xref: /openbmc/qemu/target/arm/cpu.h (revision 0806b30c8dff64e944456aa15bdc6957384e29a8)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #include "fpu/softfloat.h"
43 
44 #define EXCP_UDEF            1   /* undefined instruction */
45 #define EXCP_SWI             2   /* software interrupt */
46 #define EXCP_PREFETCH_ABORT  3
47 #define EXCP_DATA_ABORT      4
48 #define EXCP_IRQ             5
49 #define EXCP_FIQ             6
50 #define EXCP_BKPT            7
51 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53 #define EXCP_HVC            11   /* HyperVisor Call */
54 #define EXCP_HYP_TRAP       12
55 #define EXCP_SMC            13   /* Secure Monitor Call */
56 #define EXCP_VIRQ           14
57 #define EXCP_VFIQ           15
58 #define EXCP_SEMIHOST       16   /* semihosting call */
59 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 
63 #define ARMV7M_EXCP_RESET   1
64 #define ARMV7M_EXCP_NMI     2
65 #define ARMV7M_EXCP_HARD    3
66 #define ARMV7M_EXCP_MEM     4
67 #define ARMV7M_EXCP_BUS     5
68 #define ARMV7M_EXCP_USAGE   6
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* ARM-specific interrupt pending bits.  */
75 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
76 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
77 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
78 
79 /* The usual mapping for an AArch64 system register to its AArch32
80  * counterpart is for the 32 bit world to have access to the lower
81  * half only (with writes leaving the upper half untouched). It's
82  * therefore useful to be able to pass TCG the offset of the least
83  * significant half of a uint64_t struct member.
84  */
85 #ifdef HOST_WORDS_BIGENDIAN
86 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
87 #define offsetofhigh32(S, M) offsetof(S, M)
88 #else
89 #define offsetoflow32(S, M) offsetof(S, M)
90 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
91 #endif
92 
93 /* Meanings of the ARMCPU object's four inbound GPIO lines */
94 #define ARM_CPU_IRQ 0
95 #define ARM_CPU_FIQ 1
96 #define ARM_CPU_VIRQ 2
97 #define ARM_CPU_VFIQ 3
98 
99 #define NB_MMU_MODES 7
100 /* ARM-specific extra insn start words:
101  * 1: Conditional execution bits
102  * 2: Partial exception syndrome for data aborts
103  */
104 #define TARGET_INSN_START_EXTRA_WORDS 2
105 
106 /* The 2nd extra word holding syndrome info for data aborts does not use
107  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
108  * help the sleb128 encoder do a better job.
109  * When restoring the CPU state, we shift it back up.
110  */
111 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
112 #define ARM_INSN_START_WORD2_SHIFT 14
113 
114 /* We currently assume float and double are IEEE single and double
115    precision respectively.
116    Doing runtime conversions is tricky because VFP registers may contain
117    integer values (eg. as the result of a FTOSI instruction).
118    s<2n> maps to the least significant half of d<n>
119    s<2n+1> maps to the most significant half of d<n>
120  */
121 
122 /* CPU state for each instance of a generic timer (in cp15 c14) */
123 typedef struct ARMGenericTimer {
124     uint64_t cval; /* Timer CompareValue register */
125     uint64_t ctl; /* Timer Control register */
126 } ARMGenericTimer;
127 
128 #define GTIMER_PHYS 0
129 #define GTIMER_VIRT 1
130 #define GTIMER_HYP  2
131 #define GTIMER_SEC  3
132 #define NUM_GTIMERS 4
133 
134 typedef struct {
135     uint64_t raw_tcr;
136     uint32_t mask;
137     uint32_t base_mask;
138 } TCR;
139 
140 typedef struct CPUARMState {
141     /* Regs for current mode.  */
142     uint32_t regs[16];
143 
144     /* 32/64 switch only happens when taking and returning from
145      * exceptions so the overlap semantics are taken care of then
146      * instead of having a complicated union.
147      */
148     /* Regs for A64 mode.  */
149     uint64_t xregs[32];
150     uint64_t pc;
151     /* PSTATE isn't an architectural register for ARMv8. However, it is
152      * convenient for us to assemble the underlying state into a 32 bit format
153      * identical to the architectural format used for the SPSR. (This is also
154      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
155      * 'pstate' register are.) Of the PSTATE bits:
156      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
157      *    semantics as for AArch32, as described in the comments on each field)
158      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
159      *  DAIF (exception masks) are kept in env->daif
160      *  all other bits are stored in their correct places in env->pstate
161      */
162     uint32_t pstate;
163     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
164 
165     /* Frequently accessed CPSR bits are stored separately for efficiency.
166        This contains all the other bits.  Use cpsr_{read,write} to access
167        the whole CPSR.  */
168     uint32_t uncached_cpsr;
169     uint32_t spsr;
170 
171     /* Banked registers.  */
172     uint64_t banked_spsr[8];
173     uint32_t banked_r13[8];
174     uint32_t banked_r14[8];
175 
176     /* These hold r8-r12.  */
177     uint32_t usr_regs[5];
178     uint32_t fiq_regs[5];
179 
180     /* cpsr flag cache for faster execution */
181     uint32_t CF; /* 0 or 1 */
182     uint32_t VF; /* V is the bit 31. All other bits are undefined */
183     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
184     uint32_t ZF; /* Z set if zero.  */
185     uint32_t QF; /* 0 or 1 */
186     uint32_t GE; /* cpsr[19:16] */
187     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
188     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
189     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
190 
191     uint64_t elr_el[4]; /* AArch64 exception link regs  */
192     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
193 
194     /* System control coprocessor (cp15) */
195     struct {
196         uint32_t c0_cpuid;
197         union { /* Cache size selection */
198             struct {
199                 uint64_t _unused_csselr0;
200                 uint64_t csselr_ns;
201                 uint64_t _unused_csselr1;
202                 uint64_t csselr_s;
203             };
204             uint64_t csselr_el[4];
205         };
206         union { /* System control register. */
207             struct {
208                 uint64_t _unused_sctlr;
209                 uint64_t sctlr_ns;
210                 uint64_t hsctlr;
211                 uint64_t sctlr_s;
212             };
213             uint64_t sctlr_el[4];
214         };
215         uint64_t cpacr_el1; /* Architectural feature access control register */
216         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
217         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
218         uint64_t sder; /* Secure debug enable register. */
219         uint32_t nsacr; /* Non-secure access control register. */
220         union { /* MMU translation table base 0. */
221             struct {
222                 uint64_t _unused_ttbr0_0;
223                 uint64_t ttbr0_ns;
224                 uint64_t _unused_ttbr0_1;
225                 uint64_t ttbr0_s;
226             };
227             uint64_t ttbr0_el[4];
228         };
229         union { /* MMU translation table base 1. */
230             struct {
231                 uint64_t _unused_ttbr1_0;
232                 uint64_t ttbr1_ns;
233                 uint64_t _unused_ttbr1_1;
234                 uint64_t ttbr1_s;
235             };
236             uint64_t ttbr1_el[4];
237         };
238         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
239         /* MMU translation table base control. */
240         TCR tcr_el[4];
241         TCR vtcr_el2; /* Virtualization Translation Control.  */
242         uint32_t c2_data; /* MPU data cacheable bits.  */
243         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
244         union { /* MMU domain access control register
245                  * MPU write buffer control.
246                  */
247             struct {
248                 uint64_t dacr_ns;
249                 uint64_t dacr_s;
250             };
251             struct {
252                 uint64_t dacr32_el2;
253             };
254         };
255         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
256         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
257         uint64_t hcr_el2; /* Hypervisor configuration register */
258         uint64_t scr_el3; /* Secure configuration register.  */
259         union { /* Fault status registers.  */
260             struct {
261                 uint64_t ifsr_ns;
262                 uint64_t ifsr_s;
263             };
264             struct {
265                 uint64_t ifsr32_el2;
266             };
267         };
268         union {
269             struct {
270                 uint64_t _unused_dfsr;
271                 uint64_t dfsr_ns;
272                 uint64_t hsr;
273                 uint64_t dfsr_s;
274             };
275             uint64_t esr_el[4];
276         };
277         uint32_t c6_region[8]; /* MPU base/size registers.  */
278         union { /* Fault address registers. */
279             struct {
280                 uint64_t _unused_far0;
281 #ifdef HOST_WORDS_BIGENDIAN
282                 uint32_t ifar_ns;
283                 uint32_t dfar_ns;
284                 uint32_t ifar_s;
285                 uint32_t dfar_s;
286 #else
287                 uint32_t dfar_ns;
288                 uint32_t ifar_ns;
289                 uint32_t dfar_s;
290                 uint32_t ifar_s;
291 #endif
292                 uint64_t _unused_far3;
293             };
294             uint64_t far_el[4];
295         };
296         uint64_t hpfar_el2;
297         uint64_t hstr_el2;
298         union { /* Translation result. */
299             struct {
300                 uint64_t _unused_par_0;
301                 uint64_t par_ns;
302                 uint64_t _unused_par_1;
303                 uint64_t par_s;
304             };
305             uint64_t par_el[4];
306         };
307 
308         uint32_t c6_rgnr;
309 
310         uint32_t c9_insn; /* Cache lockdown registers.  */
311         uint32_t c9_data;
312         uint64_t c9_pmcr; /* performance monitor control register */
313         uint64_t c9_pmcnten; /* perf monitor counter enables */
314         uint32_t c9_pmovsr; /* perf monitor overflow status */
315         uint32_t c9_pmuserenr; /* perf monitor user enable */
316         uint64_t c9_pmselr; /* perf monitor counter selection register */
317         uint64_t c9_pminten; /* perf monitor interrupt enables */
318         union { /* Memory attribute redirection */
319             struct {
320 #ifdef HOST_WORDS_BIGENDIAN
321                 uint64_t _unused_mair_0;
322                 uint32_t mair1_ns;
323                 uint32_t mair0_ns;
324                 uint64_t _unused_mair_1;
325                 uint32_t mair1_s;
326                 uint32_t mair0_s;
327 #else
328                 uint64_t _unused_mair_0;
329                 uint32_t mair0_ns;
330                 uint32_t mair1_ns;
331                 uint64_t _unused_mair_1;
332                 uint32_t mair0_s;
333                 uint32_t mair1_s;
334 #endif
335             };
336             uint64_t mair_el[4];
337         };
338         union { /* vector base address register */
339             struct {
340                 uint64_t _unused_vbar;
341                 uint64_t vbar_ns;
