
13151         /* CPACR can cause a NOCP UsageFault taken to current security state */
13152         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13153             return 1;
13154         }
13155 
13156         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13157             if (!extract32(env->v7m.nsacr, 10, 1)) {
13158                 /* FP insns cause a NOCP UsageFault taken to Secure */
13159                 return 3;
13160             }
13161         }
13162 
13163         return 0;
13164     }
13165 
13166     hcr_el2 = arm_hcr_el2_eff(env);
13167 
13168     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13169      * 0, 2 : trap EL0 and EL1/PL1 accesses
13170      * 1    : trap only EL0 accesses
13171      * 3    : trap no accesses
13172      * This register is ignored if E2H+TGE are both set.
13173      */
13174     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13175         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13176 
13177         switch (fpen) {
13178         case 0:
13179         case 2:
13180             if (cur_el == 0 || cur_el == 1) {
13181                 /* Trap to PL1, which might be EL1 or EL3 */
13182                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13183                     return 3;
13184                 }
13185                 return 1;
13186             }
13187             if (cur_el == 3 && !is_a64(env)) {
13188                 /* Secure PL1 running at EL3 */
13189                 return 3;
13190             }
13191             break;
13192         case 1:
13193             if (cur_el == 0) {
13194                 return 1;
13195             }
13196             break;
13197         case 3:
13198             break;
13199         }
13200     }
13201 
13202     /*
13203      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13204      * to control non-secure access to the FPU. It doesn't have any
13205      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13206      */
13207     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13208          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13209         if (!extract32(env->cp15.nsacr, 10, 1)) {
13210             /* FP insns act as UNDEF */
13211             return cur_el == 2 ? 2 : 1;
13212         }
13213     }
13214 
13215     /*
13216      * CPTR_EL2 is present in v7VE or v8, and changes format
13217      * with HCR_EL2.E2H (regardless of TGE).
13218      */
13219     if (cur_el <= 2) {
13220         if (hcr_el2 & HCR_E2H) {
13221             /* Check CPTR_EL2.FPEN.  */
13222             switch (extract32(env->cp15.cptr_el[2], 20, 2)) {
13223             case 1:
13224                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
13225                     break;
13226                 }
13227                 /* fall through */
13228             case 0:
13229             case 2:
13230                 return 2;
13231             }
13232         } else if (arm_is_el2_enabled(env)) {
13233             if (env->cp15.cptr_el[2] & CPTR_TFP) {
13234                 return 2;
13235             }
13236         }
13237     }
13238 
13239     /* CPTR_EL3 : present in v8 */
13240     if (env->cp15.cptr_el[3] & CPTR_TFP) {
13241         /* Trap all FP ops to EL3 */
13242         return 3;
13243     }
13244 #endif
13245     return 0;
13246 }
13247 
13248 /* Return the exception level we're running at if this is our mmu_idx */
13249 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13250 {
13251     if (mmu_idx & ARM_MMU_IDX_M) {
13252         return mmu_idx & ARM_MMU_IDX_M_PRIV;
13253     }
13254 
13255     switch (mmu_idx) {
13256     case ARMMMUIdx_E10_0:
13257     case ARMMMUIdx_E20_0:
13258     case ARMMMUIdx_SE10_0:
13259     case ARMMMUIdx_SE20_0:
13260         return 0;
13261     case ARMMMUIdx_E10_1:
13262     case ARMMMUIdx_E10_1_PAN:
13263     case ARMMMUIdx_SE10_1:
13264     case ARMMMUIdx_SE10_1_PAN:
13265         return 1;
13266     case ARMMMUIdx_E2:
13267     case ARMMMUIdx_E20_2:
13268     case ARMMMUIdx_E20_2_PAN:
13269     case ARMMMUIdx_SE2:
