xref: /openbmc/qemu/target/arm/cpu.h (revision 9d1401b79463e74adbfac69d836789d4e103fb61)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 #include "qapi/qapi-types-common.h"
28 
29 /* ARM processors have a weak memory model */
30 #define TCG_GUEST_DEFAULT_MO      (0)
31 
32 #ifdef TARGET_AARCH64
33 #define KVM_HAVE_MCE_INJECTION 1
34 #endif
35 
36 #define EXCP_UDEF            1   /* undefined instruction */
37 #define EXCP_SWI             2   /* software interrupt */
38 #define EXCP_PREFETCH_ABORT  3
39 #define EXCP_DATA_ABORT      4
40 #define EXCP_IRQ             5
41 #define EXCP_FIQ             6
42 #define EXCP_BKPT            7
43 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45 #define EXCP_HVC            11   /* HyperVisor Call */
46 #define EXCP_HYP_TRAP       12
47 #define EXCP_SMC            13   /* Secure Monitor Call */
48 #define EXCP_VIRQ           14
49 #define EXCP_VFIQ           15
50 #define EXCP_SEMIHOST       16   /* semihosting call */
51 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
52 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
53 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
54 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
55 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
56 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
57 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
58 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
59 
60 #define ARMV7M_EXCP_RESET   1
61 #define ARMV7M_EXCP_NMI     2
62 #define ARMV7M_EXCP_HARD    3
63 #define ARMV7M_EXCP_MEM     4
64 #define ARMV7M_EXCP_BUS     5
65 #define ARMV7M_EXCP_USAGE   6
66 #define ARMV7M_EXCP_SECURE  7
67 #define ARMV7M_EXCP_SVC     11
68 #define ARMV7M_EXCP_DEBUG   12
69 #define ARMV7M_EXCP_PENDSV  14
70 #define ARMV7M_EXCP_SYSTICK 15
71 
72 /* For M profile, some registers are banked secure vs non-secure;
73  * these are represented as a 2-element array where the first element
74  * is the non-secure copy and the second is the secure copy.
75  * When the CPU does not have implement the security extension then
76  * only the first element is used.
77  * This means that the copy for the current security state can be
78  * accessed via env->registerfield[env->v7m.secure] (whether the security
79  * extension is implemented or not).
80  */
81 enum {
82     M_REG_NS = 0,
83     M_REG_S = 1,
84     M_REG_NUM_BANKS = 2,
85 };
86 
87 /* ARM-specific interrupt pending bits.  */
88 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
89 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
90 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
91 
92 /* The usual mapping for an AArch64 system register to its AArch32
93  * counterpart is for the 32 bit world to have access to the lower
94  * half only (with writes leaving the upper half untouched). It's
95  * therefore useful to be able to pass TCG the offset of the least
96  * significant half of a uint64_t struct member.
97  */
98 #ifdef HOST_WORDS_BIGENDIAN
99 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 #define offsetofhigh32(S, M) offsetof(S, M)
101 #else
102 #define offsetoflow32(S, M) offsetof(S, M)
103 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
104 #endif
105 
106 /* Meanings of the ARMCPU object's four inbound GPIO lines */
107 #define ARM_CPU_IRQ 0
108 #define ARM_CPU_FIQ 1
109 #define ARM_CPU_VIRQ 2
110 #define ARM_CPU_VFIQ 3
111 
112 /* ARM-specific extra insn start words:
113  * 1: Conditional execution bits
114  * 2: Partial exception syndrome for data aborts
115  */
116 #define TARGET_INSN_START_EXTRA_WORDS 2
117 
118 /* The 2nd extra word holding syndrome info for data aborts does not use
119  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
120  * help the sleb128 encoder do a better job.
121  * When restoring the CPU state, we shift it back up.
122  */
123 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
124 #define ARM_INSN_START_WORD2_SHIFT 14
125 
126 /* We currently assume float and double are IEEE single and double
127    precision respectively.
128    Doing runtime conversions is tricky because VFP registers may contain
129    integer values (eg. as the result of a FTOSI instruction).
130    s<2n> maps to the least significant half of d<n>
131    s<2n+1> maps to the most significant half of d<n>
132  */
133 
134 /**
135  * DynamicGDBXMLInfo:
136  * @desc: Contains the XML descriptions.
137  * @num: Number of the registers in this XML seen by GDB.
138  * @data: A union with data specific to the set of registers
139  *    @cpregs_keys: Array that contains the corresponding Key of
140  *                  a given cpreg with the same order of the cpreg
141  *                  in the XML description.
142  */
143 typedef struct DynamicGDBXMLInfo {
144     char *desc;
145     int num;
146     union {
147         struct {
148             uint32_t *keys;
149         } cpregs;
150     } data;
151 } DynamicGDBXMLInfo;
152 
153 /* CPU state for each instance of a generic timer (in cp15 c14) */
154 typedef struct ARMGenericTimer {
155     uint64_t cval; /* Timer CompareValue register */
156     uint64_t ctl; /* Timer Control register */
157 } ARMGenericTimer;
158 
159 #define GTIMER_PHYS     0
160 #define GTIMER_VIRT     1
161 #define GTIMER_HYP      2
162 #define GTIMER_SEC      3
163 #define GTIMER_HYPVIRT  4
164 #define NUM_GTIMERS     5
165 
166 typedef struct {
167     uint64_t raw_tcr;
168     uint32_t mask;
169     uint32_t base_mask;
170 } TCR;
171 
172 #define VTCR_NSW (1u << 29)
173 #define VTCR_NSA (1u << 30)
174 #define VSTCR_SW VTCR_NSW
175 #define VSTCR_SA VTCR_NSA
176 
177 /* Define a maximum sized vector register.
178  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
179  * For 64-bit, this is a 2048-bit SVE register.
180  *
181  * Note that the mapping between S, D, and Q views of the register bank
182  * differs between AArch64 and AArch32.
183  * In AArch32:
184  *  Qn = regs[n].d[1]:regs[n].d[0]
185  *  Dn = regs[n / 2].d[n & 1]
186  *  Sn = regs[n / 4].d[n % 4 / 2],
187  *       bits 31..0 for even n, and bits 63..32 for odd n
188  *       (and regs[16] to regs[31] are inaccessible)
189  * In AArch64:
190  *  Zn = regs[n].d[*]
191  *  Qn = regs[n].d[1]:regs[n].d[0]
192  *  Dn = regs[n].d[0]
193  *  Sn = regs[n].d[0] bits 31..0
194  *  Hn = regs[n].d[0] bits 15..0
195  *
196  * This corresponds to the architecturally defined mapping between
197  * the two execution states, and means we do not need to explicitly
198  * map these registers when changing states.
199  *
200  * Align the data for use with TCG host vector operations.
201  */
202 
203 #ifdef TARGET_AARCH64
204 # define ARM_MAX_VQ    16
205 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
206 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
207 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
208 #else
209 # define ARM_MAX_VQ    1
210 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
211 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
212 static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
213 #endif
214 
215 typedef struct ARMVectorReg {
216     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
217 } ARMVectorReg;
218 
219 #ifdef TARGET_AARCH64
220 /* In AArch32 mode, predicate registers do not exist at all.  */
221 typedef struct ARMPredicateReg {
222     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
223 } ARMPredicateReg;
224 
225 /* In AArch32 mode, PAC keys do not exist at all.  */
226 typedef struct ARMPACKey {
227     uint64_t lo, hi;
228 } ARMPACKey;
229 #endif
230 
231 /* See the commentary above the TBFLAG field definitions.  */
232 typedef struct CPUARMTBFlags {
233     uint32_t flags;
234     target_ulong flags2;
235 } CPUARMTBFlags;
236 
237 typedef struct CPUArchState {
238     /* Regs for current mode.  */
239     uint32_t regs[16];
240 
241     /* 32/64 switch only happens when taking and returning from
242      * exceptions so the overlap semantics are taken care of then
243      * instead of having a complicated union.
244      */
245     /* Regs for A64 mode.  */
246     uint64_t xregs[32];
247     uint64_t pc;
248     /* PSTATE isn't an architectural register for ARMv8. However, it is
249      * convenient for us to assemble the underlying state into a 32 bit format
250      * identical to the architectural format used for the SPSR. (This is also
251      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
252      * 'pstate' register are.) Of the PSTATE bits:
253      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
254      *    semantics as for AArch32, as described in the comments on each field)
255      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
256      *  DAIF (exception masks) are kept in env->daif
257      *  BTYPE is kept in env->btype
258      *  all other bits are stored in their correct places in env->pstate
259      */
260     uint32_t pstate;
261     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
262 
263     /* Cached TBFLAGS state.  See below for which bits are included.  */
264     CPUARMTBFlags hflags;
265 
266     /* Frequently accessed CPSR bits are stored separately for efficiency.
267        This contains all the other bits.  Use cpsr_{read,write} to access
268        the whole CPSR.  */
269     uint32_t uncached_cpsr;
270     uint32_t spsr;
271 
272     /* Banked registers.  */
273     uint64_t banked_spsr[8];
274     uint32_t banked_r13[8];
275     uint32_t banked_r14[8];
276 
277     /* These hold r8-r12.  */
278     uint32_t usr_regs[5];
279     uint32_t fiq_regs[5];
280 
281     /* cpsr flag cache for faster execution */
282     uint32_t CF; /* 0 or 1 */
283     uint32_t VF; /* V is the bit 31. All other bits are undefined */
284     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
285     uint32_t ZF; /* Z set if zero.  */
286     uint32_t QF; /* 0 or 1 */
287     uint32_t GE; /* cpsr[19:16] */
288     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
289     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
290     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
291     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
292 
293     uint64_t elr_el[4]; /* AArch64 exception link regs  */
294     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
295 
296     /* System control coprocessor (cp15) */
297     struct {
298         uint32_t c0_cpuid;
299         union { /* Cache size selection */
300             struct {
301                 uint64_t _unused_csselr0;
302                 uint64_t csselr_ns;
303                 uint64_t _unused_csselr1;
304                 uint64_t csselr_s;
305             };
306             uint64_t csselr_el[4];
307         };
308         union { /* System control register. */
309             struct {
310                 uint64_t _unused_sctlr;
311                 uint64_t sctlr_ns;
312                 uint64_t hsctlr;
313                 uint64_t sctlr_s;
314             };
315             uint64_t sctlr_el[4];
316         };
317         uint64_t cpacr_el1; /* Architectural feature access control register */
318         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
319         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
320         uint64_t sder; /* Secure debug enable register. */
321         uint32_t nsacr; /* Non-secure access control register. */
322         union { /* MMU translation table base 0. */
323             struct {
324                 uint64_t _unused_ttbr0_0;
325                 uint64_t ttbr0_ns;
326                 uint64_t _unused_ttbr0_1;
327                 uint64_t ttbr0_s;
328             };
329             uint64_t ttbr0_el[4];
330         };
331         union { /* MMU translation table base 1. */
332             struct {
333                 uint64_t _unused_ttbr1_0;
334                 uint64_t ttbr1_ns;
335                 uint64_t _unused_ttbr1_1;
336                 uint64_t ttbr1_s;
337             };
338             uint64_t ttbr1_el[4];
339         };
340         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
341         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
342         /* MMU translation table base control. */
343         TCR tcr_el[4];
344         TCR vtcr_el2; /* Virtualization Translation Control.  */
345         TCR vstcr_el2; /* Secure Virtualization Translation Control. */
346         uint32_t c2_data; /* MPU data cacheable bits.  */
347         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
348         union { /* MMU domain access control register
349                  * MPU write buffer control.
350                  */
351             struct {
352                 uint64_t dacr_ns;
353                 uint64_t dacr_s;
354             };
355             struct {
356                 uint64_t dacr32_el2;
357             };
358         };
359         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
360         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
361         uint64_t hcr_el2; /* Hypervisor configuration register */
362         uint64_t scr_el3; /* Secure configuration register.  */
363         union { /* Fault status registers.  */
364             struct {
365                 uint64_t ifsr_ns;
366                 uint64_t ifsr_s;
367             };
368             struct {
369                 uint64_t ifsr32_el2;
370             };
371         };
372         union {
373             struct {
374                 uint64_t _unused_dfsr;
375                 uint64_t dfsr_ns;
376                 uint64_t hsr;
377                 uint64_t dfsr_s;
378             };
379             uint64_t esr_el[4];
380         };
381         uint32_t c6_region[8]; /* MPU base/size registers.  */
382         union { /* Fault address registers. */
383             struct {
384                 uint64_t _unused_far0;
385 #ifdef HOST_WORDS_BIGENDIAN
386                 uint32_t ifar_ns;
387                 uint32_t dfar_ns;
388                 uint32_t ifar_s;
389                 uint32_t dfar_s;
390 #else
391                 uint32_t dfar_ns;
392                 uint32_t ifar_ns;
393                 uint32_t dfar_s;
394                 uint32_t ifar_s;
395 #endif
396                 uint64_t _unused_far3;
397             };
398             uint64_t far_el[4];
399         };
400         uint64_t hpfar_el2;
401         uint64_t hstr_el2;
402         union { /* Translation result. */
403             struct {
404                 uint64_t _unused_par_0;
405                 uint64_t par_ns;
406                 uint64_t _unused_par_1;
407                 uint64_t par_s;
408             };
409             uint64_t par_el[4];
410         };
411 
412         uint32_t c9_insn; /* Cache lockdown registers.  */
413         uint32_t c9_data;
414         uint64_t c9_pmcr; /* performance monitor control register */
415         uint64_t c9_pmcnten; /* perf monitor counter enables */
416         uint64_t c9_pmovsr; /* perf monitor overflow status */
417         uint64_t c9_pmuserenr; /* perf monitor user enable */
418         uint64_t c9_pmselr; /* perf monitor counter selection register */
419         uint64_t c9_pminten; /* perf monitor interrupt enables */
420         union { /* Memory attribute redirection */
421             struct {
422 #ifdef HOST_WORDS_BIGENDIAN
423                 uint64_t _unused_mair_0;
424                 uint32_t mair1_ns;
425                 uint32_t mair0_ns;
426                 uint64_t _unused_mair_1;
427                 uint32_t mair1_s;
428                 uint32_t mair0_s;
429 #else
430                 uint64_t _unused_mair_0;
431                 uint32_t mair0_ns;
432                 uint32_t mair1_ns;
433                 uint64_t _unused_mair_1;
434                 uint32_t mair0_s;
435                 uint32_t mair1_s;
436 #endif
437             };
438             uint64_t mair_el[4];
439         };
440         union { /* vector base address register */
441             struct {
442                 uint64_t _unused_vbar;
443                 uint64_t vbar_ns;
444                 uint64_t hvbar;
445                 uint64_t vbar_s;
446             };
447             uint64_t vbar_el[4];
448         };
449         uint32_t mvbar; /* (monitor) vector base address register */
450         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
451         struct { /* FCSE PID. */
452             uint32_t fcseidr_ns;
453             uint32_t fcseidr_s;
454         };
455         union { /* Context ID. */
456             struct {
457                 uint64_t _unused_contextidr_0;
458                 uint64_t contextidr_ns;
459                 uint64_t _unused_contextidr_1;
460                 uint64_t contextidr_s;
461             };
462             uint64_t contextidr_el[4];
463         };
464         union { /* User RW Thread register. */
465             struct {
466                 uint64_t tpidrurw_ns;
467                 uint64_t tpidrprw_ns;
468                 uint64_t htpidr;
469                 uint64_t _tpidr_el3;
470             };
471             uint64_t tpidr_el[4];
472         };
473         /* The secure banks of these registers don't map anywhere */
474         uint64_t tpidrurw_s;
475         uint64_t tpidrprw_s;
476         uint64_t tpidruro_s;
477 
478         union { /* User RO Thread register. */
479             uint64_t tpidruro_ns;
480             uint64_t tpidrro_el[1];
481         };
482         uint64_t c14_cntfrq; /* Counter Frequency register */
483         uint64_t c14_cntkctl; /* Timer Control register */
484         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
485         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
486         ARMGenericTimer c14_timer[NUM_GTIMERS];
487         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
488         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
489         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
490         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
491         uint32_t c15_threadid; /* TI debugger thread-ID.  */
492         uint32_t c15_config_base_address; /* SCU base address.  */
493         uint32_t c15_diagnostic; /* diagnostic register */
494         uint32_t c15_power_diagnostic;
495         uint32_t c15_power_control; /* power control */
496         uint64_t dbgbvr[16]; /* breakpoint value registers */
497         uint64_t dbgbcr[16]; /* breakpoint control registers */
498         uint64_t dbgwvr[16]; /* watchpoint value registers */
499         uint64_t dbgwcr[16]; /* watchpoint control registers */
500         uint64_t mdscr_el1;
501         uint64_t oslsr_el1; /* OS Lock Status */
502         uint64_t mdcr_el2;
503         uint64_t mdcr_el3;
504         /* Stores the architectural value of the counter *the last time it was
505          * updated* by pmccntr_op_start. Accesses should always be surrounded
506          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
507          * architecturally-correct value is being read/set.