342                 uint64_t hvbar;
343                 uint64_t vbar_s;
344             };
345             uint64_t vbar_el[4];
346         };
347         uint32_t mvbar; /* (monitor) vector base address register */
348         struct { /* FCSE PID. */
349             uint32_t fcseidr_ns;
350             uint32_t fcseidr_s;
351         };
352         union { /* Context ID. */
353             struct {
354                 uint64_t _unused_contextidr_0;
355                 uint64_t contextidr_ns;
356                 uint64_t _unused_contextidr_1;
357                 uint64_t contextidr_s;
358             };
359             uint64_t contextidr_el[4];
360         };
361         union { /* User RW Thread register. */
362             struct {
363                 uint64_t tpidrurw_ns;
364                 uint64_t tpidrprw_ns;
365                 uint64_t htpidr;
366                 uint64_t _tpidr_el3;
367             };
368             uint64_t tpidr_el[4];
369         };
370         /* The secure banks of these registers don't map anywhere */
371         uint64_t tpidrurw_s;
372         uint64_t tpidrprw_s;
373         uint64_t tpidruro_s;
374 
375         union { /* User RO Thread register. */
376             uint64_t tpidruro_ns;
377             uint64_t tpidrro_el[1];
378         };
379         uint64_t c14_cntfrq; /* Counter Frequency register */
380         uint64_t c14_cntkctl; /* Timer Control register */
381         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
382         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
383         ARMGenericTimer c14_timer[NUM_GTIMERS];
384         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
385         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
386         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
387         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
388         uint32_t c15_threadid; /* TI debugger thread-ID.  */
389         uint32_t c15_config_base_address; /* SCU base address.  */
390         uint32_t c15_diagnostic; /* diagnostic register */
391         uint32_t c15_power_diagnostic;
392         uint32_t c15_power_control; /* power control */
393         uint64_t dbgbvr[16]; /* breakpoint value registers */
394         uint64_t dbgbcr[16]; /* breakpoint control registers */
395         uint64_t dbgwvr[16]; /* watchpoint value registers */
396         uint64_t dbgwcr[16]; /* watchpoint control registers */
397         uint64_t mdscr_el1;
398         uint64_t oslsr_el1; /* OS Lock Status */
399         uint64_t mdcr_el2;
400         uint64_t mdcr_el3;
401         /* If the counter is enabled, this stores the last time the counter
402          * was reset. Otherwise it stores the counter value
403          */
404         uint64_t c15_ccnt;
405         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
406         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
407         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
408     } cp15;
409 
410     struct {
411         uint32_t other_sp;
412         uint32_t vecbase;
413         uint32_t basepri;
414         uint32_t control;
415         uint32_t ccr; /* Configuration and Control */
416         uint32_t cfsr; /* Configurable Fault Status */
417         uint32_t hfsr; /* HardFault Status */
418         uint32_t dfsr; /* Debug Fault Status Register */
419         uint32_t mmfar; /* MemManage Fault Address */
420         uint32_t bfar; /* BusFault Address */
421         int exception;
422     } v7m;
423 
424     /* Information associated with an exception about to be taken:
425      * code which raises an exception must set cs->exception_index and
426      * the relevant parts of this structure; the cpu_do_interrupt function
427      * will then set the guest-visible registers as part of the exception
428      * entry process.
429      */
430     struct {
431         uint32_t syndrome; /* AArch64 format syndrome register */
432         uint32_t fsr; /* AArch32 format fault status register info */
433         uint64_t vaddress; /* virtual addr associated with exception, if any */
434         uint32_t target_el; /* EL the exception should be targeted for */
435         /* If we implement EL2 we will also need to store information
436          * about the intermediate physical address for stage 2 faults.
437          */
438     } exception;
439 
440     /* Thumb-2 EE state.  */
441     uint32_t teecr;
442     uint32_t teehbr;
443 
444     /* VFP coprocessor state.  */
445     struct {
446         /* VFP/Neon register state. Note that the mapping between S, D and Q
447          * views of the register bank differs between AArch64 and AArch32:
448          * In AArch32:
449          *  Qn = regs[2n+1]:regs[2n]
450          *  Dn = regs[n]
451          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
452          * (and regs[32] to regs[63] are inaccessible)
453          * In AArch64:
454          *  Qn = regs[2n+1]:regs[2n]
455          *  Dn = regs[2n]
456          *  Sn = regs[2n] bits 31..0
457          * This corresponds to the architecturally defined mapping between
458          * the two execution states, and means we do not need to explicitly
459          * map these registers when changing states.
460          */
461         float64 regs[64];
462 
463         uint32_t xregs[16];
464         /* We store these fpcsr fields separately for convenience.  */
465         int vec_len;
466         int vec_stride;
467 
468         /* scratch space when Tn are not sufficient.  */
469         uint32_t scratch[8];
470 
471         /* fp_status is the "normal" fp status. standard_fp_status retains
472          * values corresponding to the ARM "Standard FPSCR Value", ie
473          * default-NaN, flush-to-zero, round-to-nearest and is used by
474          * any operations (generally Neon) which the architecture defines
475          * as controlled by the standard FPSCR value rather than the FPSCR.
476          *
477          * To avoid having to transfer exception bits around, we simply
478          * say that the FPSCR cumulative exception flags are the logical
479          * OR of the flags in the two fp statuses. This relies on the
480          * only thing which needs to read the exception flags being
481          * an explicit FPSCR read.
482          */
483         float_status fp_status;
484         float_status standard_fp_status;
485     } vfp;
486     uint64_t exclusive_addr;
487     uint64_t exclusive_val;
488     uint64_t exclusive_high;
489 
490     /* iwMMXt coprocessor state.  */
491     struct {
492         uint64_t regs[16];
493         uint64_t val;
494 
495         uint32_t cregs[16];
496     } iwmmxt;
497 
498 #if defined(CONFIG_USER_ONLY)
499     /* For usermode syscall translation.  */
500     int eabi;
501 #endif
502 
503     struct CPUBreakpoint *cpu_breakpoint[16];
504     struct CPUWatchpoint *cpu_watchpoint[16];
505 
506     /* Fields up to this point are cleared by a CPU reset */
507     struct {} end_reset_fields;
508 
509     CPU_COMMON
510 
511     /* Fields after CPU_COMMON are preserved across CPU reset. */
512 
513     /* Internal CPU feature flags.  */
514     uint64_t features;
515 
516     /* PMSAv7 MPU */
517     struct {
518         uint32_t *drbar;
519         uint32_t *drsr;
520         uint32_t *dracr;
521     } pmsav7;
522 
523     void *nvic;
524     const struct arm_boot_info *boot_info;
525     /* Store GICv3CPUState to access from this struct */
526     void *gicv3state;
527 } CPUARMState;
528 
529 /**
530  * ARMELChangeHook:
531  * type of a function which can be registered via arm_register_el_change_hook()
532  * to get callbacks when the CPU changes its exception level or mode.
533  */
534 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
535 
536 
537 /* These values map onto the return values for
538  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
539 typedef enum ARMPSCIState {
540     PSCI_ON = 0,
541     PSCI_OFF = 1,
542     PSCI_ON_PENDING = 2
543 } ARMPSCIState;
544 
545 /**
546  * ARMCPU:
547  * @env: #CPUARMState
548  *
549  * An ARM CPU core.
550  */
551 struct ARMCPU {
552     /*< private >*/
553     CPUState parent_obj;
554     /*< public >*/
555 
556     CPUARMState env;
557 
558     /* Coprocessor information */
559     GHashTable *cp_regs;
560     /* For marshalling (mostly coprocessor) register state between the
561      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
562      * we use these arrays.
563      */
564     /* List of register indexes managed via these arrays; (full KVM style
565      * 64 bit indexes, not CPRegInfo 32 bit indexes)
566      */
567     uint64_t *cpreg_indexes;
568     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
569     uint64_t *cpreg_values;
570     /* Length of the indexes, values, reset_values arrays */
571     int32_t cpreg_array_len;
572     /* These are used only for migration: incoming data arrives in
573      * these fields and is sanity checked in post_load before copying
574      * to the working data structures above.
575      */
576     uint64_t *cpreg_vmstate_indexes;
577     uint64_t *cpreg_vmstate_values;
578     int32_t cpreg_vmstate_array_len;
579 
580     /* Timers used by the generic (architected) timer */
581     QEMUTimer *gt_timer[NUM_GTIMERS];
582     /* GPIO outputs for generic timer */
583     qemu_irq gt_timer_outputs[NUM_GTIMERS];
584     /* GPIO output for GICv3 maintenance interrupt signal */
585     qemu_irq gicv3_maintenance_interrupt;
586 
587     /* MemoryRegion to use for secure physical accesses */
588     MemoryRegion *secure_memory;
589 
590     /* 'compatible' string for this CPU for Linux device trees */
591     const char *dtb_compatible;
592 
593     /* PSCI version for this CPU
594      * Bits[31:16] = Major Version
595      * Bits[15:0] = Minor Version
596      */
597     uint32_t psci_version;
598 
599     /* Should CPU start in PSCI powered-off state? */
600     bool start_powered_off;
601 
602     /* Current power state, access guarded by BQL */
603     ARMPSCIState power_state;
604 
605     /* CPU has virtualization extension */
606     bool has_el2;
607     /* CPU has security extension */
608     bool has_el3;
609     /* CPU has PMU (Performance Monitor Unit) */
610     bool has_pmu;
611 
612     /* CPU has memory protection unit */
613     bool has_mpu;
614     /* PMSAv7 MPU number of supported regions */
615     uint32_t pmsav7_dregion;
616 
617     /* PSCI conduit used to invoke PSCI methods
618      * 0 - disabled, 1 - smc, 2 - hvc
619      */
620     uint32_t psci_conduit;
621 
622     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
623      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
624      */
625     uint32_t kvm_target;
626 
627     /* KVM init features for this CPU */
628     uint32_t kvm_init_features[7];
629 
630     /* Uniprocessor system with MP extensions */
631     bool mp_is_up;
632 
633     /* The instance init functions for implementation-specific subclasses
634      * set these fields to specify the implementation-dependent values of
635      * various constant registers and reset values of non-constant
636      * registers.
637      * Some of these might become QOM properties eventually.
638      * Field names match the official register names as defined in the
639      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
640      * is used for reset values of non-constant registers; no reset_
641      * prefix means a constant register.
