xref: /openbmc/qemu/target/arm/cpu.h (revision 01afa757b6f1b8c7858cc29b8332e9fb6aa1e16f)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO      (0)
30 
31 #ifdef TARGET_AARCH64
32 #define KVM_HAVE_MCE_INJECTION 1
33 #endif
34 
35 #define EXCP_UDEF            1   /* undefined instruction */
36 #define EXCP_SWI             2   /* software interrupt */
37 #define EXCP_PREFETCH_ABORT  3
38 #define EXCP_DATA_ABORT      4
39 #define EXCP_IRQ             5
40 #define EXCP_FIQ             6
41 #define EXCP_BKPT            7
42 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
43 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
44 #define EXCP_HVC            11   /* HyperVisor Call */
45 #define EXCP_HYP_TRAP       12
46 #define EXCP_SMC            13   /* Secure Monitor Call */
47 #define EXCP_VIRQ           14
48 #define EXCP_VFIQ           15
49 #define EXCP_SEMIHOST       16   /* semihosting call */
50 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
51 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
52 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
53 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
54 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
55 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
56 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
57 
58 #define ARMV7M_EXCP_RESET   1
59 #define ARMV7M_EXCP_NMI     2
60 #define ARMV7M_EXCP_HARD    3
61 #define ARMV7M_EXCP_MEM     4
62 #define ARMV7M_EXCP_BUS     5
63 #define ARMV7M_EXCP_USAGE   6
64 #define ARMV7M_EXCP_SECURE  7
65 #define ARMV7M_EXCP_SVC     11
66 #define ARMV7M_EXCP_DEBUG   12
67 #define ARMV7M_EXCP_PENDSV  14
68 #define ARMV7M_EXCP_SYSTICK 15
69 
70 /* For M profile, some registers are banked secure vs non-secure;
71  * these are represented as a 2-element array where the first element
72  * is the non-secure copy and the second is the secure copy.
73  * When the CPU does not have implement the security extension then
74  * only the first element is used.
75  * This means that the copy for the current security state can be
76  * accessed via env->registerfield[env->v7m.secure] (whether the security
77  * extension is implemented or not).
78  */
79 enum {
80     M_REG_NS = 0,
81     M_REG_S = 1,
82     M_REG_NUM_BANKS = 2,
83 };
84 
85 /* ARM-specific interrupt pending bits.  */
86 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
87 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
88 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
89 
90 /* The usual mapping for an AArch64 system register to its AArch32
91  * counterpart is for the 32 bit world to have access to the lower
92  * half only (with writes leaving the upper half untouched). It's
93  * therefore useful to be able to pass TCG the offset of the least
94  * significant half of a uint64_t struct member.
95  */
96 #ifdef HOST_WORDS_BIGENDIAN
97 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #define offsetofhigh32(S, M) offsetof(S, M)
99 #else
100 #define offsetoflow32(S, M) offsetof(S, M)
101 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #endif
103 
104 /* Meanings of the ARMCPU object's four inbound GPIO lines */
105 #define ARM_CPU_IRQ 0
106 #define ARM_CPU_FIQ 1
107 #define ARM_CPU_VIRQ 2
108 #define ARM_CPU_VFIQ 3
109 
110 /* ARM-specific extra insn start words:
111  * 1: Conditional execution bits
112  * 2: Partial exception syndrome for data aborts
113  */
114 #define TARGET_INSN_START_EXTRA_WORDS 2
115 
116 /* The 2nd extra word holding syndrome info for data aborts does not use
117  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
118  * help the sleb128 encoder do a better job.
119  * When restoring the CPU state, we shift it back up.
120  */
121 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
122 #define ARM_INSN_START_WORD2_SHIFT 14
123 
124 /* We currently assume float and double are IEEE single and double
125    precision respectively.
126    Doing runtime conversions is tricky because VFP registers may contain
127    integer values (eg. as the result of a FTOSI instruction).
128    s<2n> maps to the least significant half of d<n>
129    s<2n+1> maps to the most significant half of d<n>
130  */
131 
132 /**
133  * DynamicGDBXMLInfo:
134  * @desc: Contains the XML descriptions.
135  * @num: Number of the registers in this XML seen by GDB.
136  * @data: A union with data specific to the set of registers
137  *    @cpregs_keys: Array that contains the corresponding Key of
138  *                  a given cpreg with the same order of the cpreg
139  *                  in the XML description.
140  */
141 typedef struct DynamicGDBXMLInfo {
142     char *desc;
143     int num;
144     union {
145         struct {
146             uint32_t *keys;
147         } cpregs;
148     } data;
149 } DynamicGDBXMLInfo;
150 
151 /* CPU state for each instance of a generic timer (in cp15 c14) */
152 typedef struct ARMGenericTimer {
153     uint64_t cval; /* Timer CompareValue register */
154     uint64_t ctl; /* Timer Control register */
155 } ARMGenericTimer;
156 
157 #define GTIMER_PHYS     0
158 #define GTIMER_VIRT     1
159 #define GTIMER_HYP      2
160 #define GTIMER_SEC      3
161 #define GTIMER_HYPVIRT  4
162 #define NUM_GTIMERS     5
163 
164 typedef struct {
165     uint64_t raw_tcr;
166     uint32_t mask;
167     uint32_t base_mask;
168 } TCR;
169 
170 /* Define a maximum sized vector register.
171  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
172  * For 64-bit, this is a 2048-bit SVE register.
173  *
174  * Note that the mapping between S, D, and Q views of the register bank
175  * differs between AArch64 and AArch32.
176  * In AArch32:
177  *  Qn = regs[n].d[1]:regs[n].d[0]
178  *  Dn = regs[n / 2].d[n & 1]
179  *  Sn = regs[n / 4].d[n % 4 / 2],
180  *       bits 31..0 for even n, and bits 63..32 for odd n
181  *       (and regs[16] to regs[31] are inaccessible)
182  * In AArch64:
183  *  Zn = regs[n].d[*]
184  *  Qn = regs[n].d[1]:regs[n].d[0]
185  *  Dn = regs[n].d[0]
186  *  Sn = regs[n].d[0] bits 31..0
187  *  Hn = regs[n].d[0] bits 15..0
188  *
189  * This corresponds to the architecturally defined mapping between
190  * the two execution states, and means we do not need to explicitly
191  * map these registers when changing states.
192  *
193  * Align the data for use with TCG host vector operations.
194  */
195 
196 #ifdef TARGET_AARCH64
197 # define ARM_MAX_VQ    16
198 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
199 #else
200 # define ARM_MAX_VQ    1
201 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
202 #endif
203 
204 typedef struct ARMVectorReg {
205     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
206 } ARMVectorReg;
207 
208 #ifdef TARGET_AARCH64
209 /* In AArch32 mode, predicate registers do not exist at all.  */
210 typedef struct ARMPredicateReg {
211     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
212 } ARMPredicateReg;
213 
214 /* In AArch32 mode, PAC keys do not exist at all.  */
215 typedef struct ARMPACKey {
216     uint64_t lo, hi;
217 } ARMPACKey;
218 #endif
219 
220 
221 typedef struct CPUARMState {
222     /* Regs for current mode.  */
223     uint32_t regs[16];
224 
225     /* 32/64 switch only happens when taking and returning from
226      * exceptions so the overlap semantics are taken care of then
227      * instead of having a complicated union.
228      */
229     /* Regs for A64 mode.  */
230     uint64_t xregs[32];
231     uint64_t pc;
232     /* PSTATE isn't an architectural register for ARMv8. However, it is
233      * convenient for us to assemble the underlying state into a 32 bit format
234      * identical to the architectural format used for the SPSR. (This is also
235      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
236      * 'pstate' register are.) Of the PSTATE bits:
237      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
238      *    semantics as for AArch32, as described in the comments on each field)
239      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
240      *  DAIF (exception masks) are kept in env->daif
241      *  BTYPE is kept in env->btype
242      *  all other bits are stored in their correct places in env->pstate
243      */
244     uint32_t pstate;
245     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
246 
247     /* Cached TBFLAGS state.  See below for which bits are included.  */
248     uint32_t hflags;
249 
250     /* Frequently accessed CPSR bits are stored separately for efficiency.
251        This contains all the other bits.  Use cpsr_{read,write} to access
252        the whole CPSR.  */
253     uint32_t uncached_cpsr;
254     uint32_t spsr;
255 
256     /* Banked registers.  */
257     uint64_t banked_spsr[8];
258     uint32_t banked_r13[8];
259     uint32_t banked_r14[8];
260 
261     /* These hold r8-r12.  */
262     uint32_t usr_regs[5];
263     uint32_t fiq_regs[5];
264 
265     /* cpsr flag cache for faster execution */
266     uint32_t CF; /* 0 or 1 */
267     uint32_t VF; /* V is the bit 31. All other bits are undefined */
268     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
269     uint32_t ZF; /* Z set if zero.  */
270     uint32_t QF; /* 0 or 1 */
271     uint32_t GE; /* cpsr[19:16] */
272     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
273     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
274     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
275     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
276 
277     uint64_t elr_el[4]; /* AArch64 exception link regs  */
278     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
279 
280     /* System control coprocessor (cp15) */
281     struct {
282         uint32_t c0_cpuid;
283         union { /* Cache size selection */
284             struct {
285                 uint64_t _unused_csselr0;
286                 uint64_t csselr_ns;
287                 uint64_t _unused_csselr1;
288                 uint64_t csselr_s;
289             };
290             uint64_t csselr_el[4];
291         };
292         union { /* System control register. */
293             struct {
294                 uint64_t _unused_sctlr;
295                 uint64_t sctlr_ns;
296                 uint64_t hsctlr;
297                 uint64_t sctlr_s;
298             };
299             uint64_t sctlr_el[4];
300         };
301         uint64_t cpacr_el1; /* Architectural feature access control register */
302         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
303         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
304         uint64_t sder; /* Secure debug enable register. */
305         uint32_t nsacr; /* Non-secure access control register. */
306         union { /* MMU translation table base 0. */
307             struct {
308                 uint64_t _unused_ttbr0_0;
309                 uint64_t ttbr0_ns;
310                 uint64_t _unused_ttbr0_1;
311                 uint64_t ttbr0_s;
312             };
313             uint64_t ttbr0_el[4];
314         };
315         union { /* MMU translation table base 1. */
316             struct {
317                 uint64_t _unused_ttbr1_0;
318                 uint64_t ttbr1_ns;
319                 uint64_t _unused_ttbr1_1;
320                 uint64_t ttbr1_s;
321             };
322             uint64_t ttbr1_el[4];
323         };
324         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
325         /* MMU translation table base control. */
326         TCR tcr_el[4];
327         TCR vtcr_el2; /* Virtualization Translation Control.  */
328         uint32_t c2_data; /* MPU data cacheable bits.  */
329         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
330         union { /* MMU domain access control register
331                  * MPU write buffer control.
332                  */
333             struct {
334                 uint64_t dacr_ns;
335                 uint64_t dacr_s;
336             };
337             struct {
338                 uint64_t dacr32_el2;
339             };
340         };
341         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
342         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
343         uint64_t hcr_el2; /* Hypervisor configuration register */
344         uint64_t scr_el3; /* Secure configuration register.  */
345         union { /* Fault status registers.  */
346             struct {
347                 uint64_t ifsr_ns;
348                 uint64_t ifsr_s;
349             };
350             struct {
351                 uint64_t ifsr32_el2;
352             };
353         };
354         union {
355             struct {
356                 uint64_t _unused_dfsr;
357                 uint64_t dfsr_ns;
358                 uint64_t hsr;
359                 uint64_t dfsr_s;
360             };
361             uint64_t esr_el[4];
362         };
363         uint32_t c6_region[8]; /* MPU base/size registers.  */
364         union { /* Fault address registers. */
365             struct {
366                 uint64_t _unused_far0;
367 #ifdef HOST_WORDS_BIGENDIAN
368                 uint32_t ifar_ns;
369                 uint32_t dfar_ns;
370                 uint32_t ifar_s;
371                 uint32_t dfar_s;
372 #else
373                 uint32_t dfar_ns;
374                 uint32_t ifar_ns;
375                 uint32_t dfar_s;
376                 uint32_t ifar_s;
377 #endif
378                 uint64_t _unused_far3;
379             };
380             uint64_t far_el[4];
381         };
382         uint64_t hpfar_el2;
383         uint64_t hstr_el2;
384         union { /* Translation result. */
385             struct {
386                 uint64_t _unused_par_0;
387                 uint64_t par_ns;
388                 uint64_t _unused_par_1;
389                 uint64_t par_s;
390             };
391             uint64_t par_el[4];
392         };
393 
394         uint32_t c9_insn; /* Cache lockdown registers.  */
395         uint32_t c9_data;
396         uint64_t c9_pmcr; /* performance monitor control register */
397         uint64_t c9_pmcnten; /* perf monitor counter enables */
398         uint64_t c9_pmovsr; /* perf monitor overflow status */
399         uint64_t c9_pmuserenr; /* perf monitor user enable */
400         uint64_t c9_pmselr; /* perf monitor counter selection register */
401         uint64_t c9_pminten; /* perf monitor interrupt enables */
402         union { /* Memory attribute redirection */
403             struct {
404 #ifdef HOST_WORDS_BIGENDIAN
405                 uint64_t _unused_mair_0;
406                 uint32_t mair1_ns;
407                 uint32_t mair0_ns;
408                 uint64_t _unused_mair_1;
409                 uint32_t mair1_s;
410                 uint32_t mair0_s;
411 #else
412                 uint64_t _unused_mair_0;
413                 uint32_t mair0_ns;
414                 uint32_t mair1_ns;
415                 uint64_t _unused_mair_1;
416                 uint32_t mair0_s;
417                 uint32_t mair1_s;
418 #endif
419             };
420             uint64_t mair_el[4];
421         };
422         union { /* vector base address register */
423             struct {
424                 uint64_t _unused_vbar;
425                 uint64_t vbar_ns;
426                 uint64_t hvbar;
427                 uint64_t vbar_s;
428             };
429             uint64_t vbar_el[4];
430         };
431         uint32_t mvbar; /* (monitor) vector base address register */
432         struct { /* FCSE PID. */
433             uint32_t fcseidr_ns;
434             uint32_t fcseidr_s;
435         };
436         union { /* Context ID. */
437             struct {
438                 uint64_t _unused_contextidr_0;
439                 uint64_t contextidr_ns;
440                 uint64_t _unused_contextidr_1;
441                 uint64_t contextidr_s;
442             };
443             uint64_t contextidr_el[4];
444         };
445         union { /* User RW Thread register. */
446             struct {
447                 uint64_t tpidrurw_ns;
448                 uint64_t tpidrprw_ns;
449                 uint64_t htpidr;
450                 uint64_t _tpidr_el3;
451             };
452             uint64_t tpidr_el[4];
453         };
454         /* The secure banks of these registers don't map anywhere */
455         uint64_t tpidrurw_s;
456         uint64_t tpidrprw_s;
457         uint64_t tpidruro_s;
458 
459         union { /* User RO Thread register. */
460             uint64_t tpidruro_ns;
461             uint64_t tpidrro_el[1];
462         };
463         uint64_t c14_cntfrq; /* Counter Frequency register */
464         uint64_t c14_cntkctl; /* Timer Control register */
465         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
466         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
467         ARMGenericTimer c14_timer[NUM_GTIMERS];
468         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
469         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
470         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
471         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
472         uint32_t c15_threadid; /* TI debugger thread-ID.  */
473         uint32_t c15_config_base_address; /* SCU base address.  */
474         uint32_t c15_diagnostic; /* diagnostic register */
475         uint32_t c15_power_diagnostic;
476         uint32_t c15_power_control; /* power control */
477         uint64_t dbgbvr[16]; /* breakpoint value registers */
478         uint64_t dbgbcr[16]; /* breakpoint control registers */
479         uint64_t dbgwvr[16]; /* watchpoint value registers */
480         uint64_t dbgwcr[16]; /* watchpoint control registers */
481         uint64_t mdscr_el1;
482         uint64_t oslsr_el1; /* OS Lock Status */
483         uint64_t mdcr_el2;
484         uint64_t mdcr_el3;
485         /* Stores the architectural value of the counter *the last time it was
486          * updated* by pmccntr_op_start. Accesses should always be surrounded
487          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
488          * architecturally-correct value is being read/set.
