1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 26 #if defined(TARGET_AARCH64) 27 /* AArch64 definitions */ 28 # define TARGET_LONG_BITS 64 29 #else 30 # define TARGET_LONG_BITS 32 31 #endif 32 33 /* ARM processors have a weak memory model */ 34 #define TCG_GUEST_DEFAULT_MO (0) 35 36 #define CPUArchState struct CPUARMState 37 38 #include "qemu-common.h" 39 #include "cpu-qom.h" 40 #include "exec/cpu-defs.h" 41 42 #include "fpu/softfloat.h" 43 44 #define EXCP_UDEF 1 /* undefined instruction */ 45 #define EXCP_SWI 2 /* software interrupt */ 46 #define EXCP_PREFETCH_ABORT 3 47 #define EXCP_DATA_ABORT 4 48 #define EXCP_IRQ 5 49 #define EXCP_FIQ 6 50 #define EXCP_BKPT 7 51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 53 #define EXCP_HVC 11 /* HyperVisor Call */ 54 #define EXCP_HYP_TRAP 12 55 #define EXCP_SMC 13 /* Secure Monitor Call */ 56 #define EXCP_VIRQ 14 57 #define EXCP_VFIQ 15 58 #define EXCP_SEMIHOST 16 /* semihosting call */ 59 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 60 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 62 63 #define ARMV7M_EXCP_RESET 1 64 #define ARMV7M_EXCP_NMI 2 65 #define ARMV7M_EXCP_HARD 3 66 #define ARMV7M_EXCP_MEM 4 67 #define ARMV7M_EXCP_BUS 5 68 #define ARMV7M_EXCP_USAGE 6 69 #define ARMV7M_EXCP_SVC 11 70 #define ARMV7M_EXCP_DEBUG 12 71 #define ARMV7M_EXCP_PENDSV 14 72 #define ARMV7M_EXCP_SYSTICK 15 73 74 /* ARM-specific interrupt pending bits. */ 75 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 76 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 77 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 78 79 /* The usual mapping for an AArch64 system register to its AArch32 80 * counterpart is for the 32 bit world to have access to the lower 81 * half only (with writes leaving the upper half untouched). It's 82 * therefore useful to be able to pass TCG the offset of the least 83 * significant half of a uint64_t struct member. 84 */ 85 #ifdef HOST_WORDS_BIGENDIAN 86 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 87 #define offsetofhigh32(S, M) offsetof(S, M) 88 #else 89 #define offsetoflow32(S, M) offsetof(S, M) 90 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 91 #endif 92 93 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 94 #define ARM_CPU_IRQ 0 95 #define ARM_CPU_FIQ 1 96 #define ARM_CPU_VIRQ 2 97 #define ARM_CPU_VFIQ 3 98 99 #define NB_MMU_MODES 7 100 /* ARM-specific extra insn start words: 101 * 1: Conditional execution bits 102 * 2: Partial exception syndrome for data aborts 103 */ 104 #define TARGET_INSN_START_EXTRA_WORDS 2 105 106 /* The 2nd extra word holding syndrome info for data aborts does not use 107 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 108 * help the sleb128 encoder do a better job. 109 * When restoring the CPU state, we shift it back up. 110 */ 111 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 112 #define ARM_INSN_START_WORD2_SHIFT 14 113 114 /* We currently assume float and double are IEEE single and double 115 precision respectively. 116 Doing runtime conversions is tricky because VFP registers may contain 117 integer values (eg. as the result of a FTOSI instruction). 118 s<2n> maps to the least significant half of d<n> 119 s<2n+1> maps to the most significant half of d<n> 120 */ 121 122 /* CPU state for each instance of a generic timer (in cp15 c14) */ 123 typedef struct ARMGenericTimer { 124 uint64_t cval; /* Timer CompareValue register */ 125 uint64_t ctl; /* Timer Control register */ 126 } ARMGenericTimer; 127 128 #define GTIMER_PHYS 0 129 #define GTIMER_VIRT 1 130 #define GTIMER_HYP 2 131 #define GTIMER_SEC 3 132 #define NUM_GTIMERS 4 133 134 typedef struct { 135 uint64_t raw_tcr; 136 uint32_t mask; 137 uint32_t base_mask; 138 } TCR; 139 140 typedef struct CPUARMState { 141 /* Regs for current mode. */ 142 uint32_t regs[16]; 143 144 /* 32/64 switch only happens when taking and returning from 145 * exceptions so the overlap semantics are taken care of then 146 * instead of having a complicated union. 147 */ 148 /* Regs for A64 mode. */ 149 uint64_t xregs[32]; 150 uint64_t pc; 151 /* PSTATE isn't an architectural register for ARMv8. However, it is 152 * convenient for us to assemble the underlying state into a 32 bit format 153 * identical to the architectural format used for the SPSR. (This is also 154 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 155 * 'pstate' register are.) Of the PSTATE bits: 156 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 157 * semantics as for AArch32, as described in the comments on each field) 158 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 159 * DAIF (exception masks) are kept in env->daif 160 * all other bits are stored in their correct places in env->pstate 161 */ 162 uint32_t pstate; 163 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 164 165 /* Frequently accessed CPSR bits are stored separately for efficiency. 166 This contains all the other bits. Use cpsr_{read,write} to access 167 the whole CPSR. */ 168 uint32_t uncached_cpsr; 169 uint32_t spsr; 170 171 /* Banked registers. */ 172 uint64_t banked_spsr[8]; 173 uint32_t banked_r13[8]; 174 uint32_t banked_r14[8]; 175 176 /* These hold r8-r12. */ 177 uint32_t usr_regs[5]; 178 uint32_t fiq_regs[5]; 179 180 /* cpsr flag cache for faster execution */ 181 uint32_t CF; /* 0 or 1 */ 182 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 183 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 184 uint32_t ZF; /* Z set if zero. */ 185 uint32_t QF; /* 0 or 1 */ 186 uint32_t GE; /* cpsr[19:16] */ 187 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 188 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 189 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 190 191 uint64_t elr_el[4]; /* AArch64 exception link regs */ 192 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 193 194 /* System control coprocessor (cp15) */ 195 struct { 196 uint32_t c0_cpuid; 197 union { /* Cache size selection */ 198 struct { 199 uint64_t _unused_csselr0; 200 uint64_t csselr_ns; 201 uint64_t _unused_csselr1; 202 uint64_t csselr_s; 203 }; 204 uint64_t csselr_el[4]; 205 }; 206 union { /* System control register. */ 207 struct { 208 uint64_t _unused_sctlr; 209 uint64_t sctlr_ns; 210 uint64_t hsctlr; 211 uint64_t sctlr_s; 212 }; 213 uint64_t sctlr_el[4]; 214 }; 215 uint64_t cpacr_el1; /* Architectural feature access control register */ 216 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 217 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 218 uint64_t sder; /* Secure debug enable register. */ 219 uint32_t nsacr; /* Non-secure access control register. */ 220 union { /* MMU translation table base 0. */ 221 struct { 222 uint64_t _unused_ttbr0_0; 223 uint64_t ttbr0_ns; 224 uint64_t _unused_ttbr0_1; 225 uint64_t ttbr0_s; 226 }; 227 uint64_t ttbr0_el[4]; 228 }; 229 union { /* MMU translation table base 1. */ 230 struct { 231 uint64_t _unused_ttbr1_0; 232 uint64_t ttbr1_ns; 233 uint64_t _unused_ttbr1_1; 234 uint64_t ttbr1_s; 235 }; 236 uint64_t ttbr1_el[4]; 237 }; 238 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 239 /* MMU translation table base control. */ 240 TCR tcr_el[4]; 241 TCR vtcr_el2; /* Virtualization Translation Control. */ 242 uint32_t c2_data; /* MPU data cacheable bits. */ 243 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 244 union { /* MMU domain access control register 245 * MPU write buffer control. 246 */ 247 struct { 248 uint64_t dacr_ns; 249 uint64_t dacr_s; 250 }; 251 struct { 252 uint64_t dacr32_el2; 253 }; 254 }; 255 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 256 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 257 uint64_t hcr_el2; /* Hypervisor configuration register */ 258 uint64_t scr_el3; /* Secure configuration register. */ 259 union { /* Fault status registers. */ 260 struct { 261 uint64_t ifsr_ns; 262 uint64_t ifsr_s; 263 }; 264 struct { 265 uint64_t ifsr32_el2; 266 }; 267 }; 268 union { 269 struct { 270 uint64_t _unused_dfsr; 271 uint64_t dfsr_ns; 272 uint64_t hsr; 273 uint64_t dfsr_s; 274 }; 275 uint64_t esr_el[4]; 276 }; 277 uint32_t c6_region[8]; /* MPU base/size registers. */ 278 union { /* Fault address registers. */ 279 struct { 280 uint64_t _unused_far0; 281 #ifdef HOST_WORDS_BIGENDIAN 282 uint32_t ifar_ns; 283 uint32_t dfar_ns; 284 uint32_t ifar_s; 285 uint32_t dfar_s; 286 #else 287 uint32_t dfar_ns; 288 uint32_t ifar_ns; 289 uint32_t dfar_s; 290 uint32_t ifar_s; 291 #endif 292 uint64_t _unused_far3; 293 }; 294 uint64_t far_el[4]; 295 }; 296 uint64_t hpfar_el2; 297 uint64_t hstr_el2; 298 union { /* Translation result. */ 299 struct { 300 uint64_t _unused_par_0; 301 uint64_t par_ns; 302 uint64_t _unused_par_1; 303 uint64_t par_s; 304 }; 305 uint64_t par_el[4]; 306 }; 307 308 uint32_t c6_rgnr; 309 310 uint32_t c9_insn; /* Cache lockdown registers. */ 311 uint32_t c9_data; 312 uint64_t c9_pmcr; /* performance monitor control register */ 313 uint64_t c9_pmcnten; /* perf monitor counter enables */ 314 uint32_t c9_pmovsr; /* perf monitor overflow status */ 315 uint32_t c9_pmuserenr; /* perf monitor user enable */ 316 uint64_t c9_pmselr; /* perf monitor counter selection register */ 317 uint64_t c9_pminten; /* perf monitor interrupt enables */ 318 union { /* Memory attribute redirection */ 319 struct { 320 #ifdef HOST_WORDS_BIGENDIAN 321 uint64_t _unused_mair_0; 322 uint32_t mair1_ns; 323 uint32_t mair0_ns; 324 uint64_t _unused_mair_1; 325 uint32_t mair1_s; 326 uint32_t mair0_s; 327 #else 328 uint64_t _unused_mair_0; 329 uint32_t mair0_ns; 330 uint32_t mair1_ns; 331 uint64_t _unused_mair_1; 332 uint32_t mair0_s; 333 uint32_t mair1_s; 334 #endif 335 }; 336 uint64_t mair_el[4]; 337 }; 338 union { /* vector base address register */ 339 struct { 340 uint64_t _unused_vbar; 341 uint64_t vbar_ns; 342 uint64_t hvbar; 343 uint64_t vbar_s; 344 }; 345 uint64_t vbar_el[4]; 346 }; 347 uint32_t mvbar; /* (monitor) vector base address register */ 348 struct { /* FCSE PID. */ 349 uint32_t fcseidr_ns; 350 uint32_t fcseidr_s; 351 }; 352 union { /* Context ID. */ 353 struct { 354 uint64_t _unused_contextidr_0; 355 uint64_t contextidr_ns; 356 uint64_t _unused_contextidr_1; 357 uint64_t contextidr_s; 358 }; 359 uint64_t contextidr_el[4]; 360 }; 361 union { /* User RW Thread register. */ 362 struct { 363 uint64_t tpidrurw_ns; 364 uint64_t tpidrprw_ns; 365 uint64_t htpidr; 366 uint64_t _tpidr_el3; 367 }; 368 uint64_t tpidr_el[4]; 369 }; 370 /* The secure banks of these registers don't map anywhere */ 371 uint64_t tpidrurw_s; 372 uint64_t tpidrprw_s; 373 uint64_t tpidruro_s; 374 375 union { /* User RO Thread register. */ 376 uint64_t tpidruro_ns; 377 uint64_t tpidrro_el[1]; 378 }; 379 uint64_t c14_cntfrq; /* Counter Frequency register */ 380 uint64_t c14_cntkctl; /* Timer Control register */ 381 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 382 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 383 ARMGenericTimer c14_timer[NUM_GTIMERS]; 384 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 385 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 386 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 387 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 388 uint32_t c15_threadid; /* TI debugger thread-ID. */ 389 uint32_t c15_config_base_address; /* SCU base address. */ 390 uint32_t c15_diagnostic; /* diagnostic register */ 391 uint32_t c15_power_diagnostic; 392 uint32_t c15_power_control; /* power control */ 393 uint64_t dbgbvr[16]; /* breakpoint value registers */ 394 uint64_t dbgbcr[16]; /* breakpoint control registers */ 395 uint64_t dbgwvr[16]; /* watchpoint value registers */ 396 uint64_t dbgwcr[16]; /* watchpoint control registers */ 397 uint64_t mdscr_el1; 398 uint64_t oslsr_el1; /* OS Lock Status */ 399 uint64_t mdcr_el2; 400 uint64_t mdcr_el3; 401 /* If the counter is enabled, this stores the last time the counter 402 * was reset. Otherwise it stores the counter value 403 */ 404 uint64_t c15_ccnt; 405 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 406 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 407 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 408 } cp15; 409 410 struct { 411 uint32_t other_sp; 412 uint32_t vecbase; 413 uint32_t basepri; 414 uint32_t control; 415 uint32_t ccr; /* Configuration and Control */ 416 uint32_t cfsr; /* Configurable Fault Status */ 417 uint32_t hfsr; /* HardFault Status */ 418 uint32_t dfsr; /* Debug Fault Status Register */ 419 uint32_t mmfar; /* MemManage Fault Address */ 420 uint32_t bfar; /* BusFault Address */ 421 int exception; 422 } v7m; 423 424 /* Information associated with an exception about to be taken: 425 * code which raises an exception must set cs->exception_index and 426 * the relevant parts of this structure; the cpu_do_interrupt function 427 * will then set the guest-visible registers as part of the exception 428 * entry process. 