642      */
643     uint32_t midr;
644     uint32_t revidr;
645     uint32_t reset_fpsid;
646     uint32_t mvfr0;
647     uint32_t mvfr1;
648     uint32_t mvfr2;
649     uint32_t ctr;
650     uint32_t reset_sctlr;
651     uint32_t id_pfr0;
652     uint32_t id_pfr1;
653     uint32_t id_dfr0;
654     uint32_t pmceid0;
655     uint32_t pmceid1;
656     uint32_t id_afr0;
657     uint32_t id_mmfr0;
658     uint32_t id_mmfr1;
659     uint32_t id_mmfr2;
660     uint32_t id_mmfr3;
661     uint32_t id_mmfr4;
662     uint32_t id_isar0;
663     uint32_t id_isar1;
664     uint32_t id_isar2;
665     uint32_t id_isar3;
666     uint32_t id_isar4;
667     uint32_t id_isar5;
668     uint64_t id_aa64pfr0;
669     uint64_t id_aa64pfr1;
670     uint64_t id_aa64dfr0;
671     uint64_t id_aa64dfr1;
672     uint64_t id_aa64afr0;
673     uint64_t id_aa64afr1;
674     uint64_t id_aa64isar0;
675     uint64_t id_aa64isar1;
676     uint64_t id_aa64mmfr0;
677     uint64_t id_aa64mmfr1;
678     uint32_t dbgdidr;
679     uint32_t clidr;
680     uint64_t mp_affinity; /* MP ID without feature bits */
681     /* The elements of this array are the CCSIDR values for each cache,
682      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
683      */
684     uint32_t ccsidr[16];
685     uint64_t reset_cbar;
686     uint32_t reset_auxcr;
687     bool reset_hivecs;
688     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
689     uint32_t dcz_blocksize;
690     uint64_t rvbar;
691 
692     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
693     int gic_num_lrs; /* number of list registers */
694     int gic_vpribits; /* number of virtual priority bits */
695     int gic_vprebits; /* number of virtual preemption bits */
696 
697     /* Whether the cfgend input is high (i.e. this CPU should reset into
698      * big-endian mode).  This setting isn't used directly: instead it modifies
699      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
700      * architecture version.
701      */
702     bool cfgend;
703 
704     ARMELChangeHook *el_change_hook;
705     void *el_change_hook_opaque;
706 };
707 
708 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
709 {
710     return container_of(env, ARMCPU, env);
711 }
712 
713 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
714 
715 #define ENV_OFFSET offsetof(ARMCPU, env)
716 
717 #ifndef CONFIG_USER_ONLY
718 extern const struct VMStateDescription vmstate_arm_cpu;
719 #endif
720 
721 void arm_cpu_do_interrupt(CPUState *cpu);
722 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
723 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
724 
725 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
726                         int flags);
727 
728 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
729                                          MemTxAttrs *attrs);
730 
731 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
732 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
733 
734 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
735                              int cpuid, void *opaque);
736 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
737                              int cpuid, void *opaque);
738 
739 #ifdef TARGET_AARCH64
740 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
741 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
742 #endif
743 
744 ARMCPU *cpu_arm_init(const char *cpu_model);
745 target_ulong do_arm_semihosting(CPUARMState *env);
746 void aarch64_sync_32_to_64(CPUARMState *env);
747 void aarch64_sync_64_to_32(CPUARMState *env);
748 
749 static inline bool is_a64(CPUARMState *env)
750 {
751     return env->aarch64;
752 }
753 
754 /* you can call this signal handler from your SIGBUS and SIGSEGV
755    signal handlers to inform the virtual CPU of exceptions. non zero
756    is returned if the signal was handled by the virtual CPU.  */
757 int cpu_arm_signal_handler(int host_signum, void *pinfo,
758                            void *puc);
759 
760 /**
761  * pmccntr_sync
762  * @env: CPUARMState
763  *
764  * Synchronises the counter in the PMCCNTR. This must always be called twice,
765  * once before any action that might affect the timer and again afterwards.
766  * The function is used to swap the state of the register if required.
767  * This only happens when not in user mode (!CONFIG_USER_ONLY)
768  */
769 void pmccntr_sync(CPUARMState *env);
770 
771 /* SCTLR bit meanings. Several bits have been reused in newer
772  * versions of the architecture; in that case we define constants
773  * for both old and new bit meanings. Code which tests against those
774  * bits should probably check or otherwise arrange that the CPU
775  * is the architectural version it expects.
776  */
777 #define SCTLR_M       (1U << 0)
778 #define SCTLR_A       (1U << 1)
779 #define SCTLR_C       (1U << 2)
780 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
781 #define SCTLR_SA      (1U << 3)
782 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
783 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
784 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
785 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
786 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
787 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
788 #define SCTLR_ITD     (1U << 7) /* v8 onward */
789 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
790 #define SCTLR_SED     (1U << 8) /* v8 onward */
791 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
792 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
793 #define SCTLR_F       (1U << 10) /* up to v6 */
794 #define SCTLR_SW      (1U << 10) /* v7 onward */
795 #define SCTLR_Z       (1U << 11)
796 #define SCTLR_I       (1U << 12)
797 #define SCTLR_V       (1U << 13)
798 #define SCTLR_RR      (1U << 14) /* up to v7 */
799 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
800 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
801 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
802 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
803 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
804 #define SCTLR_HA      (1U << 17)
805 #define SCTLR_BR      (1U << 17) /* PMSA only */
806 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
807 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
808 #define SCTLR_WXN     (1U << 19)
809 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
810 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
811 #define SCTLR_FI      (1U << 21)
812 #define SCTLR_U       (1U << 22)
813 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
814 #define SCTLR_VE      (1U << 24) /* up to v7 */
815 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
816 #define SCTLR_EE      (1U << 25)
817 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
818 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
819 #define SCTLR_NMFI    (1U << 27)
820 #define SCTLR_TRE     (1U << 28)
821 #define SCTLR_AFE     (1U << 29)
822 #define SCTLR_TE      (1U << 30)
823 
824 #define CPTR_TCPAC    (1U << 31)
825 #define CPTR_TTA      (1U << 20)
826 #define CPTR_TFP      (1U << 10)
827 
828 #define MDCR_EPMAD    (1U << 21)
829 #define MDCR_EDAD     (1U << 20)
830 #define MDCR_SPME     (1U << 17)
831 #define MDCR_SDD      (1U << 16)
832 #define MDCR_SPD      (3U << 14)
833 #define MDCR_TDRA     (1U << 11)
834 #define MDCR_TDOSA    (1U << 10)
835 #define MDCR_TDA      (1U << 9)
836 #define MDCR_TDE      (1U << 8)
837 #define MDCR_HPME     (1U << 7)
838 #define MDCR_TPM      (1U << 6)
839 #define MDCR_TPMCR    (1U << 5)
840 
841 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
842 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
843 
844 #define CPSR_M (0x1fU)
845 #define CPSR_T (1U << 5)
846 #define CPSR_F (1U << 6)
847 #define CPSR_I (1U << 7)
848 #define CPSR_A (1U << 8)
849 #define CPSR_E (1U << 9)
850 #define CPSR_IT_2_7 (0xfc00U)
851 #define CPSR_GE (0xfU << 16)
852 #define CPSR_IL (1U << 20)
853 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
854  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
855  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
856  * where it is live state but not accessible to the AArch32 code.
857  */
858 #define CPSR_RESERVED (0x7U << 21)
859 #define CPSR_J (1U << 24)
860 #define CPSR_IT_0_1 (3U << 25)
861 #define CPSR_Q (1U << 27)
862 #define CPSR_V (1U << 28)
863 #define CPSR_C (1U << 29)
864 #define CPSR_Z (1U << 30)
865 #define CPSR_N (1U << 31)
866 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
867 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
868 
869 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
870 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
871     | CPSR_NZCV)
872 /* Bits writable in user mode.  */
873 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
874 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
875 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
876 /* Mask of bits which may be set by exception return copying them from SPSR */
877 #define CPSR_ERET_MASK (~CPSR_RESERVED)
878 
879 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
880 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
881 #define TTBCR_PD0    (1U << 4)
882 #define TTBCR_PD1    (1U << 5)
883 #define TTBCR_EPD0   (1U << 7)
884 #define TTBCR_IRGN0  (3U << 8)
885 #define TTBCR_ORGN0  (3U << 10)
886 #define TTBCR_SH0    (3U << 12)
887 #define TTBCR_T1SZ   (3U << 16)
888 #define TTBCR_A1     (1U << 22)
889 #define TTBCR_EPD1   (1U << 23)
890 #define TTBCR_IRGN1  (3U << 24)
891 #define TTBCR_ORGN1  (3U << 26)
892 #define TTBCR_SH1    (1U << 28)
893 #define TTBCR_EAE    (1U << 31)
894 
895 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
896  * Only these are valid when in AArch64 mode; in
897  * AArch32 mode SPSRs are basically CPSR-format.
898  */
899 #define PSTATE_SP (1U)
900 #define PSTATE_M (0xFU)
901 #define PSTATE_nRW (1U << 4)
902 #define PSTATE_F (1U << 6)
903 #define PSTATE_I (1U << 7)
904 #define PSTATE_A (1U << 8)
905 #define PSTATE_D (1U << 9)
906 #define PSTATE_IL (1U << 20)
907 #define PSTATE_SS (1U << 21)
908 #define PSTATE_V (1U << 28)
909 #define PSTATE_C (1U << 29)
910 #define PSTATE_Z (1U << 30)
911 #define PSTATE_N (1U << 31)
912 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
913 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
914 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
915 /* Mode values for AArch64 */
916 #define PSTATE_MODE_EL3h 13
917 #define PSTATE_MODE_EL3t 12
918 #define PSTATE_MODE_EL2h 9
919 #define PSTATE_MODE_EL2t 8
920 #define PSTATE_MODE_EL1h 5
921 #define PSTATE_MODE_EL1t 4
922 #define PSTATE_MODE_EL0t 0
923 
924 /* Map EL and handler into a PSTATE_MODE.  */
925 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
926 {
927     return (el << 2) | handler;
928 }
929 
930 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
931  * interprocessing, so we don't attempt to sync with the cpsr state used by
932  * the 32 bit decoder.