13270     case ARMMMUIdx_SE20_2:
13271     case ARMMMUIdx_SE20_2_PAN:
13272         return 2;
13273     case ARMMMUIdx_SE3:
13274         return 3;
13275     default:
13276         g_assert_not_reached();
13277     }
13278 }
13279 
13280 #ifndef CONFIG_TCG
13281 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13282 {
13283     g_assert_not_reached();
13284 }
13285 #endif
13286 
13287 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13288 {
13289     ARMMMUIdx idx;
13290     uint64_t hcr;
13291 
13292     if (arm_feature(env, ARM_FEATURE_M)) {
13293         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13294     }
13295 
13296     /* See ARM pseudo-function ELIsInHost.  */
13297     switch (el) {
13298     case 0:
13299         hcr = arm_hcr_el2_eff(env);
13300         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13301             idx = ARMMMUIdx_E20_0;
13302         } else {
13303             idx = ARMMMUIdx_E10_0;
13304         }
13305         break;
13306     case 1:
13307         if (env->pstate & PSTATE_PAN) {
13308             idx = ARMMMUIdx_E10_1_PAN;
13309         } else {
13310             idx = ARMMMUIdx_E10_1;
13311         }
13312         break;
13313     case 2:
13314         /* Note that TGE does not apply at EL2.  */
13315         if (arm_hcr_el2_eff(env) & HCR_E2H) {
13316             if (env->pstate & PSTATE_PAN) {
13317                 idx = ARMMMUIdx_E20_2_PAN;
13318             } else {
13319                 idx = ARMMMUIdx_E20_2;
13320             }
13321         } else {
13322             idx = ARMMMUIdx_E2;
13323         }
13324         break;
13325     case 3:
13326         return ARMMMUIdx_SE3;
13327     default:
13328         g_assert_not_reached();
13329     }
13330 
13331     if (arm_is_secure_below_el3(env)) {
13332         idx &= ~ARM_MMU_IDX_A_NS;
13333     }
13334 
13335     return idx;
13336 }
13337 
13338 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13339 {
13340     return arm_mmu_idx_el(env, arm_current_el(env));
13341 }
13342 
13343 #ifndef CONFIG_USER_ONLY
13344 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13345 {
13346     return stage_1_mmu_idx(arm_mmu_idx(env));
13347 }
13348 #endif
13349 
13350 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13351                                            ARMMMUIdx mmu_idx,
13352                                            CPUARMTBFlags flags)
13353 {
13354     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13355     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13356 
13357     if (arm_singlestep_active(env)) {
13358         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13359     }
13360     return flags;
13361 }
13362 
13363 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13364                                               ARMMMUIdx mmu_idx,
13365                                               CPUARMTBFlags flags)
13366 {
13367     bool sctlr_b = arm_sctlr_b(env);
13368 
13369     if (sctlr_b) {
13370         DP_TBFLAG_A32(flags, SCTLR__B, 1);
13371     }
13372     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13373         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13374     }
13375     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13376 
13377     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13378 }
13379 
13380 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13381                                         ARMMMUIdx mmu_idx)
13382 {
13383     CPUARMTBFlags flags = {};
13384     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13385 
13386     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13387     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13388         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13389     }
13390 
13391     if (arm_v7m_is_handler_mode(env)) {
13392         DP_TBFLAG_M32(flags, HANDLER, 1);
13393     }
13394 
13395     /*
13396      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13397      * is suppressing them because the requested execution priority
13398      * is less than 0.