429 */ 430 struct { 431 uint32_t syndrome; /* AArch64 format syndrome register */ 432 uint32_t fsr; /* AArch32 format fault status register info */ 433 uint64_t vaddress; /* virtual addr associated with exception, if any */ 434 uint32_t target_el; /* EL the exception should be targeted for */ 435 /* If we implement EL2 we will also need to store information 436 * about the intermediate physical address for stage 2 faults. 437 */ 438 } exception; 439 440 /* Thumb-2 EE state. */ 441 uint32_t teecr; 442 uint32_t teehbr; 443 444 /* VFP coprocessor state. */ 445 struct { 446 /* VFP/Neon register state. Note that the mapping between S, D and Q 447 * views of the register bank differs between AArch64 and AArch32: 448 * In AArch32: 449 * Qn = regs[2n+1]:regs[2n] 450 * Dn = regs[n] 451 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n 452 * (and regs[32] to regs[63] are inaccessible) 453 * In AArch64: 454 * Qn = regs[2n+1]:regs[2n] 455 * Dn = regs[2n] 456 * Sn = regs[2n] bits 31..0 457 * This corresponds to the architecturally defined mapping between 458 * the two execution states, and means we do not need to explicitly 459 * map these registers when changing states. 460 */ 461 float64 regs[64]; 462 463 uint32_t xregs[16]; 464 /* We store these fpcsr fields separately for convenience. */ 465 int vec_len; 466 int vec_stride; 467 468 /* scratch space when Tn are not sufficient. */ 469 uint32_t scratch[8]; 470 471 /* fp_status is the "normal" fp status. standard_fp_status retains 472 * values corresponding to the ARM "Standard FPSCR Value", ie 473 * default-NaN, flush-to-zero, round-to-nearest and is used by 474 * any operations (generally Neon) which the architecture defines 475 * as controlled by the standard FPSCR value rather than the FPSCR. 476 * 477 * To avoid having to transfer exception bits around, we simply 478 * say that the FPSCR cumulative exception flags are the logical 479 * OR of the flags in the two fp statuses. This relies on the 480 * only thing which needs to read the exception flags being 481 * an explicit FPSCR read. 482 */ 483 float_status fp_status; 484 float_status standard_fp_status; 485 } vfp; 486 uint64_t exclusive_addr; 487 uint64_t exclusive_val; 488 uint64_t exclusive_high; 489 490 /* iwMMXt coprocessor state. */ 491 struct { 492 uint64_t regs[16]; 493 uint64_t val; 494 495 uint32_t cregs[16]; 496 } iwmmxt; 497 498 #if defined(CONFIG_USER_ONLY) 499 /* For usermode syscall translation. */ 500 int eabi; 501 #endif 502 503 struct CPUBreakpoint *cpu_breakpoint[16]; 504 struct CPUWatchpoint *cpu_watchpoint[16]; 505 506 /* Fields up to this point are cleared by a CPU reset */ 507 struct {} end_reset_fields; 508 509 CPU_COMMON 510 511 /* Fields after CPU_COMMON are preserved across CPU reset. */ 512 513 /* Internal CPU feature flags. */ 514 uint64_t features; 515 516 /* PMSAv7 MPU */ 517 struct { 518 uint32_t *drbar; 519 uint32_t *drsr; 520 uint32_t *dracr; 521 } pmsav7; 522 523 void *nvic; 524 const struct arm_boot_info *boot_info; 525 /* Store GICv3CPUState to access from this struct */ 526 void *gicv3state; 527 } CPUARMState; 528 529 /** 530 * ARMELChangeHook: 531 * type of a function which can be registered via arm_register_el_change_hook() 532 * to get callbacks when the CPU changes its exception level or mode. 533 */ 534 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque); 535 536 537 /* These values map onto the return values for 538 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 539 typedef enum ARMPSCIState { 540 PSCI_ON = 0, 541 PSCI_OFF = 1, 542 PSCI_ON_PENDING = 2 543 } ARMPSCIState; 544 545 /** 546 * ARMCPU: 547 * @env: #CPUARMState 548 * 549 * An ARM CPU core. 550 */ 551 struct ARMCPU { 552 /*< private >*/ 553 CPUState parent_obj; 554 /*< public >*/ 555 556 CPUARMState env; 557 558 /* Coprocessor information */ 559 GHashTable *cp_regs; 560 /* For marshalling (mostly coprocessor) register state between the 561 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 562 * we use these arrays. 563 */ 564 /* List of register indexes managed via these arrays; (full KVM style 565 * 64 bit indexes, not CPRegInfo 32 bit indexes) 566 */ 567 uint64_t *cpreg_indexes; 568 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 569 uint64_t *cpreg_values; 570 /* Length of the indexes, values, reset_values arrays */ 571 int32_t cpreg_array_len; 572 /* These are used only for migration: incoming data arrives in 573 * these fields and is sanity checked in post_load before copying 574 * to the working data structures above. 575 */ 576 uint64_t *cpreg_vmstate_indexes; 577 uint64_t *cpreg_vmstate_values; 578 int32_t cpreg_vmstate_array_len; 579 580 /* Timers used by the generic (architected) timer */ 581 QEMUTimer *gt_timer[NUM_GTIMERS]; 582 /* GPIO outputs for generic timer */ 583 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 584 /* GPIO output for GICv3 maintenance interrupt signal */ 585 qemu_irq gicv3_maintenance_interrupt; 586 587 /* MemoryRegion to use for secure physical accesses */ 588 MemoryRegion *secure_memory; 589 590 /* 'compatible' string for this CPU for Linux device trees */ 591 const char *dtb_compatible; 592 593 /* PSCI version for this CPU 594 * Bits[31:16] = Major Version 595 * Bits[15:0] = Minor Version 596 */ 597 uint32_t psci_version; 598 599 /* Should CPU start in PSCI powered-off state? */ 600 bool start_powered_off; 601 602 /* Current power state, access guarded by BQL */ 603 ARMPSCIState power_state; 604 605 /* CPU has virtualization extension */ 606 bool has_el2; 607 /* CPU has security extension */ 608 bool has_el3; 609 /* CPU has PMU (Performance Monitor Unit) */ 610 bool has_pmu; 611 612 /* CPU has memory protection unit */ 613 bool has_mpu; 614 /* PMSAv7 MPU number of supported regions */ 615 uint32_t pmsav7_dregion; 616 617 /* PSCI conduit used to invoke PSCI methods 618 * 0 - disabled, 1 - smc, 2 - hvc 619 */ 620 uint32_t psci_conduit; 621 622 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 623 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 624 */ 625 uint32_t kvm_target; 626 627 /* KVM init features for this CPU */ 628 uint32_t kvm_init_features[7]; 629 630 /* Uniprocessor system with MP extensions */ 631 bool mp_is_up; 632 633 /* The instance init functions for implementation-specific subclasses 634 * set these fields to specify the implementation-dependent values of 635 * various constant registers and reset values of non-constant 636 * registers. 637 * Some of these might become QOM properties eventually. 638 * Field names match the official register names as defined in the 639 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 640 * is used for reset values of non-constant registers; no reset_ 641 * prefix means a constant register. 642 */ 643 uint32_t midr; 644 uint32_t revidr; 645 uint32_t reset_fpsid; 646 uint32_t mvfr0; 647 uint32_t mvfr1; 648 uint32_t mvfr2; 649 uint32_t ctr; 650 uint32_t reset_sctlr; 651 uint32_t id_pfr0; 652 uint32_t id_pfr1; 653 uint32_t id_dfr0; 654 uint32_t pmceid0; 655 uint32_t pmceid1; 656 uint32_t id_afr0; 657 uint32_t id_mmfr0; 658 uint32_t id_mmfr1; 659 uint32_t id_mmfr2; 660 uint32_t id_mmfr3; 661 uint32_t id_mmfr4; 662 uint32_t id_isar0; 663 uint32_t id_isar1; 664 uint32_t id_isar2; 665 uint32_t id_isar3; 666 uint32_t id_isar4; 667 uint32_t id_isar5; 668 uint64_t id_aa64pfr0; 669 uint64_t id_aa64pfr1; 670 uint64_t id_aa64dfr0; 671 uint64_t id_aa64dfr1; 672 uint64_t id_aa64afr0; 673 uint64_t id_aa64afr1; 674 uint64_t id_aa64isar0; 675 uint64_t id_aa64isar1; 676 uint64_t id_aa64mmfr0; 677 uint64_t id_aa64mmfr1; 678 uint32_t dbgdidr; 679 uint32_t clidr; 680 uint64_t mp_affinity; /* MP ID without feature bits */ 681 /* The elements of this array are the CCSIDR values for each cache, 682 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 683 */ 684 uint32_t ccsidr[16]; 685 uint64_t reset_cbar; 686 uint32_t reset_auxcr; 687 bool reset_hivecs; 688 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 689 uint32_t dcz_blocksize; 690 uint64_t rvbar; 691 692 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 693 int gic_num_lrs; /* number of list registers */ 694 int gic_vpribits; /* number of virtual priority bits */ 695 int gic_vprebits; /* number of virtual preemption bits */ 696 697 /* Whether the cfgend input is high (i.e. this CPU should reset into 698 * big-endian mode). This setting isn't used directly: instead it modifies 699 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 700 * architecture version. 701 */ 702 bool cfgend; 703 704 ARMELChangeHook *el_change_hook; 705 void *el_change_hook_opaque; 706 }; 707 708 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env) 709 { 710 return container_of(env, ARMCPU, env); 711 } 712 713 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e)) 714 715 #define ENV_OFFSET offsetof(ARMCPU, env) 716 717 #ifndef CONFIG_USER_ONLY 718 extern const struct VMStateDescription vmstate_arm_cpu; 719 #endif 720 721 void arm_cpu_do_interrupt(CPUState *cpu); 722 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 723 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 724 725 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, 726 int flags); 727 728 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 729 MemTxAttrs *attrs); 730 731 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 732 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 733 734 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 735 int cpuid, void *opaque); 736 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 737 int cpuid, void *opaque); 738 739 #ifdef TARGET_AARCH64 740 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 741 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 742 #endif 743 744 ARMCPU *cpu_arm_init(const char *cpu_model); 745 target_ulong do_arm_semihosting(CPUARMState *env); 746 void aarch64_sync_32_to_64(CPUARMState *env); 747 void aarch64_sync_64_to_32(CPUARMState *env); 748 749 static inline bool is_a64(CPUARMState *env) 750 { 751 return env->aarch64; 752 } 753 754 /* you can call this signal handler from your SIGBUS and SIGSEGV 755 signal handlers to inform the virtual CPU of exceptions. non zero 756 is returned if the signal was handled by the virtual CPU. */ 757 int cpu_arm_signal_handler(int host_signum, void *pinfo, 758 void *puc); 759 760 /** 761 * pmccntr_sync 762 * @env: CPUARMState 763 * 764 * Synchronises the counter in the PMCCNTR. This must always be called twice, 765 * once before any action that might affect the timer and again afterwards. 