489          */
490         uint64_t c15_ccnt;
491         /* Stores the delta between the architectural value and the underlying
492          * cycle count during normal operation. It is used to update c15_ccnt
493          * to be the correct architectural value before accesses. During
494          * accesses, c15_ccnt_delta contains the underlying count being used
495          * for the access, after which it reverts to the delta value in
496          * pmccntr_op_finish.
497          */
498         uint64_t c15_ccnt_delta;
499         uint64_t c14_pmevcntr[31];
500         uint64_t c14_pmevcntr_delta[31];
501         uint64_t c14_pmevtyper[31];
502         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
503         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
504         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
505         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
506         uint64_t gcr_el1;
507         uint64_t rgsr_el1;
508     } cp15;
509 
510     struct {
511         /* M profile has up to 4 stack pointers:
512          * a Main Stack Pointer and a Process Stack Pointer for each
513          * of the Secure and Non-Secure states. (If the CPU doesn't support
514          * the security extension then it has only two SPs.)
515          * In QEMU we always store the currently active SP in regs[13],
516          * and the non-active SP for the current security state in
517          * v7m.other_sp. The stack pointers for the inactive security state
518          * are stored in other_ss_msp and other_ss_psp.
519          * switch_v7m_security_state() is responsible for rearranging them
520          * when we change security state.
521          */
522         uint32_t other_sp;
523         uint32_t other_ss_msp;
524         uint32_t other_ss_psp;
525         uint32_t vecbase[M_REG_NUM_BANKS];
526         uint32_t basepri[M_REG_NUM_BANKS];
527         uint32_t control[M_REG_NUM_BANKS];
528         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
529         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
530         uint32_t hfsr; /* HardFault Status */
531         uint32_t dfsr; /* Debug Fault Status Register */
532         uint32_t sfsr; /* Secure Fault Status Register */
533         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
534         uint32_t bfar; /* BusFault Address */
535         uint32_t sfar; /* Secure Fault Address Register */
536         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
537         int exception;
538         uint32_t primask[M_REG_NUM_BANKS];
539         uint32_t faultmask[M_REG_NUM_BANKS];
540         uint32_t aircr; /* only holds r/w state if security extn implemented */
541         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
542         uint32_t csselr[M_REG_NUM_BANKS];
543         uint32_t scr[M_REG_NUM_BANKS];
544         uint32_t msplim[M_REG_NUM_BANKS];
545         uint32_t psplim[M_REG_NUM_BANKS];
546         uint32_t fpcar[M_REG_NUM_BANKS];
547         uint32_t fpccr[M_REG_NUM_BANKS];
548         uint32_t fpdscr[M_REG_NUM_BANKS];
549         uint32_t cpacr[M_REG_NUM_BANKS];
550         uint32_t nsacr;
551     } v7m;
552 
553     /* Information associated with an exception about to be taken:
554      * code which raises an exception must set cs->exception_index and
555      * the relevant parts of this structure; the cpu_do_interrupt function
556      * will then set the guest-visible registers as part of the exception
557      * entry process.
558      */
559     struct {
560         uint32_t syndrome; /* AArch64 format syndrome register */
561         uint32_t fsr; /* AArch32 format fault status register info */
562         uint64_t vaddress; /* virtual addr associated with exception, if any */
563         uint32_t target_el; /* EL the exception should be targeted for */
564         /* If we implement EL2 we will also need to store information
565          * about the intermediate physical address for stage 2 faults.
566          */
567     } exception;
568 
569     /* Information associated with an SError */
570     struct {
571         uint8_t pending;
572         uint8_t has_esr;
573         uint64_t esr;
574     } serror;
575 
576     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
577 
578     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
579     uint32_t irq_line_state;
580 
581     /* Thumb-2 EE state.  */
582     uint32_t teecr;
583     uint32_t teehbr;
584 
585     /* VFP coprocessor state.  */
586     struct {
587         ARMVectorReg zregs[32];
588 
589 #ifdef TARGET_AARCH64
590         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
591 #define FFR_PRED_NUM 16
592         ARMPredicateReg pregs[17];
593         /* Scratch space for aa64 sve predicate temporary.  */
594         ARMPredicateReg preg_tmp;
595 #endif
596 
597         /* We store these fpcsr fields separately for convenience.  */
598         uint32_t qc[4] QEMU_ALIGNED(16);
599         int vec_len;
600         int vec_stride;
601 
602         uint32_t xregs[16];
603 
604         /* Scratch space for aa32 neon expansion.  */
605         uint32_t scratch[8];
606 
607         /* There are a number of distinct float control structures:
608          *
609          *  fp_status: is the "normal" fp status.
610          *  fp_status_fp16: used for half-precision calculations
611          *  standard_fp_status : the ARM "Standard FPSCR Value"
612          *
613          * Half-precision operations are governed by a separate
614          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
615          * status structure to control this.
616          *
617          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
618          * round-to-nearest and is used by any operations (generally
619          * Neon) which the architecture defines as controlled by the
620          * standard FPSCR value rather than the FPSCR.
621          *
622          * To avoid having to transfer exception bits around, we simply
623          * say that the FPSCR cumulative exception flags are the logical
624          * OR of the flags in the three fp statuses. This relies on the
625          * only thing which needs to read the exception flags being
626          * an explicit FPSCR read.
627          */
628         float_status fp_status;
629         float_status fp_status_f16;
630         float_status standard_fp_status;
631 
632         /* ZCR_EL[1-3] */
633         uint64_t zcr_el[4];
634     } vfp;
635     uint64_t exclusive_addr;
636     uint64_t exclusive_val;
637     uint64_t exclusive_high;
638 
639     /* iwMMXt coprocessor state.  */
640     struct {
641         uint64_t regs[16];
642         uint64_t val;
643 
644         uint32_t cregs[16];
645     } iwmmxt;
646 
647 #ifdef TARGET_AARCH64
648     struct {
649         ARMPACKey apia;
650         ARMPACKey apib;
651         ARMPACKey apda;
652         ARMPACKey apdb;
653         ARMPACKey apga;
654     } keys;
655 #endif
656 
657 #if defined(CONFIG_USER_ONLY)
658     /* For usermode syscall translation.  */
659     int eabi;
660 #endif
661 
662     struct CPUBreakpoint *cpu_breakpoint[16];
663     struct CPUWatchpoint *cpu_watchpoint[16];
664 
665     /* Fields up to this point are cleared by a CPU reset */
666     struct {} end_reset_fields;
667 
668     /* Fields after this point are preserved across CPU reset. */
669 
670     /* Internal CPU feature flags.  */
671     uint64_t features;
672 
673     /* PMSAv7 MPU */
674     struct {
675         uint32_t *drbar;
676         uint32_t *drsr;
677         uint32_t *dracr;
678         uint32_t rnr[M_REG_NUM_BANKS];
679     } pmsav7;
680 
681     /* PMSAv8 MPU */
682     struct {
683         /* The PMSAv8 implementation also shares some PMSAv7 config
684          * and state:
685          *  pmsav7.rnr (region number register)
686          *  pmsav7_dregion (number of configured regions)
687          */
688         uint32_t *rbar[M_REG_NUM_BANKS];
689         uint32_t *rlar[M_REG_NUM_BANKS];
690         uint32_t mair0[M_REG_NUM_BANKS];
691         uint32_t mair1[M_REG_NUM_BANKS];
692     } pmsav8;
693 
694     /* v8M SAU */
695     struct {
696         uint32_t *rbar;
697         uint32_t *rlar;
698         uint32_t rnr;
699         uint32_t ctrl;
700     } sau;
701 
702     void *nvic;
703     const struct arm_boot_info *boot_info;
704     /* Store GICv3CPUState to access from this struct */
705     void *gicv3state;
706 } CPUARMState;
707 
708 static inline void set_feature(CPUARMState *env, int feature)
709 {
710     env->features |= 1ULL << feature;
711 }
712 
713 static inline void unset_feature(CPUARMState *env, int feature)
714 {
715     env->features &= ~(1ULL << feature);
716 }
717 
718 /**
719  * ARMELChangeHookFn:
720  * type of a function which can be registered via arm_register_el_change_hook()
721  * to get callbacks when the CPU changes its exception level or mode.
722  */
723 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
724 typedef struct ARMELChangeHook ARMELChangeHook;
725 struct ARMELChangeHook {
726     ARMELChangeHookFn *hook;
727     void *opaque;
728     QLIST_ENTRY(ARMELChangeHook) node;
729 };
730 
731 /* These values map onto the return values for
732  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
733 typedef enum ARMPSCIState {
734     PSCI_ON = 0,
735     PSCI_OFF = 1,
736     PSCI_ON_PENDING = 2
737 } ARMPSCIState;
738 
739 typedef struct ARMISARegisters ARMISARegisters;
740 
741 /**
742  * ARMCPU:
743  * @env: #CPUARMState
744  *
745  * An ARM CPU core.
746  */
747 struct ARMCPU {
748     /*< private >*/
749     CPUState parent_obj;
750     /*< public >*/
751 
752     CPUNegativeOffsetState neg;
753     CPUARMState env;
754 
755     /* Coprocessor information */
756     GHashTable *cp_regs;
757     /* For marshalling (mostly coprocessor) register state between the
758      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
759      * we use these arrays.
760      */
761     /* List of register indexes managed via these arrays; (full KVM style
762      * 64 bit indexes, not CPRegInfo 32 bit indexes)
763      */
764     uint64_t *cpreg_indexes;
765     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
766     uint64_t *cpreg_values;
767     /* Length of the indexes, values, reset_values arrays */
768     int32_t cpreg_array_len;
769     /* These are used only for migration: incoming data arrives in
770      * these fields and is sanity checked in post_load before copying
771      * to the working data structures above.
772      */
773     uint64_t *cpreg_vmstate_indexes;
774     uint64_t *cpreg_vmstate_values;
775     int32_t cpreg_vmstate_array_len;
776 
777     DynamicGDBXMLInfo dyn_sysreg_xml;
778     DynamicGDBXMLInfo dyn_svereg_xml;
779 
780     /* Timers used by the generic (architected) timer */
781     QEMUTimer *gt_timer[NUM_GTIMERS];
782     /*
783      * Timer used by the PMU. Its state is restored after migration by
784      * pmu_op_finish() - it does not need other handling during migration
785      */
786     QEMUTimer *pmu_timer;
787     /* GPIO outputs for generic timer */
788     qemu_irq gt_timer_outputs[NUM_GTIMERS];
789     /* GPIO output for GICv3 maintenance interrupt signal */
790     qemu_irq gicv3_maintenance_interrupt;
791     /* GPIO output for the PMU interrupt */
792     qemu_irq pmu_interrupt;
793 
794     /* MemoryRegion to use for secure physical accesses */
795     MemoryRegion *secure_memory;
796 
797     /* MemoryRegion to use for allocation tag accesses */
798     MemoryRegion *tag_memory;
799     MemoryRegion *secure_tag_memory;
800 
801     /* For v8M, pointer to the IDAU interface provided by board/SoC */
802     Object *idau;
803 
804     /* 'compatible' string for this CPU for Linux device trees */
805     const char *dtb_compatible;
806 
807     /* PSCI version for this CPU
808      * Bits[31:16] = Major Version
809      * Bits[15:0] = Minor Version
810      */
811     uint32_t psci_version;
812 
813     /* Should CPU start in PSCI powered-off state? */
814     bool start_powered_off;
815 
816     /* Current power state, access guarded by BQL */
817     ARMPSCIState power_state;
818 
819     /* CPU has virtualization extension */
820     bool has_el2;
821     /* CPU has security extension */
822     bool has_el3;
823     /* CPU has PMU (Performance Monitor Unit) */
824     bool has_pmu;
825     /* CPU has VFP */
826     bool has_vfp;
827     /* CPU has Neon */
828     bool has_neon;
829     /* CPU has M-profile DSP extension */
830     bool has_dsp;
831 
832     /* CPU has memory protection unit */
833     bool has_mpu;
834     /* PMSAv7 MPU number of supported regions */
835     uint32_t pmsav7_dregion;
836     /* v8M SAU number of supported regions */
837     uint32_t sau_sregion;
838 
839     /* PSCI conduit used to invoke PSCI methods
840      * 0 - disabled, 1 - smc, 2 - hvc
841      */
842     uint32_t psci_conduit;
843 
844     /* For v8M, initial value of the Secure VTOR */
845     uint32_t init_svtor;
846 
847     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
848      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
849      */
850     uint32_t kvm_target;
851 
852     /* KVM init features for this CPU */
853     uint32_t kvm_init_features[7];
854 
855     /* KVM CPU state */
856 
857     /* KVM virtual time adjustment */
858     bool kvm_adjvtime;
859     bool kvm_vtime_dirty;
860     uint64_t kvm_vtime;
861 
862     /* Uniprocessor system with MP extensions */
863     bool mp_is_up;
864 
865     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
866      * and the probe failed (so we need to report the error in realize)
867      */
868     bool host_cpu_probe_failed;
869 
870     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
871      * register.
872      */
873     int32_t core_count;
874 
875     /* The instance init functions for implementation-specific subclasses
876      * set these fields to specify the implementation-dependent values of
877      * various constant registers and reset values of non-constant
878      * registers.
879      * Some of these might become QOM properties eventually.
880      * Field names match the official register names as defined in the
881      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
882      * is used for reset values of non-constant registers; no reset_
883      * prefix means a constant register.
884      * Some of these registers are split out into a substructure that
885      * is shared with the translators to control the ISA.
886      *
887      * Note that if you add an ID register to the ARMISARegisters struct
888      * you need to also update the 32-bit and 64-bit versions of the
889      * kvm_arm_get_host_cpu_features() function to correctly populate the
890      * field by reading the value from the KVM vCPU.