13399      */
13400     if (arm_feature(env, ARM_FEATURE_V8) &&
13401         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13402           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13403         DP_TBFLAG_M32(flags, STACKCHECK, 1);
13404     }
13405 
13406     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13407 }
13408 
13409 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13410 {
13411     CPUARMTBFlags flags = {};
13412 
13413     DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13414     return flags;
13415 }
13416 
13417 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13418                                         ARMMMUIdx mmu_idx)
13419 {
13420     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13421     int el = arm_current_el(env);
13422 
13423     if (arm_sctlr(env, el) & SCTLR_A) {
13424         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13425     }
13426 
13427     if (arm_el_is_aa64(env, 1)) {
13428         DP_TBFLAG_A32(flags, VFPEN, 1);
13429     }
13430 
13431     if (el < 2 && env->cp15.hstr_el2 &&
13432         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13433         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13434     }
13435 
13436     if (env->uncached_cpsr & CPSR_IL) {
13437         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13438     }
13439 
13440     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13441 }
13442 
13443 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13444                                         ARMMMUIdx mmu_idx)
13445 {
13446     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13447     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13448     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13449     uint64_t sctlr;
13450     int tbii, tbid;
13451 
13452     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13453 
13454     /* Get control bits for tagged addresses.  */
13455     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13456     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13457 
13458     DP_TBFLAG_A64(flags, TBII, tbii);
13459     DP_TBFLAG_A64(flags, TBID, tbid);
13460 
13461     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13462         int sve_el = sve_exception_el(env, el);
13463         uint32_t zcr_len;
13464 
13465         /*
13466          * If SVE is disabled, but FP is enabled,
13467          * then the effective len is 0.
13468          */
13469         if (sve_el != 0 && fp_el == 0) {
13470             zcr_len = 0;
13471         } else {
13472             zcr_len = sve_zcr_len_for_el(env, el);
13473         }
13474         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13475         DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13476     }
13477 
13478     sctlr = regime_sctlr(env, stage1);
13479 
13480     if (sctlr & SCTLR_A) {
13481         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13482     }
13483 
13484     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13485         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13486     }
13487 
13488     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13489         /*
13490          * In order to save space in flags, we record only whether
13491          * pauth is "inactive", meaning all insns are implemented as
13492          * a nop, or "active" when some action must be performed.
13493          * The decision of which action to take is left to a helper.
13494          */
13495         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13496             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13497         }
13498     }
13499 
13500     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13501         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13502         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13503             DP_TBFLAG_A64(flags, BT, 1);
13504         }
13505     }
13506 
13507     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13508     if (!(env->pstate & PSTATE_UAO)) {
13509         switch (mmu_idx) {
13510         case ARMMMUIdx_E10_1:
13511         case ARMMMUIdx_E10_1_PAN:
13512         case ARMMMUIdx_SE10_1:
13513         case ARMMMUIdx_SE10_1_PAN:
13514             /* TODO: ARMv8.3-NV */
13515             DP_TBFLAG_A64(flags, UNPRIV, 1);
13516             break;
13517         case ARMMMUIdx_E20_2:
13518         case ARMMMUIdx_E20_2_PAN:
13519         case ARMMMUIdx_SE20_2:
13520         case ARMMMUIdx_SE20_2_PAN:
13521             /*
13522              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13523              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13524              */
13525             if (env->cp15.hcr_el2 & HCR_TGE) {
13526                 DP_TBFLAG_A64(flags, UNPRIV, 1);
13527             }
13528             break;
13529         default:
13530             break;
13531         }
13532     }
13533 
13534     if (env->pstate & PSTATE_IL) {
13535         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13536     }
13537 
13538     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13539         /*
13540          * Set MTE_ACTIVE if any access may be Checked, and leave clear
13541          * if all accesses must be Unchecked:
13542          * 1) If no TBI, then there are no tags in the address to check,
13543          * 2) If Tag Check Override, then all accesses are Unchecked,
13544          * 3) If Tag Check Fail == 0, then Checked access have no effect,
13545          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13546          */
13547         if (allocation_tag_access_enabled(env, el, sctlr)) {
13548             DP_TBFLAG_A64(flags, ATA, 1);
13549             if (tbid
13550                 && !(env->pstate & PSTATE_TCO)
13551                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13552                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13553             }
13554         }
13555         /* And again for unprivileged accesses, if required.  */
13556         if (EX_TBFLAG_A64(flags, UNPRIV)
13557             && tbid
13558             && !(env->pstate & PSTATE_TCO)
13559             && (sctlr & SCTLR_TCF0)
13560             && allocation_tag_access_enabled(env, 0, sctlr)) {
13561             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13562         }
13563         /* Cache TCMA as well as TBI. */
13564         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13565     }
13566 
13567     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13568 }
13569 
13570 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13571 {
13572     int el = arm_current_el(env);
13573     int fp_el = fp_exception_el(env, el);
13574     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13575 
13576     if (is_a64(env)) {
13577         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13578     } else if (arm_feature(env, ARM_FEATURE_M)) {
13579         return rebuild_hflags_m32(env, fp_el, mmu_idx);
13580     } else {
13581         return rebuild_hflags_a32(env, fp_el, mmu_idx);
13582     }
13583 }
13584 
13585 void arm_rebuild_hflags(CPUARMState *env)
13586 {
13587     env->hflags = rebuild_hflags_internal(env);
13588 }
13589 
13590 /*
13591  * If we have triggered a EL state change we can't rely on the
13592  * translator having passed it to us, we need to recompute.