766 * The function is used to swap the state of the register if required. 767 * This only happens when not in user mode (!CONFIG_USER_ONLY) 768 */ 769 void pmccntr_sync(CPUARMState *env); 770 771 /* SCTLR bit meanings. Several bits have been reused in newer 772 * versions of the architecture; in that case we define constants 773 * for both old and new bit meanings. Code which tests against those 774 * bits should probably check or otherwise arrange that the CPU 775 * is the architectural version it expects. 776 */ 777 #define SCTLR_M (1U << 0) 778 #define SCTLR_A (1U << 1) 779 #define SCTLR_C (1U << 2) 780 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 781 #define SCTLR_SA (1U << 3) 782 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 783 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 784 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 785 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 786 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 787 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 788 #define SCTLR_ITD (1U << 7) /* v8 onward */ 789 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 790 #define SCTLR_SED (1U << 8) /* v8 onward */ 791 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 792 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 793 #define SCTLR_F (1U << 10) /* up to v6 */ 794 #define SCTLR_SW (1U << 10) /* v7 onward */ 795 #define SCTLR_Z (1U << 11) 796 #define SCTLR_I (1U << 12) 797 #define SCTLR_V (1U << 13) 798 #define SCTLR_RR (1U << 14) /* up to v7 */ 799 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 800 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 801 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 802 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 803 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 804 #define SCTLR_HA (1U << 17) 805 #define SCTLR_BR (1U << 17) /* PMSA only */ 806 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 807 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 808 #define SCTLR_WXN (1U << 19) 809 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 810 #define SCTLR_UWXN (1U << 20) /* v7 onward */ 811 #define SCTLR_FI (1U << 21) 812 #define SCTLR_U (1U << 22) 813 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 814 #define SCTLR_VE (1U << 24) /* up to v7 */ 815 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 816 #define SCTLR_EE (1U << 25) 817 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 818 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 819 #define SCTLR_NMFI (1U << 27) 820 #define SCTLR_TRE (1U << 28) 821 #define SCTLR_AFE (1U << 29) 822 #define SCTLR_TE (1U << 30) 823 824 #define CPTR_TCPAC (1U << 31) 825 #define CPTR_TTA (1U << 20) 826 #define CPTR_TFP (1U << 10) 827 828 #define MDCR_EPMAD (1U << 21) 829 #define MDCR_EDAD (1U << 20) 830 #define MDCR_SPME (1U << 17) 831 #define MDCR_SDD (1U << 16) 832 #define MDCR_SPD (3U << 14) 833 #define MDCR_TDRA (1U << 11) 834 #define MDCR_TDOSA (1U << 10) 835 #define MDCR_TDA (1U << 9) 836 #define MDCR_TDE (1U << 8) 837 #define MDCR_HPME (1U << 7) 838 #define MDCR_TPM (1U << 6) 839 #define MDCR_TPMCR (1U << 5) 840 841 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 842 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 843 844 #define CPSR_M (0x1fU) 845 #define CPSR_T (1U << 5) 846 #define CPSR_F (1U << 6) 847 #define CPSR_I (1U << 7) 848 #define CPSR_A (1U << 8) 849 #define CPSR_E (1U << 9) 850 #define CPSR_IT_2_7 (0xfc00U) 851 #define CPSR_GE (0xfU << 16) 852 #define CPSR_IL (1U << 20) 853 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in 854 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use 855 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, 856 * where it is live state but not accessible to the AArch32 code. 857 */ 858 #define CPSR_RESERVED (0x7U << 21) 859 #define CPSR_J (1U << 24) 860 #define CPSR_IT_0_1 (3U << 25) 861 #define CPSR_Q (1U << 27) 862 #define CPSR_V (1U << 28) 863 #define CPSR_C (1U << 29) 864 #define CPSR_Z (1U << 30) 865 #define CPSR_N (1U << 31) 866 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 867 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 868 869 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 870 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 871 | CPSR_NZCV) 872 /* Bits writable in user mode. */ 873 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) 874 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 875 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 876 /* Mask of bits which may be set by exception return copying them from SPSR */ 877 #define CPSR_ERET_MASK (~CPSR_RESERVED) 878 879 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 880 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 881 #define TTBCR_PD0 (1U << 4) 882 #define TTBCR_PD1 (1U << 5) 883 #define TTBCR_EPD0 (1U << 7) 884 #define TTBCR_IRGN0 (3U << 8) 885 #define TTBCR_ORGN0 (3U << 10) 886 #define TTBCR_SH0 (3U << 12) 887 #define TTBCR_T1SZ (3U << 16) 888 #define TTBCR_A1 (1U << 22) 889 #define TTBCR_EPD1 (1U << 23) 890 #define TTBCR_IRGN1 (3U << 24) 891 #define TTBCR_ORGN1 (3U << 26) 892 #define TTBCR_SH1 (1U << 28) 893 #define TTBCR_EAE (1U << 31) 894 895 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 896 * Only these are valid when in AArch64 mode; in 897 * AArch32 mode SPSRs are basically CPSR-format. 898 */ 899 #define PSTATE_SP (1U) 900 #define PSTATE_M (0xFU) 901 #define PSTATE_nRW (1U << 4) 902 #define PSTATE_F (1U << 6) 903 #define PSTATE_I (1U << 7) 904 #define PSTATE_A (1U << 8) 905 #define PSTATE_D (1U << 9) 906 #define PSTATE_IL (1U << 20) 907 #define PSTATE_SS (1U << 21) 908 #define PSTATE_V (1U << 28) 909 #define PSTATE_C (1U << 29) 910 #define PSTATE_Z (1U << 30) 911 #define PSTATE_N (1U << 31) 912 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 913 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 914 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF) 915 /* Mode values for AArch64 */ 916 #define PSTATE_MODE_EL3h 13 917 #define PSTATE_MODE_EL3t 12 918 #define PSTATE_MODE_EL2h 9 919 #define PSTATE_MODE_EL2t 8 920 #define PSTATE_MODE_EL1h 5 921 #define PSTATE_MODE_EL1t 4 922 #define PSTATE_MODE_EL0t 0 923 924 /* Map EL and handler into a PSTATE_MODE. */ 925 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 926 { 927 return (el << 2) | handler; 928 } 929 930 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 931 * interprocessing, so we don't attempt to sync with the cpsr state used by 932 * the 32 bit decoder. 933 */ 934 static inline uint32_t pstate_read(CPUARMState *env) 935 { 936 int ZF; 937 938 ZF = (env->ZF == 0); 939 return (env->NF & 0x80000000) | (ZF << 30) 940 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 941 | env->pstate | env->daif; 942 } 943 944 static inline void pstate_write(CPUARMState *env, uint32_t val) 945 { 946 env->ZF = (~val) & PSTATE_Z; 947 env->NF = val; 948 env->CF = (val >> 29) & 1; 949 env->VF = (val << 3) & 0x80000000; 950 env->daif = val & PSTATE_DAIF; 951 env->pstate = val & ~CACHED_PSTATE_BITS; 952 } 953 954 /* Return the current CPSR value. */ 955 uint32_t cpsr_read(CPUARMState *env); 956 957 typedef enum CPSRWriteType { 958 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 959 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 960 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 961 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 962 } CPSRWriteType; 963 964 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 965 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 966 CPSRWriteType write_type); 967 968 /* Return the current xPSR value. */ 969 static inline uint32_t xpsr_read(CPUARMState *env) 970 { 971 int ZF; 972 ZF = (env->ZF == 0); 973 return (env->NF & 0x80000000) | (ZF << 30) 974 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 975 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 976 | ((env->condexec_bits & 0xfc) << 8) 977 | env->v7m.exception; 978 } 979 980 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 981 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 982 { 983 if (mask & CPSR_NZCV) { 984 env->ZF = (~val) & CPSR_Z; 985 env->NF = val; 986 env->CF = (val >> 29) & 1; 987 env->VF = (val << 3) & 0x80000000; 988 } 989 if (mask & CPSR_Q) 990 env->QF = ((val & CPSR_Q) != 0); 991 if (mask & (1 << 24)) 992 env->thumb = ((val & (1 << 24)) != 0); 993 if (mask & CPSR_IT_0_1) { 994 env->condexec_bits &= ~3; 995 env->condexec_bits |= (val >> 25) & 3; 996 } 997 if (mask & CPSR_IT_2_7) { 998 env->condexec_bits &= 3; 999 env->condexec_bits |= (val >> 8) & 0xfc; 1000 } 1001 if (mask & 0x1ff) { 1002 env->v7m.exception = val & 0x1ff; 1003 } 1004 } 1005 1006 #define HCR_VM (1ULL << 0) 1007 #define HCR_SWIO (1ULL << 1) 1008 #define HCR_PTW (1ULL << 2) 1009 #define HCR_FMO (1ULL << 3) 1010 #define HCR_IMO (1ULL << 4) 1011 #define HCR_AMO (1ULL << 5) 1012 #define HCR_VF (1ULL << 6) 1013 #define HCR_VI (1ULL << 7) 1014 #define HCR_VSE (1ULL << 8) 1015 #define HCR_FB (1ULL << 9) 1016 #define HCR_BSU_MASK (3ULL << 10) 1017 #define HCR_DC (1ULL << 12) 1018 #define HCR_TWI (1ULL << 13) 1019 #define HCR_TWE (1ULL << 14) 1020 #define HCR_TID0 (1ULL << 15) 1021 #define HCR_TID1 (1ULL << 16) 1022 #define HCR_TID2 (1ULL << 17) 1023 #define HCR_TID3 (1ULL << 18) 1024 #define HCR_TSC (1ULL << 19) 1025 #define HCR_TIDCP (1ULL << 20) 1026 #define HCR_TACR (1ULL << 21) 1027 #define HCR_TSW (1ULL << 22) 1028 #define HCR_TPC (1ULL << 23) 1029 #define HCR_TPU (1ULL << 24) 1030 #define HCR_TTLB (1ULL << 25) 1031 #define HCR_TVM (1ULL << 26) 1032 #define HCR_TGE (1ULL << 27) 1033 #define HCR_TDZ (1ULL << 28) 1034 #define HCR_HCD (1ULL << 29) 1035 #define HCR_TRVM (1ULL << 30) 1036 #define HCR_RW (1ULL << 31) 1037 #define HCR_CD (1ULL << 32) 1038 #define HCR_ID (1ULL << 33) 1039 #define HCR_MASK ((1ULL << 34) - 1) 1040 1041 #define SCR_NS (1U << 0) 1042 #define SCR_IRQ (1U << 1) 1043 #define SCR_FIQ (1U << 2) 1044 #define SCR_EA (1U << 3) 1045 #define SCR_FW (1U << 4) 1046 #define SCR_AW (1U << 5) 1047 #define SCR_NET (1U << 6) 1048 #define SCR_SMD (1U << 7) 1049 #define SCR_HCE (1U << 8) 1050 #define SCR_SIF (1U << 9) 1051 #define SCR_RW (1U << 10) 1052 #define SCR_ST (1U << 11) 1053 #define SCR_TWI (1U << 12) 1054 #define SCR_TWE (1U << 13) 1055 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST)) 1056 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET) 1057 1058 /* Return the current FPSCR value. */ 1059 uint32_t vfp_get_fpscr(CPUARMState *env); 1060 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1061 1062 /* For A64 the FPSCR is split into two logically distinct registers, 1063 * FPCR and FPSR. However since they still use non-overlapping bits 1064 * we store the underlying state in fpscr and just mask on read/write. 