891      */
892     struct ARMISARegisters {
893         uint32_t id_isar0;
894         uint32_t id_isar1;
895         uint32_t id_isar2;
896         uint32_t id_isar3;
897         uint32_t id_isar4;
898         uint32_t id_isar5;
899         uint32_t id_isar6;
900         uint32_t id_mmfr0;
901         uint32_t id_mmfr1;
902         uint32_t id_mmfr2;
903         uint32_t id_mmfr3;
904         uint32_t id_mmfr4;
905         uint32_t mvfr0;
906         uint32_t mvfr1;
907         uint32_t mvfr2;
908         uint32_t id_dfr0;
909         uint32_t dbgdidr;
910         uint64_t id_aa64isar0;
911         uint64_t id_aa64isar1;
912         uint64_t id_aa64pfr0;
913         uint64_t id_aa64pfr1;
914         uint64_t id_aa64mmfr0;
915         uint64_t id_aa64mmfr1;
916         uint64_t id_aa64mmfr2;
917         uint64_t id_aa64dfr0;
918         uint64_t id_aa64dfr1;
919     } isar;
920     uint64_t midr;
921     uint32_t revidr;
922     uint32_t reset_fpsid;
923     uint32_t ctr;
924     uint32_t reset_sctlr;
925     uint32_t id_pfr0;
926     uint32_t id_pfr1;
927     uint64_t pmceid0;
928     uint64_t pmceid1;
929     uint32_t id_afr0;
930     uint64_t id_aa64afr0;
931     uint64_t id_aa64afr1;
932     uint32_t clidr;
933     uint64_t mp_affinity; /* MP ID without feature bits */
934     /* The elements of this array are the CCSIDR values for each cache,
935      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
936      */
937     uint64_t ccsidr[16];
938     uint64_t reset_cbar;
939     uint32_t reset_auxcr;
940     bool reset_hivecs;
941     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
942     uint32_t dcz_blocksize;
943     uint64_t rvbar;
944 
945     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
946     int gic_num_lrs; /* number of list registers */
947     int gic_vpribits; /* number of virtual priority bits */
948     int gic_vprebits; /* number of virtual preemption bits */
949 
950     /* Whether the cfgend input is high (i.e. this CPU should reset into
951      * big-endian mode).  This setting isn't used directly: instead it modifies
952      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
953      * architecture version.
954      */
955     bool cfgend;
956 
957     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
958     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
959 
960     int32_t node_id; /* NUMA node this CPU belongs to */
961 
962     /* Used to synchronize KVM and QEMU in-kernel device levels */
963     uint8_t device_irq_level;
964 
965     /* Used to set the maximum vector length the cpu will support.  */
966     uint32_t sve_max_vq;
967 
968     /*
969      * In sve_vq_map each set bit is a supported vector length of
970      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
971      * length in quadwords.
972      *
973      * While processing properties during initialization, corresponding
974      * sve_vq_init bits are set for bits in sve_vq_map that have been
975      * set by properties.
976      */
977     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
978     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
979 
980     /* Generic timer counter frequency, in Hz */
981     uint64_t gt_cntfrq_hz;
982 };
983 
984 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
985 
986 void arm_cpu_post_init(Object *obj);
987 
988 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
989 
990 #ifndef CONFIG_USER_ONLY
991 extern const VMStateDescription vmstate_arm_cpu;
992 #endif
993 
994 void arm_cpu_do_interrupt(CPUState *cpu);
995 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
996 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
997 
998 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
999                                          MemTxAttrs *attrs);
1000 
1001 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1002 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1003 
1004 /*
1005  * Helpers to dynamically generates XML descriptions of the sysregs
1006  * and SVE registers. Returns the number of registers in each set.
1007  */
1008 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1009 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1010 
1011 /* Returns the dynamically generated XML for the gdb stub.
1012  * Returns a pointer to the XML contents for the specified XML file or NULL
1013  * if the XML name doesn't match the predefined one.
1014  */
1015 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1016 
1017 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1018                              int cpuid, void *opaque);
1019 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1020                              int cpuid, void *opaque);
1021 
1022 #ifdef TARGET_AARCH64
1023 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1024 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1025 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1026 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1027                            int new_el, bool el0_a64);
1028 void aarch64_add_sve_properties(Object *obj);
1029 
1030 /*
1031  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1032  * The byte at offset i from the start of the in-memory representation contains
1033  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1034  * lowest offsets are stored in the lowest memory addresses, then that nearly
1035  * matches QEMU's representation, which is to use an array of host-endian
1036  * uint64_t's, where the lower offsets are at the lower indices. To complete
1037  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1038  */
1039 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1040 {
1041 #ifdef HOST_WORDS_BIGENDIAN
1042     int i;
1043 
1044     for (i = 0; i < nr; ++i) {
1045         dst[i] = bswap64(src[i]);
1046     }
1047 
1048     return dst;
1049 #else
1050     return src;
1051 #endif
1052 }
1053 
1054 #else
1055 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1056 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1057                                          int n, bool a)
1058 { }
1059 static inline void aarch64_add_sve_properties(Object *obj) { }
1060 #endif
1061 
1062 #if !defined(CONFIG_TCG)
1063 static inline target_ulong do_arm_semihosting(CPUARMState *env)
1064 {
1065     g_assert_not_reached();
1066 }
1067 #else
1068 target_ulong do_arm_semihosting(CPUARMState *env);
1069 #endif
1070 void aarch64_sync_32_to_64(CPUARMState *env);
1071 void aarch64_sync_64_to_32(CPUARMState *env);
1072 
1073 int fp_exception_el(CPUARMState *env, int cur_el);
1074 int sve_exception_el(CPUARMState *env, int cur_el);
1075 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1076 
1077 static inline bool is_a64(CPUARMState *env)
1078 {
1079     return env->aarch64;
1080 }
1081 
1082 /* you can call this signal handler from your SIGBUS and SIGSEGV
1083    signal handlers to inform the virtual CPU of exceptions. non zero
1084    is returned if the signal was handled by the virtual CPU.  */
1085 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1086                            void *puc);
1087 
1088 /**
1089  * pmu_op_start/finish
1090  * @env: CPUARMState
1091  *
1092  * Convert all PMU counters between their delta form (the typical mode when
1093  * they are enabled) and the guest-visible values. These two calls must
1094  * surround any action which might affect the counters.
1095  */
1096 void pmu_op_start(CPUARMState *env);
1097 void pmu_op_finish(CPUARMState *env);
1098 
1099 /*
1100  * Called when a PMU counter is due to overflow
1101  */
1102 void arm_pmu_timer_cb(void *opaque);
1103 
1104 /**
1105  * Functions to register as EL change hooks for PMU mode filtering
1106  */
1107 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1108 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1109 
1110 /*
1111  * pmu_init
1112  * @cpu: ARMCPU
1113  *
1114  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1115  * for the current configuration
1116  */
1117 void pmu_init(ARMCPU *cpu);
1118 
1119 /* SCTLR bit meanings. Several bits have been reused in newer
1120  * versions of the architecture; in that case we define constants
1121  * for both old and new bit meanings. Code which tests against those
1122  * bits should probably check or otherwise arrange that the CPU
1123  * is the architectural version it expects.
1124  */
1125 #define SCTLR_M       (1U << 0)
1126 #define SCTLR_A       (1U << 1)
1127 #define SCTLR_C       (1U << 2)
1128 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1129 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1130 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1131 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1132 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1133 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1134 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1135 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1136 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1137 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1138 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1139 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1140 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1141 #define SCTLR_SED     (1U << 8) /* v8 onward */
1142 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1143 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1144 #define SCTLR_F       (1U << 10) /* up to v6 */
1145 #define SCTLR_SW      (1U << 10) /* v7 */
1146 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1147 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1148 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1149 #define SCTLR_I       (1U << 12)
1150 #define SCTLR_V       (1U << 13) /* AArch32 only */
1151 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1152 #define SCTLR_RR      (1U << 14) /* up to v7 */
1153 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1154 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1155 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1156 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1157 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1158 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1159 #define SCTLR_BR      (1U << 17) /* PMSA only */
1160 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1161 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1162 #define SCTLR_WXN     (1U << 19)
1163 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1164 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1165 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1166 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1167 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1168 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1169 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1170 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1171 #define SCTLR_VE      (1U << 24) /* up to v7 */
1172 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1173 #define SCTLR_EE      (1U << 25)
1174 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1175 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1176 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1177 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1178 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1179 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1180 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1181 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1182 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1183 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1184 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1185 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1186 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1187 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1188 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1189 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1190 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1191 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1192 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1193 
1194 #define CPTR_TCPAC    (1U << 31)
1195 #define CPTR_TTA      (1U << 20)
1196 #define CPTR_TFP      (1U << 10)
1197 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1198 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1199 
1200 #define MDCR_EPMAD    (1U << 21)
1201 #define MDCR_EDAD     (1U << 20)
1202 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1203 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1204 #define MDCR_SDD      (1U << 16)
1205 #define MDCR_SPD      (3U << 14)
1206 #define MDCR_TDRA     (1U << 11)
1207 #define MDCR_TDOSA    (1U << 10)
1208 #define MDCR_TDA      (1U << 9)
1209 #define MDCR_TDE      (1U << 8)
1210 #define MDCR_HPME     (1U << 7)
1211 #define MDCR_TPM      (1U << 6)
1212 #define MDCR_TPMCR    (1U << 5)
1213 #define MDCR_HPMN     (0x1fU)
1214 
1215 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1216 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1217 
1218 #define CPSR_M (0x1fU)
1219 #define CPSR_T (1U << 5)
1220 #define CPSR_F (1U << 6)
1221 #define CPSR_I (1U << 7)
1222 #define CPSR_A (1U << 8)
1223 #define CPSR_E (1U << 9)
1224 #define CPSR_IT_2_7 (0xfc00U)
1225 #define CPSR_GE (0xfU << 16)
1226 #define CPSR_IL (1U << 20)
1227 #define CPSR_PAN (1U << 22)
1228 #define CPSR_J (1U << 24)
1229 #define CPSR_IT_0_1 (3U << 25)
1230 #define CPSR_Q (1U << 27)
1231 #define CPSR_V (1U << 28)
1232 #define CPSR_C (1U << 29)
1233 #define CPSR_Z (1U << 30)
1234 #define CPSR_N (1U << 31)
1235 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1236 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1237 
1238 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1239 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1240     | CPSR_NZCV)
1241 /* Bits writable in user mode.  */
1242 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1243 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1244 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1245 
1246 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1247 #define XPSR_EXCP 0x1ffU
1248 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1249 #define XPSR_IT_2_7 CPSR_IT_2_7
1250 #define XPSR_GE CPSR_GE
1251 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1252 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1253 #define XPSR_IT_0_1 CPSR_IT_0_1
1254 #define XPSR_Q CPSR_Q
1255 #define XPSR_V CPSR_V
1256 #define XPSR_C CPSR_C
1257 #define XPSR_Z CPSR_Z
1258 #define XPSR_N CPSR_N
1259 #define XPSR_NZCV CPSR_NZCV
1260 #define XPSR_IT CPSR_IT
1261 
1262 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1263 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1264 #define TTBCR_PD0    (1U << 4)
1265 #define TTBCR_PD1    (1U << 5)
1266 #define TTBCR_EPD0   (1U << 7)
1267 #define TTBCR_IRGN0  (3U << 8)
1268 #define TTBCR_ORGN0  (3U << 10)
1269 #define TTBCR_SH0    (3U << 12)
1270 #define TTBCR_T1SZ   (3U << 16)
1271 #define TTBCR_A1     (1U << 22)
1272 #define TTBCR_EPD1   (1U << 23)
1273 #define TTBCR_IRGN1  (3U << 24)
1274 #define TTBCR_ORGN1  (3U << 26)
1275 #define TTBCR_SH1    (1U << 28)
1276 #define TTBCR_EAE    (1U << 31)
1277 
1278 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1279  * Only these are valid when in AArch64 mode; in
1280  * AArch32 mode SPSRs are basically CPSR-format.
1281  */
1282 #define PSTATE_SP (1U)
1283 #define PSTATE_M (0xFU)
1284 #define PSTATE_nRW (1U << 4)
1285 #define PSTATE_F (1U << 6)
1286 #define PSTATE_I (1U << 7)
1287 #define PSTATE_A (1U << 8)
1288 #define PSTATE_D (1U << 9)
1289 #define PSTATE_BTYPE (3U << 10)
1290 #define PSTATE_IL (1U << 20)
1291 #define PSTATE_SS (1U << 21)
1292 #define PSTATE_PAN (1U << 22)
1293 #define PSTATE_UAO (1U << 23)
1294 #define PSTATE_TCO (1U << 25)
1295 #define PSTATE_V (1U << 28)
1296 #define PSTATE_C (1U << 29)
1297 #define PSTATE_Z (1U << 30)
1298 #define PSTATE_N (1U << 31)
1299 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1300 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1301 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1302 /* Mode values for AArch64 */
1303 #define PSTATE_MODE_EL3h 13
1304 #define PSTATE_MODE_EL3t 12
1305 #define PSTATE_MODE_EL2h 9
1306 #define PSTATE_MODE_EL2t 8
1307 #define PSTATE_MODE_EL1h 5
1308 #define PSTATE_MODE_EL1t 4
1309 #define PSTATE_MODE_EL0t 0
1310 
1311 /* Write a new value to v7m.exception, thus transitioning into or out
1312  * of Handler mode; this may result in a change of active stack pointer.
1313  */
1314 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1315 
1316 /* Map EL and handler into a PSTATE_MODE.  */
1317 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1318 {
1319     return (el << 2) | handler;
1320 }
1321 
1322 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1323  * interprocessing, so we don't attempt to sync with the cpsr state used by
1324  * the 32 bit decoder.