933  */
934 static inline uint32_t pstate_read(CPUARMState *env)
935 {
936     int ZF;
937 
938     ZF = (env->ZF == 0);
939     return (env->NF & 0x80000000) | (ZF << 30)
940         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
941         | env->pstate | env->daif;
942 }
943 
944 static inline void pstate_write(CPUARMState *env, uint32_t val)
945 {
946     env->ZF = (~val) & PSTATE_Z;
947     env->NF = val;
948     env->CF = (val >> 29) & 1;
949     env->VF = (val << 3) & 0x80000000;
950     env->daif = val & PSTATE_DAIF;
951     env->pstate = val & ~CACHED_PSTATE_BITS;
952 }
953 
954 /* Return the current CPSR value.  */
955 uint32_t cpsr_read(CPUARMState *env);
956 
957 typedef enum CPSRWriteType {
958     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
959     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
960     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
961     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
962 } CPSRWriteType;
963 
964 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
965 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
966                 CPSRWriteType write_type);
967 
968 /* Return the current xPSR value.  */
969 static inline uint32_t xpsr_read(CPUARMState *env)
970 {
971     int ZF;
972     ZF = (env->ZF == 0);
973     return (env->NF & 0x80000000) | (ZF << 30)
974         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
975         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
976         | ((env->condexec_bits & 0xfc) << 8)
977         | env->v7m.exception;
978 }
979 
980 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
981 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
982 {
983     if (mask & CPSR_NZCV) {
984         env->ZF = (~val) & CPSR_Z;
985         env->NF = val;
986         env->CF = (val >> 29) & 1;
987         env->VF = (val << 3) & 0x80000000;
988     }
989     if (mask & CPSR_Q)
990         env->QF = ((val & CPSR_Q) != 0);
991     if (mask & (1 << 24))
992         env->thumb = ((val & (1 << 24)) != 0);
993     if (mask & CPSR_IT_0_1) {
994         env->condexec_bits &= ~3;
995         env->condexec_bits |= (val >> 25) & 3;
996     }
997     if (mask & CPSR_IT_2_7) {
998         env->condexec_bits &= 3;
999         env->condexec_bits |= (val >> 8) & 0xfc;
1000     }
1001     if (mask & 0x1ff) {
1002         env->v7m.exception = val & 0x1ff;
1003     }
1004 }
1005 
1006 #define HCR_VM        (1ULL << 0)
1007 #define HCR_SWIO      (1ULL << 1)
1008 #define HCR_PTW       (1ULL << 2)
1009 #define HCR_FMO       (1ULL << 3)
1010 #define HCR_IMO       (1ULL << 4)
1011 #define HCR_AMO       (1ULL << 5)
1012 #define HCR_VF        (1ULL << 6)
1013 #define HCR_VI        (1ULL << 7)
1014 #define HCR_VSE       (1ULL << 8)
1015 #define HCR_FB        (1ULL << 9)
1016 #define HCR_BSU_MASK  (3ULL << 10)
1017 #define HCR_DC        (1ULL << 12)
1018 #define HCR_TWI       (1ULL << 13)
1019 #define HCR_TWE       (1ULL << 14)
1020 #define HCR_TID0      (1ULL << 15)
1021 #define HCR_TID1      (1ULL << 16)
1022 #define HCR_TID2      (1ULL << 17)
1023 #define HCR_TID3      (1ULL << 18)
1024 #define HCR_TSC       (1ULL << 19)
1025 #define HCR_TIDCP     (1ULL << 20)
1026 #define HCR_TACR      (1ULL << 21)
1027 #define HCR_TSW       (1ULL << 22)
1028 #define HCR_TPC       (1ULL << 23)
1029 #define HCR_TPU       (1ULL << 24)
1030 #define HCR_TTLB      (1ULL << 25)
1031 #define HCR_TVM       (1ULL << 26)
1032 #define HCR_TGE       (1ULL << 27)
1033 #define HCR_TDZ       (1ULL << 28)
1034 #define HCR_HCD       (1ULL << 29)
1035 #define HCR_TRVM      (1ULL << 30)
1036 #define HCR_RW        (1ULL << 31)
1037 #define HCR_CD        (1ULL << 32)
1038 #define HCR_ID        (1ULL << 33)
1039 #define HCR_MASK      ((1ULL << 34) - 1)
1040 
1041 #define SCR_NS                (1U << 0)
1042 #define SCR_IRQ               (1U << 1)
1043 #define SCR_FIQ               (1U << 2)
1044 #define SCR_EA                (1U << 3)
1045 #define SCR_FW                (1U << 4)
1046 #define SCR_AW                (1U << 5)
1047 #define SCR_NET               (1U << 6)
1048 #define SCR_SMD               (1U << 7)
1049 #define SCR_HCE               (1U << 8)
1050 #define SCR_SIF               (1U << 9)
1051 #define SCR_RW                (1U << 10)
1052 #define SCR_ST                (1U << 11)
1053 #define SCR_TWI               (1U << 12)
1054 #define SCR_TWE               (1U << 13)
1055 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1056 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1057 
1058 /* Return the current FPSCR value.  */
1059 uint32_t vfp_get_fpscr(CPUARMState *env);
1060 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1061 
1062 /* For A64 the FPSCR is split into two logically distinct registers,
1063  * FPCR and FPSR. However since they still use non-overlapping bits
1064  * we store the underlying state in fpscr and just mask on read/write.
1065  */
1066 #define FPSR_MASK 0xf800009f
1067 #define FPCR_MASK 0x07f79f00
1068 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1069 {
1070     return vfp_get_fpscr(env) & FPSR_MASK;
1071 }
1072 
1073 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1074 {
1075     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1076     vfp_set_fpscr(env, new_fpscr);
1077 }
1078 
1079 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1080 {
1081     return vfp_get_fpscr(env) & FPCR_MASK;
1082 }
1083 
1084 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1085 {
1086     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1087     vfp_set_fpscr(env, new_fpscr);
1088 }
1089 
1090 enum arm_cpu_mode {
1091   ARM_CPU_MODE_USR = 0x10,
1092   ARM_CPU_MODE_FIQ = 0x11,
1093   ARM_CPU_MODE_IRQ = 0x12,
1094   ARM_CPU_MODE_SVC = 0x13,
1095   ARM_CPU_MODE_MON = 0x16,
1096   ARM_CPU_MODE_ABT = 0x17,
1097   ARM_CPU_MODE_HYP = 0x1a,
1098   ARM_CPU_MODE_UND = 0x1b,
1099   ARM_CPU_MODE_SYS = 0x1f
1100 };
1101 
1102 /* VFP system registers.  */
1103 #define ARM_VFP_FPSID   0
1104 #define ARM_VFP_FPSCR   1
1105 #define ARM_VFP_MVFR2   5
1106 #define ARM_VFP_MVFR1   6
1107 #define ARM_VFP_MVFR0   7
1108 #define ARM_VFP_FPEXC   8
1109 #define ARM_VFP_FPINST  9
1110 #define ARM_VFP_FPINST2 10
1111 
1112 /* iwMMXt coprocessor control registers.  */
1113 #define ARM_IWMMXT_wCID		0
1114 #define ARM_IWMMXT_wCon		1
1115 #define ARM_IWMMXT_wCSSF	2
1116 #define ARM_IWMMXT_wCASF	3
1117 #define ARM_IWMMXT_wCGR0	8
1118 #define ARM_IWMMXT_wCGR1	9
1119 #define ARM_IWMMXT_wCGR2	10
1120 #define ARM_IWMMXT_wCGR3	11
1121 
1122 /* V7M CCR bits */
1123 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1124 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1125 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1126 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1127 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1128 FIELD(V7M_CCR, STKALIGN, 9, 1)
1129 FIELD(V7M_CCR, DC, 16, 1)
1130 FIELD(V7M_CCR, IC, 17, 1)
1131 
1132 /* V7M CFSR bits for MMFSR */
1133 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1134 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1135 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1136 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1137 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1138 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1139 
1140 /* V7M CFSR bits for BFSR */
1141 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1142 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1143 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1144 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1145 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1146 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1147 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1148 
1149 /* V7M CFSR bits for UFSR */
1150 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1151 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1152 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1153 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1154 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1155 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1156 
1157 /* V7M HFSR bits */
1158 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1159 FIELD(V7M_HFSR, FORCED, 30, 1)
1160 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1161 
1162 /* V7M DFSR bits */
1163 FIELD(V7M_DFSR, HALTED, 0, 1)
1164 FIELD(V7M_DFSR, BKPT, 1, 1)
1165 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1166 FIELD(V7M_DFSR, VCATCH, 3, 1)
1167 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1168 
1169 /* If adding a feature bit which corresponds to a Linux ELF
1170  * HWCAP bit, remember to update the feature-bit-to-hwcap
1171  * mapping in linux-user/elfload.c:get_elf_hwcap().
1172  */
1173 enum arm_features {
1174     ARM_FEATURE_VFP,
1175     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1176     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1177     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1178     ARM_FEATURE_V6,
1179     ARM_FEATURE_V6K,
1180     ARM_FEATURE_V7,
1181     ARM_FEATURE_THUMB2,
1182     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
1183     ARM_FEATURE_VFP3,
1184     ARM_FEATURE_VFP_FP16,
1185     ARM_FEATURE_NEON,
1186     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1187     ARM_FEATURE_M, /* Microcontroller profile.  */
1188     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1189     ARM_FEATURE_THUMB2EE,
1190     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1191     ARM_FEATURE_V4T,
1192     ARM_FEATURE_V5,
1193     ARM_FEATURE_STRONGARM,
1194     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1195     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1196     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1197     ARM_FEATURE_GENERIC_TIMER,
1198     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1199     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1200     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1201     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1202     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1203     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1204     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1205     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1206     ARM_FEATURE_V8,
1207     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1208     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1209     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1210     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1211     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1212     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1213     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1214     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1215     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1216     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1217     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1218     ARM_FEATURE_PMU, /* has PMU support */
1219     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1220 };
1221 
1222 static inline int arm_feature(CPUARMState *env, int feature)
1223 {
1224     return (env->features & (1ULL << feature)) != 0;
1225 }
1226 
1227 #if !defined(CONFIG_USER_ONLY)
1228 /* Return true if exception levels below EL3 are in secure state,
1229  * or would be following an exception return to that level.
1230  * Unlike arm_is_secure() (which is always a question about the
1231  * _current_ state of the CPU) this doesn't care about the current
1232  * EL or mode.
1233  */
1234 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1235 {
1236     if (arm_feature(env, ARM_FEATURE_EL3)) {
1237         return !(env->cp15.scr_el3 & SCR_NS);
1238     } else {
1239         /* If EL3 is not supported then the secure state is implementation
1240          * defined, in which case QEMU defaults to non-secure.
