xref: /openbmc/qemu/target/arm/cpu.c (revision da278d58a092bfcc4e36f1e274229c1468dea731)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 static void arm_cpu_reset(DeviceState *dev)
159 {
160     CPUState *s = CPU(dev);
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(dev);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* and to the FP/Neon instructions */
195         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
196         /* and to the SVE instructions */
197         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
198         /* with reasonable vector length */
199         if (cpu_isar_feature(aa64_sve, cpu)) {
200             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
201         }
202         /*
203          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
204          * turning on both here will produce smaller code and otherwise
205          * make no difference to the user-level emulation.
206          */
207         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
208 #else
209         /* Reset into the highest available EL */
210         if (arm_feature(env, ARM_FEATURE_EL3)) {
211             env->pstate = PSTATE_MODE_EL3h;
212         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
213             env->pstate = PSTATE_MODE_EL2h;
214         } else {
215             env->pstate = PSTATE_MODE_EL1h;
216         }
217         env->pc = cpu->rvbar;
218 #endif
219     } else {
220 #if defined(CONFIG_USER_ONLY)
221         /* Userspace expects access to cp10 and cp11 for FP/Neon */
222         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
223 #endif
224     }
225 
226 #if defined(CONFIG_USER_ONLY)
227     env->uncached_cpsr = ARM_CPU_MODE_USR;
228     /* For user mode we must enable access to coprocessors */
229     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
230     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231         env->cp15.c15_cpar = 3;
232     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
233         env->cp15.c15_cpar = 1;
234     }
235 #else
236 
237     /*
238      * If the highest available EL is EL2, AArch32 will start in Hyp
239      * mode; otherwise it starts in SVC. Note that if we start in
240      * AArch64 then these values in the uncached_cpsr will be ignored.
241      */
242     if (arm_feature(env, ARM_FEATURE_EL2) &&
243         !arm_feature(env, ARM_FEATURE_EL3)) {
244         env->uncached_cpsr = ARM_CPU_MODE_HYP;
245     } else {
246         env->uncached_cpsr = ARM_CPU_MODE_SVC;
247     }
248     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
249 
250     if (arm_feature(env, ARM_FEATURE_M)) {
251         uint32_t initial_msp; /* Loaded from 0x0 */
252         uint32_t initial_pc; /* Loaded from 0x4 */
253         uint8_t *rom;
254         uint32_t vecbase;
255 
256         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
257             env->v7m.secure = true;
258         } else {
259             /* This bit resets to 0 if security is supported, but 1 if
260              * it is not. The bit is not present in v7M, but we set it
261              * here so we can avoid having to make checks on it conditional
262              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
263              */
264             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
265             /*
266              * Set NSACR to indicate "NS access permitted to everything";
267              * this avoids having to have all the tests of it being
268              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
269              * v8.1M the guest-visible value of NSACR in a CPU without the
270              * Security Extension is 0xcff.
271              */
272             env->v7m.nsacr = 0xcff;
273         }
274 
275         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
276          * that it resets to 1, so QEMU always does that rather than making
277          * it dependent on CPU model. In v8M it is RES1.
278          */
279         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
280         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
281         if (arm_feature(env, ARM_FEATURE_V8)) {
282             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
283             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
284             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
285         }
286         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
287             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
288             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
289         }
290 
291         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
292             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
293             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
294                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
295         }
296         /* Unlike A/R profile, M profile defines the reset LR value */
297         env->regs[14] = 0xffffffff;
298 
299         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
300 
301         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
302         vecbase = env->v7m.vecbase[env->v7m.secure];
303         rom = rom_ptr(vecbase, 8);
304         if (rom) {
305             /* Address zero is covered by ROM which hasn't yet been
306              * copied into physical memory.
307              */
308             initial_msp = ldl_p(rom);
309             initial_pc = ldl_p(rom + 4);
310         } else {
311             /* Address zero not covered by a ROM blob, or the ROM blob
312              * is in non-modifiable memory and this is a second reset after
313              * it got copied into memory. In the latter case, rom_ptr
314              * will return a NULL pointer and we should use ldl_phys instead.