1325  */
1326 static inline uint32_t pstate_read(CPUARMState *env)
1327 {
1328     int ZF;
1329 
1330     ZF = (env->ZF == 0);
1331     return (env->NF & 0x80000000) | (ZF << 30)
1332         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1333         | env->pstate | env->daif | (env->btype << 10);
1334 }
1335 
1336 static inline void pstate_write(CPUARMState *env, uint32_t val)
1337 {
1338     env->ZF = (~val) & PSTATE_Z;
1339     env->NF = val;
1340     env->CF = (val >> 29) & 1;
1341     env->VF = (val << 3) & 0x80000000;
1342     env->daif = val & PSTATE_DAIF;
1343     env->btype = (val >> 10) & 3;
1344     env->pstate = val & ~CACHED_PSTATE_BITS;
1345 }
1346 
1347 /* Return the current CPSR value.  */
1348 uint32_t cpsr_read(CPUARMState *env);
1349 
1350 typedef enum CPSRWriteType {
1351     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1352     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1353     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1354     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1355 } CPSRWriteType;
1356 
1357 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1358 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1359                 CPSRWriteType write_type);
1360 
1361 /* Return the current xPSR value.  */
1362 static inline uint32_t xpsr_read(CPUARMState *env)
1363 {
1364     int ZF;
1365     ZF = (env->ZF == 0);
1366     return (env->NF & 0x80000000) | (ZF << 30)
1367         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1368         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1369         | ((env->condexec_bits & 0xfc) << 8)
1370         | (env->GE << 16)
1371         | env->v7m.exception;
1372 }
1373 
1374 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1375 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1376 {
1377     if (mask & XPSR_NZCV) {
1378         env->ZF = (~val) & XPSR_Z;
1379         env->NF = val;
1380         env->CF = (val >> 29) & 1;
1381         env->VF = (val << 3) & 0x80000000;
1382     }
1383     if (mask & XPSR_Q) {
1384         env->QF = ((val & XPSR_Q) != 0);
1385     }
1386     if (mask & XPSR_GE) {
1387         env->GE = (val & XPSR_GE) >> 16;
1388     }
1389 #ifndef CONFIG_USER_ONLY
1390     if (mask & XPSR_T) {
1391         env->thumb = ((val & XPSR_T) != 0);
1392     }
1393     if (mask & XPSR_IT_0_1) {
1394         env->condexec_bits &= ~3;
1395         env->condexec_bits |= (val >> 25) & 3;
1396     }
1397     if (mask & XPSR_IT_2_7) {
1398         env->condexec_bits &= 3;
1399         env->condexec_bits |= (val >> 8) & 0xfc;
1400     }
1401     if (mask & XPSR_EXCP) {
1402         /* Note that this only happens on exception exit */
1403         write_v7m_exception(env, val & XPSR_EXCP);
1404     }
1405 #endif
1406 }
1407 
1408 #define HCR_VM        (1ULL << 0)
1409 #define HCR_SWIO      (1ULL << 1)
1410 #define HCR_PTW       (1ULL << 2)
1411 #define HCR_FMO       (1ULL << 3)
1412 #define HCR_IMO       (1ULL << 4)
1413 #define HCR_AMO       (1ULL << 5)
1414 #define HCR_VF        (1ULL << 6)
1415 #define HCR_VI        (1ULL << 7)
1416 #define HCR_VSE       (1ULL << 8)
1417 #define HCR_FB        (1ULL << 9)
1418 #define HCR_BSU_MASK  (3ULL << 10)
1419 #define HCR_DC        (1ULL << 12)
1420 #define HCR_TWI       (1ULL << 13)
1421 #define HCR_TWE       (1ULL << 14)
1422 #define HCR_TID0      (1ULL << 15)
1423 #define HCR_TID1      (1ULL << 16)
1424 #define HCR_TID2      (1ULL << 17)
1425 #define HCR_TID3      (1ULL << 18)
1426 #define HCR_TSC       (1ULL << 19)
1427 #define HCR_TIDCP     (1ULL << 20)
1428 #define HCR_TACR      (1ULL << 21)
1429 #define HCR_TSW       (1ULL << 22)
1430 #define HCR_TPCP      (1ULL << 23)
1431 #define HCR_TPU       (1ULL << 24)
1432 #define HCR_TTLB      (1ULL << 25)
1433 #define HCR_TVM       (1ULL << 26)
1434 #define HCR_TGE       (1ULL << 27)
1435 #define HCR_TDZ       (1ULL << 28)
1436 #define HCR_HCD       (1ULL << 29)
1437 #define HCR_TRVM      (1ULL << 30)
1438 #define HCR_RW        (1ULL << 31)
1439 #define HCR_CD        (1ULL << 32)
1440 #define HCR_ID        (1ULL << 33)
1441 #define HCR_E2H       (1ULL << 34)
1442 #define HCR_TLOR      (1ULL << 35)
1443 #define HCR_TERR      (1ULL << 36)
1444 #define HCR_TEA       (1ULL << 37)
1445 #define HCR_MIOCNCE   (1ULL << 38)
1446 /* RES0 bit 39 */
1447 #define HCR_APK       (1ULL << 40)
1448 #define HCR_API       (1ULL << 41)
1449 #define HCR_NV        (1ULL << 42)
1450 #define HCR_NV1       (1ULL << 43)
1451 #define HCR_AT        (1ULL << 44)
1452 #define HCR_NV2       (1ULL << 45)
1453 #define HCR_FWB       (1ULL << 46)
1454 #define HCR_FIEN      (1ULL << 47)
1455 /* RES0 bit 48 */
1456 #define HCR_TID4      (1ULL << 49)
1457 #define HCR_TICAB     (1ULL << 50)
1458 #define HCR_AMVOFFEN  (1ULL << 51)
1459 #define HCR_TOCU      (1ULL << 52)
1460 #define HCR_ENSCXT    (1ULL << 53)
1461 #define HCR_TTLBIS    (1ULL << 54)
1462 #define HCR_TTLBOS    (1ULL << 55)
1463 #define HCR_ATA       (1ULL << 56)
1464 #define HCR_DCT       (1ULL << 57)
1465 #define HCR_TID5      (1ULL << 58)
1466 #define HCR_TWEDEN    (1ULL << 59)
1467 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1468 
1469 #define SCR_NS                (1U << 0)
1470 #define SCR_IRQ               (1U << 1)
1471 #define SCR_FIQ               (1U << 2)
1472 #define SCR_EA                (1U << 3)
1473 #define SCR_FW                (1U << 4)
1474 #define SCR_AW                (1U << 5)
1475 #define SCR_NET               (1U << 6)
1476 #define SCR_SMD               (1U << 7)
1477 #define SCR_HCE               (1U << 8)
1478 #define SCR_SIF               (1U << 9)
1479 #define SCR_RW                (1U << 10)
1480 #define SCR_ST                (1U << 11)
1481 #define SCR_TWI               (1U << 12)
1482 #define SCR_TWE               (1U << 13)
1483 #define SCR_TLOR              (1U << 14)
1484 #define SCR_TERR              (1U << 15)
1485 #define SCR_APK               (1U << 16)
1486 #define SCR_API               (1U << 17)
1487 #define SCR_EEL2              (1U << 18)
1488 #define SCR_EASE              (1U << 19)
1489 #define SCR_NMEA              (1U << 20)
1490 #define SCR_FIEN              (1U << 21)
1491 #define SCR_ENSCXT            (1U << 25)
1492 #define SCR_ATA               (1U << 26)
1493 
1494 /* Return the current FPSCR value.  */
1495 uint32_t vfp_get_fpscr(CPUARMState *env);
1496 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1497 
1498 /* FPCR, Floating Point Control Register
1499  * FPSR, Floating Poiht Status Register
1500  *
1501  * For A64 the FPSCR is split into two logically distinct registers,
1502  * FPCR and FPSR. However since they still use non-overlapping bits
1503  * we store the underlying state in fpscr and just mask on read/write.
1504  */
1505 #define FPSR_MASK 0xf800009f
1506 #define FPCR_MASK 0x07ff9f00
1507 
1508 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1509 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1510 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1511 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1512 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1513 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1514 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1515 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1516 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1517 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1518 
1519 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1520 {
1521     return vfp_get_fpscr(env) & FPSR_MASK;
1522 }
1523 
1524 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1525 {
1526     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1527     vfp_set_fpscr(env, new_fpscr);
1528 }
1529 
1530 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1531 {
1532     return vfp_get_fpscr(env) & FPCR_MASK;
1533 }
1534 
1535 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1536 {
1537     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1538     vfp_set_fpscr(env, new_fpscr);
1539 }
1540 
1541 enum arm_cpu_mode {
1542   ARM_CPU_MODE_USR = 0x10,
1543   ARM_CPU_MODE_FIQ = 0x11,
1544   ARM_CPU_MODE_IRQ = 0x12,
1545   ARM_CPU_MODE_SVC = 0x13,
1546   ARM_CPU_MODE_MON = 0x16,
1547   ARM_CPU_MODE_ABT = 0x17,
1548   ARM_CPU_MODE_HYP = 0x1a,
1549   ARM_CPU_MODE_UND = 0x1b,
1550   ARM_CPU_MODE_SYS = 0x1f
1551 };
1552 
1553 /* VFP system registers.  */
1554 #define ARM_VFP_FPSID   0
1555 #define ARM_VFP_FPSCR   1
1556 #define ARM_VFP_MVFR2   5
1557 #define ARM_VFP_MVFR1   6
1558 #define ARM_VFP_MVFR0   7
1559 #define ARM_VFP_FPEXC   8
1560 #define ARM_VFP_FPINST  9
1561 #define ARM_VFP_FPINST2 10
1562 
1563 /* iwMMXt coprocessor control registers.  */
1564 #define ARM_IWMMXT_wCID  0
1565 #define ARM_IWMMXT_wCon  1
1566 #define ARM_IWMMXT_wCSSF 2
1567 #define ARM_IWMMXT_wCASF 3
1568 #define ARM_IWMMXT_wCGR0 8
1569 #define ARM_IWMMXT_wCGR1 9
1570 #define ARM_IWMMXT_wCGR2 10
1571 #define ARM_IWMMXT_wCGR3 11
1572 
1573 /* V7M CCR bits */
1574 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1575 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1576 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1577 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1578 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1579 FIELD(V7M_CCR, STKALIGN, 9, 1)
1580 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1581 FIELD(V7M_CCR, DC, 16, 1)
1582 FIELD(V7M_CCR, IC, 17, 1)
1583 FIELD(V7M_CCR, BP, 18, 1)
1584 
1585 /* V7M SCR bits */
1586 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1587 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1588 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1589 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1590 
1591 /* V7M AIRCR bits */
1592 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1593 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1594 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1595 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1596 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1597 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1598 FIELD(V7M_AIRCR, PRIS, 14, 1)
1599 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1600 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1601 
1602 /* V7M CFSR bits for MMFSR */
1603 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1604 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1605 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1606 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1607 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1608 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1609 
1610 /* V7M CFSR bits for BFSR */
1611 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1612 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1613 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1614 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1615 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1616 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1617 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1618 
1619 /* V7M CFSR bits for UFSR */
1620 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1621 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1622 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1623 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1624 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1625 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1626 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1627 
1628 /* V7M CFSR bit masks covering all of the subregister bits */
1629 FIELD(V7M_CFSR, MMFSR, 0, 8)
1630 FIELD(V7M_CFSR, BFSR, 8, 8)
1631 FIELD(V7M_CFSR, UFSR, 16, 16)
1632 
1633 /* V7M HFSR bits */
1634 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1635 FIELD(V7M_HFSR, FORCED, 30, 1)
1636 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1637 
1638 /* V7M DFSR bits */
1639 FIELD(V7M_DFSR, HALTED, 0, 1)
1640 FIELD(V7M_DFSR, BKPT, 1, 1)
1641 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1642 FIELD(V7M_DFSR, VCATCH, 3, 1)
1643 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1644 
1645 /* V7M SFSR bits */
1646 FIELD(V7M_SFSR, INVEP, 0, 1)
1647 FIELD(V7M_SFSR, INVIS, 1, 1)
1648 FIELD(V7M_SFSR, INVER, 2, 1)
1649 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1650 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1651 FIELD(V7M_SFSR, LSPERR, 5, 1)
1652 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1653 FIELD(V7M_SFSR, LSERR, 7, 1)
1654 
1655 /* v7M MPU_CTRL bits */
1656 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1657 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1658 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1659 
1660 /* v7M CLIDR bits */
1661 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1662 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1663 FIELD(V7M_CLIDR, LOC, 24, 3)
1664 FIELD(V7M_CLIDR, LOUU, 27, 3)
1665 FIELD(V7M_CLIDR, ICB, 30, 2)
1666 
1667 FIELD(V7M_CSSELR, IND, 0, 1)
1668 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1669 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1670  * define a mask for this and check that it doesn't permit running off
1671  * the end of the array.
1672  */
1673 FIELD(V7M_CSSELR, INDEX, 0, 4)
1674 
1675 /* v7M FPCCR bits */
1676 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1677 FIELD(V7M_FPCCR, USER, 1, 1)
1678 FIELD(V7M_FPCCR, S, 2, 1)
1679 FIELD(V7M_FPCCR, THREAD, 3, 1)
1680 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1681 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1682 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1683 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1684 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1685 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1686 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1687 FIELD(V7M_FPCCR, RES0, 11, 15)
1688 FIELD(V7M_FPCCR, TS, 26, 1)
1689 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1690 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1691 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1692 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1693 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1694 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1695 #define R_V7M_FPCCR_BANKED_MASK                 \
1696     (R_V7M_FPCCR_LSPACT_MASK |                  \
1697      R_V7M_FPCCR_USER_MASK |                    \
1698      R_V7M_FPCCR_THREAD_MASK |                  \
1699      R_V7M_FPCCR_MMRDY_MASK |                   \
1700      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1701      R_V7M_FPCCR_UFRDY_MASK |                   \
1702      R_V7M_FPCCR_ASPEN_MASK)
1703 
1704 /*
1705  * System register ID fields.