1241          */
1242         return false;
1243     }
1244 }
1245 
1246 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1247 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1248 {
1249     if (arm_feature(env, ARM_FEATURE_EL3)) {
1250         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1251             /* CPU currently in AArch64 state and EL3 */
1252             return true;
1253         } else if (!is_a64(env) &&
1254                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1255             /* CPU currently in AArch32 state and monitor mode */
1256             return true;
1257         }
1258     }
1259     return false;
1260 }
1261 
1262 /* Return true if the processor is in secure state */
1263 static inline bool arm_is_secure(CPUARMState *env)
1264 {
1265     if (arm_is_el3_or_mon(env)) {
1266         return true;
1267     }
1268     return arm_is_secure_below_el3(env);
1269 }
1270 
1271 #else
1272 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1273 {
1274     return false;
1275 }
1276 
1277 static inline bool arm_is_secure(CPUARMState *env)
1278 {
1279     return false;
1280 }
1281 #endif
1282 
1283 /* Return true if the specified exception level is running in AArch64 state. */
1284 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1285 {
1286     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1287      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1288      */
1289     assert(el >= 1 && el <= 3);
1290     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1291 
1292     /* The highest exception level is always at the maximum supported
1293      * register width, and then lower levels have a register width controlled
1294      * by bits in the SCR or HCR registers.
1295      */
1296     if (el == 3) {
1297         return aa64;
1298     }
1299 
1300     if (arm_feature(env, ARM_FEATURE_EL3)) {
1301         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1302     }
1303 
1304     if (el == 2) {
1305         return aa64;
1306     }
1307 
1308     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1309         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1310     }
1311 
1312     return aa64;
1313 }
1314 
1315 /* Function for determing whether guest cp register reads and writes should
1316  * access the secure or non-secure bank of a cp register.  When EL3 is
1317  * operating in AArch32 state, the NS-bit determines whether the secure
1318  * instance of a cp register should be used. When EL3 is AArch64 (or if
1319  * it doesn't exist at all) then there is no register banking, and all
1320  * accesses are to the non-secure version.
1321  */
1322 static inline bool access_secure_reg(CPUARMState *env)
1323 {
1324     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1325                 !arm_el_is_aa64(env, 3) &&
1326                 !(env->cp15.scr_el3 & SCR_NS));
1327 
1328     return ret;
1329 }
1330 
1331 /* Macros for accessing a specified CP register bank */
1332 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1333     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1334 
1335 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1336     do {                                                \
1337         if (_secure) {                                   \
1338             (_env)->cp15._regname##_s = (_val);            \
1339         } else {                                        \
1340             (_env)->cp15._regname##_ns = (_val);           \
1341         }                                               \
1342     } while (0)
1343 
1344 /* Macros for automatically accessing a specific CP register bank depending on
1345  * the current secure state of the system.  These macros are not intended for
1346  * supporting instruction translation reads/writes as these are dependent
1347  * solely on the SCR.NS bit and not the mode.
1348  */
1349 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1350     A32_BANKED_REG_GET((_env), _regname,                \
1351                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1352 
1353 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1354     A32_BANKED_REG_SET((_env), _regname,                                    \
1355                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1356                        (_val))
1357 
1358 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1359 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1360                                  uint32_t cur_el, bool secure);
1361 
1362 /* Interface between CPU and Interrupt controller.  */
1363 #ifndef CONFIG_USER_ONLY
1364 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1365 #else
1366 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1367 {
1368     return true;
1369 }
1370 #endif
1371 void armv7m_nvic_set_pending(void *opaque, int irq);
1372 void armv7m_nvic_acknowledge_irq(void *opaque);
1373 /**
1374  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1375  * @opaque: the NVIC
1376  * @irq: the exception number to complete
1377  *
1378  * Returns: -1 if the irq was not active
1379  *           1 if completing this irq brought us back to base (no active irqs)
1380  *           0 if there is still an irq active after this one was completed
1381  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1382  */
1383 int armv7m_nvic_complete_irq(void *opaque, int irq);
1384 
1385 /* Interface for defining coprocessor registers.
1386  * Registers are defined in tables of arm_cp_reginfo structs
1387  * which are passed to define_arm_cp_regs().
1388  */
1389 
1390 /* When looking up a coprocessor register we look for it
1391  * via an integer which encodes all of:
1392  *  coprocessor number
1393  *  Crn, Crm, opc1, opc2 fields
1394  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1395  *    or via MRRC/MCRR?)
1396  *  non-secure/secure bank (AArch32 only)
1397  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1398  * (In this case crn and opc2 should be zero.)
1399  * For AArch64, there is no 32/64 bit size distinction;
1400  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1401  * and 4 bit CRn and CRm. The encoding patterns are chosen
1402  * to be easy to convert to and from the KVM encodings, and also
1403  * so that the hashtable can contain both AArch32 and AArch64
1404  * registers (to allow for interprocessing where we might run
1405  * 32 bit code on a 64 bit core).
1406  */
1407 /* This bit is private to our hashtable cpreg; in KVM register
1408  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1409  * in the upper bits of the 64 bit ID.
1410  */
1411 #define CP_REG_AA64_SHIFT 28
1412 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1413 
1414 /* To enable banking of coprocessor registers depending on ns-bit we
1415  * add a bit to distinguish between secure and non-secure cpregs in the
1416  * hashtable.
1417  */
1418 #define CP_REG_NS_SHIFT 29
1419 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1420 
1421 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1422     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1423      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1424 
1425 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1426     (CP_REG_AA64_MASK |                                 \
1427      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1428      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1429      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1430      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1431      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1432      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1433 
1434 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1435  * version used as a key for the coprocessor register hashtable
1436  */
1437 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1438 {
1439     uint32_t cpregid = kvmid;
1440     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1441         cpregid |= CP_REG_AA64_MASK;
1442     } else {
1443         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1444             cpregid |= (1 << 15);
1445         }
1446 
1447         /* KVM is always non-secure so add the NS flag on AArch32 register
1448          * entries.
1449          */
1450          cpregid |= 1 << CP_REG_NS_SHIFT;
1451     }
1452     return cpregid;
1453 }
1454 
1455 /* Convert a truncated 32 bit hashtable key into the full
1456  * 64 bit KVM register ID.
1457  */
1458 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1459 {
1460     uint64_t kvmid;
1461 
1462     if (cpregid & CP_REG_AA64_MASK) {
1463         kvmid = cpregid & ~CP_REG_AA64_MASK;
1464         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1465     } else {
1466         kvmid = cpregid & ~(1 << 15);
1467         if (cpregid & (1 << 15)) {
1468             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1469         } else {
1470             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1471         }
1472     }
1473     return kvmid;
1474 }
1475 
1476 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1477  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1478  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1479  * TCG can assume the value to be constant (ie load at translate time)
1480  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1481  * indicates that the TB should not be ended after a write to this register
1482  * (the default is that the TB ends after cp writes). OVERRIDE permits
1483  * a register definition to override a previous definition for the
1484  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1485  * old must have the OVERRIDE bit set.
1486  * ALIAS indicates that this register is an alias view of some underlying
1487  * state which is also visible via another register, and that the other
1488  * register is handling migration and reset; registers marked ALIAS will not be
1489  * migrated but may have their state set by syncing of register state from KVM.
1490  * NO_RAW indicates that this register has no underlying state and does not
1491  * support raw access for state saving/loading; it will not be used for either
1492  * migration or KVM state synchronization. (Typically this is for "registers"
1493  * which are actually used as instructions for cache maintenance and so on.)
1494  * IO indicates that this register does I/O and therefore its accesses
1495  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1496  * registers which implement clocks or timers require this.
1497  */
1498 #define ARM_CP_SPECIAL 1
1499 #define ARM_CP_CONST 2
1500 #define ARM_CP_64BIT 4
1501 #define ARM_CP_SUPPRESS_TB_END 8
1502 #define ARM_CP_OVERRIDE 16
1503 #define ARM_CP_ALIAS 32
1504 #define ARM_CP_IO 64
1505 #define ARM_CP_NO_RAW 128
1506 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1507 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1508 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1509 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1510 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1511 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1512 /* Used only as a terminator for ARMCPRegInfo lists */
1513 #define ARM_CP_SENTINEL 0xffff
1514 /* Mask of only the flag bits in a type field */
1515 #define ARM_CP_FLAG_MASK 0xff
1516 
1517 /* Valid values for ARMCPRegInfo state field, indicating which of
1518  * the AArch32 and AArch64 execution states this register is visible in.
1519  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1520  * If the reginfo is declared to be visible in both states then a second
1521  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1522  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1523  * Note that we rely on the values of these enums as we iterate through
1524  * the various states in some places.
1525  */
1526 enum {
1527     ARM_CP_STATE_AA32 = 0,
1528     ARM_CP_STATE_AA64 = 1,
1529     ARM_CP_STATE_BOTH = 2,
1530 };
1531 
1532 /* ARM CP register secure state flags.  These flags identify security state
1533  * attributes for a given CP register entry.
1534  * The existence of both or neither secure and non-secure flags indicates that
1535  * the register has both a secure and non-secure hash entry.  A single one of
1536  * these flags causes the register to only be hashed for the specified
1537  * security state.
1538  * Although definitions may have any combination of the S/NS bits, each
1539  * registered entry will only have one to identify whether the entry is secure
1540  * or non-secure.
1541  */
1542 enum {
1543     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1544     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1545 };
1546 
1547 /* Return true if cptype is a valid type field. This is used to try to
1548  * catch errors where the sentinel has been accidentally left off the end
1549  * of a list of registers.
1550  */
1551 static inline bool cptype_valid(int cptype)
1552 {
1553     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1554         || ((cptype & ARM_CP_SPECIAL) &&
1555             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1556 }
1557 
1558 /* Access rights:
1559  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1560  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1561  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1562  * (ie any of the privileged modes in Secure state, or Monitor mode).
1563  * If a register is accessible in one privilege level it's always accessible
1564  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1565  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1566  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1567  * terminology a little and call this PL3.
1568  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1569  * with the ELx exception levels.
1570  *
1571  * If access permissions for a register are more complex than can be
1572  * described with these bits, then use a laxer set of restrictions, and
1573  * do the more restrictive/complex check inside a helper function.