1065 */ 1066 #define FPSR_MASK 0xf800009f 1067 #define FPCR_MASK 0x07f79f00 1068 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1069 { 1070 return vfp_get_fpscr(env) & FPSR_MASK; 1071 } 1072 1073 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1074 { 1075 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1076 vfp_set_fpscr(env, new_fpscr); 1077 } 1078 1079 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1080 { 1081 return vfp_get_fpscr(env) & FPCR_MASK; 1082 } 1083 1084 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1085 { 1086 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1087 vfp_set_fpscr(env, new_fpscr); 1088 } 1089 1090 enum arm_cpu_mode { 1091 ARM_CPU_MODE_USR = 0x10, 1092 ARM_CPU_MODE_FIQ = 0x11, 1093 ARM_CPU_MODE_IRQ = 0x12, 1094 ARM_CPU_MODE_SVC = 0x13, 1095 ARM_CPU_MODE_MON = 0x16, 1096 ARM_CPU_MODE_ABT = 0x17, 1097 ARM_CPU_MODE_HYP = 0x1a, 1098 ARM_CPU_MODE_UND = 0x1b, 1099 ARM_CPU_MODE_SYS = 0x1f 1100 }; 1101 1102 /* VFP system registers. */ 1103 #define ARM_VFP_FPSID 0 1104 #define ARM_VFP_FPSCR 1 1105 #define ARM_VFP_MVFR2 5 1106 #define ARM_VFP_MVFR1 6 1107 #define ARM_VFP_MVFR0 7 1108 #define ARM_VFP_FPEXC 8 1109 #define ARM_VFP_FPINST 9 1110 #define ARM_VFP_FPINST2 10 1111 1112 /* iwMMXt coprocessor control registers. */ 1113 #define ARM_IWMMXT_wCID 0 1114 #define ARM_IWMMXT_wCon 1 1115 #define ARM_IWMMXT_wCSSF 2 1116 #define ARM_IWMMXT_wCASF 3 1117 #define ARM_IWMMXT_wCGR0 8 1118 #define ARM_IWMMXT_wCGR1 9 1119 #define ARM_IWMMXT_wCGR2 10 1120 #define ARM_IWMMXT_wCGR3 11 1121 1122 /* V7M CCR bits */ 1123 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1124 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1125 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1126 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1127 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1128 FIELD(V7M_CCR, STKALIGN, 9, 1) 1129 FIELD(V7M_CCR, DC, 16, 1) 1130 FIELD(V7M_CCR, IC, 17, 1) 1131 1132 /* V7M CFSR bits for MMFSR */ 1133 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1134 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1135 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1136 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1137 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1138 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1139 1140 /* V7M CFSR bits for BFSR */ 1141 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1142 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1143 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1144 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1145 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1146 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1147 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1148 1149 /* V7M CFSR bits for UFSR */ 1150 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1151 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1152 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1153 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1154 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1155 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1156 1157 /* V7M HFSR bits */ 1158 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1159 FIELD(V7M_HFSR, FORCED, 30, 1) 1160 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1161 1162 /* V7M DFSR bits */ 1163 FIELD(V7M_DFSR, HALTED, 0, 1) 1164 FIELD(V7M_DFSR, BKPT, 1, 1) 1165 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1166 FIELD(V7M_DFSR, VCATCH, 3, 1) 1167 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1168 1169 /* If adding a feature bit which corresponds to a Linux ELF 1170 * HWCAP bit, remember to update the feature-bit-to-hwcap 1171 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1172 */ 1173 enum arm_features { 1174 ARM_FEATURE_VFP, 1175 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1176 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1177 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1178 ARM_FEATURE_V6, 1179 ARM_FEATURE_V6K, 1180 ARM_FEATURE_V7, 1181 ARM_FEATURE_THUMB2, 1182 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */ 1183 ARM_FEATURE_VFP3, 1184 ARM_FEATURE_VFP_FP16, 1185 ARM_FEATURE_NEON, 1186 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */ 1187 ARM_FEATURE_M, /* Microcontroller profile. */ 1188 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1189 ARM_FEATURE_THUMB2EE, 1190 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1191 ARM_FEATURE_V4T, 1192 ARM_FEATURE_V5, 1193 ARM_FEATURE_STRONGARM, 1194 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 1195 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */ 1196 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ 1197 ARM_FEATURE_GENERIC_TIMER, 1198 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 1199 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 1200 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 1201 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 1202 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 1203 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 1204 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ 1205 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 1206 ARM_FEATURE_V8, 1207 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 1208 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */ 1209 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 1210 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ 1211 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 1212 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 1213 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 1214 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */ 1215 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */ 1216 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */ 1217 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 1218 ARM_FEATURE_PMU, /* has PMU support */ 1219 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 1220 }; 1221 1222 static inline int arm_feature(CPUARMState *env, int feature) 1223 { 1224 return (env->features & (1ULL << feature)) != 0; 1225 } 1226 1227 #if !defined(CONFIG_USER_ONLY) 1228 /* Return true if exception levels below EL3 are in secure state, 1229 * or would be following an exception return to that level. 1230 * Unlike arm_is_secure() (which is always a question about the 1231 * _current_ state of the CPU) this doesn't care about the current 1232 * EL or mode. 1233 */ 1234 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1235 { 1236 if (arm_feature(env, ARM_FEATURE_EL3)) { 1237 return !(env->cp15.scr_el3 & SCR_NS); 1238 } else { 1239 /* If EL3 is not supported then the secure state is implementation 1240 * defined, in which case QEMU defaults to non-secure. 1241 */ 1242 return false; 1243 } 1244 } 1245 1246 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 1247 static inline bool arm_is_el3_or_mon(CPUARMState *env) 1248 { 1249 if (arm_feature(env, ARM_FEATURE_EL3)) { 1250 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 1251 /* CPU currently in AArch64 state and EL3 */ 1252 return true; 1253 } else if (!is_a64(env) && 1254 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 1255 /* CPU currently in AArch32 state and monitor mode */ 1256 return true; 1257 } 1258 } 1259 return false; 1260 } 1261 1262 /* Return true if the processor is in secure state */ 1263 static inline bool arm_is_secure(CPUARMState *env) 1264 { 1265 if (arm_is_el3_or_mon(env)) { 1266 return true; 1267 } 1268 return arm_is_secure_below_el3(env); 1269 } 1270 1271 #else 1272 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1273 { 1274 return false; 1275 } 1276 1277 static inline bool arm_is_secure(CPUARMState *env) 1278 { 1279 return false; 1280 } 1281 #endif 1282 1283 /* Return true if the specified exception level is running in AArch64 state. */ 1284 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 1285 { 1286 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 1287 * and if we're not in EL0 then the state of EL0 isn't well defined.) 1288 */ 1289 assert(el >= 1 && el <= 3); 1290 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 1291 1292 /* The highest exception level is always at the maximum supported 1293 * register width, and then lower levels have a register width controlled 1294 * by bits in the SCR or HCR registers. 1295 */ 1296 if (el == 3) { 1297 return aa64; 1298 } 1299 1300 if (arm_feature(env, ARM_FEATURE_EL3)) { 1301 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 1302 } 1303 1304 if (el == 2) { 1305 return aa64; 1306 } 1307 1308 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 1309 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 1310 } 1311 1312 return aa64; 1313 } 1314 1315 /* Function for determing whether guest cp register reads and writes should 1316 * access the secure or non-secure bank of a cp register. When EL3 is 1317 * operating in AArch32 state, the NS-bit determines whether the secure 1318 * instance of a cp register should be used. When EL3 is AArch64 (or if 1319 * it doesn't exist at all) then there is no register banking, and all 1320 * accesses are to the non-secure version. 1321 */ 1322 static inline bool access_secure_reg(CPUARMState *env) 1323 { 1324 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 1325 !arm_el_is_aa64(env, 3) && 1326 !(env->cp15.scr_el3 & SCR_NS)); 1327 1328 return ret; 1329 } 1330 1331 /* Macros for accessing a specified CP register bank */ 1332 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 1333 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 1334 1335 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 1336 do { \ 1337 if (_secure) { \ 1338 (_env)->cp15._regname##_s = (_val); \ 1339 } else { \ 1340 (_env)->cp15._regname##_ns = (_val); \ 1341 } \ 1342 } while (0) 1343 1344 /* Macros for automatically accessing a specific CP register bank depending on 1345 * the current secure state of the system. These macros are not intended for 1346 * supporting instruction translation reads/writes as these are dependent 1347 * solely on the SCR.NS bit and not the mode. 1348 */ 1349 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 1350 A32_BANKED_REG_GET((_env), _regname, \ 1351 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 1352 1353 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 1354 A32_BANKED_REG_SET((_env), _regname, \ 1355 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 1356 (_val)) 1357 1358 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf); 1359 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 1360 uint32_t cur_el, bool secure); 1361 1362 /* Interface between CPU and Interrupt controller. */ 1363 #ifndef CONFIG_USER_ONLY 1364 bool armv7m_nvic_can_take_pending_exception(void *opaque); 1365 #else 1366 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 1367 { 1368 return true; 1369 } 1370 #endif 1371 void armv7m_nvic_set_pending(void *opaque, int irq); 1372 void armv7m_nvic_acknowledge_irq(void *opaque); 1373 /** 1374 * armv7m_nvic_complete_irq: complete specified interrupt or exception 1375 * @opaque: the NVIC 1376 * @irq: the exception number to complete 1377 * 1378 * Returns: -1 if the irq was not active 1379 * 1 if completing this irq brought us back to base (no active irqs) 1380 * 0 if there is still an irq active after this one was completed 1381 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 1382 */ 1383 int armv7m_nvic_complete_irq(void *opaque, int irq); 1384 1385 /* Interface for defining coprocessor registers. 