1706  */
1707 FIELD(MIDR_EL1, REVISION, 0, 4)
1708 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1709 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1710 FIELD(MIDR_EL1, VARIANT, 20, 4)
1711 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1712 
1713 FIELD(ID_ISAR0, SWAP, 0, 4)
1714 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1715 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1716 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1717 FIELD(ID_ISAR0, COPROC, 16, 4)
1718 FIELD(ID_ISAR0, DEBUG, 20, 4)
1719 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1720 
1721 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1722 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1723 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1724 FIELD(ID_ISAR1, EXTEND, 12, 4)
1725 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1726 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1727 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1728 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1729 
1730 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1731 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1732 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1733 FIELD(ID_ISAR2, MULT, 12, 4)
1734 FIELD(ID_ISAR2, MULTS, 16, 4)
1735 FIELD(ID_ISAR2, MULTU, 20, 4)
1736 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1737 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1738 
1739 FIELD(ID_ISAR3, SATURATE, 0, 4)
1740 FIELD(ID_ISAR3, SIMD, 4, 4)
1741 FIELD(ID_ISAR3, SVC, 8, 4)
1742 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1743 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1744 FIELD(ID_ISAR3, T32COPY, 20, 4)
1745 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1746 FIELD(ID_ISAR3, T32EE, 28, 4)
1747 
1748 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1749 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1750 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1751 FIELD(ID_ISAR4, SMC, 12, 4)
1752 FIELD(ID_ISAR4, BARRIER, 16, 4)
1753 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1754 FIELD(ID_ISAR4, PSR_M, 24, 4)
1755 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1756 
1757 FIELD(ID_ISAR5, SEVL, 0, 4)
1758 FIELD(ID_ISAR5, AES, 4, 4)
1759 FIELD(ID_ISAR5, SHA1, 8, 4)
1760 FIELD(ID_ISAR5, SHA2, 12, 4)
1761 FIELD(ID_ISAR5, CRC32, 16, 4)
1762 FIELD(ID_ISAR5, RDM, 24, 4)
1763 FIELD(ID_ISAR5, VCMA, 28, 4)
1764 
1765 FIELD(ID_ISAR6, JSCVT, 0, 4)
1766 FIELD(ID_ISAR6, DP, 4, 4)
1767 FIELD(ID_ISAR6, FHM, 8, 4)
1768 FIELD(ID_ISAR6, SB, 12, 4)
1769 FIELD(ID_ISAR6, SPECRES, 16, 4)
1770 
1771 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1772 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1773 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1774 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1775 FIELD(ID_MMFR3, PAN, 16, 4)
1776 FIELD(ID_MMFR3, COHWALK, 20, 4)
1777 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1778 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1779 
1780 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1781 FIELD(ID_MMFR4, AC2, 4, 4)
1782 FIELD(ID_MMFR4, XNX, 8, 4)
1783 FIELD(ID_MMFR4, CNP, 12, 4)
1784 FIELD(ID_MMFR4, HPDS, 16, 4)
1785 FIELD(ID_MMFR4, LSM, 20, 4)
1786 FIELD(ID_MMFR4, CCIDX, 24, 4)
1787 FIELD(ID_MMFR4, EVT, 28, 4)
1788 
1789 FIELD(ID_AA64ISAR0, AES, 4, 4)
1790 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1791 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1792 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1793 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1794 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1795 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1796 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1797 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1798 FIELD(ID_AA64ISAR0, DP, 44, 4)
1799 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1800 FIELD(ID_AA64ISAR0, TS, 52, 4)
1801 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1802 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1803 
1804 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1805 FIELD(ID_AA64ISAR1, APA, 4, 4)
1806 FIELD(ID_AA64ISAR1, API, 8, 4)
1807 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1808 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1809 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1810 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1811 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1812 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1813 FIELD(ID_AA64ISAR1, SB, 36, 4)
1814 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1815 
1816 FIELD(ID_AA64PFR0, EL0, 0, 4)
1817 FIELD(ID_AA64PFR0, EL1, 4, 4)
1818 FIELD(ID_AA64PFR0, EL2, 8, 4)
1819 FIELD(ID_AA64PFR0, EL3, 12, 4)
1820 FIELD(ID_AA64PFR0, FP, 16, 4)
1821 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1822 FIELD(ID_AA64PFR0, GIC, 24, 4)
1823 FIELD(ID_AA64PFR0, RAS, 28, 4)
1824 FIELD(ID_AA64PFR0, SVE, 32, 4)
1825 
1826 FIELD(ID_AA64PFR1, BT, 0, 4)
1827 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1828 FIELD(ID_AA64PFR1, MTE, 8, 4)
1829 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1830 
1831 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1832 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1833 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1834 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1835 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1836 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1837 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1838 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1839 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1840 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1841 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1842 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1843 
1844 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1845 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1846 FIELD(ID_AA64MMFR1, VH, 8, 4)
1847 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1848 FIELD(ID_AA64MMFR1, LO, 16, 4)
1849 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1850 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1851 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1852 
1853 FIELD(ID_AA64MMFR2, CNP, 0, 4)
1854 FIELD(ID_AA64MMFR2, UAO, 4, 4)
1855 FIELD(ID_AA64MMFR2, LSM, 8, 4)
1856 FIELD(ID_AA64MMFR2, IESB, 12, 4)
1857 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1858 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1859 FIELD(ID_AA64MMFR2, NV, 24, 4)
1860 FIELD(ID_AA64MMFR2, ST, 28, 4)
1861 FIELD(ID_AA64MMFR2, AT, 32, 4)
1862 FIELD(ID_AA64MMFR2, IDS, 36, 4)
1863 FIELD(ID_AA64MMFR2, FWB, 40, 4)
1864 FIELD(ID_AA64MMFR2, TTL, 48, 4)
1865 FIELD(ID_AA64MMFR2, BBM, 52, 4)
1866 FIELD(ID_AA64MMFR2, EVT, 56, 4)
1867 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1868 
1869 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1870 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1871 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1872 FIELD(ID_AA64DFR0, BRPS, 12, 4)
1873 FIELD(ID_AA64DFR0, WRPS, 20, 4)
1874 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1875 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1876 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1877 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1878 
1879 FIELD(ID_DFR0, COPDBG, 0, 4)
1880 FIELD(ID_DFR0, COPSDBG, 4, 4)
1881 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1882 FIELD(ID_DFR0, COPTRC, 12, 4)
1883 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1884 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1885 FIELD(ID_DFR0, PERFMON, 24, 4)
1886 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1887 
1888 FIELD(DBGDIDR, SE_IMP, 12, 1)
1889 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1890 FIELD(DBGDIDR, VERSION, 16, 4)
1891 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1892 FIELD(DBGDIDR, BRPS, 24, 4)
1893 FIELD(DBGDIDR, WRPS, 28, 4)
1894 
1895 FIELD(MVFR0, SIMDREG, 0, 4)
1896 FIELD(MVFR0, FPSP, 4, 4)
1897 FIELD(MVFR0, FPDP, 8, 4)
1898 FIELD(MVFR0, FPTRAP, 12, 4)
1899 FIELD(MVFR0, FPDIVIDE, 16, 4)
1900 FIELD(MVFR0, FPSQRT, 20, 4)
1901 FIELD(MVFR0, FPSHVEC, 24, 4)
1902 FIELD(MVFR0, FPROUND, 28, 4)
1903 
1904 FIELD(MVFR1, FPFTZ, 0, 4)
1905 FIELD(MVFR1, FPDNAN, 4, 4)
1906 FIELD(MVFR1, SIMDLS, 8, 4)
1907 FIELD(MVFR1, SIMDINT, 12, 4)
1908 FIELD(MVFR1, SIMDSP, 16, 4)
1909 FIELD(MVFR1, SIMDHP, 20, 4)
1910 FIELD(MVFR1, FPHP, 24, 4)
1911 FIELD(MVFR1, SIMDFMAC, 28, 4)
1912 
1913 FIELD(MVFR2, SIMDMISC, 0, 4)
1914 FIELD(MVFR2, FPMISC, 4, 4)
1915 
1916 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1917 
1918 /* If adding a feature bit which corresponds to a Linux ELF
1919  * HWCAP bit, remember to update the feature-bit-to-hwcap
1920  * mapping in linux-user/elfload.c:get_elf_hwcap().
1921  */
1922 enum arm_features {
1923     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1924     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1925     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1926     ARM_FEATURE_V6,
1927     ARM_FEATURE_V6K,
1928     ARM_FEATURE_V7,
1929     ARM_FEATURE_THUMB2,
1930     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1931     ARM_FEATURE_NEON,
1932     ARM_FEATURE_M, /* Microcontroller profile.  */
1933     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1934     ARM_FEATURE_THUMB2EE,
1935     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1936     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1937     ARM_FEATURE_V4T,
1938     ARM_FEATURE_V5,
1939     ARM_FEATURE_STRONGARM,
1940     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1941     ARM_FEATURE_GENERIC_TIMER,
1942     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1943     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1944     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1945     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1946     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1947     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1948     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1949     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1950     ARM_FEATURE_V8,
1951     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1952     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1953     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1954     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1955     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1956     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1957     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1958     ARM_FEATURE_PMU, /* has PMU support */
1959     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1960     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1961     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1962 };
1963 
1964 static inline int arm_feature(CPUARMState *env, int feature)
1965 {
1966     return (env->features & (1ULL << feature)) != 0;
1967 }
1968 
1969 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1970 
1971 #if !defined(CONFIG_USER_ONLY)
1972 /* Return true if exception levels below EL3 are in secure state,
1973  * or would be following an exception return to that level.
1974  * Unlike arm_is_secure() (which is always a question about the
1975  * _current_ state of the CPU) this doesn't care about the current
1976  * EL or mode.
1977  */
1978 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1979 {
1980     if (arm_feature(env, ARM_FEATURE_EL3)) {
1981         return !(env->cp15.scr_el3 & SCR_NS);
1982     } else {
1983         /* If EL3 is not supported then the secure state is implementation
1984          * defined, in which case QEMU defaults to non-secure.
1985          */
1986         return false;
1987     }
1988 }
1989 
1990 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1991 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1992 {
1993     if (arm_feature(env, ARM_FEATURE_EL3)) {
1994         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1995             /* CPU currently in AArch64 state and EL3 */
1996             return true;
1997         } else if (!is_a64(env) &&
1998                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1999             /* CPU currently in AArch32 state and monitor mode */
2000             return true;
2001         }
2002     }
2003     return false;
2004 }
2005 
2006 /* Return true if the processor is in secure state */
2007 static inline bool arm_is_secure(CPUARMState *env)
2008 {
2009     if (arm_is_el3_or_mon(env)) {
2010         return true;
2011     }
2012     return arm_is_secure_below_el3(env);
2013 }
2014 
2015 #else
2016 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2017 {
2018     return false;
2019 }
2020 
2021 static inline bool arm_is_secure(CPUARMState *env)
2022 {
2023     return false;
2024 }
2025 #endif
2026 
2027 /**
2028  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2029  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2030  * "for all purposes other than a direct read or write access of HCR_EL2."
2031  * Not included here is HCR_RW.
2032  */
2033 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2034 
2035 /* Return true if the specified exception level is running in AArch64 state. */
2036 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2037 {
2038     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2039      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2040      */
2041     assert(el >= 1 && el <= 3);
2042     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2043 
2044     /* The highest exception level is always at the maximum supported
2045      * register width, and then lower levels have a register width controlled
2046      * by bits in the SCR or HCR registers.
2047      */
2048     if (el == 3) {
2049         return aa64;
2050     }
2051 
2052     if (arm_feature(env, ARM_FEATURE_EL3)) {
2053         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2054     }
2055 
2056     if (el == 2) {
2057         return aa64;
2058     }
2059 
2060     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2061         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2062     }
2063 
2064     return aa64;
2065 }
2066 
2067 /* Function for determing whether guest cp register reads and writes should
2068  * access the secure or non-secure bank of a cp register.  When EL3 is
2069  * operating in AArch32 state, the NS-bit determines whether the secure
2070  * instance of a cp register should be used. When EL3 is AArch64 (or if
2071  * it doesn't exist at all) then there is no register banking, and all
2072  * accesses are to the non-secure version.
2073  */
2074 static inline bool access_secure_reg(CPUARMState *env)
2075 {
2076     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2077                 !arm_el_is_aa64(env, 3) &&
2078                 !(env->cp15.scr_el3 & SCR_NS));
2079 
2080     return ret;
2081 }
2082 
2083 /* Macros for accessing a specified CP register bank */
2084 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2085     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2086 
2087 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2088     do {                                                \
2089         if (_secure) {                                   \
2090             (_env)->cp15._regname##_s = (_val);            \
2091         } else {                                        \
2092             (_env)->cp15._regname##_ns = (_val);           \
2093         }                                               \
2094     } while (0)
2095 
2096 /* Macros for automatically accessing a specific CP register bank depending on
2097  * the current secure state of the system.  These macros are not intended for
2098  * supporting instruction translation reads/writes as these are dependent
2099  * solely on the SCR.NS bit and not the mode.
2100  */
2101 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2102     A32_BANKED_REG_GET((_env), _regname,                \
2103                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2104 
2105 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2106     A32_BANKED_REG_SET((_env), _regname,                                    \
2107                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2108                        (_val))
2109 
2110 void arm_cpu_list(void);
2111 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2112                                  uint32_t cur_el, bool secure);
2113 
2114 /* Interface between CPU and Interrupt controller.  */
2115 #ifndef CONFIG_USER_ONLY
2116 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2117 #else
2118 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2119 {
2120     return true;
2121 }
2122 #endif
2123 /**
2124  * armv7m_nvic_set_pending: mark the specified exception as pending
2125  * @opaque: the NVIC
2126  * @irq: the exception number to mark pending
2127  * @secure: false for non-banked exceptions or for the nonsecure
2128  * version of a banked exception, true for the secure version of a banked
2129  * exception.
2130  *
2131  * Marks the specified exception as pending. Note that we will assert()
2132  * if @secure is true and @irq does not specify one of the fixed set
2133  * of architecturally banked exceptions.
2134  */
2135 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2136 /**
2137  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2138  * @opaque: the NVIC
2139  * @irq: the exception number to mark pending
2140  * @secure: false for non-banked exceptions or for the nonsecure
2141  * version of a banked exception, true for the secure version of a banked
2142  * exception.
2143  *
2144  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2145  * exceptions (exceptions generated in the course of trying to take
2146  * a different exception).
2147  */
2148 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2149 /**
2150  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2151  * @opaque: the NVIC
2152  * @irq: the exception number to mark pending
2153  * @secure: false for non-banked exceptions or for the nonsecure
2154  * version of a banked exception, true for the secure version of a banked
2155  * exception.
2156  *
2157  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2158  * generated in the course of lazy stacking of FP registers.
2159  */
2160 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2161 /**
2162  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2163  *    exception, and whether it targets Secure state
2164  * @opaque: the NVIC
2165  * @pirq: set to pending exception number
2166  * @ptargets_secure: set to whether pending exception targets Secure
2167  *
2168  * This function writes the number of the highest priority pending
2169  * exception (the one which would be made active by
2170  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2171  * to true if the current highest priority pending exception should
2172  * be taken to Secure state, false for NS.
2173  */
2174 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2175                                       bool *ptargets_secure);
2176 /**
2177  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2178  * @opaque: the NVIC
2179  *
2180  * Move the current highest priority pending exception from the pending
2181  * state to the active state, and update v7m.exception to indicate that
2182  * it is the exception currently being handled.
2183  */
2184 void armv7m_nvic_acknowledge_irq(void *opaque);
2185 /**
2186  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2187  * @opaque: the NVIC
2188  * @irq: the exception number to complete
2189  * @secure: true if this exception was secure
2190  *
2191  * Returns: -1 if the irq was not active
2192  *           1 if completing this irq brought us back to base (no active irqs)
2193  *           0 if there is still an irq active after this one was completed
2194  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2195  */
2196 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2197 /**
2198  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2199  * @opaque: the NVIC
2200  * @irq: the exception number to mark pending
2201  * @secure: false for non-banked exceptions or for the nonsecure
2202  * version of a banked exception, true for the secure version of a banked
2203  * exception.
2204  *
2205  * Return whether an exception is "ready", i.e. whether the exception is
2206  * enabled and is configured at a priority which would allow it to
2207  * interrupt the current execution priority. This controls whether the
2208  * RDY bit for it in the FPCCR is set.
2209  */
2210 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2211 /**
2212  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2213  * @opaque: the NVIC
2214  *
2215  * Returns: the raw execution priority as defined by the v8M architecture.
2216  * This is the execution priority minus the effects of AIRCR.PRIS,
2217  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2218  * (v8M ARM ARM I_PKLD.)
2219  */
2220 int armv7m_nvic_raw_execution_priority(void *opaque);
2221 /**
2222  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2223  * priority is negative for the specified security state.
2224  * @opaque: the NVIC
2225  * @secure: the security state to test
2226  * This corresponds to the pseudocode IsReqExecPriNeg().
2227  */
2228 #ifndef CONFIG_USER_ONLY
2229 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2230 #else
2231 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2232 {
2233     return false;
2234 }
2235 #endif
2236 
2237 /* Interface for defining coprocessor registers.
2238  * Registers are defined in tables of arm_cp_reginfo structs
2239  * which are passed to define_arm_cp_regs().
2240  */
2241 
2242 /* When looking up a coprocessor register we look for it
2243  * via an integer which encodes all of:
2244  *  coprocessor number
2245  *  Crn, Crm, opc1, opc2 fields
2246  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2247  *    or via MRRC/MCRR?)
2248  *  non-secure/secure bank (AArch32 only)
2249  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2250  * (In this case crn and opc2 should be zero.)
2251  * For AArch64, there is no 32/64 bit size distinction;
2252  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2253  * and 4 bit CRn and CRm. The encoding patterns are chosen
2254  * to be easy to convert to and from the KVM encodings, and also
2255  * so that the hashtable can contain both AArch32 and AArch64
2256  * registers (to allow for interprocessing where we might run
2257  * 32 bit code on a 64 bit core).
2258  */
2259 /* This bit is private to our hashtable cpreg; in KVM register
2260  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2261  * in the upper bits of the 64 bit ID.
2262  */
2263 #define CP_REG_AA64_SHIFT 28
2264 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2265 
2266 /* To enable banking of coprocessor registers depending on ns-bit we
2267  * add a bit to distinguish between secure and non-secure cpregs in the
2268  * hashtable.