1574  */
1575 #define PL3_R 0x80
1576 #define PL3_W 0x40
1577 #define PL2_R (0x20 | PL3_R)
1578 #define PL2_W (0x10 | PL3_W)
1579 #define PL1_R (0x08 | PL2_R)
1580 #define PL1_W (0x04 | PL2_W)
1581 #define PL0_R (0x02 | PL1_R)
1582 #define PL0_W (0x01 | PL1_W)
1583 
1584 #define PL3_RW (PL3_R | PL3_W)
1585 #define PL2_RW (PL2_R | PL2_W)
1586 #define PL1_RW (PL1_R | PL1_W)
1587 #define PL0_RW (PL0_R | PL0_W)
1588 
1589 /* Return the highest implemented Exception Level */
1590 static inline int arm_highest_el(CPUARMState *env)
1591 {
1592     if (arm_feature(env, ARM_FEATURE_EL3)) {
1593         return 3;
1594     }
1595     if (arm_feature(env, ARM_FEATURE_EL2)) {
1596         return 2;
1597     }
1598     return 1;
1599 }
1600 
1601 /* Return the current Exception Level (as per ARMv8; note that this differs
1602  * from the ARMv7 Privilege Level).
1603  */
1604 static inline int arm_current_el(CPUARMState *env)
1605 {
1606     if (arm_feature(env, ARM_FEATURE_M)) {
1607         return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1608     }
1609 
1610     if (is_a64(env)) {
1611         return extract32(env->pstate, 2, 2);
1612     }
1613 
1614     switch (env->uncached_cpsr & 0x1f) {
1615     case ARM_CPU_MODE_USR:
1616         return 0;
1617     case ARM_CPU_MODE_HYP:
1618         return 2;
1619     case ARM_CPU_MODE_MON:
1620         return 3;
1621     default:
1622         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1623             /* If EL3 is 32-bit then all secure privileged modes run in
1624              * EL3
1625              */
1626             return 3;
1627         }
1628 
1629         return 1;
1630     }
1631 }
1632 
1633 typedef struct ARMCPRegInfo ARMCPRegInfo;
1634 
1635 typedef enum CPAccessResult {
1636     /* Access is permitted */
1637     CP_ACCESS_OK = 0,
1638     /* Access fails due to a configurable trap or enable which would
1639      * result in a categorized exception syndrome giving information about
1640      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1641      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1642      * PL1 if in EL0, otherwise to the current EL).
1643      */
1644     CP_ACCESS_TRAP = 1,
1645     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1646      * Note that this is not a catch-all case -- the set of cases which may
1647      * result in this failure is specifically defined by the architecture.
1648      */
1649     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1650     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1651     CP_ACCESS_TRAP_EL2 = 3,
1652     CP_ACCESS_TRAP_EL3 = 4,
1653     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1654     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1655     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1656     /* Access fails and results in an exception syndrome for an FP access,
1657      * trapped directly to EL2 or EL3
1658      */
1659     CP_ACCESS_TRAP_FP_EL2 = 7,
1660     CP_ACCESS_TRAP_FP_EL3 = 8,
1661 } CPAccessResult;
1662 
1663 /* Access functions for coprocessor registers. These cannot fail and
1664  * may not raise exceptions.
1665  */
1666 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1667 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1668                        uint64_t value);
1669 /* Access permission check functions for coprocessor registers. */
1670 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1671                                   const ARMCPRegInfo *opaque,
1672                                   bool isread);
1673 /* Hook function for register reset */
1674 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1675 
1676 #define CP_ANY 0xff
1677 
1678 /* Definition of an ARM coprocessor register */
1679 struct ARMCPRegInfo {
1680     /* Name of register (useful mainly for debugging, need not be unique) */
1681     const char *name;
1682     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1683      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1684      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1685      * will be decoded to this register. The register read and write
1686      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1687      * used by the program, so it is possible to register a wildcard and
1688      * then behave differently on read/write if necessary.
1689      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1690      * must both be zero.
1691      * For AArch64-visible registers, opc0 is also used.
1692      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1693      * way to distinguish (for KVM's benefit) guest-visible system registers
1694      * from demuxed ones provided to preserve the "no side effects on
1695      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1696      * visible (to match KVM's encoding); cp==0 will be converted to
1697      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1698      */
1699     uint8_t cp;
1700     uint8_t crn;
1701     uint8_t crm;
1702     uint8_t opc0;
1703     uint8_t opc1;
1704     uint8_t opc2;
1705     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1706     int state;
1707     /* Register type: ARM_CP_* bits/values */
1708     int type;
1709     /* Access rights: PL*_[RW] */
1710     int access;
1711     /* Security state: ARM_CP_SECSTATE_* bits/values */
1712     int secure;
1713     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1714      * this register was defined: can be used to hand data through to the
1715      * register read/write functions, since they are passed the ARMCPRegInfo*.
1716      */
1717     void *opaque;
1718     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1719      * fieldoffset is non-zero, the reset value of the register.
1720      */
1721     uint64_t resetvalue;
1722     /* Offset of the field in CPUARMState for this register.
1723      *
1724      * This is not needed if either:
1725      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1726      *  2. both readfn and writefn are specified
1727      */
1728     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1729 
1730     /* Offsets of the secure and non-secure fields in CPUARMState for the
1731      * register if it is banked.  These fields are only used during the static
1732      * registration of a register.  During hashing the bank associated
1733      * with a given security state is copied to fieldoffset which is used from
1734      * there on out.
1735      *
1736      * It is expected that register definitions use either fieldoffset or
1737      * bank_fieldoffsets in the definition but not both.  It is also expected
1738      * that both bank offsets are set when defining a banked register.  This
1739      * use indicates that a register is banked.
1740      */
1741     ptrdiff_t bank_fieldoffsets[2];
1742 
1743     /* Function for making any access checks for this register in addition to
1744      * those specified by the 'access' permissions bits. If NULL, no extra
1745      * checks required. The access check is performed at runtime, not at
1746      * translate time.
1747      */
1748     CPAccessFn *accessfn;
1749     /* Function for handling reads of this register. If NULL, then reads
1750      * will be done by loading from the offset into CPUARMState specified
1751      * by fieldoffset.
1752      */
1753     CPReadFn *readfn;
1754     /* Function for handling writes of this register. If NULL, then writes
1755      * will be done by writing to the offset into CPUARMState specified
1756      * by fieldoffset.
1757      */
1758     CPWriteFn *writefn;
1759     /* Function for doing a "raw" read; used when we need to copy
1760      * coprocessor state to the kernel for KVM or out for
1761      * migration. This only needs to be provided if there is also a
1762      * readfn and it has side effects (for instance clear-on-read bits).
1763      */
1764     CPReadFn *raw_readfn;
1765     /* Function for doing a "raw" write; used when we need to copy KVM
1766      * kernel coprocessor state into userspace, or for inbound
1767      * migration. This only needs to be provided if there is also a
1768      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1769      * or similar behaviour.
1770      */
1771     CPWriteFn *raw_writefn;
1772     /* Function for resetting the register. If NULL, then reset will be done
1773      * by writing resetvalue to the field specified in fieldoffset. If
1774      * fieldoffset is 0 then no reset will be done.
1775      */
1776     CPResetFn *resetfn;
1777 };
1778 
1779 /* Macros which are lvalues for the field in CPUARMState for the
1780  * ARMCPRegInfo *ri.
1781  */
1782 #define CPREG_FIELD32(env, ri) \
1783     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1784 #define CPREG_FIELD64(env, ri) \
1785     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1786 
1787 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1788 
1789 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1790                                     const ARMCPRegInfo *regs, void *opaque);
1791 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1792                                        const ARMCPRegInfo *regs, void *opaque);
1793 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1794 {
1795     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1796 }
1797 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1798 {
1799     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1800 }
1801 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1802 
1803 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1804 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1805                          uint64_t value);
1806 /* CPReadFn that can be used for read-as-zero behaviour */
1807 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1808 
1809 /* CPResetFn that does nothing, for use if no reset is required even
1810  * if fieldoffset is non zero.
1811  */
1812 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1813 
1814 /* Return true if this reginfo struct's field in the cpu state struct
1815  * is 64 bits wide.
1816  */
1817 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1818 {
1819     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1820 }
1821 
1822 static inline bool cp_access_ok(int current_el,
1823                                 const ARMCPRegInfo *ri, int isread)
1824 {
1825     return (ri->access >> ((current_el * 2) + isread)) & 1;
1826 }
1827 
1828 /* Raw read of a coprocessor register (as needed for migration, etc) */
1829 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1830 
1831 /**
1832  * write_list_to_cpustate
1833  * @cpu: ARMCPU
1834  *
1835  * For each register listed in the ARMCPU cpreg_indexes list, write
1836  * its value from the cpreg_values list into the ARMCPUState structure.
1837  * This updates TCG's working data structures from KVM data or
1838  * from incoming migration state.
1839  *
1840  * Returns: true if all register values were updated correctly,
1841  * false if some register was unknown or could not be written.
1842  * Note that we do not stop early on failure -- we will attempt
1843  * writing all registers in the list.
1844  */
1845 bool write_list_to_cpustate(ARMCPU *cpu);
1846 
1847 /**
1848  * write_cpustate_to_list:
1849  * @cpu: ARMCPU
1850  *
1851  * For each register listed in the ARMCPU cpreg_indexes list, write
1852  * its value from the ARMCPUState structure into the cpreg_values list.
1853  * This is used to copy info from TCG's working data structures into
1854  * KVM or for outbound migration.
1855  *
1856  * Returns: true if all register values were read correctly,
1857  * false if some register was unknown or could not be read.
1858  * Note that we do not stop early on failure -- we will attempt
1859  * reading all registers in the list.
1860  */
1861 bool write_cpustate_to_list(ARMCPU *cpu);
1862 
1863 #define ARM_CPUID_TI915T      0x54029152
1864 #define ARM_CPUID_TI925T      0x54029252
1865 
1866 #if defined(CONFIG_USER_ONLY)
1867 #define TARGET_PAGE_BITS 12
1868 #else
1869 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1870  * have to support 1K tiny pages.
1871  */
1872 #define TARGET_PAGE_BITS_VARY
1873 #define TARGET_PAGE_BITS_MIN 10
1874 #endif
1875 
1876 #if defined(TARGET_AARCH64)
1877 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1878 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1879 #else
1880 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1881 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1882 #endif
1883 
1884 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1885                                      unsigned int target_el)
1886 {
1887     CPUARMState *env = cs->env_ptr;
1888     unsigned int cur_el = arm_current_el(env);
1889     bool secure = arm_is_secure(env);
1890     bool pstate_unmasked;
1891     int8_t unmasked = 0;
1892 
1893     /* Don't take exceptions if they target a lower EL.
1894      * This check should catch any exceptions that would not be taken but left
1895      * pending.
