1 /* 2 * ARM gdb server stub: AArch64 specific functions. 3 * 4 * Copyright (c) 2013 SUSE LINUX Products GmbH 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/log.h" 21 #include "cpu.h" 22 #include "internals.h" 23 #include "exec/gdbstub.h" 24 25 int aarch64_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n) 26 { 27 ARMCPU *cpu = ARM_CPU(cs); 28 CPUARMState *env = &cpu->env; 29 30 if (n < 31) { 31 /* Core integer register. */ 32 return gdb_get_reg64(mem_buf, env->xregs[n]); 33 } 34 switch (n) { 35 case 31: 36 return gdb_get_reg64(mem_buf, env->xregs[31]); 37 case 32: 38 return gdb_get_reg64(mem_buf, env->pc); 39 case 33: 40 return gdb_get_reg32(mem_buf, pstate_read(env)); 41 } 42 /* Unknown register. */ 43 return 0; 44 } 45 46 int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) 47 { 48 ARMCPU *cpu = ARM_CPU(cs); 49 CPUARMState *env = &cpu->env; 50 uint64_t tmp; 51 52 tmp = ldq_p(mem_buf); 53 54 if (n < 31) { 55 /* Core integer register. */ 56 env->xregs[n] = tmp; 57 return 8; 58 } 59 switch (n) { 60 case 31: 61 env->xregs[31] = tmp; 62 return 8; 63 case 32: 64 env->pc = tmp; 65 return 8; 66 case 33: 67 /* CPSR */ 68 pstate_write(env, tmp); 69 return 4; 70 } 71 /* Unknown register. */ 72 return 0; 73 } 74 75 int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg) 76 { 77 switch (reg) { 78 case 0 ... 31: 79 { 80 /* 128 bit FP register - quads are in LE order */ 81 uint64_t *q = aa64_vfp_qreg(env, reg); 82 return gdb_get_reg128(buf, q[1], q[0]); 83 } 84 case 32: 85 /* FPSR */ 86 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 87 case 33: 88 /* FPCR */ 89 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 90 default: 91 return 0; 92 } 93 } 94 95 int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg) 96 { 97 switch (reg) { 98 case 0 ... 31: 99 /* 128 bit FP register */ 100 { 101 uint64_t *q = aa64_vfp_qreg(env, reg); 102 q[0] = ldq_le_p(buf); 103 q[1] = ldq_le_p(buf + 8); 104 return 16; 105 } 106 case 32: 107 /* FPSR */ 108 vfp_set_fpsr(env, ldl_p(buf)); 109 return 4; 110 case 33: 111 /* FPCR */ 112 vfp_set_fpcr(env, ldl_p(buf)); 113 return 4; 114 default: 115 return 0; 116 } 117 } 118 119 int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg) 120 { 121 ARMCPU *cpu = env_archcpu(env); 122 123 switch (reg) { 124 /* The first 32 registers are the zregs */ 125 case 0 ... 31: 126 { 127 int vq, len = 0; 128 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 129 len += gdb_get_reg128(buf, 130 env->vfp.zregs[reg].d[vq * 2 + 1], 131 env->vfp.zregs[reg].d[vq * 2]); 132 } 133 return len; 134 } 135 case 32: 136 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 137 case 33: 138 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 139 /* then 16 predicates and the ffr */ 140 case 34 ... 50: 141 { 142 int preg = reg - 34; 143 int vq, len = 0; 144 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 145 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 146 } 147 return len; 148 } 149 case 51: 150 { 151 /* 152 * We report in Vector Granules (VG) which is 64bit in a Z reg 153 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 154 */ 155 int vq = sve_vqm1_for_el(env, arm_current_el(env)) + 1; 156 return gdb_get_reg64(buf, vq * 2); 157 } 158 default: 159 /* gdbstub asked for something out our range */ 160 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 161 break; 162 } 163 164 return 0; 165 } 166 167 int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg) 168 { 169 ARMCPU *cpu = env_archcpu(env); 170 171 /* The first 32 registers are the zregs */ 172 switch (reg) { 173 /* The first 32 registers are the zregs */ 174 case 0 ... 31: 175 { 176 int vq, len = 0; 177 uint64_t *p = (uint64_t *) buf; 178 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 179 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 180 env->vfp.zregs[reg].d[vq * 2] = *p++; 181 len += 16; 182 } 183 return len; 184 } 185 case 32: 186 vfp_set_fpsr(env, *(uint32_t *)buf); 187 return 4; 188 case 33: 189 vfp_set_fpcr(env, *(uint32_t *)buf); 190 return 4; 191 case 34 ... 