2269  */
2270 #define CP_REG_NS_SHIFT 29
2271 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2272 
2273 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2274     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2275      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2276 
2277 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2278     (CP_REG_AA64_MASK |                                 \
2279      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2280      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2281      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2282      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2283      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2284      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2285 
2286 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2287  * version used as a key for the coprocessor register hashtable
2288  */
2289 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2290 {
2291     uint32_t cpregid = kvmid;
2292     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2293         cpregid |= CP_REG_AA64_MASK;
2294     } else {
2295         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2296             cpregid |= (1 << 15);
2297         }
2298 
2299         /* KVM is always non-secure so add the NS flag on AArch32 register
2300          * entries.
2301          */
2302          cpregid |= 1 << CP_REG_NS_SHIFT;
2303     }
2304     return cpregid;
2305 }
2306 
2307 /* Convert a truncated 32 bit hashtable key into the full
2308  * 64 bit KVM register ID.
2309  */
2310 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2311 {
2312     uint64_t kvmid;
2313 
2314     if (cpregid & CP_REG_AA64_MASK) {
2315         kvmid = cpregid & ~CP_REG_AA64_MASK;
2316         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2317     } else {
2318         kvmid = cpregid & ~(1 << 15);
2319         if (cpregid & (1 << 15)) {
2320             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2321         } else {
2322             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2323         }
2324     }
2325     return kvmid;
2326 }
2327 
2328 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2329  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2330  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2331  * TCG can assume the value to be constant (ie load at translate time)
2332  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2333  * indicates that the TB should not be ended after a write to this register
2334  * (the default is that the TB ends after cp writes). OVERRIDE permits
2335  * a register definition to override a previous definition for the
2336  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2337  * old must have the OVERRIDE bit set.
2338  * ALIAS indicates that this register is an alias view of some underlying
2339  * state which is also visible via another register, and that the other
2340  * register is handling migration and reset; registers marked ALIAS will not be
2341  * migrated but may have their state set by syncing of register state from KVM.
2342  * NO_RAW indicates that this register has no underlying state and does not
2343  * support raw access for state saving/loading; it will not be used for either
2344  * migration or KVM state synchronization. (Typically this is for "registers"
2345  * which are actually used as instructions for cache maintenance and so on.)
2346  * IO indicates that this register does I/O and therefore its accesses
2347  * need to be marked with gen_io_start() and also end the TB. In particular,
2348  * registers which implement clocks or timers require this.
2349  * RAISES_EXC is for when the read or write hook might raise an exception;
2350  * the generated code will synchronize the CPU state before calling the hook
2351  * so that it is safe for the hook to call raise_exception().
2352  * NEWEL is for writes to registers that might change the exception
2353  * level - typically on older ARM chips. For those cases we need to
2354  * re-read the new el when recomputing the translation flags.
2355  */
2356 #define ARM_CP_SPECIAL           0x0001
2357 #define ARM_CP_CONST             0x0002
2358 #define ARM_CP_64BIT             0x0004
2359 #define ARM_CP_SUPPRESS_TB_END   0x0008
2360 #define ARM_CP_OVERRIDE          0x0010
2361 #define ARM_CP_ALIAS             0x0020
2362 #define ARM_CP_IO                0x0040
2363 #define ARM_CP_NO_RAW            0x0080
2364 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2365 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2366 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2367 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2368 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2369 #define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2370 #define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2371 #define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2372 #define ARM_CP_FPU               0x1000
2373 #define ARM_CP_SVE               0x2000
2374 #define ARM_CP_NO_GDB            0x4000
2375 #define ARM_CP_RAISES_EXC        0x8000
2376 #define ARM_CP_NEWEL             0x10000
2377 /* Used only as a terminator for ARMCPRegInfo lists */
2378 #define ARM_CP_SENTINEL          0xfffff
2379 /* Mask of only the flag bits in a type field */
2380 #define ARM_CP_FLAG_MASK         0x1f0ff
2381 
2382 /* Valid values for ARMCPRegInfo state field, indicating which of
2383  * the AArch32 and AArch64 execution states this register is visible in.
2384  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2385  * If the reginfo is declared to be visible in both states then a second
2386  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2387  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2388  * Note that we rely on the values of these enums as we iterate through
2389  * the various states in some places.
2390  */
2391 enum {
2392     ARM_CP_STATE_AA32 = 0,
2393     ARM_CP_STATE_AA64 = 1,
2394     ARM_CP_STATE_BOTH = 2,
2395 };
2396 
2397 /* ARM CP register secure state flags.  These flags identify security state
2398  * attributes for a given CP register entry.
2399  * The existence of both or neither secure and non-secure flags indicates that
2400  * the register has both a secure and non-secure hash entry.  A single one of
2401  * these flags causes the register to only be hashed for the specified
2402  * security state.
2403  * Although definitions may have any combination of the S/NS bits, each
2404  * registered entry will only have one to identify whether the entry is secure
2405  * or non-secure.
2406  */
2407 enum {
2408     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2409     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2410 };
2411 
2412 /* Return true if cptype is a valid type field. This is used to try to
2413  * catch errors where the sentinel has been accidentally left off the end
2414  * of a list of registers.
2415  */
2416 static inline bool cptype_valid(int cptype)
2417 {
2418     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2419         || ((cptype & ARM_CP_SPECIAL) &&
2420             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2421 }
2422 
2423 /* Access rights:
2424  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2425  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2426  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2427  * (ie any of the privileged modes in Secure state, or Monitor mode).
2428  * If a register is accessible in one privilege level it's always accessible
2429  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2430  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2431  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2432  * terminology a little and call this PL3.
2433  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2434  * with the ELx exception levels.
2435  *
2436  * If access permissions for a register are more complex than can be
2437  * described with these bits, then use a laxer set of restrictions, and
2438  * do the more restrictive/complex check inside a helper function.
2439  */
2440 #define PL3_R 0x80
2441 #define PL3_W 0x40
2442 #define PL2_R (0x20 | PL3_R)
2443 #define PL2_W (0x10 | PL3_W)
2444 #define PL1_R (0x08 | PL2_R)
2445 #define PL1_W (0x04 | PL2_W)
2446 #define PL0_R (0x02 | PL1_R)
2447 #define PL0_W (0x01 | PL1_W)
2448 
2449 /*
2450  * For user-mode some registers are accessible to EL0 via a kernel
2451  * trap-and-emulate ABI. In this case we define the read permissions
2452  * as actually being PL0_R. However some bits of any given register
2453  * may still be masked.
2454  */
2455 #ifdef CONFIG_USER_ONLY
2456 #define PL0U_R PL0_R
2457 #else
2458 #define PL0U_R PL1_R
2459 #endif
2460 
2461 #define PL3_RW (PL3_R | PL3_W)
2462 #define PL2_RW (PL2_R | PL2_W)
2463 #define PL1_RW (PL1_R | PL1_W)
2464 #define PL0_RW (PL0_R | PL0_W)
2465 
2466 /* Return the highest implemented Exception Level */
2467 static inline int arm_highest_el(CPUARMState *env)
2468 {
2469     if (arm_feature(env, ARM_FEATURE_EL3)) {
2470         return 3;
2471     }
2472     if (arm_feature(env, ARM_FEATURE_EL2)) {
2473         return 2;
2474     }
2475     return 1;
2476 }
2477 
2478 /* Return true if a v7M CPU is in Handler mode */
2479 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2480 {
2481     return env->v7m.exception != 0;
2482 }
2483 
2484 /* Return the current Exception Level (as per ARMv8; note that this differs
2485  * from the ARMv7 Privilege Level).
2486  */
2487 static inline int arm_current_el(CPUARMState *env)
2488 {
2489     if (arm_feature(env, ARM_FEATURE_M)) {
2490         return arm_v7m_is_handler_mode(env) ||
2491             !(env->v7m.control[env->v7m.secure] & 1);
2492     }
2493 
2494     if (is_a64(env)) {
2495         return extract32(env->pstate, 2, 2);
2496     }
2497 
2498     switch (env->uncached_cpsr & 0x1f) {
2499     case ARM_CPU_MODE_USR:
2500         return 0;
2501     case ARM_CPU_MODE_HYP:
2502         return 2;
2503     case ARM_CPU_MODE_MON:
2504         return 3;
2505     default:
2506         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2507             /* If EL3 is 32-bit then all secure privileged modes run in
2508              * EL3
2509              */
2510             return 3;
2511         }
2512 
2513         return 1;
2514     }
2515 }
2516 
2517 typedef struct ARMCPRegInfo ARMCPRegInfo;
2518 
2519 typedef enum CPAccessResult {
2520     /* Access is permitted */
2521     CP_ACCESS_OK = 0,
2522     /* Access fails due to a configurable trap or enable which would
2523      * result in a categorized exception syndrome giving information about
2524      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2525      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2526      * PL1 if in EL0, otherwise to the current EL).
2527      */
2528     CP_ACCESS_TRAP = 1,
2529     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2530      * Note that this is not a catch-all case -- the set of cases which may
2531      * result in this failure is specifically defined by the architecture.
2532      */
2533     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2534     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2535     CP_ACCESS_TRAP_EL2 = 3,
2536     CP_ACCESS_TRAP_EL3 = 4,
2537     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2538     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2539     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2540     /* Access fails and results in an exception syndrome for an FP access,
2541      * trapped directly to EL2 or EL3
2542      */
2543     CP_ACCESS_TRAP_FP_EL2 = 7,
2544     CP_ACCESS_TRAP_FP_EL3 = 8,
2545 } CPAccessResult;
2546 
2547 /* Access functions for coprocessor registers. These cannot fail and
2548  * may not raise exceptions.
2549  */
2550 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2551 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2552                        uint64_t value);
2553 /* Access permission check functions for coprocessor registers. */
2554 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2555                                   const ARMCPRegInfo *opaque,
2556                                   bool isread);
2557 /* Hook function for register reset */
2558 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2559 
2560 #define CP_ANY 0xff
2561 
2562 /* Definition of an ARM coprocessor register */
2563 struct ARMCPRegInfo {
2564     /* Name of register (useful mainly for debugging, need not be unique) */
2565     const char *name;
2566     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2567      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2568      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2569      * will be decoded to this register. The register read and write
2570      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2571      * used by the program, so it is possible to register a wildcard and
2572      * then behave differently on read/write if necessary.
2573      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2574      * must both be zero.
2575      * For AArch64-visible registers, opc0 is also used.
2576      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2577      * way to distinguish (for KVM's benefit) guest-visible system registers
2578      * from demuxed ones provided to preserve the "no side effects on
2579      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2580      * visible (to match KVM's encoding); cp==0 will be converted to
2581      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2582      */
2583     uint8_t cp;
2584     uint8_t crn;
2585     uint8_t crm;
2586     uint8_t opc0;
2587     uint8_t opc1;
2588     uint8_t opc2;
2589     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2590     int state;
2591     /* Register type: ARM_CP_* bits/values */
2592     int type;
2593     /* Access rights: PL*_[RW] */
2594     int access;
2595     /* Security state: ARM_CP_SECSTATE_* bits/values */
2596     int secure;
2597     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2598      * this register was defined: can be used to hand data through to the
2599      * register read/write functions, since they are passed the ARMCPRegInfo*.
2600      */
2601     void *opaque;
2602     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2603      * fieldoffset is non-zero, the reset value of the register.
2604      */
2605     uint64_t resetvalue;
2606     /* Offset of the field in CPUARMState for this register.
2607      *
2608      * This is not needed if either:
2609      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2610      *  2. both readfn and writefn are specified
2611      */
2612     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2613 
2614     /* Offsets of the secure and non-secure fields in CPUARMState for the
2615      * register if it is banked.  These fields are only used during the static
2616      * registration of a register.  During hashing the bank associated
2617      * with a given security state is copied to fieldoffset which is used from
2618      * there on out.
2619      *
2620      * It is expected that register definitions use either fieldoffset or
2621      * bank_fieldoffsets in the definition but not both.  It is also expected
2622      * that both bank offsets are set when defining a banked register.  This
2623      * use indicates that a register is banked.
2624      */
2625     ptrdiff_t bank_fieldoffsets[2];
2626 
2627     /* Function for making any access checks for this register in addition to
2628      * those specified by the 'access' permissions bits. If NULL, no extra
2629      * checks required. The access check is performed at runtime, not at
2630      * translate time.
2631      */
2632     CPAccessFn *accessfn;
2633     /* Function for handling reads of this register. If NULL, then reads
2634      * will be done by loading from the offset into CPUARMState specified
2635      * by fieldoffset.
2636      */
2637     CPReadFn *readfn;
2638     /* Function for handling writes of this register. If NULL, then writes
2639      * will be done by writing to the offset into CPUARMState specified
2640      * by fieldoffset.
2641      */
2642     CPWriteFn *writefn;
2643     /* Function for doing a "raw" read; used when we need to copy
2644      * coprocessor state to the kernel for KVM or out for
2645      * migration. This only needs to be provided if there is also a
2646      * readfn and it has side effects (for instance clear-on-read bits).
2647      */
2648     CPReadFn *raw_readfn;
2649     /* Function for doing a "raw" write; used when we need to copy KVM
2650      * kernel coprocessor state into userspace, or for inbound
2651      * migration. This only needs to be provided if there is also a
2652      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2653      * or similar behaviour.
2654      */
2655     CPWriteFn *raw_writefn;
2656     /* Function for resetting the register. If NULL, then reset will be done
2657      * by writing resetvalue to the field specified in fieldoffset. If
2658      * fieldoffset is 0 then no reset will be done.
2659      */
2660     CPResetFn *resetfn;
2661 
2662     /*
2663      * "Original" writefn and readfn.
2664      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2665      * accessor functions of various EL1/EL0 to perform the runtime
2666      * check for which sysreg should actually be modified, and then
2667      * forwards the operation.  Before overwriting the accessors,
2668      * the original function is copied here, so that accesses that
2669      * really do go to the EL1/EL0 version proceed normally.
2670      * (The corresponding EL2 register is linked via opaque.)
2671      */
2672     CPReadFn *orig_readfn;
2673     CPWriteFn *orig_writefn;
2674 };
2675 
2676 /* Macros which are lvalues for the field in CPUARMState for the
2677  * ARMCPRegInfo *ri.
2678  */
2679 #define CPREG_FIELD32(env, ri) \
2680     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2681 #define CPREG_FIELD64(env, ri) \
2682     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2683 
2684 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2685 
2686 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2687                                     const ARMCPRegInfo *regs, void *opaque);
2688 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2689                                        const ARMCPRegInfo *regs, void *opaque);
2690 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2691 {
2692     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2693 }
2694 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2695 {
2696     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2697 }
2698 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2699 
2700 /*
2701  * Definition of an ARM co-processor register as viewed from
2702  * userspace. This is used for presenting sanitised versions of
2703  * registers to userspace when emulating the Linux AArch64 CPU
2704  * ID/feature ABI (advertised as HWCAP_CPUID).
2705  */
2706 typedef struct ARMCPRegUserSpaceInfo {
2707     /* Name of register */
2708     const char *name;
2709 
2710     /* Is the name actually a glob pattern */
2711     bool is_glob;
2712 
2713     /* Only some bits are exported to user space */
2714     uint64_t exported_bits;
2715 
2716     /* Fixed bits are applied after the mask */
2717     uint64_t fixed_bits;
2718 } ARMCPRegUserSpaceInfo;
2719 
2720 #define REGUSERINFO_SENTINEL { .name = NULL }
2721 
2722 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2723 
2724 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2725 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2726                          uint64_t value);
2727 /* CPReadFn that can be used for read-as-zero behaviour */
2728 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2729 
2730 /* CPResetFn that does nothing, for use if no reset is required even
2731  * if fieldoffset is non zero.