1386 * Registers are defined in tables of arm_cp_reginfo structs 1387 * which are passed to define_arm_cp_regs(). 1388 */ 1389 1390 /* When looking up a coprocessor register we look for it 1391 * via an integer which encodes all of: 1392 * coprocessor number 1393 * Crn, Crm, opc1, opc2 fields 1394 * 32 or 64 bit register (ie is it accessed via MRC/MCR 1395 * or via MRRC/MCRR?) 1396 * non-secure/secure bank (AArch32 only) 1397 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 1398 * (In this case crn and opc2 should be zero.) 1399 * For AArch64, there is no 32/64 bit size distinction; 1400 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 1401 * and 4 bit CRn and CRm. The encoding patterns are chosen 1402 * to be easy to convert to and from the KVM encodings, and also 1403 * so that the hashtable can contain both AArch32 and AArch64 1404 * registers (to allow for interprocessing where we might run 1405 * 32 bit code on a 64 bit core). 1406 */ 1407 /* This bit is private to our hashtable cpreg; in KVM register 1408 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 1409 * in the upper bits of the 64 bit ID. 1410 */ 1411 #define CP_REG_AA64_SHIFT 28 1412 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 1413 1414 /* To enable banking of coprocessor registers depending on ns-bit we 1415 * add a bit to distinguish between secure and non-secure cpregs in the 1416 * hashtable. 1417 */ 1418 #define CP_REG_NS_SHIFT 29 1419 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 1420 1421 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 1422 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 1423 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 1424 1425 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 1426 (CP_REG_AA64_MASK | \ 1427 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 1428 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 1429 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 1430 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 1431 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 1432 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 1433 1434 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 1435 * version used as a key for the coprocessor register hashtable 1436 */ 1437 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 1438 { 1439 uint32_t cpregid = kvmid; 1440 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 1441 cpregid |= CP_REG_AA64_MASK; 1442 } else { 1443 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 1444 cpregid |= (1 << 15); 1445 } 1446 1447 /* KVM is always non-secure so add the NS flag on AArch32 register 1448 * entries. 1449 */ 1450 cpregid |= 1 << CP_REG_NS_SHIFT; 1451 } 1452 return cpregid; 1453 } 1454 1455 /* Convert a truncated 32 bit hashtable key into the full 1456 * 64 bit KVM register ID. 1457 */ 1458 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 1459 { 1460 uint64_t kvmid; 1461 1462 if (cpregid & CP_REG_AA64_MASK) { 1463 kvmid = cpregid & ~CP_REG_AA64_MASK; 1464 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 1465 } else { 1466 kvmid = cpregid & ~(1 << 15); 1467 if (cpregid & (1 << 15)) { 1468 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 1469 } else { 1470 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 1471 } 1472 } 1473 return kvmid; 1474 } 1475 1476 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 1477 * special-behaviour cp reg and bits [15..8] indicate what behaviour 1478 * it has. Otherwise it is a simple cp reg, where CONST indicates that 1479 * TCG can assume the value to be constant (ie load at translate time) 1480 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 1481 * indicates that the TB should not be ended after a write to this register 1482 * (the default is that the TB ends after cp writes). OVERRIDE permits 1483 * a register definition to override a previous definition for the 1484 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 1485 * old must have the OVERRIDE bit set. 1486 * ALIAS indicates that this register is an alias view of some underlying 1487 * state which is also visible via another register, and that the other 1488 * register is handling migration and reset; registers marked ALIAS will not be 1489 * migrated but may have their state set by syncing of register state from KVM. 1490 * NO_RAW indicates that this register has no underlying state and does not 1491 * support raw access for state saving/loading; it will not be used for either 1492 * migration or KVM state synchronization. (Typically this is for "registers" 1493 * which are actually used as instructions for cache maintenance and so on.) 1494 * IO indicates that this register does I/O and therefore its accesses 1495 * need to be surrounded by gen_io_start()/gen_io_end(). In particular, 1496 * registers which implement clocks or timers require this. 1497 */ 1498 #define ARM_CP_SPECIAL 1 1499 #define ARM_CP_CONST 2 1500 #define ARM_CP_64BIT 4 1501 #define ARM_CP_SUPPRESS_TB_END 8 1502 #define ARM_CP_OVERRIDE 16 1503 #define ARM_CP_ALIAS 32 1504 #define ARM_CP_IO 64 1505 #define ARM_CP_NO_RAW 128 1506 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8)) 1507 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8)) 1508 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8)) 1509 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8)) 1510 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8)) 1511 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA 1512 /* Used only as a terminator for ARMCPRegInfo lists */ 1513 #define ARM_CP_SENTINEL 0xffff 1514 /* Mask of only the flag bits in a type field */ 1515 #define ARM_CP_FLAG_MASK 0xff 1516 1517 /* Valid values for ARMCPRegInfo state field, indicating which of 1518 * the AArch32 and AArch64 execution states this register is visible in. 1519 * If the reginfo doesn't explicitly specify then it is AArch32 only. 1520 * If the reginfo is declared to be visible in both states then a second 1521 * reginfo is synthesised for the AArch32 view of the AArch64 register, 1522 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 1523 * Note that we rely on the values of these enums as we iterate through 1524 * the various states in some places. 1525 */ 1526 enum { 1527 ARM_CP_STATE_AA32 = 0, 1528 ARM_CP_STATE_AA64 = 1, 1529 ARM_CP_STATE_BOTH = 2, 1530 }; 1531 1532 /* ARM CP register secure state flags. These flags identify security state 1533 * attributes for a given CP register entry. 1534 * The existence of both or neither secure and non-secure flags indicates that 1535 * the register has both a secure and non-secure hash entry. A single one of 1536 * these flags causes the register to only be hashed for the specified 1537 * security state. 1538 * Although definitions may have any combination of the S/NS bits, each 1539 * registered entry will only have one to identify whether the entry is secure 1540 * or non-secure. 1541 */ 1542 enum { 1543 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 1544 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 1545 }; 1546 1547 /* Return true if cptype is a valid type field. This is used to try to 1548 * catch errors where the sentinel has been accidentally left off the end 1549 * of a list of registers. 1550 */ 1551 static inline bool cptype_valid(int cptype) 1552 { 1553 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 1554 || ((cptype & ARM_CP_SPECIAL) && 1555 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 1556 } 1557 1558 /* Access rights: 1559 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 1560 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 1561 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 1562 * (ie any of the privileged modes in Secure state, or Monitor mode). 1563 * If a register is accessible in one privilege level it's always accessible 1564 * in higher privilege levels too. Since "Secure PL1" also follows this rule 1565 * (ie anything visible in PL2 is visible in S-PL1, some things are only 1566 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 1567 * terminology a little and call this PL3. 1568 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 1569 * with the ELx exception levels. 1570 * 1571 * If access permissions for a register are more complex than can be 1572 * described with these bits, then use a laxer set of restrictions, and 1573 * do the more restrictive/complex check inside a helper function. 1574 */ 1575 #define PL3_R 0x80 1576 #define PL3_W 0x40 1577 #define PL2_R (0x20 | PL3_R) 1578 #define PL2_W (0x10 | PL3_W) 1579 #define PL1_R (0x08 | PL2_R) 1580 #define PL1_W (0x04 | PL2_W) 1581 #define PL0_R (0x02 | PL1_R) 1582 #define PL0_W (0x01 | PL1_W) 1583 1584 #define PL3_RW (PL3_R | PL3_W) 1585 #define PL2_RW (PL2_R | PL2_W) 1586 #define PL1_RW (PL1_R | PL1_W) 1587 #define PL0_RW (PL0_R | PL0_W) 1588 1589 /* Return the highest implemented Exception Level */ 1590 static inline int arm_highest_el(CPUARMState *env) 1591 { 1592 if (arm_feature(env, ARM_FEATURE_EL3)) { 1593 return 3; 1594 } 1595 if (arm_feature(env, ARM_FEATURE_EL2)) { 1596 return 2; 1597 } 1598 return 1; 1599 } 1600 1601 /* Return the current Exception Level (as per ARMv8; note that this differs 1602 * from the ARMv7 Privilege Level). 1603 */ 1604 static inline int arm_current_el(CPUARMState *env) 1605 { 1606 if (arm_feature(env, ARM_FEATURE_M)) { 1607 return !((env->v7m.exception == 0) && (env->v7m.control & 1)); 1608 } 1609 1610 if (is_a64(env)) { 1611 return extract32(env->pstate, 2, 2); 1612 } 1613 1614 switch (env->uncached_cpsr & 0x1f) { 1615 case ARM_CPU_MODE_USR: 1616 return 0; 1617 case ARM_CPU_MODE_HYP: 1618 return 2; 1619 case ARM_CPU_MODE_MON: 1620 return 3; 1621 default: 1622 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 1623 /* If EL3 is 32-bit then all secure privileged modes run in 1624 * EL3 1625 */ 1626 return 3; 1627 } 1628 1629 return 1; 1630 } 1631 } 1632 1633 typedef struct ARMCPRegInfo ARMCPRegInfo; 1634 1635 typedef enum CPAccessResult { 1636 /* Access is permitted */ 1637 CP_ACCESS_OK = 0, 1638 /* Access fails due to a configurable trap or enable which would 1639 * result in a categorized exception syndrome giving information about 1640 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 1641 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 1642 * PL1 if in EL0, otherwise to the current EL). 