508          */
509         uint64_t c15_ccnt;
510         /* Stores the delta between the architectural value and the underlying
511          * cycle count during normal operation. It is used to update c15_ccnt
512          * to be the correct architectural value before accesses. During
513          * accesses, c15_ccnt_delta contains the underlying count being used
514          * for the access, after which it reverts to the delta value in
515          * pmccntr_op_finish.
516          */
517         uint64_t c15_ccnt_delta;
518         uint64_t c14_pmevcntr[31];
519         uint64_t c14_pmevcntr_delta[31];
520         uint64_t c14_pmevtyper[31];
521         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
522         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
523         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
524         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
525         uint64_t gcr_el1;
526         uint64_t rgsr_el1;
527     } cp15;
528 
529     struct {
530         /* M profile has up to 4 stack pointers:
531          * a Main Stack Pointer and a Process Stack Pointer for each
532          * of the Secure and Non-Secure states. (If the CPU doesn't support
533          * the security extension then it has only two SPs.)
534          * In QEMU we always store the currently active SP in regs[13],
535          * and the non-active SP for the current security state in
536          * v7m.other_sp. The stack pointers for the inactive security state
537          * are stored in other_ss_msp and other_ss_psp.
538          * switch_v7m_security_state() is responsible for rearranging them
539          * when we change security state.
540          */
541         uint32_t other_sp;
542         uint32_t other_ss_msp;
543         uint32_t other_ss_psp;
544         uint32_t vecbase[M_REG_NUM_BANKS];
545         uint32_t basepri[M_REG_NUM_BANKS];
546         uint32_t control[M_REG_NUM_BANKS];
547         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
548         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
549         uint32_t hfsr; /* HardFault Status */
550         uint32_t dfsr; /* Debug Fault Status Register */
551         uint32_t sfsr; /* Secure Fault Status Register */
552         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
553         uint32_t bfar; /* BusFault Address */
554         uint32_t sfar; /* Secure Fault Address Register */
555         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
556         int exception;
557         uint32_t primask[M_REG_NUM_BANKS];
558         uint32_t faultmask[M_REG_NUM_BANKS];
559         uint32_t aircr; /* only holds r/w state if security extn implemented */
560         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
561         uint32_t csselr[M_REG_NUM_BANKS];
562         uint32_t scr[M_REG_NUM_BANKS];
563         uint32_t msplim[M_REG_NUM_BANKS];
564         uint32_t psplim[M_REG_NUM_BANKS];
565         uint32_t fpcar[M_REG_NUM_BANKS];
566         uint32_t fpccr[M_REG_NUM_BANKS];
567         uint32_t fpdscr[M_REG_NUM_BANKS];
568         uint32_t cpacr[M_REG_NUM_BANKS];
569         uint32_t nsacr;
570         uint32_t ltpsize;
571         uint32_t vpr;
572     } v7m;
573 
574     /* Information associated with an exception about to be taken:
575      * code which raises an exception must set cs->exception_index and
576      * the relevant parts of this structure; the cpu_do_interrupt function
577      * will then set the guest-visible registers as part of the exception
578      * entry process.
579      */
580     struct {
581         uint32_t syndrome; /* AArch64 format syndrome register */
582         uint32_t fsr; /* AArch32 format fault status register info */
583         uint64_t vaddress; /* virtual addr associated with exception, if any */
584         uint32_t target_el; /* EL the exception should be targeted for */
585         /* If we implement EL2 we will also need to store information
586          * about the intermediate physical address for stage 2 faults.
587          */
588     } exception;
589 
590     /* Information associated with an SError */
591     struct {
592         uint8_t pending;
593         uint8_t has_esr;
594         uint64_t esr;
595     } serror;
596 
597     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
598 
599     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
600     uint32_t irq_line_state;
601 
602     /* Thumb-2 EE state.  */
603     uint32_t teecr;
604     uint32_t teehbr;
605 
606     /* VFP coprocessor state.  */
607     struct {
608         ARMVectorReg zregs[32];
609 
610 #ifdef TARGET_AARCH64
611         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
612 #define FFR_PRED_NUM 16
613         ARMPredicateReg pregs[17];
614         /* Scratch space for aa64 sve predicate temporary.  */
615         ARMPredicateReg preg_tmp;
616 #endif
617 
618         /* We store these fpcsr fields separately for convenience.  */
619         uint32_t qc[4] QEMU_ALIGNED(16);
620         int vec_len;
621         int vec_stride;
622 
623         uint32_t xregs[16];
624 
625         /* Scratch space for aa32 neon expansion.  */
626         uint32_t scratch[8];
627 
628         /* There are a number of distinct float control structures:
629          *
630          *  fp_status: is the "normal" fp status.
631          *  fp_status_fp16: used for half-precision calculations
632          *  standard_fp_status : the ARM "Standard FPSCR Value"
633          *  standard_fp_status_fp16 : used for half-precision
634          *       calculations with the ARM "Standard FPSCR Value"
635          *
636          * Half-precision operations are governed by a separate
637          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
638          * status structure to control this.
639          *
640          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
641          * round-to-nearest and is used by any operations (generally
642          * Neon) which the architecture defines as controlled by the
643          * standard FPSCR value rather than the FPSCR.
644          *
645          * The "standard FPSCR but for fp16 ops" is needed because
646          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
647          * using a fixed value for it.
648          *
649          * To avoid having to transfer exception bits around, we simply
650          * say that the FPSCR cumulative exception flags are the logical
651          * OR of the flags in the four fp statuses. This relies on the
652          * only thing which needs to read the exception flags being
653          * an explicit FPSCR read.
654          */
655         float_status fp_status;
656         float_status fp_status_f16;
657         float_status standard_fp_status;
658         float_status standard_fp_status_f16;
659 
660         /* ZCR_EL[1-3] */
661         uint64_t zcr_el[4];
662     } vfp;
663     uint64_t exclusive_addr;
664     uint64_t exclusive_val;
665     uint64_t exclusive_high;
666 
667     /* iwMMXt coprocessor state.  */
668     struct {
669         uint64_t regs[16];
670         uint64_t val;
671 
672         uint32_t cregs[16];
673     } iwmmxt;
674 
675 #ifdef TARGET_AARCH64
676     struct {
677         ARMPACKey apia;
678         ARMPACKey apib;
679         ARMPACKey apda;
680         ARMPACKey apdb;
681         ARMPACKey apga;
682     } keys;
683 #endif
684 
685 #if defined(CONFIG_USER_ONLY)
686     /* For usermode syscall translation.  */
687     int eabi;
688 #endif
689 
690     struct CPUBreakpoint *cpu_breakpoint[16];
691     struct CPUWatchpoint *cpu_watchpoint[16];
692 
693     /* Fields up to this point are cleared by a CPU reset */
694     struct {} end_reset_fields;
695 
696     /* Fields after this point are preserved across CPU reset. */
697 
698     /* Internal CPU feature flags.  */
699     uint64_t features;
700 
701     /* PMSAv7 MPU */
702     struct {
703         uint32_t *drbar;
704         uint32_t *drsr;
705         uint32_t *dracr;
706         uint32_t rnr[M_REG_NUM_BANKS];
707     } pmsav7;
708 
709     /* PMSAv8 MPU */
710     struct {
711         /* The PMSAv8 implementation also shares some PMSAv7 config
712          * and state:
713          *  pmsav7.rnr (region number register)
714          *  pmsav7_dregion (number of configured regions)
715          */
716         uint32_t *rbar[M_REG_NUM_BANKS];
717         uint32_t *rlar[M_REG_NUM_BANKS];
718         uint32_t mair0[M_REG_NUM_BANKS];
719         uint32_t mair1[M_REG_NUM_BANKS];
720     } pmsav8;
721 
722     /* v8M SAU */
723     struct {
724         uint32_t *rbar;
725         uint32_t *rlar;
726         uint32_t rnr;
727         uint32_t ctrl;
728     } sau;
729 
730     void *nvic;
731     const struct arm_boot_info *boot_info;
732     /* Store GICv3CPUState to access from this struct */
733     void *gicv3state;
734 
735 #ifdef TARGET_TAGGED_ADDRESSES
736     /* Linux syscall tagged address support */
737     bool tagged_addr_enable;
738 #endif
739 } CPUARMState;
740 
741 static inline void set_feature(CPUARMState *env, int feature)
742 {
743     env->features |= 1ULL << feature;
744 }
745 
746 static inline void unset_feature(CPUARMState *env, int feature)
747 {
748     env->features &= ~(1ULL << feature);
749 }
750 
751 /**
752  * ARMELChangeHookFn:
753  * type of a function which can be registered via arm_register_el_change_hook()
754  * to get callbacks when the CPU changes its exception level or mode.
755  */
756 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
757 typedef struct ARMELChangeHook ARMELChangeHook;
758 struct ARMELChangeHook {
759     ARMELChangeHookFn *hook;
760     void *opaque;
761     QLIST_ENTRY(ARMELChangeHook) node;
762 };
763 
764 /* These values map onto the return values for
765  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
766 typedef enum ARMPSCIState {
767     PSCI_ON = 0,
768     PSCI_OFF = 1,
769     PSCI_ON_PENDING = 2
770 } ARMPSCIState;
771 
772 typedef struct ARMISARegisters ARMISARegisters;
773 
774 /**
775  * ARMCPU:
776  * @env: #CPUARMState
777  *
778  * An ARM CPU core.
779  */
780 struct ArchCPU {
781     /*< private >*/
782     CPUState parent_obj;
783     /*< public >*/
784 
785     CPUNegativeOffsetState neg;
786     CPUARMState env;
787 
788     /* Coprocessor information */
789     GHashTable *cp_regs;
790     /* For marshalling (mostly coprocessor) register state between the
791      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
792      * we use these arrays.
793      */
794     /* List of register indexes managed via these arrays; (full KVM style
795      * 64 bit indexes, not CPRegInfo 32 bit indexes)
796      */
797     uint64_t *cpreg_indexes;
798     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
799     uint64_t *cpreg_values;
800     /* Length of the indexes, values, reset_values arrays */
801     int32_t cpreg_array_len;
802     /* These are used only for migration: incoming data arrives in
803      * these fields and is sanity checked in post_load before copying
804      * to the working data structures above.
805      */
806     uint64_t *cpreg_vmstate_indexes;
807     uint64_t *cpreg_vmstate_values;
808     int32_t cpreg_vmstate_array_len;
809 
810     DynamicGDBXMLInfo dyn_sysreg_xml;
811     DynamicGDBXMLInfo dyn_svereg_xml;
812 
813     /* Timers used by the generic (architected) timer */
814     QEMUTimer *gt_timer[NUM_GTIMERS];
815     /*
816      * Timer used by the PMU. Its state is restored after migration by
817      * pmu_op_finish() - it does not need other handling during migration
818      */
819     QEMUTimer *pmu_timer;
820     /* GPIO outputs for generic timer */
821     qemu_irq gt_timer_outputs[NUM_GTIMERS];
822     /* GPIO output for GICv3 maintenance interrupt signal */
823     qemu_irq gicv3_maintenance_interrupt;
824     /* GPIO output for the PMU interrupt */
825     qemu_irq pmu_interrupt;
826 
827     /* MemoryRegion to use for secure physical accesses */
828     MemoryRegion *secure_memory;
829 
830     /* MemoryRegion to use for allocation tag accesses */
831     MemoryRegion *tag_memory;
832     MemoryRegion *secure_tag_memory;
833 
834     /* For v8M, pointer to the IDAU interface provided by board/SoC */
835     Object *idau;
836 
837     /* 'compatible' string for this CPU for Linux device trees */
838     const char *dtb_compatible;
839 
840     /* PSCI version for this CPU
841      * Bits[31:16] = Major Version
842      * Bits[15:0] = Minor Version
843      */
844     uint32_t psci_version;
845 
846     /* Current power state, access guarded by BQL */
847     ARMPSCIState power_state;
848 
849     /* CPU has virtualization extension */
850     bool has_el2;
851     /* CPU has security extension */
852     bool has_el3;
853     /* CPU has PMU (Performance Monitor Unit) */
854     bool has_pmu;
855     /* CPU has VFP */
856     bool has_vfp;
857     /* CPU has Neon */
858     bool has_neon;
859     /* CPU has M-profile DSP extension */
860     bool has_dsp;
861 
862     /* CPU has memory protection unit */
863     bool has_mpu;
864     /* PMSAv7 MPU number of supported regions */
865     uint32_t pmsav7_dregion;
866     /* v8M SAU number of supported regions */
867     uint32_t sau_sregion;
868 
869     /* PSCI conduit used to invoke PSCI methods
870      * 0 - disabled, 1 - smc, 2 - hvc
871      */
872     uint32_t psci_conduit;
873 
874     /* For v8M, initial value of the Secure VTOR */
875     uint32_t init_svtor;
876     /* For v8M, initial value of the Non-secure VTOR */
877     uint32_t init_nsvtor;
878 
879     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
880      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
881      */
882     uint32_t kvm_target;
883 
884     /* KVM init features for this CPU */
885     uint32_t kvm_init_features[7];
886 
887     /* KVM CPU state */
888 
889     /* KVM virtual time adjustment */
890     bool kvm_adjvtime;
891     bool kvm_vtime_dirty;
892     uint64_t kvm_vtime;
893 
894     /* KVM steal time */
895     OnOffAuto kvm_steal_time;
896 
897     /* Uniprocessor system with MP extensions */
898     bool mp_is_up;
899 
900     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
901      * and the probe failed (so we need to report the error in realize)
902      */
903     bool host_cpu_probe_failed;
904 
905     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
906      * register.
907      */
908     int32_t core_count;
909 
910     /* The instance init functions for implementation-specific subclasses
911      * set these fields to specify the implementation-dependent values of
912      * various constant registers and reset values of non-constant
913      * registers.
914      * Some of these might become QOM properties eventually.
915      * Field names match the official register names as defined in the
916      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
917      * is used for reset values of non-constant registers; no reset_
918      * prefix means a constant register.
919      * Some of these registers are split out into a substructure that
920      * is shared with the translators to control the ISA.
921      *
922      * Note that if you add an ID register to the ARMISARegisters struct
923      * you need to also update the 32-bit and 64-bit versions of the
924      * kvm_arm_get_host_cpu_features() function to correctly populate the
925      * field by reading the value from the KVM vCPU.
926      */
927     struct ARMISARegisters {
928         uint32_t id_isar0;
929         uint32_t id_isar1;
930         uint32_t id_isar2;
931         uint32_t id_isar3;
932         uint32_t id_isar4;
933         uint32_t id_isar5;
934         uint32_t id_isar6;
935         uint32_t id_mmfr0;
936         uint32_t id_mmfr1;
937         uint32_t id_mmfr2;
938         uint32_t id_mmfr3;
939         uint32_t id_mmfr4;
940         uint32_t id_pfr0;
941         uint32_t id_pfr1;
942         uint32_t id_pfr2;
943         uint32_t mvfr0;
944         uint32_t mvfr1;
945         uint32_t mvfr2;
946         uint32_t id_dfr0;
947         uint32_t dbgdidr;
948         uint64_t id_aa64isar0;
949         uint64_t id_aa64isar1;
950         uint64_t id_aa64pfr0;
951         uint64_t id_aa64pfr1;
952         uint64_t id_aa64mmfr0;
953         uint64_t id_aa64mmfr1;
954         uint64_t id_aa64mmfr2;
955         uint64_t id_aa64dfr0;
956         uint64_t id_aa64dfr1;
957         uint64_t id_aa64zfr0;
958     } isar;
959     uint64_t midr;
960     uint32_t revidr;
961     uint32_t reset_fpsid;
962     uint64_t ctr;
963     uint32_t reset_sctlr;
964     uint64_t pmceid0;
965     uint64_t pmceid1;
966     uint32_t id_afr0;
967     uint64_t id_aa64afr0;
968     uint64_t id_aa64afr1;
969     uint64_t clidr;
970     uint64_t mp_affinity; /* MP ID without feature bits */
971     /* The elements of this array are the CCSIDR values for each cache,
972      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
973      */
974     uint64_t ccsidr[16];
975     uint64_t reset_cbar;
976     uint32_t reset_auxcr;
977     bool reset_hivecs;
978 
979     /*
980      * Intermediate values used during property parsing.