315              */
316             initial_msp = ldl_phys(s->as, vecbase);
317             initial_pc = ldl_phys(s->as, vecbase + 4);
318         }
319 
320         env->regs[13] = initial_msp & 0xFFFFFFFC;
321         env->regs[15] = initial_pc & ~1;
322         env->thumb = initial_pc & 1;
323     }
324 
325     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
326      * executing as AArch32 then check if highvecs are enabled and
327      * adjust the PC accordingly.
328      */
329     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
330         env->regs[15] = 0xFFFF0000;
331     }
332 
333     /* M profile requires that reset clears the exclusive monitor;
334      * A profile does not, but clearing it makes more sense than having it
335      * set with an exclusive access on address zero.
336      */
337     arm_clear_exclusive(env);
338 
339     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
340 #endif
341 
342     if (arm_feature(env, ARM_FEATURE_PMSA)) {
343         if (cpu->pmsav7_dregion > 0) {
344             if (arm_feature(env, ARM_FEATURE_V8)) {
345                 memset(env->pmsav8.rbar[M_REG_NS], 0,
346                        sizeof(*env->pmsav8.rbar[M_REG_NS])
347                        * cpu->pmsav7_dregion);
348                 memset(env->pmsav8.rlar[M_REG_NS], 0,
349                        sizeof(*env->pmsav8.rlar[M_REG_NS])
350                        * cpu->pmsav7_dregion);
351                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
352                     memset(env->pmsav8.rbar[M_REG_S], 0,
353                            sizeof(*env->pmsav8.rbar[M_REG_S])
354                            * cpu->pmsav7_dregion);
355                     memset(env->pmsav8.rlar[M_REG_S], 0,
356                            sizeof(*env->pmsav8.rlar[M_REG_S])
357                            * cpu->pmsav7_dregion);
358                 }
359             } else if (arm_feature(env, ARM_FEATURE_V7)) {
360                 memset(env->pmsav7.drbar, 0,
361                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
362                 memset(env->pmsav7.drsr, 0,
363                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
364                 memset(env->pmsav7.dracr, 0,
365                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
366             }
367         }
368         env->pmsav7.rnr[M_REG_NS] = 0;
369         env->pmsav7.rnr[M_REG_S] = 0;
370         env->pmsav8.mair0[M_REG_NS] = 0;
371         env->pmsav8.mair0[M_REG_S] = 0;
372         env->pmsav8.mair1[M_REG_NS] = 0;
373         env->pmsav8.mair1[M_REG_S] = 0;
374     }
375 
376     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
377         if (cpu->sau_sregion > 0) {
378             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
379             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
380         }
381         env->sau.rnr = 0;
382         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
383          * the Cortex-M33 does.
384          */
385         env->sau.ctrl = 0;
386     }
387 
388     set_flush_to_zero(1, &env->vfp.standard_fp_status);
389     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
390     set_default_nan_mode(1, &env->vfp.standard_fp_status);
391     set_float_detect_tininess(float_tininess_before_rounding,
392                               &env->vfp.fp_status);
393     set_float_detect_tininess(float_tininess_before_rounding,
394                               &env->vfp.standard_fp_status);
395     set_float_detect_tininess(float_tininess_before_rounding,
396                               &env->vfp.fp_status_f16);
397 #ifndef CONFIG_USER_ONLY
398     if (kvm_enabled()) {
399         kvm_arm_reset_vcpu(cpu);
400     }
401 #endif
402 
403     hw_breakpoint_update_all(cpu);
404     hw_watchpoint_update_all(cpu);
405     arm_rebuild_hflags(env);
406 }
407 
408 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
409                                      unsigned int target_el,
410                                      unsigned int cur_el, bool secure,
411                                      uint64_t hcr_el2)
412 {
413     CPUARMState *env = cs->env_ptr;
414     bool pstate_unmasked;
415     bool unmasked = false;
416 
417     /*
418      * Don't take exceptions if they target a lower EL.
419      * This check should catch any exceptions that would not be taken
420      * but left pending.