1643 */ 1644 CP_ACCESS_TRAP = 1, 1645 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 1646 * Note that this is not a catch-all case -- the set of cases which may 1647 * result in this failure is specifically defined by the architecture. 1648 */ 1649 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 1650 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 1651 CP_ACCESS_TRAP_EL2 = 3, 1652 CP_ACCESS_TRAP_EL3 = 4, 1653 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 1654 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 1655 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 1656 /* Access fails and results in an exception syndrome for an FP access, 1657 * trapped directly to EL2 or EL3 1658 */ 1659 CP_ACCESS_TRAP_FP_EL2 = 7, 1660 CP_ACCESS_TRAP_FP_EL3 = 8, 1661 } CPAccessResult; 1662 1663 /* Access functions for coprocessor registers. These cannot fail and 1664 * may not raise exceptions. 1665 */ 1666 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 1667 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 1668 uint64_t value); 1669 /* Access permission check functions for coprocessor registers. */ 1670 typedef CPAccessResult CPAccessFn(CPUARMState *env, 1671 const ARMCPRegInfo *opaque, 1672 bool isread); 1673 /* Hook function for register reset */ 1674 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 1675 1676 #define CP_ANY 0xff 1677 1678 /* Definition of an ARM coprocessor register */ 1679 struct ARMCPRegInfo { 1680 /* Name of register (useful mainly for debugging, need not be unique) */ 1681 const char *name; 1682 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 1683 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 1684 * 'wildcard' field -- any value of that field in the MRC/MCR insn 1685 * will be decoded to this register. The register read and write 1686 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 1687 * used by the program, so it is possible to register a wildcard and 1688 * then behave differently on read/write if necessary. 1689 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 1690 * must both be zero. 1691 * For AArch64-visible registers, opc0 is also used. 1692 * Since there are no "coprocessors" in AArch64, cp is purely used as a 1693 * way to distinguish (for KVM's benefit) guest-visible system registers 1694 * from demuxed ones provided to preserve the "no side effects on 1695 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 1696 * visible (to match KVM's encoding); cp==0 will be converted to 1697 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 1698 */ 1699 uint8_t cp; 1700 uint8_t crn; 1701 uint8_t crm; 1702 uint8_t opc0; 1703 uint8_t opc1; 1704 uint8_t opc2; 1705 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 1706 int state; 1707 /* Register type: ARM_CP_* bits/values */ 1708 int type; 1709 /* Access rights: PL*_[RW] */ 1710 int access; 1711 /* Security state: ARM_CP_SECSTATE_* bits/values */ 1712 int secure; 1713 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 1714 * this register was defined: can be used to hand data through to the 1715 * register read/write functions, since they are passed the ARMCPRegInfo*. 1716 */ 1717 void *opaque; 1718 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 1719 * fieldoffset is non-zero, the reset value of the register. 1720 */ 1721 uint64_t resetvalue; 1722 /* Offset of the field in CPUARMState for this register. 1723 * 1724 * This is not needed if either: 1725 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 1726 * 2. both readfn and writefn are specified 1727 */ 1728 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 1729 1730 /* Offsets of the secure and non-secure fields in CPUARMState for the 1731 * register if it is banked. These fields are only used during the static 1732 * registration of a register. During hashing the bank associated 1733 * with a given security state is copied to fieldoffset which is used from 1734 * there on out. 1735 * 1736 * It is expected that register definitions use either fieldoffset or 1737 * bank_fieldoffsets in the definition but not both. It is also expected 1738 * that both bank offsets are set when defining a banked register. This 1739 * use indicates that a register is banked. 1740 */ 1741 ptrdiff_t bank_fieldoffsets[2]; 1742 1743 /* Function for making any access checks for this register in addition to 1744 * those specified by the 'access' permissions bits. If NULL, no extra 1745 * checks required. The access check is performed at runtime, not at 1746 * translate time. 1747 */ 1748 CPAccessFn *accessfn; 1749 /* Function for handling reads of this register. If NULL, then reads 1750 * will be done by loading from the offset into CPUARMState specified 1751 * by fieldoffset. 1752 */ 1753 CPReadFn *readfn; 1754 /* Function for handling writes of this register. If NULL, then writes 1755 * will be done by writing to the offset into CPUARMState specified 1756 * by fieldoffset. 1757 */ 1758 CPWriteFn *writefn; 1759 /* Function for doing a "raw" read; used when we need to copy 1760 * coprocessor state to the kernel for KVM or out for 1761 * migration. This only needs to be provided if there is also a 1762 * readfn and it has side effects (for instance clear-on-read bits). 1763 */ 1764 CPReadFn *raw_readfn; 1765 /* Function for doing a "raw" write; used when we need to copy KVM 1766 * kernel coprocessor state into userspace, or for inbound 1767 * migration. This only needs to be provided if there is also a 1768 * writefn and it masks out "unwritable" bits or has write-one-to-clear 1769 * or similar behaviour. 1770 */ 1771 CPWriteFn *raw_writefn; 1772 /* Function for resetting the register. If NULL, then reset will be done 1773 * by writing resetvalue to the field specified in fieldoffset. If 1774 * fieldoffset is 0 then no reset will be done. 1775 */ 1776 CPResetFn *resetfn; 1777 }; 1778 1779 /* Macros which are lvalues for the field in CPUARMState for the 1780 * ARMCPRegInfo *ri. 1781 */ 1782 #define CPREG_FIELD32(env, ri) \ 1783 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 1784 #define CPREG_FIELD64(env, ri) \ 1785 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 1786 1787 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 1788 1789 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 1790 const ARMCPRegInfo *regs, void *opaque); 1791 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 1792 const ARMCPRegInfo *regs, void *opaque); 1793 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 1794 { 1795 define_arm_cp_regs_with_opaque(cpu, regs, 0); 1796 } 1797 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 1798 { 1799 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 1800 } 1801 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 1802 1803 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 1804 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 1805 uint64_t value); 1806 /* CPReadFn that can be used for read-as-zero behaviour */ 1807 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 1808 1809 /* CPResetFn that does nothing, for use if no reset is required even 1810 * if fieldoffset is non zero. 1811 */ 1812 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 1813 1814 /* Return true if this reginfo struct's field in the cpu state struct 1815 * is 64 bits wide. 1816 */ 1817 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 1818 { 1819 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 1820 } 1821 1822 static inline bool cp_access_ok(int current_el, 1823 const ARMCPRegInfo *ri, int isread) 1824 { 1825 return (ri->access >> ((current_el * 2) + isread)) & 1; 1826 } 1827 1828 /* Raw read of a coprocessor register (as needed for migration, etc) */ 1829 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 1830 1831 /** 1832 * write_list_to_cpustate 1833 * @cpu: ARMCPU 1834 * 1835 * For each register listed in the ARMCPU cpreg_indexes list, write 1836 * its value from the cpreg_values list into the ARMCPUState structure. 1837 * This updates TCG's working data structures from KVM data or 1838 * from incoming migration state. 1839 * 1840 * Returns: true if all register values were updated correctly, 1841 * false if some register was unknown or could not be written. 1842 * Note that we do not stop early on failure -- we will attempt 1843 * writing all registers in the list. 1844 */ 1845 bool write_list_to_cpustate(ARMCPU *cpu); 1846 1847 /** 1848 * write_cpustate_to_list: 1849 * @cpu: ARMCPU 1850 * 1851 * For each register listed in the ARMCPU cpreg_indexes list, write 1852 * its value from the ARMCPUState structure into the cpreg_values list. 1853 * This is used to copy info from TCG's working data structures into 1854 * KVM or for outbound migration. 1855 * 1856 * Returns: true if all register values were read correctly, 1857 * false if some register was unknown or could not be read. 1858 * Note that we do not stop early on failure -- we will attempt 1859 * reading all registers in the list. 1860 */ 1861 bool write_cpustate_to_list(ARMCPU *cpu); 1862 1863 #define ARM_CPUID_TI915T 0x54029152 1864 #define ARM_CPUID_TI925T 0x54029252 1865 1866 #if defined(CONFIG_USER_ONLY) 1867 #define TARGET_PAGE_BITS 12 1868 #else 1869 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6 1870 * have to support 1K tiny pages. 1871 */ 1872 #define TARGET_PAGE_BITS_VARY 1873 #define TARGET_PAGE_BITS_MIN 10 1874 #endif 1875 1876 #if defined(TARGET_AARCH64) 1877 # define TARGET_PHYS_ADDR_SPACE_BITS 48 1878 # define TARGET_VIRT_ADDR_SPACE_BITS 64 1879 #else 1880 # define TARGET_PHYS_ADDR_SPACE_BITS 40 1881 # define TARGET_VIRT_ADDR_SPACE_BITS 32 1882 #endif 1883 1884 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 1885 unsigned int target_el) 1886 { 1887 CPUARMState *env = cs->env_ptr; 1888 unsigned int cur_el = arm_current_el(env); 1889 bool secure = arm_is_secure(env); 1890 bool pstate_unmasked; 1891 int8_t unmasked = 0; 1892 1893 /* Don't take exceptions if they target a lower EL. 1894 * This check should catch any exceptions that would not be taken but left 1895 * pending. 1896 */ 1897 if (cur_el > target_el) { 1898 return false; 1899 } 1900 1901 switch (excp_idx) { 1902 case EXCP_FIQ: 1903 pstate_unmasked = !(env->daif & PSTATE_F); 1904 break; 1905 1906 case EXCP_IRQ: 1907 pstate_unmasked = !(env->daif & PSTATE_I); 1908 break; 1909 1910 case EXCP_VFIQ: 1911 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) { 1912 /* VFIQs are only taken when hypervized and non-secure. */ 1913 return false; 1914 } 1915 return !(env->daif & PSTATE_F); 1916 case EXCP_VIRQ: 1917 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) { 1918 /* VIRQs are only taken when hypervized and non-secure. */ 1919 return false; 1920 } 1921 return !(env->daif & PSTATE_I); 1922 default: 1923 g_assert_not_reached(); 1924 } 1925 1926 /* Use the target EL, current execution state and SCR/HCR settings to 1927 * determine whether the corresponding CPSR bit is used to mask the 1928 * interrupt. 