981      * Once finalized, the values should be read from ID_AA64*.
982      */
983     bool prop_pauth;
984     bool prop_pauth_impdef;
985     bool prop_lpa2;
986 
987     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
988     uint32_t dcz_blocksize;
989     uint64_t rvbar_prop; /* Property/input signals.  */
990 
991     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
992     int gic_num_lrs; /* number of list registers */
993     int gic_vpribits; /* number of virtual priority bits */
994     int gic_vprebits; /* number of virtual preemption bits */
995 
996     /* Whether the cfgend input is high (i.e. this CPU should reset into
997      * big-endian mode).  This setting isn't used directly: instead it modifies
998      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
999      * architecture version.
1000      */
1001     bool cfgend;
1002 
1003     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1004     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1005 
1006     int32_t node_id; /* NUMA node this CPU belongs to */
1007 
1008     /* Used to synchronize KVM and QEMU in-kernel device levels */
1009     uint8_t device_irq_level;
1010 
1011     /* Used to set the maximum vector length the cpu will support.  */
1012     uint32_t sve_max_vq;
1013 
1014 #ifdef CONFIG_USER_ONLY
1015     /* Used to set the default vector length at process start. */
1016     uint32_t sve_default_vq;
1017 #endif
1018 
1019     /*
1020      * In sve_vq_map each set bit is a supported vector length of
1021      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1022      * length in quadwords.
1023      *
1024      * While processing properties during initialization, corresponding
1025      * sve_vq_init bits are set for bits in sve_vq_map that have been
1026      * set by properties.
1027      *
1028      * Bits set in sve_vq_supported represent valid vector lengths for
1029      * the CPU type.
1030      */
1031     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1032     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1033     DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ);
1034 
1035     /* Generic timer counter frequency, in Hz */
1036     uint64_t gt_cntfrq_hz;
1037 };
1038 
1039 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1040 
1041 void arm_cpu_post_init(Object *obj);
1042 
1043 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1044 
1045 #ifndef CONFIG_USER_ONLY
1046 extern const VMStateDescription vmstate_arm_cpu;
1047 
1048 void arm_cpu_do_interrupt(CPUState *cpu);
1049 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1050 #endif /* !CONFIG_USER_ONLY */
1051 
1052 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1053                                          MemTxAttrs *attrs);
1054 
1055 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1056 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1057 
1058 /*
1059  * Helpers to dynamically generates XML descriptions of the sysregs
1060  * and SVE registers. Returns the number of registers in each set.
1061  */
1062 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1063 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1064 
1065 /* Returns the dynamically generated XML for the gdb stub.
1066  * Returns a pointer to the XML contents for the specified XML file or NULL
1067  * if the XML name doesn't match the predefined one.
1068  */
1069 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1070 
1071 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1072                              int cpuid, void *opaque);
1073 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1074                              int cpuid, void *opaque);
1075 
1076 #ifdef TARGET_AARCH64
1077 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1078 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1079 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1080 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1081                            int new_el, bool el0_a64);
1082 void aarch64_add_sve_properties(Object *obj);
1083 void aarch64_add_pauth_properties(Object *obj);
1084 
1085 /*
1086  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1087  * The byte at offset i from the start of the in-memory representation contains
1088  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1089  * lowest offsets are stored in the lowest memory addresses, then that nearly
1090  * matches QEMU's representation, which is to use an array of host-endian
1091  * uint64_t's, where the lower offsets are at the lower indices. To complete
1092  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1093  */
1094 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1095 {
1096 #ifdef HOST_WORDS_BIGENDIAN
1097     int i;
1098 
1099     for (i = 0; i < nr; ++i) {
1100         dst[i] = bswap64(src[i]);
1101     }
1102 
1103     return dst;
1104 #else
1105     return src;
1106 #endif
1107 }
1108 
1109 #else
1110 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1111 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1112                                          int n, bool a)
1113 { }
1114 static inline void aarch64_add_sve_properties(Object *obj) { }
1115 #endif
1116 
1117 void aarch64_sync_32_to_64(CPUARMState *env);
1118 void aarch64_sync_64_to_32(CPUARMState *env);
1119 
1120 int fp_exception_el(CPUARMState *env, int cur_el);
1121 int sve_exception_el(CPUARMState *env, int cur_el);
1122 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1123 
1124 static inline bool is_a64(CPUARMState *env)
1125 {
1126     return env->aarch64;
1127 }
1128 
1129 /**
1130  * pmu_op_start/finish
1131  * @env: CPUARMState
1132  *
1133  * Convert all PMU counters between their delta form (the typical mode when
1134  * they are enabled) and the guest-visible values. These two calls must
1135  * surround any action which might affect the counters.
1136  */
1137 void pmu_op_start(CPUARMState *env);
1138 void pmu_op_finish(CPUARMState *env);
1139 
1140 /*
1141  * Called when a PMU counter is due to overflow
1142  */
1143 void arm_pmu_timer_cb(void *opaque);
1144 
1145 /**
1146  * Functions to register as EL change hooks for PMU mode filtering
1147  */
1148 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1149 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1150 
1151 /*
1152  * pmu_init
1153  * @cpu: ARMCPU
1154  *
1155  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1156  * for the current configuration
1157  */
1158 void pmu_init(ARMCPU *cpu);
1159 
1160 /* SCTLR bit meanings. Several bits have been reused in newer
1161  * versions of the architecture; in that case we define constants
1162  * for both old and new bit meanings. Code which tests against those
1163  * bits should probably check or otherwise arrange that the CPU
1164  * is the architectural version it expects.
1165  */
1166 #define SCTLR_M       (1U << 0)
1167 #define SCTLR_A       (1U << 1)
1168 #define SCTLR_C       (1U << 2)
1169 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1170 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1171 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1172 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1173 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1174 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1175 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1176 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1177 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1178 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1179 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1180 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1181 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1182 #define SCTLR_SED     (1U << 8) /* v8 onward */
1183 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1184 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1185 #define SCTLR_F       (1U << 10) /* up to v6 */
1186 #define SCTLR_SW      (1U << 10) /* v7 */
1187 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1188 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1189 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1190 #define SCTLR_I       (1U << 12)
1191 #define SCTLR_V       (1U << 13) /* AArch32 only */
1192 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1193 #define SCTLR_RR      (1U << 14) /* up to v7 */
1194 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1195 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1196 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1197 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1198 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1199 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1200 #define SCTLR_BR      (1U << 17) /* PMSA only */
1201 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1202 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1203 #define SCTLR_WXN     (1U << 19)
1204 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1205 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1206 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1207 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1208 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1209 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1210 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1211 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1212 #define SCTLR_VE      (1U << 24) /* up to v7 */
1213 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1214 #define SCTLR_EE      (1U << 25)
1215 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1216 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1217 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1218 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1219 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1220 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1221 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1222 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1223 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1224 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1225 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1226 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1227 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1228 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1229 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1230 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1231 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1232 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1233 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1234 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1235 
1236 #define CPTR_TCPAC    (1U << 31)
1237 #define CPTR_TTA      (1U << 20)
1238 #define CPTR_TFP      (1U << 10)
1239 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1240 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1241 
1242 #define MDCR_EPMAD    (1U << 21)
1243 #define MDCR_EDAD     (1U << 20)
1244 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1245 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1246 #define MDCR_SDD      (1U << 16)
1247 #define MDCR_SPD      (3U << 14)
1248 #define MDCR_TDRA     (1U << 11)
1249 #define MDCR_TDOSA    (1U << 10)
1250 #define MDCR_TDA      (1U << 9)
1251 #define MDCR_TDE      (1U << 8)
1252 #define MDCR_HPME     (1U << 7)
1253 #define MDCR_TPM      (1U << 6)
1254 #define MDCR_TPMCR    (1U << 5)
1255 #define MDCR_HPMN     (0x1fU)
1256 
1257 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1258 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1259 
1260 #define CPSR_M (0x1fU)
1261 #define CPSR_T (1U << 5)
1262 #define CPSR_F (1U << 6)
1263 #define CPSR_I (1U << 7)
1264 #define CPSR_A (1U << 8)
1265 #define CPSR_E (1U << 9)
1266 #define CPSR_IT_2_7 (0xfc00U)
1267 #define CPSR_GE (0xfU << 16)
1268 #define CPSR_IL (1U << 20)
1269 #define CPSR_DIT (1U << 21)
1270 #define CPSR_PAN (1U << 22)
1271 #define CPSR_SSBS (1U << 23)
1272 #define CPSR_J (1U << 24)
1273 #define CPSR_IT_0_1 (3U << 25)
1274 #define CPSR_Q (1U << 27)
1275 #define CPSR_V (1U << 28)
1276 #define CPSR_C (1U << 29)
1277 #define CPSR_Z (1U << 30)
1278 #define CPSR_N (1U << 31)
1279 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1280 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1281 
1282 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1283 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1284     | CPSR_NZCV)
1285 /* Bits writable in user mode.  */
1286 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1287 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1288 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1289 
1290 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1291 #define XPSR_EXCP 0x1ffU
1292 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1293 #define XPSR_IT_2_7 CPSR_IT_2_7
1294 #define XPSR_GE CPSR_GE
1295 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1296 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1297 #define XPSR_IT_0_1 CPSR_IT_0_1
1298 #define XPSR_Q CPSR_Q
1299 #define XPSR_V CPSR_V
1300 #define XPSR_C CPSR_C
1301 #define XPSR_Z CPSR_Z
1302 #define XPSR_N CPSR_N
1303 #define XPSR_NZCV CPSR_NZCV
1304 #define XPSR_IT CPSR_IT
1305 
1306 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1307 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1308 #define TTBCR_PD0    (1U << 4)
1309 #define TTBCR_PD1    (1U << 5)
1310 #define TTBCR_EPD0   (1U << 7)
1311 #define TTBCR_IRGN0  (3U << 8)
1312 #define TTBCR_ORGN0  (3U << 10)
1313 #define TTBCR_SH0    (3U << 12)
1314 #define TTBCR_T1SZ   (3U << 16)
1315 #define TTBCR_A1     (1U << 22)
1316 #define TTBCR_EPD1   (1U << 23)
1317 #define TTBCR_IRGN1  (3U << 24)
1318 #define TTBCR_ORGN1  (3U << 26)
1319 #define TTBCR_SH1    (1U << 28)
1320 #define TTBCR_EAE    (1U << 31)
1321 
1322 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1323  * Only these are valid when in AArch64 mode; in
1324  * AArch32 mode SPSRs are basically CPSR-format.
1325  */
1326 #define PSTATE_SP (1U)
1327 #define PSTATE_M (0xFU)
1328 #define PSTATE_nRW (1U << 4)
1329 #define PSTATE_F (1U << 6)
1330 #define PSTATE_I (1U << 7)
1331 #define PSTATE_A (1U << 8)
1332 #define PSTATE_D (1U << 9)
1333 #define PSTATE_BTYPE (3U << 10)
1334 #define PSTATE_SSBS (1U << 12)
1335 #define PSTATE_IL (1U << 20)
1336 #define PSTATE_SS (1U << 21)
1337 #define PSTATE_PAN (1U << 22)
1338 #define PSTATE_UAO (1U << 23)
1339 #define PSTATE_DIT (1U << 24)
1340 #define PSTATE_TCO (1U << 25)
1341 #define PSTATE_V (1U << 28)
1342 #define PSTATE_C (1U << 29)
1343 #define PSTATE_Z (1U << 30)
1344 #define PSTATE_N (1U << 31)
1345 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1346 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1347 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1348 /* Mode values for AArch64 */
1349 #define PSTATE_MODE_EL3h 13
1350 #define PSTATE_MODE_EL3t 12
1351 #define PSTATE_MODE_EL2h 9
1352 #define PSTATE_MODE_EL2t 8
1353 #define PSTATE_MODE_EL1h 5
1354 #define PSTATE_MODE_EL1t 4
1355 #define PSTATE_MODE_EL0t 0
1356 
1357 /* Write a new value to v7m.exception, thus transitioning into or out
1358  * of Handler mode; this may result in a change of active stack pointer.
1359  */
1360 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1361 
1362 /* Map EL and handler into a PSTATE_MODE.  */
1363 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1364 {
1365     return (el << 2) | handler;
1366 }
1367 
1368 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1369  * interprocessing, so we don't attempt to sync with the cpsr state used by
1370  * the 32 bit decoder.
1371  */
1372 static inline uint32_t pstate_read(CPUARMState *env)
1373 {
1374     int ZF;
1375 
1376     ZF = (env->ZF == 0);
1377     return (env->NF & 0x80000000) | (ZF << 30)
1378         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1379         | env->pstate | env->daif | (env->btype << 10);
1380 }
1381 
1382 static inline void pstate_write(CPUARMState *env, uint32_t val)
1383 {
1384     env->ZF = (~val) & PSTATE_Z;
1385     env->NF = val;
1386     env->CF = (val >> 29) & 1;
1387     env->VF = (val << 3) & 0x80000000;
1388     env->daif = val & PSTATE_DAIF;
1389     env->btype = (val >> 10) & 3;
1390     env->pstate = val & ~CACHED_PSTATE_BITS;
1391 }
1392 
1393 /* Return the current CPSR value.  */
1394 uint32_t cpsr_read(CPUARMState *env);
1395 
1396 typedef enum CPSRWriteType {
1397     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1398     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1399     CPSRWriteRaw = 2,
1400         /* trust values, no reg bank switch, no hflags rebuild */
1401     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1402 } CPSRWriteType;
1403 
1404 /*
1405  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1406  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1407  * correspond to TB flags bits cached in the hflags, unless @write_type
1408  * is CPSRWriteRaw.