13593  */
13594 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13595 {
13596     int el = arm_current_el(env);
13597     int fp_el = fp_exception_el(env, el);
13598     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13599 
13600     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13601 }
13602 
13603 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13604 {
13605     int fp_el = fp_exception_el(env, el);
13606     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13607 
13608     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13609 }
13610 
13611 /*
13612  * If we have triggered a EL state change we can't rely on the
13613  * translator having passed it to us, we need to recompute.
13614  */
13615 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13616 {
13617     int el = arm_current_el(env);
13618     int fp_el = fp_exception_el(env, el);
13619     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13620     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13621 }
13622 
13623 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13624 {
13625     int fp_el = fp_exception_el(env, el);
13626     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13627 
13628     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13629 }
13630 
13631 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13632 {
13633     int fp_el = fp_exception_el(env, el);
13634     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13635 
13636     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13637 }
13638 
13639 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13640 {
13641 #ifdef CONFIG_DEBUG_TCG
13642     CPUARMTBFlags c = env->hflags;
13643     CPUARMTBFlags r = rebuild_hflags_internal(env);
13644 
13645     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13646         fprintf(stderr, "TCG hflags mismatch "
13647                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13648                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13649                 c.flags, c.flags2, r.flags, r.flags2);
13650         abort();
13651     }
13652 #endif
13653 }
13654 
13655 static bool mve_no_pred(CPUARMState *env)
13656 {
13657     /*
13658      * Return true if there is definitely no predication of MVE
13659      * instructions by VPR or LTPSIZE. (Returning false even if there
13660      * isn't any predication is OK; generated code will just be
13661      * a little worse.)
13662      * If the CPU does not implement MVE then this TB flag is always 0.
13663      *
13664      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
13665      * logic in gen_update_fp_context() needs to be updated to match.
13666      *
13667      * We do not include the effect of the ECI bits here -- they are
13668      * tracked in other TB flags. This simplifies the logic for
13669      * "when did we emit code that changes the MVE_NO_PRED TB flag
13670      * and thus need to end the TB?".
13671      */
13672     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
13673         return false;
13674     }
13675     if (env->v7m.vpr) {
13676         return false;
13677     }
13678     if (env->v7m.ltpsize < 4) {
13679         return false;
13680     }
13681     return true;
13682 }
13683 
13684 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13685                           target_ulong *cs_base, uint32_t *pflags)
13686 {
13687     CPUARMTBFlags flags;
13688 
13689     assert_hflags_rebuild_correctly(env);
13690     flags = env->hflags;
13691 
13692     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13693         *pc = env->pc;
13694         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13695             DP_TBFLAG_A64(flags, BTYPE, env->btype);
13696         }
13697     } else {
13698         *pc = env->regs[15];
13699 
13700         if (arm_feature(env, ARM_FEATURE_M)) {
13701             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13702                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13703                 != env->v7m.secure) {
13704                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13705             }
13706 
13707             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13708                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13709                  (env->v7m.secure &&
13710                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13711                 /*
13712                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13713                  * active FP context; we must create a new FP context before
13714                  * executing any FP insn.