1929 */ 1930 if ((target_el > cur_el) && (target_el != 1)) { 1931 /* Exceptions targeting a higher EL may not be maskable */ 1932 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 1933 /* 64-bit masking rules are simple: exceptions to EL3 1934 * can't be masked, and exceptions to EL2 can only be 1935 * masked from Secure state. The HCR and SCR settings 1936 * don't affect the masking logic, only the interrupt routing. 1937 */ 1938 if (target_el == 3 || !secure) { 1939 unmasked = 1; 1940 } 1941 } else { 1942 /* The old 32-bit-only environment has a more complicated 1943 * masking setup. HCR and SCR bits not only affect interrupt 1944 * routing but also change the behaviour of masking. 1945 */ 1946 bool hcr, scr; 1947 1948 switch (excp_idx) { 1949 case EXCP_FIQ: 1950 /* If FIQs are routed to EL3 or EL2 then there are cases where 1951 * we override the CPSR.F in determining if the exception is 1952 * masked or not. If neither of these are set then we fall back 1953 * to the CPSR.F setting otherwise we further assess the state 1954 * below. 1955 */ 1956 hcr = (env->cp15.hcr_el2 & HCR_FMO); 1957 scr = (env->cp15.scr_el3 & SCR_FIQ); 1958 1959 /* When EL3 is 32-bit, the SCR.FW bit controls whether the 1960 * CPSR.F bit masks FIQ interrupts when taken in non-secure 1961 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 1962 * when non-secure but only when FIQs are only routed to EL3. 1963 */ 1964 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 1965 break; 1966 case EXCP_IRQ: 1967 /* When EL3 execution state is 32-bit, if HCR.IMO is set then 1968 * we may override the CPSR.I masking when in non-secure state. 1969 * The SCR.IRQ setting has already been taken into consideration 1970 * when setting the target EL, so it does not have a further 1971 * affect here. 1972 */ 1973 hcr = (env->cp15.hcr_el2 & HCR_IMO); 1974 scr = false; 1975 break; 1976 default: 1977 g_assert_not_reached(); 1978 } 1979 1980 if ((scr || hcr) && !secure) { 1981 unmasked = 1; 1982 } 1983 } 1984 } 1985 1986 /* The PSTATE bits only mask the interrupt if we have not overriden the 1987 * ability above. 1988 */ 1989 return unmasked || pstate_unmasked; 1990 } 1991 1992 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model)) 1993 1994 #define cpu_signal_handler cpu_arm_signal_handler 1995 #define cpu_list arm_cpu_list 1996 1997 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 1998 * 1999 * If EL3 is 64-bit: 2000 * + NonSecure EL1 & 0 stage 1 2001 * + NonSecure EL1 & 0 stage 2 2002 * + NonSecure EL2 2003 * + Secure EL1 & EL0 2004 * + Secure EL3 2005 * If EL3 is 32-bit: 2006 * + NonSecure PL1 & 0 stage 1 2007 * + NonSecure PL1 & 0 stage 2 2008 * + NonSecure PL2 2009 * + Secure PL0 & PL1 2010 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2011 * 2012 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2013 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they 2014 * may differ in access permissions even if the VA->PA map is the same 2015 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2016 * translation, which means that we have one mmu_idx that deals with two 2017 * concatenated translation regimes [this sort of combined s1+2 TLB is 2018 * architecturally permitted] 2019 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2020 * handling via the TLB. The only way to do a stage 1 translation without 2021 * the immediate stage 2 translation is via the ATS or AT system insns, 2022 * which can be slow-pathed and always do a page table walk. 2023 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2024 * translation regimes, because they map reasonably well to each other 2025 * and they can't both be active at the same time. 2026 * This gives us the following list of mmu_idx values: 2027 * 2028 * NS EL0 (aka NS PL0) stage 1+2 2029 * NS EL1 (aka NS PL1) stage 1+2 2030 * NS EL2 (aka NS PL2) 2031 * S EL3 (aka S PL1) 2032 * S EL0 (aka S PL0) 2033 * S EL1 (not used if EL3 is 32 bit) 2034 * NS EL0+1 stage 2 2035 * 2036 * (The last of these is an mmu_idx because we want to be able to use the TLB 2037 * for the accesses done as part of a stage 1 page table walk, rather than 2038 * having to walk the stage 2 page table over and over.) 2039 * 2040 * Our enumeration includes at the end some entries which are not "true" 2041 * mmu_idx values in that they don't have corresponding TLBs and are only 2042 * valid for doing slow path page table walks. 2043 * 2044 * The constant names here are patterned after the general style of the names 2045 * of the AT/ATS operations. 2046 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2047 */ 2048 typedef enum ARMMMUIdx { 2049 ARMMMUIdx_S12NSE0 = 0, 2050 ARMMMUIdx_S12NSE1 = 1, 2051 ARMMMUIdx_S1E2 = 2, 2052 ARMMMUIdx_S1E3 = 3, 2053 ARMMMUIdx_S1SE0 = 4, 2054 ARMMMUIdx_S1SE1 = 5, 2055 ARMMMUIdx_S2NS = 6, 2056 /* Indexes below here don't have TLBs and are used only for AT system 2057 * instructions or for the first stage of an S12 page table walk. 2058 */ 2059 ARMMMUIdx_S1NSE0 = 7, 2060 ARMMMUIdx_S1NSE1 = 8, 2061 } ARMMMUIdx; 2062 2063 #define MMU_USER_IDX 0 2064 2065 /* Return the exception level we're running at if this is our mmu_idx */ 2066 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 2067 { 2068 assert(mmu_idx < ARMMMUIdx_S2NS); 2069 return mmu_idx & 3; 2070 } 2071 2072 /* Determine the current mmu_idx to use for normal loads/stores */ 2073 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 2074 { 2075 int el = arm_current_el(env); 2076 2077 if (el < 2 && arm_is_secure_below_el3(env)) { 2078 return ARMMMUIdx_S1SE0 + el; 2079 } 2080 return el; 2081 } 2082 2083 /* Indexes used when registering address spaces with cpu_address_space_init */ 2084 typedef enum ARMASIdx { 2085 ARMASIdx_NS = 0, 2086 ARMASIdx_S = 1, 2087 } ARMASIdx; 2088 2089 /* Return the Exception Level targeted by debug exceptions. */ 2090 static inline int arm_debug_target_el(CPUARMState *env) 2091 { 2092 bool secure = arm_is_secure(env); 2093 bool route_to_el2 = false; 2094 2095 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 2096 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 2097 env->cp15.mdcr_el2 & (1 << 8); 2098 } 2099 2100 if (route_to_el2) { 2101 return 2; 2102 } else if (arm_feature(env, ARM_FEATURE_EL3) && 2103 !arm_el_is_aa64(env, 3) && secure) { 2104 return 3; 2105 } else { 2106 return 1; 2107 } 2108 } 2109 2110 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 2111 { 2112 if (arm_is_secure(env)) { 2113 /* MDCR_EL3.SDD disables debug events from Secure state */ 2114 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0 2115 || arm_current_el(env) == 3) { 2116 return false; 2117 } 2118 } 2119 2120 if (arm_current_el(env) == arm_debug_target_el(env)) { 2121 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0) 2122 || (env->daif & PSTATE_D)) { 2123 return false; 2124 } 2125 } 2126 return true; 2127 } 2128 2129 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 2130 { 2131 int el = arm_current_el(env); 2132 2133 if (el == 0 && arm_el_is_aa64(env, 1)) { 2134 return aa64_generate_debug_exceptions(env); 2135 } 2136 2137 if (arm_is_secure(env)) { 2138 int spd; 2139 2140 if (el == 0 && (env->cp15.sder & 1)) { 2141 /* SDER.SUIDEN means debug exceptions from Secure EL0 2142 * are always enabled. Otherwise they are controlled by 2143 * SDCR.SPD like those from other Secure ELs. 2144 */ 2145 return true; 2146 } 2147 2148 spd = extract32(env->cp15.mdcr_el3, 14, 2); 2149 switch (spd) { 2150 case 1: 2151 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 2152 case 0: 2153 /* For 0b00 we return true if external secure invasive debug 2154 * is enabled. On real hardware this is controlled by external 2155 * signals to the core. QEMU always permits debug, and behaves 2156 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 2157 */ 2158 return true; 2159 case 2: 2160 return false; 2161 case 3: 2162 return true; 2163 } 2164 } 2165 2166 return el != 2; 2167 } 2168 2169 /* Return true if debugging exceptions are currently enabled. 2170 * This corresponds to what in ARM ARM pseudocode would be 2171 * if UsingAArch32() then 2172 * return AArch32.GenerateDebugExceptions() 2173 * else 2174 * return AArch64.GenerateDebugExceptions() 2175 * We choose to push the if() down into this function for clarity, 2176 * since the pseudocode has it at all callsites except for the one in 2177 * CheckSoftwareStep(), where it is elided because both branches would 2178 * always return the same value. 2179 * 2180 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we 2181 * don't yet implement those exception levels or their associated trap bits. 2182 */ 2183 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 2184 { 2185 if (env->aarch64) { 2186 return aa64_generate_debug_exceptions(env); 2187 } else { 2188 return aa32_generate_debug_exceptions(env); 2189 } 2190 } 2191 2192 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 2193 * implicitly means this always returns false in pre-v8 CPUs.) 2194 */ 2195 static inline bool arm_singlestep_active(CPUARMState *env) 2196 { 2197 return extract32(env->cp15.mdscr_el1, 0, 1) 2198 && arm_el_is_aa64(env, arm_debug_target_el(env)) 2199 && arm_generate_debug_exceptions(env); 2200 } 2201 2202 static inline bool arm_sctlr_b(CPUARMState *env) 2203 { 2204 return 2205 /* We need not implement SCTLR.ITD in user-mode emulation, so 2206 * let linux-user ignore the fact that it conflicts with SCTLR_B. 2207 * This lets people run BE32 binaries with "-cpu any". 2208 */ 2209 #ifndef CONFIG_USER_ONLY 2210 !arm_feature(env, ARM_FEATURE_V7) && 2211 #endif 2212 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 2213 } 2214 2215 /* Return true if the processor is in big-endian mode. */ 2216 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 2217 { 2218 int cur_el; 2219 2220 /* In 32bit endianness is determined by looking at CPSR's E bit */ 2221 if (!is_a64(env)) { 2222 return 2223 #ifdef CONFIG_USER_ONLY 2224 /* In system mode, BE32 is modelled in line with the 2225 * architecture (as word-invariant big-endianness), where loads 2226 * and stores are done little endian but from addresses which 2227 * are adjusted by XORing with the appropriate constant. So the 2228 * endianness to use for the raw data access is not affected by 2229 * SCTLR.B. 2230 * In user mode, however, we model BE32 as byte-invariant 2231 * big-endianness (because user-only code cannot tell the 2232 * difference), and so we need to use a data access endianness 2233 * that depends on SCTLR.B. 2234 */ 2235 arm_sctlr_b(env) || 2236 #endif 2237 ((env->uncached_cpsr & CPSR_E) ? 1 : 0); 2238 } 2239 2240 cur_el = arm_current_el(env); 2241 2242 if (cur_el == 0) { 2243 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0; 2244 } 2245 2246 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0; 2247 } 2248 2249 #include "exec/cpu-all.h" 2250 2251 /* Bit usage in the TB flags field: bit 31 indicates whether we are 2252 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 2253 * We put flags which are shared between 32 and 64 bit mode at the top 2254 * of the word, and flags which apply to only one mode at the bottom. 