1409  */
1410 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1411                 CPSRWriteType write_type);
1412 
1413 /* Return the current xPSR value.  */
1414 static inline uint32_t xpsr_read(CPUARMState *env)
1415 {
1416     int ZF;
1417     ZF = (env->ZF == 0);
1418     return (env->NF & 0x80000000) | (ZF << 30)
1419         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1420         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1421         | ((env->condexec_bits & 0xfc) << 8)
1422         | (env->GE << 16)
1423         | env->v7m.exception;
1424 }
1425 
1426 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1427 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1428 {
1429     if (mask & XPSR_NZCV) {
1430         env->ZF = (~val) & XPSR_Z;
1431         env->NF = val;
1432         env->CF = (val >> 29) & 1;
1433         env->VF = (val << 3) & 0x80000000;
1434     }
1435     if (mask & XPSR_Q) {
1436         env->QF = ((val & XPSR_Q) != 0);
1437     }
1438     if (mask & XPSR_GE) {
1439         env->GE = (val & XPSR_GE) >> 16;
1440     }
1441 #ifndef CONFIG_USER_ONLY
1442     if (mask & XPSR_T) {
1443         env->thumb = ((val & XPSR_T) != 0);
1444     }
1445     if (mask & XPSR_IT_0_1) {
1446         env->condexec_bits &= ~3;
1447         env->condexec_bits |= (val >> 25) & 3;
1448     }
1449     if (mask & XPSR_IT_2_7) {
1450         env->condexec_bits &= 3;
1451         env->condexec_bits |= (val >> 8) & 0xfc;
1452     }
1453     if (mask & XPSR_EXCP) {
1454         /* Note that this only happens on exception exit */
1455         write_v7m_exception(env, val & XPSR_EXCP);
1456     }
1457 #endif
1458 }
1459 
1460 #define HCR_VM        (1ULL << 0)
1461 #define HCR_SWIO      (1ULL << 1)
1462 #define HCR_PTW       (1ULL << 2)
1463 #define HCR_FMO       (1ULL << 3)
1464 #define HCR_IMO       (1ULL << 4)
1465 #define HCR_AMO       (1ULL << 5)
1466 #define HCR_VF        (1ULL << 6)
1467 #define HCR_VI        (1ULL << 7)
1468 #define HCR_VSE       (1ULL << 8)
1469 #define HCR_FB        (1ULL << 9)
1470 #define HCR_BSU_MASK  (3ULL << 10)
1471 #define HCR_DC        (1ULL << 12)
1472 #define HCR_TWI       (1ULL << 13)
1473 #define HCR_TWE       (1ULL << 14)
1474 #define HCR_TID0      (1ULL << 15)
1475 #define HCR_TID1      (1ULL << 16)
1476 #define HCR_TID2      (1ULL << 17)
1477 #define HCR_TID3      (1ULL << 18)
1478 #define HCR_TSC       (1ULL << 19)
1479 #define HCR_TIDCP     (1ULL << 20)
1480 #define HCR_TACR      (1ULL << 21)
1481 #define HCR_TSW       (1ULL << 22)
1482 #define HCR_TPCP      (1ULL << 23)
1483 #define HCR_TPU       (1ULL << 24)
1484 #define HCR_TTLB      (1ULL << 25)
1485 #define HCR_TVM       (1ULL << 26)
1486 #define HCR_TGE       (1ULL << 27)
1487 #define HCR_TDZ       (1ULL << 28)
1488 #define HCR_HCD       (1ULL << 29)
1489 #define HCR_TRVM      (1ULL << 30)
1490 #define HCR_RW        (1ULL << 31)
1491 #define HCR_CD        (1ULL << 32)
1492 #define HCR_ID        (1ULL << 33)
1493 #define HCR_E2H       (1ULL << 34)
1494 #define HCR_TLOR      (1ULL << 35)
1495 #define HCR_TERR      (1ULL << 36)
1496 #define HCR_TEA       (1ULL << 37)
1497 #define HCR_MIOCNCE   (1ULL << 38)
1498 /* RES0 bit 39 */
1499 #define HCR_APK       (1ULL << 40)
1500 #define HCR_API       (1ULL << 41)
1501 #define HCR_NV        (1ULL << 42)
1502 #define HCR_NV1       (1ULL << 43)
1503 #define HCR_AT        (1ULL << 44)
1504 #define HCR_NV2       (1ULL << 45)
1505 #define HCR_FWB       (1ULL << 46)
1506 #define HCR_FIEN      (1ULL << 47)
1507 /* RES0 bit 48 */
1508 #define HCR_TID4      (1ULL << 49)
1509 #define HCR_TICAB     (1ULL << 50)
1510 #define HCR_AMVOFFEN  (1ULL << 51)
1511 #define HCR_TOCU      (1ULL << 52)
1512 #define HCR_ENSCXT    (1ULL << 53)
1513 #define HCR_TTLBIS    (1ULL << 54)
1514 #define HCR_TTLBOS    (1ULL << 55)
1515 #define HCR_ATA       (1ULL << 56)
1516 #define HCR_DCT       (1ULL << 57)
1517 #define HCR_TID5      (1ULL << 58)
1518 #define HCR_TWEDEN    (1ULL << 59)
1519 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1520 
1521 #define HPFAR_NS      (1ULL << 63)
1522 
1523 #define SCR_NS                (1U << 0)
1524 #define SCR_IRQ               (1U << 1)
1525 #define SCR_FIQ               (1U << 2)
1526 #define SCR_EA                (1U << 3)
1527 #define SCR_FW                (1U << 4)
1528 #define SCR_AW                (1U << 5)
1529 #define SCR_NET               (1U << 6)
1530 #define SCR_SMD               (1U << 7)
1531 #define SCR_HCE               (1U << 8)
1532 #define SCR_SIF               (1U << 9)
1533 #define SCR_RW                (1U << 10)
1534 #define SCR_ST                (1U << 11)
1535 #define SCR_TWI               (1U << 12)
1536 #define SCR_TWE               (1U << 13)
1537 #define SCR_TLOR              (1U << 14)
1538 #define SCR_TERR              (1U << 15)
1539 #define SCR_APK               (1U << 16)
1540 #define SCR_API               (1U << 17)
1541 #define SCR_EEL2              (1U << 18)
1542 #define SCR_EASE              (1U << 19)
1543 #define SCR_NMEA              (1U << 20)
1544 #define SCR_FIEN              (1U << 21)
1545 #define SCR_ENSCXT            (1U << 25)
1546 #define SCR_ATA               (1U << 26)
1547 
1548 #define HSTR_TTEE (1 << 16)
1549 #define HSTR_TJDBX (1 << 17)
1550 
1551 /* Return the current FPSCR value.  */
1552 uint32_t vfp_get_fpscr(CPUARMState *env);
1553 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1554 
1555 /* FPCR, Floating Point Control Register
1556  * FPSR, Floating Poiht Status Register
1557  *
1558  * For A64 the FPSCR is split into two logically distinct registers,
1559  * FPCR and FPSR. However since they still use non-overlapping bits
1560  * we store the underlying state in fpscr and just mask on read/write.
1561  */
1562 #define FPSR_MASK 0xf800009f
1563 #define FPCR_MASK 0x07ff9f00
1564 
1565 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1566 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1567 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1568 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1569 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1570 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1571 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1572 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1573 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1574 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1575 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1576 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1577 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1578 #define FPCR_C      (1 << 29)   /* FP carry flag */
1579 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1580 #define FPCR_N      (1 << 31)   /* FP negative flag */
1581 
1582 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1583 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1584 #define FPCR_LTPSIZE_LENGTH 3
1585 
1586 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1587 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1588 
1589 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1590 {
1591     return vfp_get_fpscr(env) & FPSR_MASK;
1592 }
1593 
1594 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1595 {
1596     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1597     vfp_set_fpscr(env, new_fpscr);
1598 }
1599 
1600 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1601 {
1602     return vfp_get_fpscr(env) & FPCR_MASK;
1603 }
1604 
1605 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1606 {
1607     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1608     vfp_set_fpscr(env, new_fpscr);
1609 }
1610 
1611 enum arm_cpu_mode {
1612   ARM_CPU_MODE_USR = 0x10,
1613   ARM_CPU_MODE_FIQ = 0x11,
1614   ARM_CPU_MODE_IRQ = 0x12,
1615   ARM_CPU_MODE_SVC = 0x13,
1616   ARM_CPU_MODE_MON = 0x16,
1617   ARM_CPU_MODE_ABT = 0x17,
1618   ARM_CPU_MODE_HYP = 0x1a,
1619   ARM_CPU_MODE_UND = 0x1b,
1620   ARM_CPU_MODE_SYS = 0x1f
1621 };
1622 
1623 /* VFP system registers.  */
1624 #define ARM_VFP_FPSID   0
1625 #define ARM_VFP_FPSCR   1
1626 #define ARM_VFP_MVFR2   5
1627 #define ARM_VFP_MVFR1   6
1628 #define ARM_VFP_MVFR0   7
1629 #define ARM_VFP_FPEXC   8
1630 #define ARM_VFP_FPINST  9
1631 #define ARM_VFP_FPINST2 10
1632 /* These ones are M-profile only */
1633 #define ARM_VFP_FPSCR_NZCVQC 2
1634 #define ARM_VFP_VPR 12
1635 #define ARM_VFP_P0 13
1636 #define ARM_VFP_FPCXT_NS 14
1637 #define ARM_VFP_FPCXT_S 15
1638 
1639 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1640 #define QEMU_VFP_FPSCR_NZCV 0xffff
1641 
1642 /* iwMMXt coprocessor control registers.  */
1643 #define ARM_IWMMXT_wCID  0
1644 #define ARM_IWMMXT_wCon  1
1645 #define ARM_IWMMXT_wCSSF 2
1646 #define ARM_IWMMXT_wCASF 3
1647 #define ARM_IWMMXT_wCGR0 8
1648 #define ARM_IWMMXT_wCGR1 9
1649 #define ARM_IWMMXT_wCGR2 10
1650 #define ARM_IWMMXT_wCGR3 11
1651 
1652 /* V7M CCR bits */
1653 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1654 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1655 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1656 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1657 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1658 FIELD(V7M_CCR, STKALIGN, 9, 1)
1659 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1660 FIELD(V7M_CCR, DC, 16, 1)
1661 FIELD(V7M_CCR, IC, 17, 1)
1662 FIELD(V7M_CCR, BP, 18, 1)
1663 FIELD(V7M_CCR, LOB, 19, 1)
1664 FIELD(V7M_CCR, TRD, 20, 1)
1665 
1666 /* V7M SCR bits */
1667 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1668 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1669 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1670 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1671 
1672 /* V7M AIRCR bits */
1673 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1674 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1675 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1676 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1677 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1678 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1679 FIELD(V7M_AIRCR, PRIS, 14, 1)
1680 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1681 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1682 
1683 /* V7M CFSR bits for MMFSR */
1684 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1685 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1686 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1687 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1688 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1689 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1690 
1691 /* V7M CFSR bits for BFSR */
1692 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1693 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1694 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1695 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1696 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1697 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1698 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1699 
1700 /* V7M CFSR bits for UFSR */
1701 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1702 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1703 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1704 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1705 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1706 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1707 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1708 
1709 /* V7M CFSR bit masks covering all of the subregister bits */
1710 FIELD(V7M_CFSR, MMFSR, 0, 8)
1711 FIELD(V7M_CFSR, BFSR, 8, 8)
1712 FIELD(V7M_CFSR, UFSR, 16, 16)
1713 
1714 /* V7M HFSR bits */
1715 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1716 FIELD(V7M_HFSR, FORCED, 30, 1)
1717 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1718 
1719 /* V7M DFSR bits */
1720 FIELD(V7M_DFSR, HALTED, 0, 1)
1721 FIELD(V7M_DFSR, BKPT, 1, 1)
1722 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1723 FIELD(V7M_DFSR, VCATCH, 3, 1)
1724 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1725 
1726 /* V7M SFSR bits */
1727 FIELD(V7M_SFSR, INVEP, 0, 1)
1728 FIELD(V7M_SFSR, INVIS, 1, 1)
1729 FIELD(V7M_SFSR, INVER, 2, 1)
1730 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1731 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1732 FIELD(V7M_SFSR, LSPERR, 5, 1)
1733 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1734 FIELD(V7M_SFSR, LSERR, 7, 1)
1735 
1736 /* v7M MPU_CTRL bits */
1737 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1738 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1739 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1740 
1741 /* v7M CLIDR bits */
1742 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1743 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1744 FIELD(V7M_CLIDR, LOC, 24, 3)
1745 FIELD(V7M_CLIDR, LOUU, 27, 3)
1746 FIELD(V7M_CLIDR, ICB, 30, 2)
1747 
1748 FIELD(V7M_CSSELR, IND, 0, 1)
1749 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1750 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1751  * define a mask for this and check that it doesn't permit running off
1752  * the end of the array.
1753  */
1754 FIELD(V7M_CSSELR, INDEX, 0, 4)
1755 
1756 /* v7M FPCCR bits */
1757 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1758 FIELD(V7M_FPCCR, USER, 1, 1)
1759 FIELD(V7M_FPCCR, S, 2, 1)
1760 FIELD(V7M_FPCCR, THREAD, 3, 1)
1761 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1762 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1763 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1764 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1765 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1766 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1767 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1768 FIELD(V7M_FPCCR, RES0, 11, 15)
1769 FIELD(V7M_FPCCR, TS, 26, 1)
1770 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1771 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1772 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1773 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1774 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1775 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1776 #define R_V7M_FPCCR_BANKED_MASK                 \
1777     (R_V7M_FPCCR_LSPACT_MASK |                  \
1778      R_V7M_FPCCR_USER_MASK |                    \
1779      R_V7M_FPCCR_THREAD_MASK |                  \
1780      R_V7M_FPCCR_MMRDY_MASK |                   \
1781      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1782      R_V7M_FPCCR_UFRDY_MASK |                   \
1783      R_V7M_FPCCR_ASPEN_MASK)
1784 
1785 /* v7M VPR bits */
1786 FIELD(V7M_VPR, P0, 0, 16)
1787 FIELD(V7M_VPR, MASK01, 16, 4)
1788 FIELD(V7M_VPR, MASK23, 20, 4)
1789 
1790 /*
1791  * System register ID fields.
1792  */
1793 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1794 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1795 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1796 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1797 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1798 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1799 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1800 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1801 FIELD(CLIDR_EL1, LOC, 24, 3)
1802 FIELD(CLIDR_EL1, LOUU, 27, 3)
1803 FIELD(CLIDR_EL1, ICB, 30, 3)
1804 
1805 /* When FEAT_CCIDX is implemented */
1806 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1807 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1808 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1809 
1810 /* When FEAT_CCIDX is not implemented */
1811 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1812 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1813 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1814 
1815 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1816 FIELD(CTR_EL0,  L1IP, 14, 2)
1817 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1818 FIELD(CTR_EL0,  ERG, 20, 4)
1819 FIELD(CTR_EL0,  CWG, 24, 4)
1820 FIELD(CTR_EL0,  IDC, 28, 1)
1821 FIELD(CTR_EL0,  DIC, 29, 1)
1822 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1823 
1824 FIELD(MIDR_EL1, REVISION, 0, 4)
1825 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1826 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1827 FIELD(MIDR_EL1, VARIANT, 20, 4)
1828 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1829 
1830 FIELD(ID_ISAR0, SWAP, 0, 4)
1831 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1832 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1833 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1834 FIELD(ID_ISAR0, COPROC, 16, 4)
1835 FIELD(ID_ISAR0, DEBUG, 20, 4)
1836 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1837 
1838 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1839 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1840 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1841 FIELD(ID_ISAR1, EXTEND, 12, 4)
1842 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1843 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1844 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1845 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1846 
1847 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1848 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1849 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1850 FIELD(ID_ISAR2, MULT, 12, 4)
1851 FIELD(ID_ISAR2, MULTS, 16, 4)
1852 FIELD(ID_ISAR2, MULTU, 20, 4)
1853 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1854 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1855 
1856 FIELD(ID_ISAR3, SATURATE, 0, 4)
1857 FIELD(ID_ISAR3, SIMD, 4, 4)
1858 FIELD(ID_ISAR3, SVC, 8, 4)
1859 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1860 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1861 FIELD(ID_ISAR3, T32COPY, 20, 4)
1862 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1863 FIELD(ID_ISAR3, T32EE, 28, 4)
1864 
1865 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1866 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1867 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1868 FIELD(ID_ISAR4, SMC, 12, 4)
1869 FIELD(ID_ISAR4, BARRIER, 16, 4)
1870 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1871 FIELD(ID_ISAR4, PSR_M, 24, 4)
1872 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1873 
1874 FIELD(ID_ISAR5, SEVL, 0, 4)
1875 FIELD(ID_ISAR5, AES, 4, 4)
1876 FIELD(ID_ISAR5, SHA1, 8, 4)
1877 FIELD(ID_ISAR5, SHA2, 12, 4)
1878 FIELD(ID_ISAR5, CRC32, 16, 4)
1879 FIELD(ID_ISAR5, RDM, 24, 4)
1880 FIELD(ID_ISAR5, VCMA, 28, 4)
1881 
1882 FIELD(ID_ISAR6, JSCVT, 0, 4)
1883 FIELD(ID_ISAR6, DP, 4, 4)
1884 FIELD(ID_ISAR6, FHM, 8, 4)
1885 FIELD(ID_ISAR6, SB, 12, 4)
1886 FIELD(ID_ISAR6, SPECRES, 16, 4)
1887 FIELD(ID_ISAR6, BF16, 20, 4)
1888 FIELD(ID_ISAR6, I8MM, 24, 4)
1889 
1890 FIELD(ID_MMFR0, VMSA, 0, 4)
1891 FIELD(ID_MMFR0, PMSA, 4, 4)
1892 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1893 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1894 FIELD(ID_MMFR0, TCM, 16, 4)
1895 FIELD(ID_MMFR0, AUXREG, 20, 4)
1896 FIELD(ID_MMFR0, FCSE, 24, 4)
1897 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1898 
1899 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1900 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1901 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1902 FIELD(ID_MMFR1, L1UNISW, 12, 4)
1903 FIELD(ID_MMFR1, L1HVD, 16, 4)
1904 FIELD(ID_MMFR1, L1UNI, 20, 4)
1905 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1906 FIELD(ID_MMFR1, BPRED, 28, 4)
1907 
1908 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1909 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1910 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1911 FIELD(ID_MMFR2, HVDTLB, 12, 4)
1912 FIELD(ID_MMFR2, UNITLB, 16, 4)
1913 FIELD(ID_MMFR2, MEMBARR, 20, 4)
1914 FIELD(ID_MMFR2, WFISTALL, 24, 4)
1915 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1916 
1917 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1918 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1919 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1920 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1921 FIELD(ID_MMFR3, PAN, 16, 4)
1922 FIELD(ID_MMFR3, COHWALK, 20, 4)
1923 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1924 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1925 
1926 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1927 FIELD(ID_MMFR4, AC2, 4, 4)
1928 FIELD(ID_MMFR4, XNX, 8, 4)
1929 FIELD(ID_MMFR4, CNP, 12, 4)
1930 FIELD(ID_MMFR4, HPDS, 16, 4)
1931 FIELD(ID_MMFR4, LSM, 20, 4)
1932 FIELD(ID_MMFR4, CCIDX, 24, 4)
1933 FIELD(ID_MMFR4, EVT, 28, 4)
1934 
1935 FIELD(ID_MMFR5, ETS, 0, 4)
1936 
1937 FIELD(ID_PFR0, STATE0, 0, 4)
1938 FIELD(ID_PFR0, STATE1, 4, 4)
1939 FIELD(ID_PFR0, STATE2, 8, 4)
1940 FIELD(ID_PFR0, STATE3, 12, 4)
1941 FIELD(ID_PFR0, CSV2, 16, 4)
1942 FIELD(ID_PFR0, AMU, 20, 4)
1943 FIELD(ID_PFR0, DIT, 24, 4)
1944 FIELD(ID_PFR0, RAS, 28, 4)
1945 
1946 FIELD(ID_PFR1, PROGMOD, 0, 4)
1947 FIELD(ID_PFR1, SECURITY, 4, 4)
1948 FIELD(ID_PFR1, MPROGMOD, 8, 4)
1949 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1950 FIELD(ID_PFR1, GENTIMER, 16, 4)
1951 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1952 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1953 FIELD(ID_PFR1, GIC, 28, 4)
1954 
1955 FIELD(ID_PFR2, CSV3, 0, 4)
1956 FIELD(ID_PFR2, SSBS, 4, 4)
1957 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1958 
1959 FIELD(ID_AA64ISAR0, AES, 4, 4)