13715                  */
13716                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13717             }
13718 
13719             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13720             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13721                 DP_TBFLAG_M32(flags, LSPACT, 1);
13722             }
13723 
13724             if (mve_no_pred(env)) {
13725                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
13726             }
13727         } else {
13728             /*
13729              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13730              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13731              */
13732             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13733                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13734             } else {
13735                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13736                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13737             }
13738             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13739                 DP_TBFLAG_A32(flags, VFPEN, 1);
13740             }
13741         }
13742 
13743         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13744         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13745     }
13746 
13747     /*
13748      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13749      * states defined in the ARM ARM for software singlestep:
13750      *  SS_ACTIVE   PSTATE.SS   State
13751      *     0            x       Inactive (the TB flag for SS is always 0)
13752      *     1            0       Active-pending
13753      *     1            1       Active-not-pending
13754      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13755      */
13756     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13757         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13758     }
13759 
13760     *pflags = flags.flags;
13761     *cs_base = flags.flags2;
13762 }
13763 
13764 #ifdef TARGET_AARCH64
13765 /*
13766  * The manual says that when SVE is enabled and VQ is widened the
13767  * implementation is allowed to zero the previously inaccessible
13768  * portion of the registers.  The corollary to that is that when
13769  * SVE is enabled and VQ is narrowed we are also allowed to zero
13770  * the now inaccessible portion of the registers.
13771  *
13772  * The intent of this is that no predicate bit beyond VQ is ever set.
13773  * Which means that some operations on predicate registers themselves
13774  * may operate on full uint64_t or even unrolled across the maximum
13775  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13776  * may well be cheaper than conditionals to restrict the operation
13777  * to the relevant portion of a uint16_t[16].
13778  */
13779 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13780 {
13781     int i, j;
13782     uint64_t pmask;
13783 
13784     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13785     assert(vq <= env_archcpu(env)->sve_max_vq);
13786 
13787     /* Zap the high bits of the zregs.  */
13788     for (i = 0; i < 32; i++) {
13789         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13790     }
13791 
13792     /* Zap the high bits of the pregs and ffr.  */
13793     pmask = 0;
13794     if (vq & 3) {
13795         pmask = ~(-1ULL << (16 * (vq & 3)));
13796     }
13797     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13798         for (i = 0; i < 17; ++i) {
13799             env->vfp.pregs[i].p[j] &= pmask;
13800         }
13801         pmask = 0;
13802     }
13803 }
13804 
13805 /*
13806  * Notice a change in SVE vector size when changing EL.
13807  */
13808 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13809                            int new_el, bool el0_a64)
13810 {
13811     ARMCPU *cpu = env_archcpu(env);
13812     int old_len, new_len;
13813     bool old_a64, new_a64;
13814 
13815     /* Nothing to do if no SVE.  */
13816     if (!cpu_isar_feature(aa64_sve, cpu)) {
13817         return;
13818     }
13819 
13820     /* Nothing to do if FP is disabled in either EL.  */
13821     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13822         return;
13823     }
13824 
13825     /*
13826      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13827      * at ELx, or not available because the EL is in AArch32 state, then
13828      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13829      * has an effective value of 0".
13830      *
13831      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13832      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13833      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13834      * we already have the correct register contents when encountering the
13835      * vq0->vq0 transition between EL0->EL1.
13836      */
13837     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13838     old_len = (old_a64 && !sve_exception_el(env, old_el)
13839                ? sve_zcr_len_for_el(env, old_el) : 0);
13840     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13841     new_len = (new_a64 && !sve_exception_el(env, new_el)
13842                ? sve_zcr_len_for_el(env, new_el) : 0);
13843 
13844     /* When changing vector length, clear inaccessible state.  */
13845     if (new_len < old_len) {
13846         aarch64_sve_narrow_vq(env, new_len + 1);
13847     }
13848 }
13849 #endif
13850