2732  */
2733 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2734 
2735 /* Return true if this reginfo struct's field in the cpu state struct
2736  * is 64 bits wide.
2737  */
2738 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2739 {
2740     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2741 }
2742 
2743 static inline bool cp_access_ok(int current_el,
2744                                 const ARMCPRegInfo *ri, int isread)
2745 {
2746     return (ri->access >> ((current_el * 2) + isread)) & 1;
2747 }
2748 
2749 /* Raw read of a coprocessor register (as needed for migration, etc) */
2750 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2751 
2752 /**
2753  * write_list_to_cpustate
2754  * @cpu: ARMCPU
2755  *
2756  * For each register listed in the ARMCPU cpreg_indexes list, write
2757  * its value from the cpreg_values list into the ARMCPUState structure.
2758  * This updates TCG's working data structures from KVM data or
2759  * from incoming migration state.
2760  *
2761  * Returns: true if all register values were updated correctly,
2762  * false if some register was unknown or could not be written.
2763  * Note that we do not stop early on failure -- we will attempt
2764  * writing all registers in the list.
2765  */
2766 bool write_list_to_cpustate(ARMCPU *cpu);
2767 
2768 /**
2769  * write_cpustate_to_list:
2770  * @cpu: ARMCPU
2771  * @kvm_sync: true if this is for syncing back to KVM
2772  *
2773  * For each register listed in the ARMCPU cpreg_indexes list, write
2774  * its value from the ARMCPUState structure into the cpreg_values list.
2775  * This is used to copy info from TCG's working data structures into
2776  * KVM or for outbound migration.
2777  *
2778  * @kvm_sync is true if we are doing this in order to sync the
2779  * register state back to KVM. In this case we will only update
2780  * values in the list if the previous list->cpustate sync actually
2781  * successfully wrote the CPU state. Otherwise we will keep the value
2782  * that is in the list.
2783  *
2784  * Returns: true if all register values were read correctly,
2785  * false if some register was unknown or could not be read.
2786  * Note that we do not stop early on failure -- we will attempt
2787  * reading all registers in the list.
2788  */
2789 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2790 
2791 #define ARM_CPUID_TI915T      0x54029152
2792 #define ARM_CPUID_TI925T      0x54029252
2793 
2794 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2795 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2796 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2797 
2798 #define cpu_signal_handler cpu_arm_signal_handler
2799 #define cpu_list arm_cpu_list
2800 
2801 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2802  *
2803  * If EL3 is 64-bit:
2804  *  + NonSecure EL1 & 0 stage 1
2805  *  + NonSecure EL1 & 0 stage 2
2806  *  + NonSecure EL2
2807  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2808  *  + Secure EL1 & 0
2809  *  + Secure EL3
2810  * If EL3 is 32-bit:
2811  *  + NonSecure PL1 & 0 stage 1
2812  *  + NonSecure PL1 & 0 stage 2
2813  *  + NonSecure PL2
2814  *  + Secure PL0
2815  *  + Secure PL1
2816  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2817  *
2818  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2819  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2820  *     because they may differ in access permissions even if the VA->PA map is
2821  *     the same
2822  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2823  *     translation, which means that we have one mmu_idx that deals with two
2824  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2825  *     architecturally permitted]
2826  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2827  *     handling via the TLB. The only way to do a stage 1 translation without
2828  *     the immediate stage 2 translation is via the ATS or AT system insns,
2829  *     which can be slow-pathed and always do a page table walk.
2830  *     The only use of stage 2 translations is either as part of an s1+2
2831  *     lookup or when loading the descriptors during a stage 1 page table walk,
2832  *     and in both those cases we don't use the TLB.
2833  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2834  *     translation regimes, because they map reasonably well to each other
2835  *     and they can't both be active at the same time.
2836  *  5. we want to be able to use the TLB for accesses done as part of a
2837  *     stage1 page table walk, rather than having to walk the stage2 page
2838  *     table over and over.
2839  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2840  *     Never (PAN) bit within PSTATE.
2841  *
2842  * This gives us the following list of cases:
2843  *
2844  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2845  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2846  * NS EL1 EL1&0 stage 1+2 +PAN
2847  * NS EL0 EL2&0
2848  * NS EL2 EL2&0
2849  * NS EL2 EL2&0 +PAN
2850  * NS EL2 (aka NS PL2)
2851  * S EL0 EL1&0 (aka S PL0)
2852  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2853  * S EL1 EL1&0 +PAN
2854  * S EL3 (aka S PL1)
2855  *
2856  * for a total of 11 different mmu_idx.
2857  *
2858  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2859  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2860  * NS EL2 if we ever model a Cortex-R52).
2861  *
2862  * M profile CPUs are rather different as they do not have a true MMU.
2863  * They have the following different MMU indexes:
2864  *  User
2865  *  Privileged
2866  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2867  *  Privileged, execution priority negative (ditto)
2868  * If the CPU supports the v8M Security Extension then there are also:
2869  *  Secure User
2870  *  Secure Privileged
2871  *  Secure User, execution priority negative
2872  *  Secure Privileged, execution priority negative
2873  *
2874  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2875  * are not quite the same -- different CPU types (most notably M profile
2876  * vs A/R profile) would like to use MMU indexes with different semantics,
2877  * but since we don't ever need to use all of those in a single CPU we
2878  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2879  * modes + total number of M profile MMU modes". The lower bits of
2880  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2881  * the same for any particular CPU.
2882  * Variables of type ARMMUIdx are always full values, and the core
2883  * index values are in variables of type 'int'.
2884  *
2885  * Our enumeration includes at the end some entries which are not "true"
2886  * mmu_idx values in that they don't have corresponding TLBs and are only
2887  * valid for doing slow path page table walks.
2888  *
2889  * The constant names here are patterned after the general style of the names
2890  * of the AT/ATS operations.
2891  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2892  * For M profile we arrange them to have a bit for priv, a bit for negpri
2893  * and a bit for secure.
2894  */
2895 #define ARM_MMU_IDX_A     0x10  /* A profile */
2896 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2897 #define ARM_MMU_IDX_M     0x40  /* M profile */
2898 
2899 /* Meanings of the bits for M profile mmu idx values */
2900 #define ARM_MMU_IDX_M_PRIV   0x1
2901 #define ARM_MMU_IDX_M_NEGPRI 0x2
2902 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2903 
2904 #define ARM_MMU_IDX_TYPE_MASK \
2905     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2906 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2907 
2908 typedef enum ARMMMUIdx {
2909     /*
2910      * A-profile.
2911      */
2912     ARMMMUIdx_E10_0      =  0 | ARM_MMU_IDX_A,
2913     ARMMMUIdx_E20_0      =  1 | ARM_MMU_IDX_A,
2914 
2915     ARMMMUIdx_E10_1      =  2 | ARM_MMU_IDX_A,
2916     ARMMMUIdx_E10_1_PAN  =  3 | ARM_MMU_IDX_A,
2917 
2918     ARMMMUIdx_E2         =  4 | ARM_MMU_IDX_A,
2919     ARMMMUIdx_E20_2      =  5 | ARM_MMU_IDX_A,
2920     ARMMMUIdx_E20_2_PAN  =  6 | ARM_MMU_IDX_A,
2921 
2922     ARMMMUIdx_SE10_0     = 7 | ARM_MMU_IDX_A,
2923     ARMMMUIdx_SE10_1     = 8 | ARM_MMU_IDX_A,
2924     ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2925     ARMMMUIdx_SE3        = 10 | ARM_MMU_IDX_A,
2926 
2927     /*
2928      * These are not allocated TLBs and are used only for AT system
2929      * instructions or for the first stage of an S12 page table walk.
2930      */
2931     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2932     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2933     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2934     /*
2935      * Not allocated a TLB: used only for second stage of an S12 page
2936      * table walk, or for descriptor loads during first stage of an S1
2937      * page table walk. Note that if we ever want to have a TLB for this
2938      * then various TLB flush insns which currently are no-ops or flush
2939      * only stage 1 MMU indexes will need to change to flush stage 2.
2940      */
2941     ARMMMUIdx_Stage2     = 3 | ARM_MMU_IDX_NOTLB,
2942 
2943     /*
2944      * M-profile.
2945      */
2946     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2947     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2948     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2949     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2950     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2951     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2952     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2953     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2954 } ARMMMUIdx;
2955 
2956 /*
2957  * Bit macros for the core-mmu-index values for each index,
2958  * for use when calling tlb_flush_by_mmuidx() and friends.
2959  */
2960 #define TO_CORE_BIT(NAME) \
2961     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2962 
2963 typedef enum ARMMMUIdxBit {
2964     TO_CORE_BIT(E10_0),
2965     TO_CORE_BIT(E20_0),
2966     TO_CORE_BIT(E10_1),
2967     TO_CORE_BIT(E10_1_PAN),
2968     TO_CORE_BIT(E2),
2969     TO_CORE_BIT(E20_2),
2970     TO_CORE_BIT(E20_2_PAN),
2971     TO_CORE_BIT(SE10_0),
2972     TO_CORE_BIT(SE10_1),
2973     TO_CORE_BIT(SE10_1_PAN),
2974     TO_CORE_BIT(SE3),
2975 
2976     TO_CORE_BIT(MUser),
2977     TO_CORE_BIT(MPriv),
2978     TO_CORE_BIT(MUserNegPri),
2979     TO_CORE_BIT(MPrivNegPri),
2980     TO_CORE_BIT(MSUser),
2981     TO_CORE_BIT(MSPriv),
2982     TO_CORE_BIT(MSUserNegPri),
2983     TO_CORE_BIT(MSPrivNegPri),
2984 } ARMMMUIdxBit;
2985 
2986 #undef TO_CORE_BIT
2987 
2988 #define MMU_USER_IDX 0
2989 
2990 /* Indexes used when registering address spaces with cpu_address_space_init */
2991 typedef enum ARMASIdx {
2992     ARMASIdx_NS = 0,
2993     ARMASIdx_S = 1,
2994     ARMASIdx_TagNS = 2,
2995     ARMASIdx_TagS = 3,
2996 } ARMASIdx;
2997 
2998 /* Return the Exception Level targeted by debug exceptions. */
2999 static inline int arm_debug_target_el(CPUARMState *env)
3000 {
3001     bool secure = arm_is_secure(env);
3002     bool route_to_el2 = false;
3003 
3004     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
3005         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3006                        env->cp15.mdcr_el2 & MDCR_TDE;
3007     }
3008 
3009     if (route_to_el2) {
3010         return 2;
3011     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3012                !arm_el_is_aa64(env, 3) && secure) {
3013         return 3;
3014     } else {
3015         return 1;
3016     }
3017 }
3018 
3019 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3020 {
3021     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3022      * CSSELR is RAZ/WI.
3023      */
3024     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3025 }
3026 
3027 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3028 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3029 {
3030     int cur_el = arm_current_el(env);
3031     int debug_el;
3032 
3033     if (cur_el == 3) {
3034         return false;
3035     }
3036 
3037     /* MDCR_EL3.SDD disables debug events from Secure state */
3038     if (arm_is_secure_below_el3(env)
3039         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3040         return false;
3041     }
3042 
3043     /*
3044      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3045      * while not masking the (D)ebug bit in DAIF.
3046      */
3047     debug_el = arm_debug_target_el(env);
3048 
3049     if (cur_el == debug_el) {
3050         return extract32(env->cp15.mdscr_el1, 13, 1)
3051             && !(env->daif & PSTATE_D);
3052     }
3053 
3054     /* Otherwise the debug target needs to be a higher EL */
3055     return debug_el > cur_el;
3056 }
3057 
3058 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3059 {
3060     int el = arm_current_el(env);
3061 
3062     if (el == 0 && arm_el_is_aa64(env, 1)) {
3063         return aa64_generate_debug_exceptions(env);
3064     }
3065 
3066     if (arm_is_secure(env)) {
3067         int spd;
3068 
3069         if (el == 0 && (env->cp15.sder & 1)) {
3070             /* SDER.SUIDEN means debug exceptions from Secure EL0
3071              * are always enabled. Otherwise they are controlled by
3072              * SDCR.SPD like those from other Secure ELs.
3073              */
3074             return true;
3075         }
3076 
3077         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3078         switch (spd) {
3079         case 1:
3080             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3081         case 0:
3082             /* For 0b00 we return true if external secure invasive debug
3083              * is enabled. On real hardware this is controlled by external
3084              * signals to the core. QEMU always permits debug, and behaves
3085              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3086              */
3087             return true;
3088         case 2:
3089             return false;
3090         case 3:
3091             return true;
3092         }
3093     }
3094 
3095     return el != 2;
3096 }
3097 
3098 /* Return true if debugging exceptions are currently enabled.
3099  * This corresponds to what in ARM ARM pseudocode would be
3100  *    if UsingAArch32() then
3101  *        return AArch32.GenerateDebugExceptions()
3102  *    else
3103  *        return AArch64.GenerateDebugExceptions()
3104  * We choose to push the if() down into this function for clarity,
3105  * since the pseudocode has it at all callsites except for the one in
3106  * CheckSoftwareStep(), where it is elided because both branches would
3107  * always return the same value.
3108  */
3109 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3110 {
3111     if (env->aarch64) {
3112         return aa64_generate_debug_exceptions(env);
3113     } else {
3114         return aa32_generate_debug_exceptions(env);
3115     }
3116 }
3117 
3118 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3119  * implicitly means this always returns false in pre-v8 CPUs.)
3120  */
3121 static inline bool arm_singlestep_active(CPUARMState *env)
3122 {
3123     return extract32(env->cp15.mdscr_el1, 0, 1)
3124         && arm_el_is_aa64(env, arm_debug_target_el(env))
3125         && arm_generate_debug_exceptions(env);
3126 }
3127 
3128 static inline bool arm_sctlr_b(CPUARMState *env)
3129 {
3130     return
3131         /* We need not implement SCTLR.ITD in user-mode emulation, so
3132          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3133          * This lets people run BE32 binaries with "-cpu any".
3134          */
3135 #ifndef CONFIG_USER_ONLY
3136         !arm_feature(env, ARM_FEATURE_V7) &&
3137 #endif
3138         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3139 }
3140 
3141 uint64_t arm_sctlr(CPUARMState *env, int el);
3142 
3143 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3144                                                   bool sctlr_b)
3145 {
3146 #ifdef CONFIG_USER_ONLY
3147     /*
3148      * In system mode, BE32 is modelled in line with the
3149      * architecture (as word-invariant big-endianness), where loads
3150      * and stores are done little endian but from addresses which
3151      * are adjusted by XORing with the appropriate constant. So the
3152      * endianness to use for the raw data access is not affected by
3153      * SCTLR.B.
3154      * In user mode, however, we model BE32 as byte-invariant
3155      * big-endianness (because user-only code cannot tell the
3156      * difference), and so we need to use a data access endianness
3157      * that depends on SCTLR.B.