1960 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1961 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1962 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1963 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1964 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1965 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1966 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1967 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1968 FIELD(ID_AA64ISAR0, DP, 44, 4)
1969 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1970 FIELD(ID_AA64ISAR0, TS, 52, 4)
1971 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1972 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1973 
1974 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1975 FIELD(ID_AA64ISAR1, APA, 4, 4)
1976 FIELD(ID_AA64ISAR1, API, 8, 4)
1977 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1978 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1979 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1980 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1981 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1982 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1983 FIELD(ID_AA64ISAR1, SB, 36, 4)
1984 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1985 FIELD(ID_AA64ISAR1, BF16, 44, 4)
1986 FIELD(ID_AA64ISAR1, DGH, 48, 4)
1987 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
1988 
1989 FIELD(ID_AA64PFR0, EL0, 0, 4)
1990 FIELD(ID_AA64PFR0, EL1, 4, 4)
1991 FIELD(ID_AA64PFR0, EL2, 8, 4)
1992 FIELD(ID_AA64PFR0, EL3, 12, 4)
1993 FIELD(ID_AA64PFR0, FP, 16, 4)
1994 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1995 FIELD(ID_AA64PFR0, GIC, 24, 4)
1996 FIELD(ID_AA64PFR0, RAS, 28, 4)
1997 FIELD(ID_AA64PFR0, SVE, 32, 4)
1998 FIELD(ID_AA64PFR0, SEL2, 36, 4)
1999 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2000 FIELD(ID_AA64PFR0, AMU, 44, 4)
2001 FIELD(ID_AA64PFR0, DIT, 48, 4)
2002 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2003 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2004 
2005 FIELD(ID_AA64PFR1, BT, 0, 4)
2006 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2007 FIELD(ID_AA64PFR1, MTE, 8, 4)
2008 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2009 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2010 
2011 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2012 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2013 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2014 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2015 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2016 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2017 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2018 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2019 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2020 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2021 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2022 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2023 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2024 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2025 
2026 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2027 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2028 FIELD(ID_AA64MMFR1, VH, 8, 4)
2029 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2030 FIELD(ID_AA64MMFR1, LO, 16, 4)
2031 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2032 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2033 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2034 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2035 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2036 
2037 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2038 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2039 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2040 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2041 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2042 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2043 FIELD(ID_AA64MMFR2, NV, 24, 4)
2044 FIELD(ID_AA64MMFR2, ST, 28, 4)
2045 FIELD(ID_AA64MMFR2, AT, 32, 4)
2046 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2047 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2048 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2049 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2050 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2051 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2052 
2053 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2054 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2055 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2056 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2057 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2058 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2059 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2060 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2061 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2062 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2063 
2064 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2065 FIELD(ID_AA64ZFR0, AES, 4, 4)
2066 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2067 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2068 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2069 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2070 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2071 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2072 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2073 
2074 FIELD(ID_DFR0, COPDBG, 0, 4)
2075 FIELD(ID_DFR0, COPSDBG, 4, 4)
2076 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2077 FIELD(ID_DFR0, COPTRC, 12, 4)
2078 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2079 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2080 FIELD(ID_DFR0, PERFMON, 24, 4)
2081 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2082 
2083 FIELD(ID_DFR1, MTPMU, 0, 4)
2084 
2085 FIELD(DBGDIDR, SE_IMP, 12, 1)
2086 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2087 FIELD(DBGDIDR, VERSION, 16, 4)
2088 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2089 FIELD(DBGDIDR, BRPS, 24, 4)
2090 FIELD(DBGDIDR, WRPS, 28, 4)
2091 
2092 FIELD(MVFR0, SIMDREG, 0, 4)
2093 FIELD(MVFR0, FPSP, 4, 4)
2094 FIELD(MVFR0, FPDP, 8, 4)
2095 FIELD(MVFR0, FPTRAP, 12, 4)
2096 FIELD(MVFR0, FPDIVIDE, 16, 4)
2097 FIELD(MVFR0, FPSQRT, 20, 4)
2098 FIELD(MVFR0, FPSHVEC, 24, 4)
2099 FIELD(MVFR0, FPROUND, 28, 4)
2100 
2101 FIELD(MVFR1, FPFTZ, 0, 4)
2102 FIELD(MVFR1, FPDNAN, 4, 4)
2103 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2104 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2105 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2106 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2107 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2108 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2109 FIELD(MVFR1, FPHP, 24, 4)
2110 FIELD(MVFR1, SIMDFMAC, 28, 4)
2111 
2112 FIELD(MVFR2, SIMDMISC, 0, 4)
2113 FIELD(MVFR2, FPMISC, 4, 4)
2114 
2115 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2116 
2117 /* If adding a feature bit which corresponds to a Linux ELF
2118  * HWCAP bit, remember to update the feature-bit-to-hwcap
2119  * mapping in linux-user/elfload.c:get_elf_hwcap().
2120  */
2121 enum arm_features {
2122     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2123     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2124     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2125     ARM_FEATURE_V6,
2126     ARM_FEATURE_V6K,
2127     ARM_FEATURE_V7,
2128     ARM_FEATURE_THUMB2,
2129     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2130     ARM_FEATURE_NEON,
2131     ARM_FEATURE_M, /* Microcontroller profile.  */
2132     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2133     ARM_FEATURE_THUMB2EE,
2134     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2135     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2136     ARM_FEATURE_V4T,
2137     ARM_FEATURE_V5,
2138     ARM_FEATURE_STRONGARM,
2139     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2140     ARM_FEATURE_GENERIC_TIMER,
2141     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2142     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2143     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2144     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2145     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2146     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2147     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2148     ARM_FEATURE_V8,
2149     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2150     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2151     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2152     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2153     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2154     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2155     ARM_FEATURE_PMU, /* has PMU support */
2156     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2157     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2158     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2159     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2160 };
2161 
2162 static inline int arm_feature(CPUARMState *env, int feature)
2163 {
2164     return (env->features & (1ULL << feature)) != 0;
2165 }
2166 
2167 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2168 
2169 #if !defined(CONFIG_USER_ONLY)
2170 /* Return true if exception levels below EL3 are in secure state,
2171  * or would be following an exception return to that level.
2172  * Unlike arm_is_secure() (which is always a question about the
2173  * _current_ state of the CPU) this doesn't care about the current
2174  * EL or mode.
2175  */
2176 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2177 {
2178     if (arm_feature(env, ARM_FEATURE_EL3)) {
2179         return !(env->cp15.scr_el3 & SCR_NS);
2180     } else {
2181         /* If EL3 is not supported then the secure state is implementation
2182          * defined, in which case QEMU defaults to non-secure.
2183          */
2184         return false;
2185     }
2186 }
2187 
2188 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2189 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2190 {
2191     if (arm_feature(env, ARM_FEATURE_EL3)) {
2192         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2193             /* CPU currently in AArch64 state and EL3 */
2194             return true;
2195         } else if (!is_a64(env) &&
2196                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2197             /* CPU currently in AArch32 state and monitor mode */
2198             return true;
2199         }
2200     }
2201     return false;
2202 }
2203 
2204 /* Return true if the processor is in secure state */
2205 static inline bool arm_is_secure(CPUARMState *env)
2206 {
2207     if (arm_is_el3_or_mon(env)) {
2208         return true;
2209     }
2210     return arm_is_secure_below_el3(env);
2211 }
2212 
2213 /*
2214  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2215  * This corresponds to the pseudocode EL2Enabled()
2216  */
2217 static inline bool arm_is_el2_enabled(CPUARMState *env)
2218 {
2219     if (arm_feature(env, ARM_FEATURE_EL2)) {
2220         if (arm_is_secure_below_el3(env)) {
2221             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2222         }
2223         return true;
2224     }
2225     return false;
2226 }
2227 
2228 #else
2229 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2230 {
2231     return false;
2232 }
2233 
2234 static inline bool arm_is_secure(CPUARMState *env)
2235 {
2236     return false;
2237 }
2238 
2239 static inline bool arm_is_el2_enabled(CPUARMState *env)
2240 {
2241     return false;
2242 }
2243 #endif
2244 
2245 /**
2246  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2247  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2248  * "for all purposes other than a direct read or write access of HCR_EL2."
2249  * Not included here is HCR_RW.
2250  */
2251 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2252 
2253 /* Return true if the specified exception level is running in AArch64 state. */
2254 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2255 {
2256     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2257      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2258      */
2259     assert(el >= 1 && el <= 3);
2260     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2261 
2262     /* The highest exception level is always at the maximum supported
2263      * register width, and then lower levels have a register width controlled
2264      * by bits in the SCR or HCR registers.
2265      */
2266     if (el == 3) {
2267         return aa64;
2268     }
2269 
2270     if (arm_feature(env, ARM_FEATURE_EL3) &&
2271         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2272         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2273     }
2274 
2275     if (el == 2) {
2276         return aa64;
2277     }
2278 
2279     if (arm_is_el2_enabled(env)) {
2280         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2281     }
2282 
2283     return aa64;
2284 }
2285 
2286 /* Function for determing whether guest cp register reads and writes should
2287  * access the secure or non-secure bank of a cp register.  When EL3 is
2288  * operating in AArch32 state, the NS-bit determines whether the secure
2289  * instance of a cp register should be used. When EL3 is AArch64 (or if
2290  * it doesn't exist at all) then there is no register banking, and all
2291  * accesses are to the non-secure version.
2292  */
2293 static inline bool access_secure_reg(CPUARMState *env)
2294 {
2295     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2296                 !arm_el_is_aa64(env, 3) &&
2297                 !(env->cp15.scr_el3 & SCR_NS));
2298 
2299     return ret;
2300 }
2301 
2302 /* Macros for accessing a specified CP register bank */
2303 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2304     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2305 
2306 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2307     do {                                                \
2308         if (_secure) {                                   \
2309             (_env)->cp15._regname##_s = (_val);            \
2310         } else {                                        \
2311             (_env)->cp15._regname##_ns = (_val);           \
2312         }                                               \
2313     } while (0)
2314 
2315 /* Macros for automatically accessing a specific CP register bank depending on
2316  * the current secure state of the system.  These macros are not intended for
2317  * supporting instruction translation reads/writes as these are dependent
2318  * solely on the SCR.NS bit and not the mode.
2319  */
2320 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2321     A32_BANKED_REG_GET((_env), _regname,                \
2322                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2323 
2324 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2325     A32_BANKED_REG_SET((_env), _regname,                                    \
2326                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2327                        (_val))
2328 
2329 void arm_cpu_list(void);
2330 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2331                                  uint32_t cur_el, bool secure);
2332 
2333 /* Interface between CPU and Interrupt controller.  */
2334 #ifndef CONFIG_USER_ONLY
2335 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2336 #else
2337 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2338 {
2339     return true;
2340 }
2341 #endif
2342 /**
2343  * armv7m_nvic_set_pending: mark the specified exception as pending
2344  * @opaque: the NVIC
2345  * @irq: the exception number to mark pending
2346  * @secure: false for non-banked exceptions or for the nonsecure
2347  * version of a banked exception, true for the secure version of a banked
2348  * exception.
2349  *
2350  * Marks the specified exception as pending. Note that we will assert()
2351  * if @secure is true and @irq does not specify one of the fixed set
2352  * of architecturally banked exceptions.
2353  */
2354 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2355 /**
2356  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2357  * @opaque: the NVIC
2358  * @irq: the exception number to mark pending
2359  * @secure: false for non-banked exceptions or for the nonsecure
2360  * version of a banked exception, true for the secure version of a banked
2361  * exception.
2362  *
2363  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2364  * exceptions (exceptions generated in the course of trying to take
2365  * a different exception).
2366  */
2367 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2368 /**
2369  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2370  * @opaque: the NVIC
2371  * @irq: the exception number to mark pending
2372  * @secure: false for non-banked exceptions or for the nonsecure
2373  * version of a banked exception, true for the secure version of a banked
2374  * exception.
2375  *
2376  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2377  * generated in the course of lazy stacking of FP registers.
2378  */
2379 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2380 /**
2381  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2382  *    exception, and whether it targets Secure state
2383  * @opaque: the NVIC
2384  * @pirq: set to pending exception number
2385  * @ptargets_secure: set to whether pending exception targets Secure
2386  *
2387  * This function writes the number of the highest priority pending
2388  * exception (the one which would be made active by
2389  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2390  * to true if the current highest priority pending exception should
2391  * be taken to Secure state, false for NS.
2392  */
2393 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2394                                       bool *ptargets_secure);
2395 /**
2396  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2397  * @opaque: the NVIC
2398  *
2399  * Move the current highest priority pending exception from the pending
2400  * state to the active state, and update v7m.exception to indicate that
2401  * it is the exception currently being handled.
2402  */
2403 void armv7m_nvic_acknowledge_irq(void *opaque);
2404 /**
2405  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2406  * @opaque: the NVIC
2407  * @irq: the exception number to complete
2408  * @secure: true if this exception was secure
2409  *
2410  * Returns: -1 if the irq was not active
2411  *           1 if completing this irq brought us back to base (no active irqs)
2412  *           0 if there is still an irq active after this one was completed
2413  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2414  */
2415 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2416 /**
2417  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2418  * @opaque: the NVIC
2419  * @irq: the exception number to mark pending
2420  * @secure: false for non-banked exceptions or for the nonsecure
2421  * version of a banked exception, true for the secure version of a banked
2422  * exception.
2423  *
2424  * Return whether an exception is "ready", i.e. whether the exception is
2425  * enabled and is configured at a priority which would allow it to
2426  * interrupt the current execution priority. This controls whether the
2427  * RDY bit for it in the FPCCR is set.
2428  */
2429 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2430 /**
2431  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2432  * @opaque: the NVIC
2433  *
2434  * Returns: the raw execution priority as defined by the v8M architecture.
2435  * This is the execution priority minus the effects of AIRCR.PRIS,
2436  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2437  * (v8M ARM ARM I_PKLD.)
2438  */
2439 int armv7m_nvic_raw_execution_priority(void *opaque);
2440 /**
2441  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2442  * priority is negative for the specified security state.
2443  * @opaque: the NVIC
2444  * @secure: the security state to test
2445  * This corresponds to the pseudocode IsReqExecPriNeg().
2446  */
2447 #ifndef CONFIG_USER_ONLY
2448 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2449 #else
2450 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2451 {
2452     return false;
2453 }
2454 #endif
2455 
2456 /* Interface for defining coprocessor registers.
2457  * Registers are defined in tables of arm_cp_reginfo structs
2458  * which are passed to define_arm_cp_regs().
2459  */
2460 
2461 /* When looking up a coprocessor register we look for it
2462  * via an integer which encodes all of:
2463  *  coprocessor number
2464  *  Crn, Crm, opc1, opc2 fields
2465  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2466  *    or via MRRC/MCRR?)
2467  *  non-secure/secure bank (AArch32 only)
2468  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2469  * (In this case crn and opc2 should be zero.)
2470  * For AArch64, there is no 32/64 bit size distinction;
2471  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2472  * and 4 bit CRn and CRm. The encoding patterns are chosen
2473  * to be easy to convert to and from the KVM encodings, and also
2474  * so that the hashtable can contain both AArch32 and AArch64
2475  * registers (to allow for interprocessing where we might run
2476  * 32 bit code on a 64 bit core).
2477  */
2478 /* This bit is private to our hashtable cpreg; in KVM register
2479  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2480  * in the upper bits of the 64 bit ID.