1896      */
1897     if (cur_el > target_el) {
1898         return false;
1899     }
1900 
1901     switch (excp_idx) {
1902     case EXCP_FIQ:
1903         pstate_unmasked = !(env->daif & PSTATE_F);
1904         break;
1905 
1906     case EXCP_IRQ:
1907         pstate_unmasked = !(env->daif & PSTATE_I);
1908         break;
1909 
1910     case EXCP_VFIQ:
1911         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1912             /* VFIQs are only taken when hypervized and non-secure.  */
1913             return false;
1914         }
1915         return !(env->daif & PSTATE_F);
1916     case EXCP_VIRQ:
1917         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1918             /* VIRQs are only taken when hypervized and non-secure.  */
1919             return false;
1920         }
1921         return !(env->daif & PSTATE_I);
1922     default:
1923         g_assert_not_reached();
1924     }
1925 
1926     /* Use the target EL, current execution state and SCR/HCR settings to
1927      * determine whether the corresponding CPSR bit is used to mask the
1928      * interrupt.
1929      */
1930     if ((target_el > cur_el) && (target_el != 1)) {
1931         /* Exceptions targeting a higher EL may not be maskable */
1932         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1933             /* 64-bit masking rules are simple: exceptions to EL3
1934              * can't be masked, and exceptions to EL2 can only be
1935              * masked from Secure state. The HCR and SCR settings
1936              * don't affect the masking logic, only the interrupt routing.
1937              */
1938             if (target_el == 3 || !secure) {
1939                 unmasked = 1;
1940             }
1941         } else {
1942             /* The old 32-bit-only environment has a more complicated
1943              * masking setup. HCR and SCR bits not only affect interrupt
1944              * routing but also change the behaviour of masking.
1945              */
1946             bool hcr, scr;
1947 
1948             switch (excp_idx) {
1949             case EXCP_FIQ:
1950                 /* If FIQs are routed to EL3 or EL2 then there are cases where
1951                  * we override the CPSR.F in determining if the exception is
1952                  * masked or not. If neither of these are set then we fall back
1953                  * to the CPSR.F setting otherwise we further assess the state
1954                  * below.
1955                  */
1956                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1957                 scr = (env->cp15.scr_el3 & SCR_FIQ);
1958 
1959                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1960                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
1961                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1962                  * when non-secure but only when FIQs are only routed to EL3.
1963                  */
1964                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1965                 break;
1966             case EXCP_IRQ:
1967                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1968                  * we may override the CPSR.I masking when in non-secure state.
1969                  * The SCR.IRQ setting has already been taken into consideration
1970                  * when setting the target EL, so it does not have a further
1971                  * affect here.
1972                  */
1973                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1974                 scr = false;
1975                 break;
1976             default:
1977                 g_assert_not_reached();
1978             }
1979 
1980             if ((scr || hcr) && !secure) {
1981                 unmasked = 1;
1982             }
1983         }
1984     }
1985 
1986     /* The PSTATE bits only mask the interrupt if we have not overriden the
1987      * ability above.
1988      */
1989     return unmasked || pstate_unmasked;
1990 }
1991 
1992 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1993 
1994 #define cpu_signal_handler cpu_arm_signal_handler
1995 #define cpu_list arm_cpu_list
1996 
1997 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1998  *
1999  * If EL3 is 64-bit:
2000  *  + NonSecure EL1 & 0 stage 1
2001  *  + NonSecure EL1 & 0 stage 2
2002  *  + NonSecure EL2
2003  *  + Secure EL1 & EL0
2004  *  + Secure EL3
2005  * If EL3 is 32-bit:
2006  *  + NonSecure PL1 & 0 stage 1
2007  *  + NonSecure PL1 & 0 stage 2
2008  *  + NonSecure PL2
2009  *  + Secure PL0 & PL1
2010  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2011  *
2012  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2013  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2014  *     may differ in access permissions even if the VA->PA map is the same
2015  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2016  *     translation, which means that we have one mmu_idx that deals with two
2017  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2018  *     architecturally permitted]
2019  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2020  *     handling via the TLB. The only way to do a stage 1 translation without
2021  *     the immediate stage 2 translation is via the ATS or AT system insns,
2022  *     which can be slow-pathed and always do a page table walk.
2023  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2024  *     translation regimes, because they map reasonably well to each other
2025  *     and they can't both be active at the same time.
2026  * This gives us the following list of mmu_idx values:
2027  *
2028  * NS EL0 (aka NS PL0) stage 1+2
2029  * NS EL1 (aka NS PL1) stage 1+2
2030  * NS EL2 (aka NS PL2)
2031  * S EL3 (aka S PL1)
2032  * S EL0 (aka S PL0)
2033  * S EL1 (not used if EL3 is 32 bit)
2034  * NS EL0+1 stage 2
2035  *
2036  * (The last of these is an mmu_idx because we want to be able to use the TLB
2037  * for the accesses done as part of a stage 1 page table walk, rather than
2038  * having to walk the stage 2 page table over and over.)
2039  *
2040  * Our enumeration includes at the end some entries which are not "true"
2041  * mmu_idx values in that they don't have corresponding TLBs and are only
2042  * valid for doing slow path page table walks.
2043  *
2044  * The constant names here are patterned after the general style of the names
2045  * of the AT/ATS operations.
2046  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2047  */
2048 typedef enum ARMMMUIdx {
2049     ARMMMUIdx_S12NSE0 = 0,
2050     ARMMMUIdx_S12NSE1 = 1,
2051     ARMMMUIdx_S1E2 = 2,
2052     ARMMMUIdx_S1E3 = 3,
2053     ARMMMUIdx_S1SE0 = 4,
2054     ARMMMUIdx_S1SE1 = 5,
2055     ARMMMUIdx_S2NS = 6,
2056     /* Indexes below here don't have TLBs and are used only for AT system
2057      * instructions or for the first stage of an S12 page table walk.
2058      */
2059     ARMMMUIdx_S1NSE0 = 7,
2060     ARMMMUIdx_S1NSE1 = 8,
2061 } ARMMMUIdx;
2062 
2063 #define MMU_USER_IDX 0
2064 
2065 /* Return the exception level we're running at if this is our mmu_idx */
2066 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2067 {
2068     assert(mmu_idx < ARMMMUIdx_S2NS);
2069     return mmu_idx & 3;
2070 }
2071 
2072 /* Determine the current mmu_idx to use for normal loads/stores */
2073 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2074 {
2075     int el = arm_current_el(env);
2076 
2077     if (el < 2 && arm_is_secure_below_el3(env)) {
2078         return ARMMMUIdx_S1SE0 + el;
2079     }
2080     return el;
2081 }
2082 
2083 /* Indexes used when registering address spaces with cpu_address_space_init */
2084 typedef enum ARMASIdx {
2085     ARMASIdx_NS = 0,
2086     ARMASIdx_S = 1,
2087 } ARMASIdx;
2088 
2089 /* Return the Exception Level targeted by debug exceptions. */
2090 static inline int arm_debug_target_el(CPUARMState *env)
2091 {
2092     bool secure = arm_is_secure(env);
2093     bool route_to_el2 = false;
2094 
2095     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2096         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2097                        env->cp15.mdcr_el2 & (1 << 8);
2098     }
2099 
2100     if (route_to_el2) {
2101         return 2;
2102     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2103                !arm_el_is_aa64(env, 3) && secure) {
2104         return 3;
2105     } else {
2106         return 1;
2107     }
2108 }
2109 
2110 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2111 {
2112     if (arm_is_secure(env)) {
2113         /* MDCR_EL3.SDD disables debug events from Secure state */
2114         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2115             || arm_current_el(env) == 3) {
2116             return false;
2117         }
2118     }
2119 
2120     if (arm_current_el(env) == arm_debug_target_el(env)) {
2121         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2122             || (env->daif & PSTATE_D)) {
2123             return false;
2124         }
2125     }
2126     return true;
2127 }
2128 
2129 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2130 {
2131     int el = arm_current_el(env);
2132 
2133     if (el == 0 && arm_el_is_aa64(env, 1)) {
2134         return aa64_generate_debug_exceptions(env);
2135     }
2136 
2137     if (arm_is_secure(env)) {
2138         int spd;
2139 
2140         if (el == 0 && (env->cp15.sder & 1)) {
2141             /* SDER.SUIDEN means debug exceptions from Secure EL0
2142              * are always enabled. Otherwise they are controlled by
2143              * SDCR.SPD like those from other Secure ELs.
2144              */
2145             return true;
2146         }
2147 
2148         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2149         switch (spd) {
2150         case 1:
2151             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2152         case 0:
2153             /* For 0b00 we return true if external secure invasive debug
2154              * is enabled. On real hardware this is controlled by external
2155              * signals to the core. QEMU always permits debug, and behaves
2156              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2157              */
2158             return true;
2159         case 2:
2160             return false;
2161         case 3:
2162             return true;
2163         }
2164     }
2165 
2166     return el != 2;
2167 }
2168 
2169 /* Return true if debugging exceptions are currently enabled.
2170  * This corresponds to what in ARM ARM pseudocode would be
2171  *    if UsingAArch32() then
2172  *        return AArch32.GenerateDebugExceptions()
2173  *    else
2174  *        return AArch64.GenerateDebugExceptions()
2175  * We choose to push the if() down into this function for clarity,
2176  * since the pseudocode has it at all callsites except for the one in
2177  * CheckSoftwareStep(), where it is elided because both branches would
2178  * always return the same value.
2179  *
2180  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2181  * don't yet implement those exception levels or their associated trap bits.
2182  */
2183 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2184 {
2185     if (env->aarch64) {
2186         return aa64_generate_debug_exceptions(env);
2187     } else {
2188         return aa32_generate_debug_exceptions(env);
2189     }
2190 }
2191 
2192 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2193  * implicitly means this always returns false in pre-v8 CPUs.)
2194  */
2195 static inline bool arm_singlestep_active(CPUARMState *env)
2196 {
2197     return extract32(env->cp15.mdscr_el1, 0, 1)
2198         && arm_el_is_aa64(env, arm_debug_target_el(env))
2199         && arm_generate_debug_exceptions(env);
2200 }
2201 
2202 static inline bool arm_sctlr_b(CPUARMState *env)
2203 {
2204     return
2205         /* We need not implement SCTLR.ITD in user-mode emulation, so
2206          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2207          * This lets people run BE32 binaries with "-cpu any".