50: 192 { 193 int preg = reg - 34; 194 int vq, len = 0; 195 uint64_t *p = (uint64_t *) buf; 196 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 197 env->vfp.pregs[preg].p[vq / 4] = *p++; 198 len += 8; 199 } 200 return len; 201 } 202 case 51: 203 /* cannot set vg via gdbstub */ 204 return 0; 205 default: 206 /* gdbstub asked for something out our range */ 207 break; 208 } 209 210 return 0; 211 } 212 213 static void output_vector_union_type(GString *s, int reg_width) 214 { 215 struct TypeSize { 216 const char *gdb_type; 217 short size; 218 char sz, suffix; 219 }; 220 221 static const struct TypeSize vec_lanes[] = { 222 /* quads */ 223 { "uint128", 128, 'q', 'u' }, 224 { "int128", 128, 'q', 's' }, 225 /* 64 bit */ 226 { "ieee_double", 64, 'd', 'f' }, 227 { "uint64", 64, 'd', 'u' }, 228 { "int64", 64, 'd', 's' }, 229 /* 32 bit */ 230 { "ieee_single", 32, 's', 'f' }, 231 { "uint32", 32, 's', 'u' }, 232 { "int32", 32, 's', 's' }, 233 /* 16 bit */ 234 { "ieee_half", 16, 'h', 'f' }, 235 { "uint16", 16, 'h', 'u' }, 236 { "int16", 16, 'h', 's' }, 237 /* bytes */ 238 { "uint8", 8, 'b', 'u' }, 239 { "int8", 8, 'b', 's' }, 240 }; 241 242 static const char suf[] = { 'q', 'd', 's', 'h', 'b' }; 243 244 g_autoptr(GString) ts = g_string_new(""); 245 int i, j, bits; 246 247 /* First define types and totals in a whole VL */ 248 for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) { 249 int count = reg_width / vec_lanes[i].size; 250 g_string_printf(ts, "svev%c%c", vec_lanes[i].sz, vec_lanes[i].suffix); 251 g_string_append_printf(s, 252 "<vector id=\"%s\" type=\"%s\" count=\"%d\"/>", 253 ts->str, vec_lanes[i].gdb_type, count); 254 } 255 /* 256 * Now define a union for each size group containing unsigned and 257 * signed and potentially float versions of each size from 128 to 258 * 8 bits. 259 */ 260 for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) { 261 g_string_append_printf(s, "<union id=\"svevn%c\">", suf[i]); 262 for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) { 263 if (vec_lanes[j].size == bits) { 264 g_string_append_printf(s, "<field name=\"%c\" type=\"svev%c%c\"/>", 265 vec_lanes[j].suffix, 266 vec_lanes[j].sz, vec_lanes[j].suffix); 267 } 268 } 269 g_string_append(s, "</union>"); 270 } 271 /* And now the final union of unions */ 272 g_string_append(s, "<union id=\"svev\">"); 273 for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) { 274 g_string_append_printf(s, "<field name=\"%c\" type=\"svevn%c\"/>", 275 suf[i], suf[i]); 276 } 277 g_string_append(s, "</union>"); 278 } 279 280 int arm_gen_dynamic_svereg_xml(CPUState *cs, int orig_base_reg) 281 { 282 ARMCPU *cpu = ARM_CPU(cs); 283 GString *s = g_string_new(NULL); 284 DynamicGDBXMLInfo *info = &cpu->dyn_svereg_xml; 285 int reg_width = cpu->sve_max_vq * 128; 286 int base_reg = orig_base_reg; 287 int i; 288 289 g_string_printf(s, "<?xml version=\"1.0\"?>"); 290 g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"); 291 g_string_append_printf(s, "<feature name=\"org.gnu.gdb.aarch64.sve\">"); 292 293 /* Create the vector union type. */ 294 output_vector_union_type(s, reg_width); 295 296 /* Create the predicate vector type. */ 297 g_string_append_printf(s, 298 "<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>", 299 reg_width / 8); 300 301 /* Define the vector registers. */ 302 for (i = 0; i < 32; i++) { 303 g_string_append_printf(s, 304 "<reg name=\"z%d\" bitsize=\"%d\"" 305 " regnum=\"%d\" type=\"svev\"/>", 306 i, reg_width, base_reg++); 307 } 308 309 /* fpscr & status registers */ 310 g_string_append_printf(s, "<reg name=\"fpsr\" bitsize=\"32\"" 311 " regnum=\"%d\" group=\"float\"" 312 " type=\"int\"/>", base_reg++); 313 g_string_append_printf(s, "<reg name=\"fpcr\" bitsize=\"32\"" 314 " regnum=\"%d\" group=\"float\"" 315 " type=\"int\"/>", base_reg++); 316 317 /* Define the predicate registers. */ 318 for (i = 0; i < 16; i++) { 319 g_string_append_printf(s, 320 "<reg name=\"p%d\" bitsize=\"%d\"" 321 " regnum=\"%d\" type=\"svep\"/>", 322 i, cpu->sve_max_vq * 16, base_reg++); 323 } 324 g_string_append_printf(s, 325 "<reg name=\"ffr\" bitsize=\"%d\"" 326 " regnum=\"%d\" group=\"vector\"" 327 " type=\"svep\"/>", 328 cpu->sve_max_vq * 16, base_reg++); 329 330 /* Define the vector length pseudo-register. */ 331 g_string_append_printf(s, 332 "<reg name=\"vg\" bitsize=\"64\"" 333 " regnum=\"%d\" type=\"int\"/>", 334 base_reg++); 335 336 g_string_append_printf(s, "</feature>"); 337 338 info->desc = g_string_free(s, false); 339 info->num = base_reg - orig_base_reg; 340 return info->num; 341 } 342