2481  */
2482 #define CP_REG_AA64_SHIFT 28
2483 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2484 
2485 /* To enable banking of coprocessor registers depending on ns-bit we
2486  * add a bit to distinguish between secure and non-secure cpregs in the
2487  * hashtable.
2488  */
2489 #define CP_REG_NS_SHIFT 29
2490 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2491 
2492 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2493     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2494      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2495 
2496 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2497     (CP_REG_AA64_MASK |                                 \
2498      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2499      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2500      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2501      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2502      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2503      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2504 
2505 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2506  * version used as a key for the coprocessor register hashtable
2507  */
2508 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2509 {
2510     uint32_t cpregid = kvmid;
2511     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2512         cpregid |= CP_REG_AA64_MASK;
2513     } else {
2514         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2515             cpregid |= (1 << 15);
2516         }
2517 
2518         /* KVM is always non-secure so add the NS flag on AArch32 register
2519          * entries.
2520          */
2521          cpregid |= 1 << CP_REG_NS_SHIFT;
2522     }
2523     return cpregid;
2524 }
2525 
2526 /* Convert a truncated 32 bit hashtable key into the full
2527  * 64 bit KVM register ID.
2528  */
2529 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2530 {
2531     uint64_t kvmid;
2532 
2533     if (cpregid & CP_REG_AA64_MASK) {
2534         kvmid = cpregid & ~CP_REG_AA64_MASK;
2535         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2536     } else {
2537         kvmid = cpregid & ~(1 << 15);
2538         if (cpregid & (1 << 15)) {
2539             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2540         } else {
2541             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2542         }
2543     }
2544     return kvmid;
2545 }
2546 
2547 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2548  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2549  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2550  * TCG can assume the value to be constant (ie load at translate time)
2551  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2552  * indicates that the TB should not be ended after a write to this register
2553  * (the default is that the TB ends after cp writes). OVERRIDE permits
2554  * a register definition to override a previous definition for the
2555  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2556  * old must have the OVERRIDE bit set.
2557  * ALIAS indicates that this register is an alias view of some underlying
2558  * state which is also visible via another register, and that the other
2559  * register is handling migration and reset; registers marked ALIAS will not be
2560  * migrated but may have their state set by syncing of register state from KVM.
2561  * NO_RAW indicates that this register has no underlying state and does not
2562  * support raw access for state saving/loading; it will not be used for either
2563  * migration or KVM state synchronization. (Typically this is for "registers"
2564  * which are actually used as instructions for cache maintenance and so on.)
2565  * IO indicates that this register does I/O and therefore its accesses
2566  * need to be marked with gen_io_start() and also end the TB. In particular,
2567  * registers which implement clocks or timers require this.
2568  * RAISES_EXC is for when the read or write hook might raise an exception;
2569  * the generated code will synchronize the CPU state before calling the hook
2570  * so that it is safe for the hook to call raise_exception().
2571  * NEWEL is for writes to registers that might change the exception
2572  * level - typically on older ARM chips. For those cases we need to
2573  * re-read the new el when recomputing the translation flags.
2574  */
2575 #define ARM_CP_SPECIAL           0x0001
2576 #define ARM_CP_CONST             0x0002
2577 #define ARM_CP_64BIT             0x0004
2578 #define ARM_CP_SUPPRESS_TB_END   0x0008
2579 #define ARM_CP_OVERRIDE          0x0010
2580 #define ARM_CP_ALIAS             0x0020
2581 #define ARM_CP_IO                0x0040
2582 #define ARM_CP_NO_RAW            0x0080
2583 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2584 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2585 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2586 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2587 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2588 #define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2589 #define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2590 #define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2591 #define ARM_CP_FPU               0x1000
2592 #define ARM_CP_SVE               0x2000
2593 #define ARM_CP_NO_GDB            0x4000
2594 #define ARM_CP_RAISES_EXC        0x8000
2595 #define ARM_CP_NEWEL             0x10000
2596 /* Used only as a terminator for ARMCPRegInfo lists */
2597 #define ARM_CP_SENTINEL          0xfffff
2598 /* Mask of only the flag bits in a type field */
2599 #define ARM_CP_FLAG_MASK         0x1f0ff
2600 
2601 /* Valid values for ARMCPRegInfo state field, indicating which of
2602  * the AArch32 and AArch64 execution states this register is visible in.
2603  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2604  * If the reginfo is declared to be visible in both states then a second
2605  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2606  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2607  * Note that we rely on the values of these enums as we iterate through
2608  * the various states in some places.
2609  */
2610 enum {
2611     ARM_CP_STATE_AA32 = 0,
2612     ARM_CP_STATE_AA64 = 1,
2613     ARM_CP_STATE_BOTH = 2,
2614 };
2615 
2616 /* ARM CP register secure state flags.  These flags identify security state
2617  * attributes for a given CP register entry.
2618  * The existence of both or neither secure and non-secure flags indicates that
2619  * the register has both a secure and non-secure hash entry.  A single one of
2620  * these flags causes the register to only be hashed for the specified
2621  * security state.
2622  * Although definitions may have any combination of the S/NS bits, each
2623  * registered entry will only have one to identify whether the entry is secure
2624  * or non-secure.
2625  */
2626 enum {
2627     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2628     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2629 };
2630 
2631 /* Return true if cptype is a valid type field. This is used to try to
2632  * catch errors where the sentinel has been accidentally left off the end
2633  * of a list of registers.
2634  */
2635 static inline bool cptype_valid(int cptype)
2636 {
2637     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2638         || ((cptype & ARM_CP_SPECIAL) &&
2639             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2640 }
2641 
2642 /* Access rights:
2643  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2644  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2645  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2646  * (ie any of the privileged modes in Secure state, or Monitor mode).
2647  * If a register is accessible in one privilege level it's always accessible
2648  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2649  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2650  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2651  * terminology a little and call this PL3.
2652  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2653  * with the ELx exception levels.
2654  *
2655  * If access permissions for a register are more complex than can be
2656  * described with these bits, then use a laxer set of restrictions, and
2657  * do the more restrictive/complex check inside a helper function.
2658  */
2659 #define PL3_R 0x80
2660 #define PL3_W 0x40
2661 #define PL2_R (0x20 | PL3_R)
2662 #define PL2_W (0x10 | PL3_W)
2663 #define PL1_R (0x08 | PL2_R)
2664 #define PL1_W (0x04 | PL2_W)
2665 #define PL0_R (0x02 | PL1_R)
2666 #define PL0_W (0x01 | PL1_W)
2667 
2668 /*
2669  * For user-mode some registers are accessible to EL0 via a kernel
2670  * trap-and-emulate ABI. In this case we define the read permissions
2671  * as actually being PL0_R. However some bits of any given register
2672  * may still be masked.
2673  */
2674 #ifdef CONFIG_USER_ONLY
2675 #define PL0U_R PL0_R
2676 #else
2677 #define PL0U_R PL1_R
2678 #endif
2679 
2680 #define PL3_RW (PL3_R | PL3_W)
2681 #define PL2_RW (PL2_R | PL2_W)
2682 #define PL1_RW (PL1_R | PL1_W)
2683 #define PL0_RW (PL0_R | PL0_W)
2684 
2685 /* Return the highest implemented Exception Level */
2686 static inline int arm_highest_el(CPUARMState *env)
2687 {
2688     if (arm_feature(env, ARM_FEATURE_EL3)) {
2689         return 3;
2690     }
2691     if (arm_feature(env, ARM_FEATURE_EL2)) {
2692         return 2;
2693     }
2694     return 1;
2695 }
2696 
2697 /* Return true if a v7M CPU is in Handler mode */
2698 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2699 {
2700     return env->v7m.exception != 0;
2701 }
2702 
2703 /* Return the current Exception Level (as per ARMv8; note that this differs
2704  * from the ARMv7 Privilege Level).
2705  */
2706 static inline int arm_current_el(CPUARMState *env)
2707 {
2708     if (arm_feature(env, ARM_FEATURE_M)) {
2709         return arm_v7m_is_handler_mode(env) ||
2710             !(env->v7m.control[env->v7m.secure] & 1);
2711     }
2712 
2713     if (is_a64(env)) {
2714         return extract32(env->pstate, 2, 2);
2715     }
2716 
2717     switch (env->uncached_cpsr & 0x1f) {
2718     case ARM_CPU_MODE_USR:
2719         return 0;
2720     case ARM_CPU_MODE_HYP:
2721         return 2;
2722     case ARM_CPU_MODE_MON:
2723         return 3;
2724     default:
2725         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2726             /* If EL3 is 32-bit then all secure privileged modes run in
2727              * EL3
2728              */
2729             return 3;
2730         }
2731 
2732         return 1;
2733     }
2734 }
2735 
2736 typedef struct ARMCPRegInfo ARMCPRegInfo;
2737 
2738 typedef enum CPAccessResult {
2739     /* Access is permitted */
2740     CP_ACCESS_OK = 0,
2741     /* Access fails due to a configurable trap or enable which would
2742      * result in a categorized exception syndrome giving information about
2743      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2744      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2745      * PL1 if in EL0, otherwise to the current EL).
2746      */
2747     CP_ACCESS_TRAP = 1,
2748     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2749      * Note that this is not a catch-all case -- the set of cases which may
2750      * result in this failure is specifically defined by the architecture.
2751      */
2752     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2753     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2754     CP_ACCESS_TRAP_EL2 = 3,
2755     CP_ACCESS_TRAP_EL3 = 4,
2756     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2757     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2758     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2759     /* Access fails and results in an exception syndrome for an FP access,
2760      * trapped directly to EL2 or EL3
2761      */
2762     CP_ACCESS_TRAP_FP_EL2 = 7,
2763     CP_ACCESS_TRAP_FP_EL3 = 8,
2764 } CPAccessResult;
2765 
2766 /* Access functions for coprocessor registers. These cannot fail and
2767  * may not raise exceptions.
2768  */
2769 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2770 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2771                        uint64_t value);
2772 /* Access permission check functions for coprocessor registers. */
2773 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2774                                   const ARMCPRegInfo *opaque,
2775                                   bool isread);
2776 /* Hook function for register reset */
2777 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2778 
2779 #define CP_ANY 0xff
2780 
2781 /* Definition of an ARM coprocessor register */
2782 struct ARMCPRegInfo {
2783     /* Name of register (useful mainly for debugging, need not be unique) */
2784     const char *name;
2785     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2786      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2787      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2788      * will be decoded to this register. The register read and write
2789      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2790      * used by the program, so it is possible to register a wildcard and
2791      * then behave differently on read/write if necessary.
2792      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2793      * must both be zero.
2794      * For AArch64-visible registers, opc0 is also used.
2795      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2796      * way to distinguish (for KVM's benefit) guest-visible system registers
2797      * from demuxed ones provided to preserve the "no side effects on
2798      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2799      * visible (to match KVM's encoding); cp==0 will be converted to
2800      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2801      */
2802     uint8_t cp;
2803     uint8_t crn;
2804     uint8_t crm;
2805     uint8_t opc0;
2806     uint8_t opc1;
2807     uint8_t opc2;
2808     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2809     int state;
2810     /* Register type: ARM_CP_* bits/values */
2811     int type;
2812     /* Access rights: PL*_[RW] */
2813     int access;
2814     /* Security state: ARM_CP_SECSTATE_* bits/values */
2815     int secure;
2816     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2817      * this register was defined: can be used to hand data through to the
2818      * register read/write functions, since they are passed the ARMCPRegInfo*.
2819      */
2820     void *opaque;
2821     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2822      * fieldoffset is non-zero, the reset value of the register.
2823      */
2824     uint64_t resetvalue;
2825     /* Offset of the field in CPUARMState for this register.
2826      *
2827      * This is not needed if either:
2828      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2829      *  2. both readfn and writefn are specified
2830      */
2831     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2832 
2833     /* Offsets of the secure and non-secure fields in CPUARMState for the
2834      * register if it is banked.  These fields are only used during the static
2835      * registration of a register.  During hashing the bank associated
2836      * with a given security state is copied to fieldoffset which is used from
2837      * there on out.
2838      *
2839      * It is expected that register definitions use either fieldoffset or
2840      * bank_fieldoffsets in the definition but not both.  It is also expected
2841      * that both bank offsets are set when defining a banked register.  This
2842      * use indicates that a register is banked.
2843      */
2844     ptrdiff_t bank_fieldoffsets[2];
2845 
2846     /* Function for making any access checks for this register in addition to
2847      * those specified by the 'access' permissions bits. If NULL, no extra
2848      * checks required. The access check is performed at runtime, not at
2849      * translate time.
2850      */
2851     CPAccessFn *accessfn;
2852     /* Function for handling reads of this register. If NULL, then reads
2853      * will be done by loading from the offset into CPUARMState specified
2854      * by fieldoffset.
2855      */
2856     CPReadFn *readfn;
2857     /* Function for handling writes of this register. If NULL, then writes
2858      * will be done by writing to the offset into CPUARMState specified
2859      * by fieldoffset.
2860      */
2861     CPWriteFn *writefn;
2862     /* Function for doing a "raw" read; used when we need to copy
2863      * coprocessor state to the kernel for KVM or out for
2864      * migration. This only needs to be provided if there is also a
2865      * readfn and it has side effects (for instance clear-on-read bits).
2866      */
2867     CPReadFn *raw_readfn;
2868     /* Function for doing a "raw" write; used when we need to copy KVM
2869      * kernel coprocessor state into userspace, or for inbound
2870      * migration. This only needs to be provided if there is also a
2871      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2872      * or similar behaviour.
2873      */
2874     CPWriteFn *raw_writefn;
2875     /* Function for resetting the register. If NULL, then reset will be done
2876      * by writing resetvalue to the field specified in fieldoffset. If
2877      * fieldoffset is 0 then no reset will be done.
2878      */
2879     CPResetFn *resetfn;
2880 
2881     /*
2882      * "Original" writefn and readfn.
2883      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2884      * accessor functions of various EL1/EL0 to perform the runtime
2885      * check for which sysreg should actually be modified, and then
2886      * forwards the operation.  Before overwriting the accessors,
2887      * the original function is copied here, so that accesses that
2888      * really do go to the EL1/EL0 version proceed normally.
2889      * (The corresponding EL2 register is linked via opaque.)
2890      */
2891     CPReadFn *orig_readfn;
2892     CPWriteFn *orig_writefn;
2893 };
2894 
2895 /* Macros which are lvalues for the field in CPUARMState for the
2896  * ARMCPRegInfo *ri.
2897  */
2898 #define CPREG_FIELD32(env, ri) \
2899     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2900 #define CPREG_FIELD64(env, ri) \
2901     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2902 
2903 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2904 
2905 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2906                                     const ARMCPRegInfo *regs, void *opaque);
2907 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2908                                        const ARMCPRegInfo *regs, void *opaque);
2909 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2910 {
2911     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2912 }
2913 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2914 {
2915     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2916 }
2917 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2918 
2919 /*
2920  * Definition of an ARM co-processor register as viewed from
2921  * userspace. This is used for presenting sanitised versions of
2922  * registers to userspace when emulating the Linux AArch64 CPU
2923  * ID/feature ABI (advertised as HWCAP_CPUID).
2924  */
2925 typedef struct ARMCPRegUserSpaceInfo {
2926     /* Name of register */
2927     const char *name;
2928 
2929     /* Is the name actually a glob pattern */
2930     bool is_glob;
2931 
2932     /* Only some bits are exported to user space */
2933     uint64_t exported_bits;
2934 
2935     /* Fixed bits are applied after the mask */
2936     uint64_t fixed_bits;
2937 } ARMCPRegUserSpaceInfo;
2938 
2939 #define REGUSERINFO_SENTINEL { .name = NULL }
2940 
2941 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2942 
2943 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2944 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2945                          uint64_t value);
2946 /* CPReadFn that can be used for read-as-zero behaviour */
2947 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2948 
2949 /* CPResetFn that does nothing, for use if no reset is required even
2950  * if fieldoffset is non zero.
2951  */
2952 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2953 
2954 /* Return true if this reginfo struct's field in the cpu state struct
2955  * is 64 bits wide.
2956  */
2957 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2958 {
2959     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2960 }
2961 
2962 static inline bool cp_access_ok(int current_el,
2963                                 const ARMCPRegInfo *ri, int isread)
2964 {
2965     return (ri->access >> ((current_el * 2) + isread)) & 1;
2966 }
2967 
2968 /* Raw read of a coprocessor register (as needed for migration, etc) */
2969 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2970 
2971 /**
2972  * write_list_to_cpustate
2973  * @cpu: ARMCPU
2974  *
2975  * For each register listed in the ARMCPU cpreg_indexes list, write
2976  * its value from the cpreg_values list into the ARMCPUState structure.