2255 */ 2256 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31 2257 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT) 2258 #define ARM_TBFLAG_MMUIDX_SHIFT 28 2259 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT) 2260 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27 2261 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT) 2262 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26 2263 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT) 2264 /* Target EL if we take a floating-point-disabled exception */ 2265 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24 2266 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT) 2267 2268 /* Bit usage when in AArch32 state: */ 2269 #define ARM_TBFLAG_THUMB_SHIFT 0 2270 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT) 2271 #define ARM_TBFLAG_VECLEN_SHIFT 1 2272 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT) 2273 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4 2274 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT) 2275 #define ARM_TBFLAG_VFPEN_SHIFT 7 2276 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT) 2277 #define ARM_TBFLAG_CONDEXEC_SHIFT 8 2278 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT) 2279 #define ARM_TBFLAG_SCTLR_B_SHIFT 16 2280 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT) 2281 /* We store the bottom two bits of the CPAR as TB flags and handle 2282 * checks on the other bits at runtime 2283 */ 2284 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17 2285 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT) 2286 /* Indicates whether cp register reads and writes by guest code should access 2287 * the secure or nonsecure bank of banked registers; note that this is not 2288 * the same thing as the current security state of the processor! 2289 */ 2290 #define ARM_TBFLAG_NS_SHIFT 19 2291 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT) 2292 #define ARM_TBFLAG_BE_DATA_SHIFT 20 2293 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT) 2294 /* For M profile only, Handler (ie not Thread) mode */ 2295 #define ARM_TBFLAG_HANDLER_SHIFT 21 2296 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT) 2297 2298 /* Bit usage when in AArch64 state */ 2299 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */ 2300 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT) 2301 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */ 2302 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT) 2303 2304 /* some convenience accessor macros */ 2305 #define ARM_TBFLAG_AARCH64_STATE(F) \ 2306 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT) 2307 #define ARM_TBFLAG_MMUIDX(F) \ 2308 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT) 2309 #define ARM_TBFLAG_SS_ACTIVE(F) \ 2310 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT) 2311 #define ARM_TBFLAG_PSTATE_SS(F) \ 2312 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT) 2313 #define ARM_TBFLAG_FPEXC_EL(F) \ 2314 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT) 2315 #define ARM_TBFLAG_THUMB(F) \ 2316 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT) 2317 #define ARM_TBFLAG_VECLEN(F) \ 2318 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT) 2319 #define ARM_TBFLAG_VECSTRIDE(F) \ 2320 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT) 2321 #define ARM_TBFLAG_VFPEN(F) \ 2322 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT) 2323 #define ARM_TBFLAG_CONDEXEC(F) \ 2324 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT) 2325 #define ARM_TBFLAG_SCTLR_B(F) \ 2326 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT) 2327 #define ARM_TBFLAG_XSCALE_CPAR(F) \ 2328 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT) 2329 #define ARM_TBFLAG_NS(F) \ 2330 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT) 2331 #define ARM_TBFLAG_BE_DATA(F) \ 2332 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT) 2333 #define ARM_TBFLAG_HANDLER(F) \ 2334 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT) 2335 #define ARM_TBFLAG_TBI0(F) \ 2336 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT) 2337 #define ARM_TBFLAG_TBI1(F) \ 2338 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT) 2339 2340 static inline bool bswap_code(bool sctlr_b) 2341 { 2342 #ifdef CONFIG_USER_ONLY 2343 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 2344 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 2345 * would also end up as a mixed-endian mode with BE code, LE data. 2346 */ 2347 return 2348 #ifdef TARGET_WORDS_BIGENDIAN 2349 1 ^ 2350 #endif 2351 sctlr_b; 2352 #else 2353 /* All code access in ARM is little endian, and there are no loaders 2354 * doing swaps that need to be reversed 2355 */ 2356 return 0; 2357 #endif 2358 } 2359 2360 /* Return the exception level to which FP-disabled exceptions should 2361 * be taken, or 0 if FP is enabled. 2362 */ 2363 static inline int fp_exception_el(CPUARMState *env) 2364 { 2365 int fpen; 2366 int cur_el = arm_current_el(env); 2367 2368 /* CPACR and the CPTR registers don't exist before v6, so FP is 2369 * always accessible 2370 */ 2371 if (!arm_feature(env, ARM_FEATURE_V6)) { 2372 return 0; 2373 } 2374 2375 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 2376 * 0, 2 : trap EL0 and EL1/PL1 accesses 2377 * 1 : trap only EL0 accesses 2378 * 3 : trap no accesses 2379 */ 2380 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 2381 switch (fpen) { 2382 case 0: 2383 case 2: 2384 if (cur_el == 0 || cur_el == 1) { 2385 /* Trap to PL1, which might be EL1 or EL3 */ 2386 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2387 return 3; 2388 } 2389 return 1; 2390 } 2391 if (cur_el == 3 && !is_a64(env)) { 2392 /* Secure PL1 running at EL3 */ 2393 return 3; 2394 } 2395 break; 2396 case 1: 2397 if (cur_el == 0) { 2398 return 1; 2399 } 2400 break; 2401 case 3: 2402 break; 2403 } 2404 2405 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 2406 * check because zero bits in the registers mean "don't trap". 2407 */ 2408 2409 /* CPTR_EL2 : present in v7VE or v8 */ 2410 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 2411 && !arm_is_secure_below_el3(env)) { 2412 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 2413 return 2; 2414 } 2415 2416 /* CPTR_EL3 : present in v8 */ 2417 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 2418 /* Trap all FP ops to EL3 */ 2419 return 3; 2420 } 2421 2422 return 0; 2423 } 2424 2425 #ifdef CONFIG_USER_ONLY 2426 static inline bool arm_cpu_bswap_data(CPUARMState *env) 2427 { 2428 return 2429 #ifdef TARGET_WORDS_BIGENDIAN 2430 1 ^ 2431 #endif 2432 arm_cpu_data_is_big_endian(env); 2433 } 2434 #endif 2435 2436 #ifndef CONFIG_USER_ONLY 2437 /** 2438 * arm_regime_tbi0: 2439 * @env: CPUARMState 2440 * @mmu_idx: MMU index indicating required translation regime 2441 * 2442 * Extracts the TBI0 value from the appropriate TCR for the current EL 2443 * 2444 * Returns: the TBI0 value. 2445 */ 2446 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx); 2447 2448 /** 2449 * arm_regime_tbi1: 2450 * @env: CPUARMState 2451 * @mmu_idx: MMU index indicating required translation regime 2452 * 2453 * Extracts the TBI1 value from the appropriate TCR for the current EL 2454 * 2455 * Returns: the TBI1 value. 2456 */ 2457 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx); 2458 #else 2459 /* We can't handle tagged addresses properly in user-only mode */ 2460 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 2461 { 2462 return 0; 2463 } 2464 2465 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 2466 { 2467 return 0; 2468 } 2469 #endif 2470 2471 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 2472 target_ulong *cs_base, uint32_t *flags) 2473 { 2474 ARMMMUIdx mmu_idx = cpu_mmu_index(env, false); 2475 if (is_a64(env)) { 2476 *pc = env->pc; 2477 *flags = ARM_TBFLAG_AARCH64_STATE_MASK; 2478 /* Get control bits for tagged addresses */ 2479 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 2480 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 2481 } else { 2482 *pc = env->regs[15]; 2483 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 2484 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 2485 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 2486 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 2487 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 2488 if (!(access_secure_reg(env))) { 2489 *flags |= ARM_TBFLAG_NS_MASK; 2490 } 2491 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 2492 || arm_el_is_aa64(env, 1)) { 2493 *flags |= ARM_TBFLAG_VFPEN_MASK; 2494 } 2495 *flags |= (extract32(env->cp15.c15_cpar, 0, 2) 2496 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 2497 } 2498 2499 *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT); 2500 2501 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 2502 * states defined in the ARM ARM for software singlestep: 2503 * SS_ACTIVE PSTATE.SS State 2504 * 0 x Inactive (the TB flag for SS is always 0) 2505 * 1 0 Active-pending 2506 * 1 1 Active-not-pending 2507 */ 2508 if (arm_singlestep_active(env)) { 2509 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 2510 if (is_a64(env)) { 2511 if (env->pstate & PSTATE_SS) { 2512 *flags |= ARM_TBFLAG_PSTATE_SS_MASK; 2513 } 2514 } else { 2515 if (env->uncached_cpsr & PSTATE_SS) { 2516 *flags |= ARM_TBFLAG_PSTATE_SS_MASK; 2517 } 2518 } 2519 } 2520 if (arm_cpu_data_is_big_endian(env)) { 2521 *flags |= ARM_TBFLAG_BE_DATA_MASK; 2522 } 2523 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT; 2524 2525 if (env->v7m.exception != 0) { 2526 *flags |= ARM_TBFLAG_HANDLER_MASK; 2527 } 2528 2529 *cs_base = 0; 2530 } 2531 2532 enum { 2533 QEMU_PSCI_CONDUIT_DISABLED = 0, 2534 QEMU_PSCI_CONDUIT_SMC = 1, 2535 QEMU_PSCI_CONDUIT_HVC = 2, 2536 }; 2537 2538 #ifndef CONFIG_USER_ONLY 2539 /* Return the address space index to use for a memory access */ 2540 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 2541 { 2542 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 2543 } 2544 2545 /* Return the AddressSpace to use for a memory access 2546 * (which depends on whether the access is S or NS, and whether 2547 * the board gave us a separate AddressSpace for S accesses). 2548 */ 2549 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 2550 { 2551 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 2552 } 2553 #endif 2554 2555 /** 2556 * arm_register_el_change_hook: 2557 * Register a hook function which will be called back whenever this 2558 * CPU changes exception level or mode. The hook function will be 2559 * passed a pointer to the ARMCPU and the opaque data pointer passed 2560 * to this function when the hook was registered. 2561 * 2562 * Note that we currently only support registering a single hook function, 2563 * and will assert if this function is called twice. 2564 * This facility is intended for the use of the GICv3 emulation. 2565 */ 2566 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook, 2567 void *opaque); 2568 2569 /** 2570 * arm_get_el_change_hook_opaque: 2571 * Return the opaque data that will be used by the el_change_hook 2572 * for this CPU. 2573 */ 2574 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu) 2575 { 2576 return cpu->el_change_hook_opaque; 2577 } 2578 2579 #endif 2580