3158      */
3159     if (sctlr_b) {
3160         return true;
3161     }
3162 #endif
3163     /* In 32bit endianness is determined by looking at CPSR's E bit */
3164     return env->uncached_cpsr & CPSR_E;
3165 }
3166 
3167 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3168 {
3169     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3170 }
3171 
3172 /* Return true if the processor is in big-endian mode. */
3173 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3174 {
3175     if (!is_a64(env)) {
3176         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3177     } else {
3178         int cur_el = arm_current_el(env);
3179         uint64_t sctlr = arm_sctlr(env, cur_el);
3180         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3181     }
3182 }
3183 
3184 typedef CPUARMState CPUArchState;
3185 typedef ARMCPU ArchCPU;
3186 
3187 #include "exec/cpu-all.h"
3188 
3189 /*
3190  * Bit usage in the TB flags field: bit 31 indicates whether we are
3191  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3192  * We put flags which are shared between 32 and 64 bit mode at the top
3193  * of the word, and flags which apply to only one mode at the bottom.
3194  *
3195  *  31          20    18    14          9              0
3196  * +--------------+-----+-----+----------+--------------+
3197  * |              |     |   TBFLAG_A32   |              |
3198  * |              |     +-----+----------+  TBFLAG_AM32 |
3199  * |  TBFLAG_ANY  |           |TBFLAG_M32|              |
3200  * |              +-----------+----------+--------------|
3201  * |              |            TBFLAG_A64               |
3202  * +--------------+-------------------------------------+
3203  *  31          20                                     0
3204  *
3205  * Unless otherwise noted, these bits are cached in env->hflags.
3206  */
3207 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3208 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3209 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1)     /* Not cached. */
3210 FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3211 FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3212 /* Target EL if we take a floating-point-disabled exception */
3213 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3214 /* For A-profile only, target EL for debug exceptions.  */
3215 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3216 
3217 /*
3218  * Bit usage when in AArch32 state, both A- and M-profile.
3219  */
3220 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8)      /* Not cached. */
3221 FIELD(TBFLAG_AM32, THUMB, 8, 1)         /* Not cached. */
3222 
3223 /*
3224  * Bit usage when in AArch32 state, for A-profile only.
3225  */
3226 FIELD(TBFLAG_A32, VECLEN, 9, 3)         /* Not cached. */
3227 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2)     /* Not cached. */
3228 /*
3229  * We store the bottom two bits of the CPAR as TB flags and handle
3230  * checks on the other bits at runtime. This shares the same bits as
3231  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3232  * Not cached, because VECLEN+VECSTRIDE are not cached.
3233  */
3234 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3235 FIELD(TBFLAG_A32, VFPEN, 14, 1)         /* Partially cached, minus FPEXC. */
3236 FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3237 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3238 /*
3239  * Indicates whether cp register reads and writes by guest code should access
3240  * the secure or nonsecure bank of banked registers; note that this is not
3241  * the same thing as the current security state of the processor!
3242  */
3243 FIELD(TBFLAG_A32, NS, 17, 1)
3244 
3245 /*
3246  * Bit usage when in AArch32 state, for M-profile only.
3247  */
3248 /* Handler (ie not Thread) mode */
3249 FIELD(TBFLAG_M32, HANDLER, 9, 1)
3250 /* Whether we should generate stack-limit checks */
3251 FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3252 /* Set if FPCCR.LSPACT is set */
3253 FIELD(TBFLAG_M32, LSPACT, 11, 1)                 /* Not cached. */
3254 /* Set if we must create a new FP context */
3255 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1)     /* Not cached. */
3256 /* Set if FPCCR.S does not match current security state */
3257 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1)          /* Not cached. */
3258 
3259 /*
3260  * Bit usage when in AArch64 state
3261  */
3262 FIELD(TBFLAG_A64, TBII, 0, 2)
3263 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3264 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3265 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3266 FIELD(TBFLAG_A64, BT, 9, 1)
3267 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3268 FIELD(TBFLAG_A64, TBID, 12, 2)
3269 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3270 FIELD(TBFLAG_A64, ATA, 15, 1)
3271 FIELD(TBFLAG_A64, TCMA, 16, 2)
3272 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3273 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3274 
3275 /**
3276  * cpu_mmu_index:
3277  * @env: The cpu environment
3278  * @ifetch: True for code access, false for data access.
3279  *
3280  * Return the core mmu index for the current translation regime.
3281  * This function is used by generic TCG code paths.
3282  */
3283 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3284 {
3285     return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3286 }
3287 
3288 static inline bool bswap_code(bool sctlr_b)
3289 {
3290 #ifdef CONFIG_USER_ONLY
3291     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3292      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3293      * would also end up as a mixed-endian mode with BE code, LE data.
3294      */
3295     return
3296 #ifdef TARGET_WORDS_BIGENDIAN
3297         1 ^
3298 #endif
3299         sctlr_b;
3300 #else
3301     /* All code access in ARM is little endian, and there are no loaders
3302      * doing swaps that need to be reversed
3303      */
3304     return 0;
3305 #endif
3306 }
3307 
3308 #ifdef CONFIG_USER_ONLY
3309 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3310 {
3311     return
3312 #ifdef TARGET_WORDS_BIGENDIAN
3313        1 ^
3314 #endif
3315        arm_cpu_data_is_big_endian(env);
3316 }
3317 #endif
3318 
3319 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3320                           target_ulong *cs_base, uint32_t *flags);
3321 
3322 enum {
3323     QEMU_PSCI_CONDUIT_DISABLED = 0,
3324     QEMU_PSCI_CONDUIT_SMC = 1,
3325     QEMU_PSCI_CONDUIT_HVC = 2,
3326 };
3327 
3328 #ifndef CONFIG_USER_ONLY
3329 /* Return the address space index to use for a memory access */
3330 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3331 {
3332     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3333 }
3334 
3335 /* Return the AddressSpace to use for a memory access
3336  * (which depends on whether the access is S or NS, and whether
3337  * the board gave us a separate AddressSpace for S accesses).
3338  */
3339 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3340 {
3341     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3342 }
3343 #endif
3344 
3345 /**
3346  * arm_register_pre_el_change_hook:
3347  * Register a hook function which will be called immediately before this
3348  * CPU changes exception level or mode. The hook function will be
3349  * passed a pointer to the ARMCPU and the opaque data pointer passed
3350  * to this function when the hook was registered.
3351  *
3352  * Note that if a pre-change hook is called, any registered post-change hooks
3353  * are guaranteed to subsequently be called.
3354  */
3355 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3356                                  void *opaque);
3357 /**
3358  * arm_register_el_change_hook:
3359  * Register a hook function which will be called immediately after this
3360  * CPU changes exception level or mode. The hook function will be
3361  * passed a pointer to the ARMCPU and the opaque data pointer passed
3362  * to this function when the hook was registered.
3363  *
3364  * Note that any registered hooks registered here are guaranteed to be called
3365  * if pre-change hooks have been.
3366  */
3367 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3368         *opaque);
3369 
3370 /**
3371  * arm_rebuild_hflags:
3372  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3373  */
3374 void arm_rebuild_hflags(CPUARMState *env);
3375 
3376 /**
3377  * aa32_vfp_dreg:
3378  * Return a pointer to the Dn register within env in 32-bit mode.
3379  */
3380 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3381 {
3382     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3383 }
3384 
3385 /**
3386  * aa32_vfp_qreg:
3387  * Return a pointer to the Qn register within env in 32-bit mode.
3388  */
3389 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3390 {
3391     return &env->vfp.zregs[regno].d[0];
3392 }
3393 
3394 /**
3395  * aa64_vfp_qreg:
3396  * Return a pointer to the Qn register within env in 64-bit mode.
3397  */
3398 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3399 {
3400     return &env->vfp.zregs[regno].d[0];
3401 }
3402 
3403 /* Shared between translate-sve.c and sve_helper.c.  */
3404 extern const uint64_t pred_esz_masks[4];
3405 
3406 /* Helper for the macros below, validating the argument type. */
3407 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3408 {
3409     return x;
3410 }
3411 
3412 /*
3413  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3414  * Using these should be a bit more self-documenting than using the
3415  * generic target bits directly.
3416  */
3417 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3418 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3419 
3420 /*
3421  * Naming convention for isar_feature functions:
3422  * Functions which test 32-bit ID registers should have _aa32_ in
3423  * their name. Functions which test 64-bit ID registers should have
3424  * _aa64_ in their name. These must only be used in code where we
3425  * know for certain that the CPU has AArch32 or AArch64 respectively
3426  * or where the correct answer for a CPU which doesn't implement that
3427  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3428  * system registers that are specific to that CPU state, for "should
3429  * we let this system register bit be set" tests where the 32-bit
3430  * flavour of the register doesn't have the bit, and so on).
3431  * Functions which simply ask "does this feature exist at all" have
3432  * _any_ in their name, and always return the logical OR of the _aa64_
3433  * and the _aa32_ function.
3434  */
3435 
3436 /*
3437  * 32-bit feature tests via id registers.
3438  */
3439 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3440 {
3441     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3442 }
3443 
3444 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3445 {
3446     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3447 }
3448 
3449 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3450 {
3451     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3452 }
3453 
3454 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3455 {
3456     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3457 }
3458 
3459 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3460 {
3461     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3462 }
3463 
3464 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3465 {
3466     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3467 }
3468 
3469 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3470 {
3471     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3472 }
3473 
3474 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3475 {
3476     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3477 }
3478 
3479 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3480 {
3481     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3482 }
3483 
3484 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3485 {
3486     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3487 }
3488 
3489 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3490 {
3491     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3492 }
3493 
3494 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3495 {
3496     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3497 }
3498 
3499 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3500 {
3501     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3502 }
3503 
3504 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3505 {
3506     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3507 }
3508 
3509 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3510 {
3511     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3512 }
3513 
3514 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3515 {
3516     /*
3517      * This is a placeholder for use by VCMA until the rest of
3518      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3519      * At which point we can properly set and check MVFR1.FPHP.
3520      */
3521     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3522 }
3523 
3524 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3525 {
3526     /*
3527      * Return true if either VFP or SIMD is implemented.
3528      * In this case, a minimum of VFP w/ D0-D15.
3529      */
3530     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3531 }
3532 
3533 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3534 {
3535     /* Return true if D16-D31 are implemented */
3536     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3537 }
3538 
3539 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3540 {
3541     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3542 }
3543 
3544 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3545 {
3546     /* Return true if CPU supports single precision floating point, VFPv2 */
3547     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3548 }
3549 
3550 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3551 {
3552     /* Return true if CPU supports single precision floating point, VFPv3 */
3553     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3554 }
3555 
3556 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3557 {
3558     /* Return true if CPU supports double precision floating point, VFPv2 */
3559     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3560 }
3561 
3562 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3563 {
3564     /* Return true if CPU supports double precision floating point, VFPv3 */
3565     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3566 }
3567 
3568 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3569 {
3570     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3571 }
3572 
3573 /*
3574  * We always set the FP and SIMD FP16 fields to indicate identical
3575  * levels of support (assuming SIMD is implemented at all), so
3576  * we only need one set of accessors.
3577  */
3578 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3579 {
3580     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3581 }
3582 
3583 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3584 {
3585     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3586 }
3587 
3588 /*
3589  * Note that this ID register field covers both VFP and Neon FMAC,
3590  * so should usually be tested in combination with some other
3591  * check that confirms the presence of whichever of VFP or Neon is
3592  * relevant, to avoid accidentally enabling a Neon feature on
3593  * a VFP-no-Neon core or vice-versa.
3594  */
3595 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3596 {
3597     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3598 }
3599 
3600 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3601 {
3602     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3603 }
3604 
3605 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3606 {
3607     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3608 }
3609 
3610 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3611 {
3612     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3613 }
3614 
3615 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3616 {
3617     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3618 }
3619 
3620 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3621 {
3622     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3623 }
3624 
3625 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3626 {
3627     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3628 }
3629 
3630 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3631 {
3632     /* 0xf means "non-standard IMPDEF PMU" */
3633     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3634         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3635 }
3636 
3637 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3638 {
3639     /* 0xf means "non-standard IMPDEF PMU" */
3640     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3641         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3642 }
3643 
3644 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3645 {
3646     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3647 }
3648 
3649 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3650 {
3651     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3652 }
3653 
3654 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3655 {
3656     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3657 }
3658 
3659 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3660 {
3661     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3662 }
3663 
3664 /*
3665  * 64-bit feature tests via id registers.
3666  */
3667 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3668 {
3669     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3670 }
3671 
3672 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3673 {
3674     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3675 }
3676 
3677 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3678 {
3679     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3680 }
3681 
3682 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3683 {
3684     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3685 }
3686 
3687 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3688 {
3689     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3690 }
3691 
3692 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3693 {
3694     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3695 }
3696 
3697 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3698 {
3699     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3700 }
3701 
3702 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3703 {
3704     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3705 }
3706 
3707 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3708 {
3709     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3710 }
3711 
3712 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3713 {
3714     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3715 }
3716 
3717 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3718 {
3719     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3720 }
3721 
3722 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3723 {
3724     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3725 }
3726 
3727 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3728 {
3729     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3730 }
3731 
3732 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3733 {
3734     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3735 }
3736 
3737 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3738 {
3739     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3740 }
3741 
3742 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3743 {
3744     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3745 }
3746 
3747 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3748 {
3749     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3750 }
3751 
3752 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3753 {
3754     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3755 }
3756 
3757 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3758 {
3759     /*
3760      * Note that while QEMU will only implement the architected algorithm
3761      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3762      * defined algorithms, and thus API+GPI, and this predicate controls
3763      * migration of the 128-bit keys.
3764      */
3765     return (id->id_aa64isar1 &
3766             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3767              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3768              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3769              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3770 }
3771 
3772 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3773 {
3774     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3775 }
3776 
3777 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3778 {
3779     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3780 }
3781 
3782 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3783 {
3784     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3785 }
3786 
3787 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3788 {
3789     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3790 }
3791 
3792 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3793 {
3794     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3795 }
3796 
3797 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3798 {
3799     /* We always set the AdvSIMD and FP fields identically.  */
3800     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3801 }
3802 
3803 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3804 {
3805     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3806     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3807 }
3808 
3809 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3810 {
3811     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3812 }
3813 
3814 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3815 {
3816     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3817 }
3818 
3819 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3820 {
3821     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3822 }
3823 
3824 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3825 {
3826     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3827 }
3828 
3829 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3830 {
3831     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3832 }
3833 
3834 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3835 {
3836     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3837 }
3838 
3839 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3840 {
3841     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3842 }
3843 
3844 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3845 {
3846     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3847 }
3848 
3849 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3850 {
3851     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3852 }
3853 
3854 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3855 {
3856     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3857 }
3858 
3859 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3860 {
3861     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3862         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3863 }
3864 
3865 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3866 {
3867     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3868         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3869 }
3870 
3871 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3872 {
3873     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3874 }
3875 
3876 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3877 {
3878     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3879 }
3880 
3881 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3882 {
3883     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3884 }
3885 
3886 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
3887 {
3888     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
3889 }
3890 
3891 /*
3892  * Feature tests for "does this exist in either 32-bit or 64-bit?"
3893  */
3894 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3895 {
3896     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3897 }
3898 
3899 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3900 {
3901     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3902 }
3903 
3904 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3905 {
3906     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3907 }
3908 
3909 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3910 {
3911     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3912 }
3913 
3914 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3915 {
3916     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3917 }
3918 
3919 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
3920 {
3921     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
3922 }
3923 
3924 /*
3925  * Forward to the above feature tests given an ARMCPU pointer.
3926  */
3927 #define cpu_isar_feature(name, cpu) \
3928     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3929 
3930 #endif
3931