2977  * This updates TCG's working data structures from KVM data or
2978  * from incoming migration state.
2979  *
2980  * Returns: true if all register values were updated correctly,
2981  * false if some register was unknown or could not be written.
2982  * Note that we do not stop early on failure -- we will attempt
2983  * writing all registers in the list.
2984  */
2985 bool write_list_to_cpustate(ARMCPU *cpu);
2986 
2987 /**
2988  * write_cpustate_to_list:
2989  * @cpu: ARMCPU
2990  * @kvm_sync: true if this is for syncing back to KVM
2991  *
2992  * For each register listed in the ARMCPU cpreg_indexes list, write
2993  * its value from the ARMCPUState structure into the cpreg_values list.
2994  * This is used to copy info from TCG's working data structures into
2995  * KVM or for outbound migration.
2996  *
2997  * @kvm_sync is true if we are doing this in order to sync the
2998  * register state back to KVM. In this case we will only update
2999  * values in the list if the previous list->cpustate sync actually
3000  * successfully wrote the CPU state. Otherwise we will keep the value
3001  * that is in the list.
3002  *
3003  * Returns: true if all register values were read correctly,
3004  * false if some register was unknown or could not be read.
3005  * Note that we do not stop early on failure -- we will attempt
3006  * reading all registers in the list.
3007  */
3008 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
3009 
3010 #define ARM_CPUID_TI915T      0x54029152
3011 #define ARM_CPUID_TI925T      0x54029252
3012 
3013 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
3014 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
3015 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
3016 
3017 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
3018 
3019 #define cpu_list arm_cpu_list
3020 
3021 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
3022  *
3023  * If EL3 is 64-bit:
3024  *  + NonSecure EL1 & 0 stage 1
3025  *  + NonSecure EL1 & 0 stage 2
3026  *  + NonSecure EL2
3027  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
3028  *  + Secure EL1 & 0
3029  *  + Secure EL3
3030  * If EL3 is 32-bit:
3031  *  + NonSecure PL1 & 0 stage 1
3032  *  + NonSecure PL1 & 0 stage 2
3033  *  + NonSecure PL2
3034  *  + Secure PL0
3035  *  + Secure PL1
3036  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
3037  *
3038  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
3039  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
3040  *     because they may differ in access permissions even if the VA->PA map is
3041  *     the same
3042  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
3043  *     translation, which means that we have one mmu_idx that deals with two
3044  *     concatenated translation regimes [this sort of combined s1+2 TLB is
3045  *     architecturally permitted]
3046  *  3. we don't need to allocate an mmu_idx to translations that we won't be
3047  *     handling via the TLB. The only way to do a stage 1 translation without
3048  *     the immediate stage 2 translation is via the ATS or AT system insns,
3049  *     which can be slow-pathed and always do a page table walk.
3050  *     The only use of stage 2 translations is either as part of an s1+2
3051  *     lookup or when loading the descriptors during a stage 1 page table walk,
3052  *     and in both those cases we don't use the TLB.
3053  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3054  *     translation regimes, because they map reasonably well to each other
3055  *     and they can't both be active at the same time.
3056  *  5. we want to be able to use the TLB for accesses done as part of a
3057  *     stage1 page table walk, rather than having to walk the stage2 page
3058  *     table over and over.
3059  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3060  *     Never (PAN) bit within PSTATE.
3061  *
3062  * This gives us the following list of cases:
3063  *
3064  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3065  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3066  * NS EL1 EL1&0 stage 1+2 +PAN
3067  * NS EL0 EL2&0
3068  * NS EL2 EL2&0
3069  * NS EL2 EL2&0 +PAN
3070  * NS EL2 (aka NS PL2)
3071  * S EL0 EL1&0 (aka S PL0)
3072  * S EL1 EL1&0 (not used if EL3 is 32 bit)
3073  * S EL1 EL1&0 +PAN
3074  * S EL3 (aka S PL1)
3075  *
3076  * for a total of 11 different mmu_idx.
3077  *
3078  * R profile CPUs have an MPU, but can use the same set of MMU indexes
3079  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3080  * NS EL2 if we ever model a Cortex-R52).
3081  *
3082  * M profile CPUs are rather different as they do not have a true MMU.
3083  * They have the following different MMU indexes:
3084  *  User
3085  *  Privileged
3086  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3087  *  Privileged, execution priority negative (ditto)
3088  * If the CPU supports the v8M Security Extension then there are also:
3089  *  Secure User
3090  *  Secure Privileged
3091  *  Secure User, execution priority negative
3092  *  Secure Privileged, execution priority negative
3093  *
3094  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3095  * are not quite the same -- different CPU types (most notably M profile
3096  * vs A/R profile) would like to use MMU indexes with different semantics,
3097  * but since we don't ever need to use all of those in a single CPU we
3098  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3099  * modes + total number of M profile MMU modes". The lower bits of
3100  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3101  * the same for any particular CPU.
3102  * Variables of type ARMMUIdx are always full values, and the core
3103  * index values are in variables of type 'int'.
3104  *
3105  * Our enumeration includes at the end some entries which are not "true"
3106  * mmu_idx values in that they don't have corresponding TLBs and are only
3107  * valid for doing slow path page table walks.
3108  *
3109  * The constant names here are patterned after the general style of the names
3110  * of the AT/ATS operations.
3111  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3112  * For M profile we arrange them to have a bit for priv, a bit for negpri
3113  * and a bit for secure.
3114  */
3115 #define ARM_MMU_IDX_A     0x10  /* A profile */
3116 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
3117 #define ARM_MMU_IDX_M     0x40  /* M profile */
3118 
3119 /* Meanings of the bits for A profile mmu idx values */
3120 #define ARM_MMU_IDX_A_NS     0x8
3121 
3122 /* Meanings of the bits for M profile mmu idx values */
3123 #define ARM_MMU_IDX_M_PRIV   0x1
3124 #define ARM_MMU_IDX_M_NEGPRI 0x2
3125 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
3126 
3127 #define ARM_MMU_IDX_TYPE_MASK \
3128     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3129 #define ARM_MMU_IDX_COREIDX_MASK 0xf
3130 
3131 typedef enum ARMMMUIdx {
3132     /*
3133      * A-profile.
3134      */
3135     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
3136     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
3137     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
3138     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
3139     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
3140     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
3141     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
3142     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
3143 
3144     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3145     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3146     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3147     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3148     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3149     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3150     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3151 
3152     /*
3153      * These are not allocated TLBs and are used only for AT system
3154      * instructions or for the first stage of an S12 page table walk.
3155      */
3156     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3157     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3158     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3159     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3160     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3161     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3162     /*
3163      * Not allocated a TLB: used only for second stage of an S12 page
3164      * table walk, or for descriptor loads during first stage of an S1
3165      * page table walk. Note that if we ever want to have a TLB for this
3166      * then various TLB flush insns which currently are no-ops or flush
3167      * only stage 1 MMU indexes will need to change to flush stage 2.
3168      */
3169     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
3170     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
3171 
3172     /*
3173      * M-profile.
3174      */
3175     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3176     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3177     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3178     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3179     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3180     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3181     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3182     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3183 } ARMMMUIdx;
3184 
3185 /*
3186  * Bit macros for the core-mmu-index values for each index,
3187  * for use when calling tlb_flush_by_mmuidx() and friends.
3188  */
3189 #define TO_CORE_BIT(NAME) \
3190     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3191 
3192 typedef enum ARMMMUIdxBit {
3193     TO_CORE_BIT(E10_0),
3194     TO_CORE_BIT(E20_0),
3195     TO_CORE_BIT(E10_1),
3196     TO_CORE_BIT(E10_1_PAN),
3197     TO_CORE_BIT(E2),
3198     TO_CORE_BIT(E20_2),
3199     TO_CORE_BIT(E20_2_PAN),
3200     TO_CORE_BIT(SE10_0),
3201     TO_CORE_BIT(SE20_0),
3202     TO_CORE_BIT(SE10_1),
3203     TO_CORE_BIT(SE20_2),
3204     TO_CORE_BIT(SE10_1_PAN),
3205     TO_CORE_BIT(SE20_2_PAN),
3206     TO_CORE_BIT(SE2),
3207     TO_CORE_BIT(SE3),
3208 
3209     TO_CORE_BIT(MUser),
3210     TO_CORE_BIT(MPriv),
3211     TO_CORE_BIT(MUserNegPri),
3212     TO_CORE_BIT(MPrivNegPri),
3213     TO_CORE_BIT(MSUser),
3214     TO_CORE_BIT(MSPriv),
3215     TO_CORE_BIT(MSUserNegPri),
3216     TO_CORE_BIT(MSPrivNegPri),
3217 } ARMMMUIdxBit;
3218 
3219 #undef TO_CORE_BIT
3220 
3221 #define MMU_USER_IDX 0
3222 
3223 /* Indexes used when registering address spaces with cpu_address_space_init */
3224 typedef enum ARMASIdx {
3225     ARMASIdx_NS = 0,
3226     ARMASIdx_S = 1,
3227     ARMASIdx_TagNS = 2,
3228     ARMASIdx_TagS = 3,
3229 } ARMASIdx;
3230 
3231 /* Return the Exception Level targeted by debug exceptions. */
3232 static inline int arm_debug_target_el(CPUARMState *env)
3233 {
3234     bool secure = arm_is_secure(env);
3235     bool route_to_el2 = false;
3236 
3237     if (arm_is_el2_enabled(env)) {
3238         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3239                        env->cp15.mdcr_el2 & MDCR_TDE;
3240     }
3241 
3242     if (route_to_el2) {
3243         return 2;
3244     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3245                !arm_el_is_aa64(env, 3) && secure) {
3246         return 3;
3247     } else {
3248         return 1;
3249     }
3250 }
3251 
3252 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3253 {
3254     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3255      * CSSELR is RAZ/WI.
3256      */
3257     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3258 }
3259 
3260 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3261 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3262 {
3263     int cur_el = arm_current_el(env);
3264     int debug_el;
3265 
3266     if (cur_el == 3) {
3267         return false;
3268     }
3269 
3270     /* MDCR_EL3.SDD disables debug events from Secure state */
3271     if (arm_is_secure_below_el3(env)
3272         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3273         return false;
3274     }
3275 
3276     /*
3277      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3278      * while not masking the (D)ebug bit in DAIF.
3279      */
3280     debug_el = arm_debug_target_el(env);
3281 
3282     if (cur_el == debug_el) {
3283         return extract32(env->cp15.mdscr_el1, 13, 1)
3284             && !(env->daif & PSTATE_D);
3285     }
3286 
3287     /* Otherwise the debug target needs to be a higher EL */
3288     return debug_el > cur_el;
3289 }
3290 
3291 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3292 {
3293     int el = arm_current_el(env);
3294 
3295     if (el == 0 && arm_el_is_aa64(env, 1)) {
3296         return aa64_generate_debug_exceptions(env);
3297     }
3298 
3299     if (arm_is_secure(env)) {
3300         int spd;
3301 
3302         if (el == 0 && (env->cp15.sder & 1)) {
3303             /* SDER.SUIDEN means debug exceptions from Secure EL0
3304              * are always enabled. Otherwise they are controlled by
3305              * SDCR.SPD like those from other Secure ELs.
3306              */
3307             return true;
3308         }
3309 
3310         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3311         switch (spd) {
3312         case 1:
3313             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3314         case 0:
3315             /* For 0b00 we return true if external secure invasive debug
3316              * is enabled. On real hardware this is controlled by external
3317              * signals to the core. QEMU always permits debug, and behaves
3318              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3319              */
3320             return true;
3321         case 2:
3322             return false;
3323         case 3:
3324             return true;
3325         }
3326     }
3327 
3328     return el != 2;
3329 }
3330 
3331 /* Return true if debugging exceptions are currently enabled.
3332  * This corresponds to what in ARM ARM pseudocode would be
3333  *    if UsingAArch32() then
3334  *        return AArch32.GenerateDebugExceptions()
3335  *    else
3336  *        return AArch64.GenerateDebugExceptions()
3337  * We choose to push the if() down into this function for clarity,
3338  * since the pseudocode has it at all callsites except for the one in
3339  * CheckSoftwareStep(), where it is elided because both branches would
3340  * always return the same value.
3341  */
3342 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3343 {
3344     if (env->aarch64) {
3345         return aa64_generate_debug_exceptions(env);
3346     } else {
3347         return aa32_generate_debug_exceptions(env);
3348     }
3349 }
3350 
3351 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3352  * implicitly means this always returns false in pre-v8 CPUs.)
3353  */
3354 static inline bool arm_singlestep_active(CPUARMState *env)
3355 {
3356     return extract32(env->cp15.mdscr_el1, 0, 1)
3357         && arm_el_is_aa64(env, arm_debug_target_el(env))
3358         && arm_generate_debug_exceptions(env);
3359 }
3360 
3361 static inline bool arm_sctlr_b(CPUARMState *env)
3362 {
3363     return
3364         /* We need not implement SCTLR.ITD in user-mode emulation, so
3365          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3366          * This lets people run BE32 binaries with "-cpu any".
3367          */
3368 #ifndef CONFIG_USER_ONLY
3369         !arm_feature(env, ARM_FEATURE_V7) &&
3370 #endif
3371         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3372 }
3373 
3374 uint64_t arm_sctlr(CPUARMState *env, int el);
3375 
3376 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3377                                                   bool sctlr_b)
3378 {
3379 #ifdef CONFIG_USER_ONLY
3380     /*
3381      * In system mode, BE32 is modelled in line with the
3382      * architecture (as word-invariant big-endianness), where loads
3383      * and stores are done little endian but from addresses which
3384      * are adjusted by XORing with the appropriate constant. So the
3385      * endianness to use for the raw data access is not affected by
3386      * SCTLR.B.
3387      * In user mode, however, we model BE32 as byte-invariant
3388      * big-endianness (because user-only code cannot tell the
3389      * difference), and so we need to use a data access endianness
3390      * that depends on SCTLR.B.
3391      */
3392     if (sctlr_b) {
3393         return true;
3394     }
3395 #endif
3396     /* In 32bit endianness is determined by looking at CPSR's E bit */
3397     return env->uncached_cpsr & CPSR_E;
3398 }
3399 
3400 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3401 {
3402     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3403 }
3404 
3405 /* Return true if the processor is in big-endian mode. */
3406 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3407 {
3408     if (!is_a64(env)) {
3409         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3410     } else {
3411         int cur_el = arm_current_el(env);
3412         uint64_t sctlr = arm_sctlr(env, cur_el);
3413         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3414     }
3415 }
3416 
3417 #include "exec/cpu-all.h"
3418 
3419 /*
3420  * We have more than 32-bits worth of state per TB, so we split the data
3421  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3422  * We collect these two parts in CPUARMTBFlags where they are named
3423  * flags and flags2 respectively.
3424  *
3425  * The flags that are shared between all execution modes, TBFLAG_ANY,
3426  * are stored in flags.  The flags that are specific to a given mode
3427  * are stores in flags2.  Since cs_base is sized on the configured
3428  * address size, flags2 always has 64-bits for A64, and a minimum of
3429  * 32-bits for A32 and M32.
3430  *
3431  * The bits for 32-bit A-profile and M-profile partially overlap:
3432  *
3433  *  31         23         11 10             0
3434  * +-------------+----------+----------------+
3435  * |             |          |   TBFLAG_A32   |
3436  * | TBFLAG_AM32 |          +-----+----------+
3437  * |             |                |TBFLAG_M32|
3438  * +-------------+----------------+----------+
3439  *  31         23                6 5        0
3440  *
3441  * Unless otherwise noted, these bits are cached in env->hflags.
3442  */
3443 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3444 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3445 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3446 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3447 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3448 /* Target EL if we take a floating-point-disabled exception */
3449 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3450 /* For A-profile only, target EL for debug exceptions.  */
3451 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3452 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3453 FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3454 FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
3455 
3456 /*
3457  * Bit usage when in AArch32 state, both A- and M-profile.
3458  */
3459 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3460 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3461 
3462 /*
3463  * Bit usage when in AArch32 state, for A-profile only.
3464  */
3465 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3466 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3467 /*
3468  * We store the bottom two bits of the CPAR as TB flags and handle
3469  * checks on the other bits at runtime. This shares the same bits as
3470  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3471  * Not cached, because VECLEN+VECSTRIDE are not cached.
3472  */
3473 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3474 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3475 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3476 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3477 /*
3478  * Indicates whether cp register reads and writes by guest code should access
3479  * the secure or nonsecure bank of banked registers; note that this is not
3480  * the same thing as the current security state of the processor!