2208          */
2209 #ifndef CONFIG_USER_ONLY
2210         !arm_feature(env, ARM_FEATURE_V7) &&
2211 #endif
2212         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2213 }
2214 
2215 /* Return true if the processor is in big-endian mode. */
2216 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2217 {
2218     int cur_el;
2219 
2220     /* In 32bit endianness is determined by looking at CPSR's E bit */
2221     if (!is_a64(env)) {
2222         return
2223 #ifdef CONFIG_USER_ONLY
2224             /* In system mode, BE32 is modelled in line with the
2225              * architecture (as word-invariant big-endianness), where loads
2226              * and stores are done little endian but from addresses which
2227              * are adjusted by XORing with the appropriate constant. So the
2228              * endianness to use for the raw data access is not affected by
2229              * SCTLR.B.
2230              * In user mode, however, we model BE32 as byte-invariant
2231              * big-endianness (because user-only code cannot tell the
2232              * difference), and so we need to use a data access endianness
2233              * that depends on SCTLR.B.
2234              */
2235             arm_sctlr_b(env) ||
2236 #endif
2237                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2238     }
2239 
2240     cur_el = arm_current_el(env);
2241 
2242     if (cur_el == 0) {
2243         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2244     }
2245 
2246     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2247 }
2248 
2249 #include "exec/cpu-all.h"
2250 
2251 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2252  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2253  * We put flags which are shared between 32 and 64 bit mode at the top
2254  * of the word, and flags which apply to only one mode at the bottom.
2255  */
2256 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2257 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2258 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2259 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2260 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2261 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2262 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2263 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2264 /* Target EL if we take a floating-point-disabled exception */
2265 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2266 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2267 
2268 /* Bit usage when in AArch32 state: */
2269 #define ARM_TBFLAG_THUMB_SHIFT      0
2270 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2271 #define ARM_TBFLAG_VECLEN_SHIFT     1
2272 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2273 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2274 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2275 #define ARM_TBFLAG_VFPEN_SHIFT      7
2276 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2277 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2278 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2279 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2280 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2281 /* We store the bottom two bits of the CPAR as TB flags and handle
2282  * checks on the other bits at runtime
2283  */
2284 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2285 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2286 /* Indicates whether cp register reads and writes by guest code should access
2287  * the secure or nonsecure bank of banked registers; note that this is not
2288  * the same thing as the current security state of the processor!
2289  */
2290 #define ARM_TBFLAG_NS_SHIFT         19
2291 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2292 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2293 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2294 /* For M profile only, Handler (ie not Thread) mode */
2295 #define ARM_TBFLAG_HANDLER_SHIFT    21
2296 #define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2297 
2298 /* Bit usage when in AArch64 state */
2299 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2300 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2301 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2302 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2303 
2304 /* some convenience accessor macros */
2305 #define ARM_TBFLAG_AARCH64_STATE(F) \
2306     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2307 #define ARM_TBFLAG_MMUIDX(F) \
2308     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2309 #define ARM_TBFLAG_SS_ACTIVE(F) \
2310     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2311 #define ARM_TBFLAG_PSTATE_SS(F) \
2312     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2313 #define ARM_TBFLAG_FPEXC_EL(F) \
2314     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2315 #define ARM_TBFLAG_THUMB(F) \
2316     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2317 #define ARM_TBFLAG_VECLEN(F) \
2318     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2319 #define ARM_TBFLAG_VECSTRIDE(F) \
2320     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2321 #define ARM_TBFLAG_VFPEN(F) \
2322     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2323 #define ARM_TBFLAG_CONDEXEC(F) \
2324     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2325 #define ARM_TBFLAG_SCTLR_B(F) \
2326     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2327 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2328     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2329 #define ARM_TBFLAG_NS(F) \
2330     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2331 #define ARM_TBFLAG_BE_DATA(F) \
2332     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2333 #define ARM_TBFLAG_HANDLER(F) \
2334     (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2335 #define ARM_TBFLAG_TBI0(F) \
2336     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2337 #define ARM_TBFLAG_TBI1(F) \
2338     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2339 
2340 static inline bool bswap_code(bool sctlr_b)
2341 {
2342 #ifdef CONFIG_USER_ONLY
2343     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2344      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2345      * would also end up as a mixed-endian mode with BE code, LE data.
2346      */
2347     return
2348 #ifdef TARGET_WORDS_BIGENDIAN
2349         1 ^
2350 #endif
2351         sctlr_b;
2352 #else
2353     /* All code access in ARM is little endian, and there are no loaders
2354      * doing swaps that need to be reversed
2355      */
2356     return 0;
2357 #endif
2358 }
2359 
2360 /* Return the exception level to which FP-disabled exceptions should
2361  * be taken, or 0 if FP is enabled.
2362  */
2363 static inline int fp_exception_el(CPUARMState *env)
2364 {
2365     int fpen;
2366     int cur_el = arm_current_el(env);
2367 
2368     /* CPACR and the CPTR registers don't exist before v6, so FP is
2369      * always accessible
2370      */
2371     if (!arm_feature(env, ARM_FEATURE_V6)) {
2372         return 0;
2373     }
2374 
2375     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2376      * 0, 2 : trap EL0 and EL1/PL1 accesses
2377      * 1    : trap only EL0 accesses
2378      * 3    : trap no accesses
2379      */
2380     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2381     switch (fpen) {
2382     case 0:
2383     case 2:
2384         if (cur_el == 0 || cur_el == 1) {
2385             /* Trap to PL1, which might be EL1 or EL3 */
2386             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2387                 return 3;
2388             }
2389             return 1;
2390         }
2391         if (cur_el == 3 && !is_a64(env)) {
2392             /* Secure PL1 running at EL3 */
2393             return 3;
2394         }
2395         break;
2396     case 1:
2397         if (cur_el == 0) {
2398             return 1;
2399         }
2400         break;
2401     case 3:
2402         break;
2403     }
2404 
2405     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2406      * check because zero bits in the registers mean "don't trap".
2407      */
2408 
2409     /* CPTR_EL2 : present in v7VE or v8 */
2410     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2411         && !arm_is_secure_below_el3(env)) {
2412         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2413         return 2;
2414     }
2415 
2416     /* CPTR_EL3 : present in v8 */
2417     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2418         /* Trap all FP ops to EL3 */
2419         return 3;
2420     }
2421 
2422     return 0;
2423 }
2424 
2425 #ifdef CONFIG_USER_ONLY
2426 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2427 {
2428     return
2429 #ifdef TARGET_WORDS_BIGENDIAN
2430        1 ^
2431 #endif
2432        arm_cpu_data_is_big_endian(env);
2433 }
2434 #endif
2435 
2436 #ifndef CONFIG_USER_ONLY
2437 /**
2438  * arm_regime_tbi0:
2439  * @env: CPUARMState
2440  * @mmu_idx: MMU index indicating required translation regime
2441  *
2442  * Extracts the TBI0 value from the appropriate TCR for the current EL
2443  *
2444  * Returns: the TBI0 value.
2445  */
2446 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2447 
2448 /**
2449  * arm_regime_tbi1:
2450  * @env: CPUARMState
2451  * @mmu_idx: MMU index indicating required translation regime
2452  *
2453  * Extracts the TBI1 value from the appropriate TCR for the current EL
2454  *
2455  * Returns: the TBI1 value.
2456  */
2457 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2458 #else
2459 /* We can't handle tagged addresses properly in user-only mode */
2460 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2461 {
2462     return 0;
2463 }
2464 
2465 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2466 {
2467     return 0;
2468 }
2469 #endif
2470 
2471 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2472                                         target_ulong *cs_base, uint32_t *flags)
2473 {
2474     ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
2475     if (is_a64(env)) {
2476         *pc = env->pc;
2477         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2478         /* Get control bits for tagged addresses */
2479         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2480         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2481     } else {
2482         *pc = env->regs[15];
2483         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2484             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2485             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2486             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2487             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2488         if (!(access_secure_reg(env))) {
2489             *flags |= ARM_TBFLAG_NS_MASK;
2490         }
2491         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2492             || arm_el_is_aa64(env, 1)) {
2493             *flags |= ARM_TBFLAG_VFPEN_MASK;
2494         }
2495         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2496                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2497     }
2498 
2499     *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
2500 
2501     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2502      * states defined in the ARM ARM for software singlestep:
2503      *  SS_ACTIVE   PSTATE.SS   State
2504      *     0            x       Inactive (the TB flag for SS is always 0)
2505      *     1            0       Active-pending
2506      *     1            1       Active-not-pending
2507      */
2508     if (arm_singlestep_active(env)) {
2509         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2510         if (is_a64(env)) {
2511             if (env->pstate & PSTATE_SS) {
2512                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2513             }
2514         } else {
2515             if (env->uncached_cpsr & PSTATE_SS) {
2516                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2517             }
2518         }
2519     }
2520     if (arm_cpu_data_is_big_endian(env)) {
2521         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2522     }
2523     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2524 
2525     if (env->v7m.exception != 0) {
2526         *flags |= ARM_TBFLAG_HANDLER_MASK;
2527     }
2528 
2529     *cs_base = 0;
2530 }
2531 
2532 enum {
2533     QEMU_PSCI_CONDUIT_DISABLED = 0,
2534     QEMU_PSCI_CONDUIT_SMC = 1,
2535     QEMU_PSCI_CONDUIT_HVC = 2,
2536 };
2537 
2538 #ifndef CONFIG_USER_ONLY
2539 /* Return the address space index to use for a memory access */
2540 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2541 {
2542     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2543 }
2544 
2545 /* Return the AddressSpace to use for a memory access
2546  * (which depends on whether the access is S or NS, and whether
2547  * the board gave us a separate AddressSpace for S accesses).
2548  */
2549 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2550 {
2551     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2552 }
2553 #endif
2554 
2555 /**
2556  * arm_register_el_change_hook:
2557  * Register a hook function which will be called back whenever this
2558  * CPU changes exception level or mode. The hook function will be
2559  * passed a pointer to the ARMCPU and the opaque data pointer passed
2560  * to this function when the hook was registered.
2561  *
2562  * Note that we currently only support registering a single hook function,
2563  * and will assert if this function is called twice.
2564  * This facility is intended for the use of the GICv3 emulation.
2565  */
2566 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2567                                  void *opaque);
2568 
2569 /**
2570  * arm_get_el_change_hook_opaque:
2571  * Return the opaque data that will be used by the el_change_hook
2572  * for this CPU.
2573  */
2574 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2575 {
2576     return cpu->el_change_hook_opaque;
2577 }
2578 
2579 #endif
2580