3481  */
3482 FIELD(TBFLAG_A32, NS, 10, 1)
3483 
3484 /*
3485  * Bit usage when in AArch32 state, for M-profile only.
3486  */
3487 /* Handler (ie not Thread) mode */
3488 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3489 /* Whether we should generate stack-limit checks */
3490 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3491 /* Set if FPCCR.LSPACT is set */
3492 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3493 /* Set if we must create a new FP context */
3494 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3495 /* Set if FPCCR.S does not match current security state */
3496 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3497 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3498 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3499 
3500 /*
3501  * Bit usage when in AArch64 state
3502  */
3503 FIELD(TBFLAG_A64, TBII, 0, 2)
3504 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3505 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3506 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3507 FIELD(TBFLAG_A64, BT, 9, 1)
3508 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3509 FIELD(TBFLAG_A64, TBID, 12, 2)
3510 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3511 FIELD(TBFLAG_A64, ATA, 15, 1)
3512 FIELD(TBFLAG_A64, TCMA, 16, 2)
3513 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3514 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3515 
3516 /*
3517  * Helpers for using the above.
3518  */
3519 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3520     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3521 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3522     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3523 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3524     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3525 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3526     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3527 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3528     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3529 
3530 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3531 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3532 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3533 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3534 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3535 
3536 /**
3537  * cpu_mmu_index:
3538  * @env: The cpu environment
3539  * @ifetch: True for code access, false for data access.
3540  *
3541  * Return the core mmu index for the current translation regime.
3542  * This function is used by generic TCG code paths.
3543  */
3544 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3545 {
3546     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3547 }
3548 
3549 static inline bool bswap_code(bool sctlr_b)
3550 {
3551 #ifdef CONFIG_USER_ONLY
3552     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3553      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3554      * would also end up as a mixed-endian mode with BE code, LE data.
3555      */
3556     return
3557 #ifdef TARGET_WORDS_BIGENDIAN
3558         1 ^
3559 #endif
3560         sctlr_b;
3561 #else
3562     /* All code access in ARM is little endian, and there are no loaders
3563      * doing swaps that need to be reversed
3564      */
3565     return 0;
3566 #endif
3567 }
3568 
3569 #ifdef CONFIG_USER_ONLY
3570 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3571 {
3572     return
3573 #ifdef TARGET_WORDS_BIGENDIAN
3574        1 ^
3575 #endif
3576        arm_cpu_data_is_big_endian(env);
3577 }
3578 #endif
3579 
3580 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3581                           target_ulong *cs_base, uint32_t *flags);
3582 
3583 enum {
3584     QEMU_PSCI_CONDUIT_DISABLED = 0,
3585     QEMU_PSCI_CONDUIT_SMC = 1,
3586     QEMU_PSCI_CONDUIT_HVC = 2,
3587 };
3588 
3589 #ifndef CONFIG_USER_ONLY
3590 /* Return the address space index to use for a memory access */
3591 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3592 {
3593     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3594 }
3595 
3596 /* Return the AddressSpace to use for a memory access
3597  * (which depends on whether the access is S or NS, and whether
3598  * the board gave us a separate AddressSpace for S accesses).
3599  */
3600 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3601 {
3602     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3603 }
3604 #endif
3605 
3606 /**
3607  * arm_register_pre_el_change_hook:
3608  * Register a hook function which will be called immediately before this
3609  * CPU changes exception level or mode. The hook function will be
3610  * passed a pointer to the ARMCPU and the opaque data pointer passed
3611  * to this function when the hook was registered.
3612  *
3613  * Note that if a pre-change hook is called, any registered post-change hooks
3614  * are guaranteed to subsequently be called.
3615  */
3616 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3617                                  void *opaque);
3618 /**
3619  * arm_register_el_change_hook:
3620  * Register a hook function which will be called immediately after this
3621  * CPU changes exception level or mode. The hook function will be
3622  * passed a pointer to the ARMCPU and the opaque data pointer passed
3623  * to this function when the hook was registered.
3624  *
3625  * Note that any registered hooks registered here are guaranteed to be called
3626  * if pre-change hooks have been.
3627  */
3628 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3629         *opaque);
3630 
3631 /**
3632  * arm_rebuild_hflags:
3633  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3634  */
3635 void arm_rebuild_hflags(CPUARMState *env);
3636 
3637 /**
3638  * aa32_vfp_dreg:
3639  * Return a pointer to the Dn register within env in 32-bit mode.
3640  */
3641 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3642 {
3643     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3644 }
3645 
3646 /**
3647  * aa32_vfp_qreg:
3648  * Return a pointer to the Qn register within env in 32-bit mode.
3649  */
3650 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3651 {
3652     return &env->vfp.zregs[regno].d[0];
3653 }
3654 
3655 /**
3656  * aa64_vfp_qreg:
3657  * Return a pointer to the Qn register within env in 64-bit mode.
3658  */
3659 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3660 {
3661     return &env->vfp.zregs[regno].d[0];
3662 }
3663 
3664 /* Shared between translate-sve.c and sve_helper.c.  */
3665 extern const uint64_t pred_esz_masks[4];
3666 
3667 /* Helper for the macros below, validating the argument type. */
3668 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3669 {
3670     return x;
3671 }
3672 
3673 /*
3674  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3675  * Using these should be a bit more self-documenting than using the
3676  * generic target bits directly.
3677  */
3678 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3679 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3680 
3681 /*
3682  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3683  */
3684 #define PAGE_BTI  PAGE_TARGET_1
3685 #define PAGE_MTE  PAGE_TARGET_2
3686 
3687 #ifdef TARGET_TAGGED_ADDRESSES
3688 /**
3689  * cpu_untagged_addr:
3690  * @cs: CPU context
3691  * @x: tagged address
3692  *
3693  * Remove any address tag from @x.  This is explicitly related to the
3694  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3695  *
3696  * There should be a better place to put this, but we need this in
3697  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3698  */
3699 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3700 {
3701     ARMCPU *cpu = ARM_CPU(cs);
3702     if (cpu->env.tagged_addr_enable) {
3703         /*
3704          * TBI is enabled for userspace but not kernelspace addresses.
3705          * Only clear the tag if bit 55 is clear.
3706          */
3707         x &= sextract64(x, 0, 56);
3708     }
3709     return x;
3710 }
3711 #endif
3712 
3713 /*
3714  * Naming convention for isar_feature functions:
3715  * Functions which test 32-bit ID registers should have _aa32_ in
3716  * their name. Functions which test 64-bit ID registers should have
3717  * _aa64_ in their name. These must only be used in code where we
3718  * know for certain that the CPU has AArch32 or AArch64 respectively
3719  * or where the correct answer for a CPU which doesn't implement that
3720  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3721  * system registers that are specific to that CPU state, for "should
3722  * we let this system register bit be set" tests where the 32-bit
3723  * flavour of the register doesn't have the bit, and so on).
3724  * Functions which simply ask "does this feature exist at all" have
3725  * _any_ in their name, and always return the logical OR of the _aa64_
3726  * and the _aa32_ function.
3727  */
3728 
3729 /*
3730  * 32-bit feature tests via id registers.
3731  */
3732 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3733 {
3734     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3735 }
3736 
3737 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3738 {
3739     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3740 }
3741 
3742 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3743 {
3744     /* (M-profile) low-overhead loops and branch future */
3745     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3746 }
3747 
3748 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3749 {
3750     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3751 }
3752 
3753 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3754 {
3755     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3756 }
3757 
3758 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3759 {
3760     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3761 }
3762 
3763 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3764 {
3765     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3766 }
3767 
3768 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3769 {
3770     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3771 }
3772 
3773 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3774 {
3775     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3776 }
3777 
3778 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3779 {
3780     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3781 }
3782 
3783 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3784 {
3785     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3786 }
3787 
3788 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3789 {
3790     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3791 }
3792 
3793 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3794 {
3795     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3796 }
3797 
3798 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3799 {
3800     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3801 }
3802 
3803 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3804 {
3805     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3806 }
3807 
3808 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3809 {
3810     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3811 }
3812 
3813 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3814 {
3815     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3816 }
3817 
3818 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3819 {
3820     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3821 }
3822 
3823 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3824 {
3825     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3826 }
3827 
3828 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3829 {
3830     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3831 }
3832 
3833 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3834 {
3835     /*
3836      * Return true if M-profile state handling insns
3837      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3838      */
3839     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3840 }
3841 
3842 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3843 {
3844     /* Sadly this is encoded differently for A-profile and M-profile */
3845     if (isar_feature_aa32_mprofile(id)) {
3846         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3847     } else {
3848         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3849     }
3850 }
3851 
3852 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3853 {
3854     /*
3855      * Return true if MVE is supported (either integer or floating point).
3856      * We must check for M-profile as the MVFR1 field means something
3857      * else for A-profile.
3858      */
3859     return isar_feature_aa32_mprofile(id) &&
3860         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3861 }
3862 
3863 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3864 {
3865     /*
3866      * Return true if MVE is supported (either integer or floating point).
3867      * We must check for M-profile as the MVFR1 field means something
3868      * else for A-profile.
3869      */
3870     return isar_feature_aa32_mprofile(id) &&
3871         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3872 }
3873 
3874 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3875 {
3876     /*
3877      * Return true if either VFP or SIMD is implemented.
3878      * In this case, a minimum of VFP w/ D0-D15.
3879      */
3880     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3881 }
3882 
3883 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3884 {
3885     /* Return true if D16-D31 are implemented */
3886     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3887 }
3888 
3889 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3890 {
3891     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3892 }
3893 
3894 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3895 {
3896     /* Return true if CPU supports single precision floating point, VFPv2 */
3897     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3898 }
3899 
3900 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3901 {
3902     /* Return true if CPU supports single precision floating point, VFPv3 */
3903     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3904 }
3905 
3906 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3907 {
3908     /* Return true if CPU supports double precision floating point, VFPv2 */
3909     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3910 }
3911 
3912 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3913 {
3914     /* Return true if CPU supports double precision floating point, VFPv3 */
3915     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3916 }
3917 
3918 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3919 {
3920     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3921 }
3922 
3923 /*
3924  * We always set the FP and SIMD FP16 fields to indicate identical
3925  * levels of support (assuming SIMD is implemented at all), so
3926  * we only need one set of accessors.
3927  */
3928 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3929 {
3930     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3931 }
3932 
3933 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3934 {
3935     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3936 }
3937 
3938 /*
3939  * Note that this ID register field covers both VFP and Neon FMAC,
3940  * so should usually be tested in combination with some other
3941  * check that confirms the presence of whichever of VFP or Neon is
3942  * relevant, to avoid accidentally enabling a Neon feature on
3943  * a VFP-no-Neon core or vice-versa.
3944  */
3945 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3946 {
3947     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3948 }
3949 
3950 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3951 {
3952     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3953 }
3954 
3955 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3956 {
3957     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3958 }
3959 
3960 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3961 {
3962     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3963 }
3964 
3965 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3966 {
3967     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3968 }
3969 
3970 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3971 {
3972     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3973 }
3974 
3975 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3976 {
3977     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3978 }
3979 
3980 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3981 {
3982     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3983 }
3984 
3985 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3986 {
3987     /* 0xf means "non-standard IMPDEF PMU" */
3988     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3989         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3990 }
3991 
3992 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3993 {
3994     /* 0xf means "non-standard IMPDEF PMU" */
3995     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3996         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3997 }
3998 
3999 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
4000 {
4001     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
4002 }
4003 
4004 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
4005 {
4006     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
4007 }
4008 
4009 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
4010 {
4011     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
4012 }
4013 
4014 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
4015 {
4016     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
4017 }
4018 
4019 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
4020 {
4021     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
4022 }
4023 
4024 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
4025 {
4026     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
4027 }
4028 
4029 /*
4030  * 64-bit feature tests via id registers.
4031  */
4032 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
4033 {
4034     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
4035 }
4036 
4037 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
4038 {
4039     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
4040 }
4041 
4042 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
4043 {
4044     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
4045 }
4046 
4047 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
4048 {
4049     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
4050 }
4051 
4052 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
4053 {
4054     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
4055 }
4056 
4057 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
4058 {
4059     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
4060 }
4061 
4062 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
4063 {
4064     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
4065 }
4066 
4067 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
4068 {
4069     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
4070 }
4071 
4072 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
4073 {
4074     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
4075 }
4076 
4077 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
4078 {
4079     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
4080 }
4081 
4082 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
4083 {
4084     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
4085 }
4086 
4087 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
4088 {
4089     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
4090 }
4091 
4092 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
4093 {
4094     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
4095 }
4096 
4097 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
4098 {
4099     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
4100 }
4101 
4102 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
4103 {
4104     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
4105 }
4106 
4107 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
4108 {
4109     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
4110 }
4111 
4112 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
4113 {
4114     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
4115 }
4116 
4117 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
4118 {
4119     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
4120 }
4121 
4122 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
4123 {
4124     /*
4125      * Return true if any form of pauth is enabled, as this
4126      * predicate controls migration of the 128-bit keys.
4127      */
4128     return (id->id_aa64isar1 &
4129             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
4130              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
4131              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
4132              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
4133 }
4134 
4135 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
4136 {
4137     /*
4138      * Return true if pauth is enabled with the architected QARMA algorithm.
4139      * QEMU will always set APA+GPA to the same value.
4140      */
4141     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
4142 }
4143 
4144 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
4145 {
4146     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
4147 }
4148 
4149 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
4150 {
4151     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
4152 }
4153 
4154 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
4155 {
4156     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
4157 }
4158 
4159 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4160 {
4161     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4162 }
4163 
4164 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4165 {
4166     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4167 }
4168 
4169 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4170 {
4171     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4172 }
4173 
4174 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4175 {
4176     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4177 }
4178 
4179 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
4180 {
4181     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
4182 }
4183 
4184 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4185 {
4186     /* We always set the AdvSIMD and FP fields identically.  */
4187     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4188 }
4189 
4190 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4191 {
4192     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
4193     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4194 }
4195 
4196 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4197 {
4198     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4199 }
4200 
4201 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
4202 {
4203     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
4204 }
4205 
4206 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4207 {
4208     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4209 }
4210 
4211 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4212 {
4213     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4214 }
4215 
4216 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4217 {
4218     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4219 }
4220 
4221 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4222 {
4223     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4224 }
4225 
4226 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4227 {
4228     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4229 }
4230 
4231 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4232 {
4233     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4234 }
4235 
4236 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4237 {
4238     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4239 }
4240 
4241 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4242 {
4243     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4244 }
4245 
4246 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4247 {
4248     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4249 }
4250 
4251 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4252 {
4253     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4254 }
4255 
4256 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4257 {
4258     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4259 }
4260 
4261 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4262 {
4263     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4264         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4265 }
4266 
4267 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4268 {
4269     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4270         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4271 }
4272 
4273 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4274 {
4275     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4276 }
4277 
4278 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4279 {
4280     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4281 }
4282 
4283 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4284 {
4285     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4286 }
4287 
4288 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4289 {
4290     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4291 }
4292 
4293 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4294 {
4295     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4296     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4297 }
4298 
4299 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4300 {
4301     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4302 }
4303 
4304 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4305 {
4306     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4307     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4308 }
4309 
4310 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4311 {
4312     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4313 }
4314 
4315 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4316 {
4317     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4318 }
4319 
4320 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4321 {
4322     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4323 }
4324 
4325 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4326 {
4327     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4328 }
4329 
4330 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4331 {
4332     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4333 }
4334 
4335 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4336 {
4337     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4338 }
4339 
4340 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4341 {
4342     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4343 }
4344 
4345 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4346 {
4347     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4348 }
4349 
4350 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4351 {
4352     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4353 }
4354 
4355 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4356 {
4357     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4358 }
4359 
4360 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4361 {
4362     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4363 }
4364 
4365 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4366 {
4367     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4368 }
4369 
4370 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4371 {
4372     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4373 }
4374 
4375 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4376 {
4377     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4378 }
4379 
4380 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4381 {
4382     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4383 }
4384 
4385 /*
4386  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4387  */
4388 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4389 {
4390     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4391 }
4392 
4393 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4394 {
4395     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4396 }
4397 
4398 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4399 {
4400     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4401 }
4402 
4403 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4404 {
4405     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4406 }
4407 
4408 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4409 {
4410     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4411 }
4412 
4413 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4414 {
4415     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4416 }
4417 
4418 /*
4419  * Forward to the above feature tests given an ARMCPU pointer.
4420  */
4421 #define cpu_isar_feature(name, cpu) \
4422     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4423 
4424 #endif
4425