421      */
422     if (cur_el > target_el) {
423         return false;
424     }
425 
426     switch (excp_idx) {
427     case EXCP_FIQ:
428         pstate_unmasked = !(env->daif & PSTATE_F);
429         break;
430 
431     case EXCP_IRQ:
432         pstate_unmasked = !(env->daif & PSTATE_I);
433         break;
434 
435     case EXCP_VFIQ:
436         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
437             /* VFIQs are only taken when hypervized and non-secure.  */
438             return false;
439         }
440         return !(env->daif & PSTATE_F);
441     case EXCP_VIRQ:
442         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
443             /* VIRQs are only taken when hypervized and non-secure.  */
444             return false;
445         }
446         return !(env->daif & PSTATE_I);
447     default:
448         g_assert_not_reached();
449     }
450 
451     /*
452      * Use the target EL, current execution state and SCR/HCR settings to
453      * determine whether the corresponding CPSR bit is used to mask the
454      * interrupt.
455      */
456     if ((target_el > cur_el) && (target_el != 1)) {
457         /* Exceptions targeting a higher EL may not be maskable */
458         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
459             /*
460              * 64-bit masking rules are simple: exceptions to EL3
461              * can't be masked, and exceptions to EL2 can only be
462              * masked from Secure state. The HCR and SCR settings
463              * don't affect the masking logic, only the interrupt routing.
464              */
465             if (target_el == 3 || !secure) {
466                 unmasked = true;
467             }
468         } else {
469             /*
470              * The old 32-bit-only environment has a more complicated
471              * masking setup. HCR and SCR bits not only affect interrupt
472              * routing but also change the behaviour of masking.
473              */
474             bool hcr, scr;
475 
476             switch (excp_idx) {
477             case EXCP_FIQ:
478                 /*
479                  * If FIQs are routed to EL3 or EL2 then there are cases where
480                  * we override the CPSR.F in determining if the exception is
481                  * masked or not. If neither of these are set then we fall back
482                  * to the CPSR.F setting otherwise we further assess the state
483                  * below.
484                  */
485                 hcr = hcr_el2 & HCR_FMO;
486                 scr = (env->cp15.scr_el3 & SCR_FIQ);
487 
488                 /*
489                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
490                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
491                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
492                  * when non-secure but only when FIQs are only routed to EL3.
493                  */
494                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
495                 break;
496             case EXCP_IRQ:
497                 /*
498                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
499                  * we may override the CPSR.I masking when in non-secure state.
500                  * The SCR.IRQ setting has already been taken into consideration
501                  * when setting the target EL, so it does not have a further
502                  * affect here.
503                  */
504                 hcr = hcr_el2 & HCR_IMO;
505                 scr = false;
506                 break;
507             default:
508                 g_assert_not_reached();
509             }
510 
511             if ((scr || hcr) && !secure) {
512                 unmasked = true;
513             }
514         }
515     }
516 
517     /*
518      * The PSTATE bits only mask the interrupt if we have not overriden the
519      * ability above.
520      */
521     return unmasked || pstate_unmasked;
522 }
523 
524 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
525 {
526     CPUClass *cc = CPU_GET_CLASS(cs);
527     CPUARMState *env = cs->env_ptr;
528     uint32_t cur_el = arm_current_el(env);
529     bool secure = arm_is_secure(env);
530     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
531     uint32_t target_el;
532     uint32_t excp_idx;
533 
534     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
535 
536     if (interrupt_request & CPU_INTERRUPT_FIQ) {
537         excp_idx = EXCP_FIQ;
538         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
539         if (arm_excp_unmasked(cs, excp_idx, target_el,
540                               cur_el, secure, hcr_el2)) {
541             goto found;
542         }
543     }
544     if (interrupt_request & CPU_INTERRUPT_HARD) {
545         excp_idx = EXCP_IRQ;
546         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
547         if (arm_excp_unmasked(cs, excp_idx, target_el,
548                               cur_el, secure, hcr_el2)) {
549             goto found;
550         }
551     }
552     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
553         excp_idx = EXCP_VIRQ;
554         target_el = 1;
555         if (arm_excp_unmasked(cs, excp_idx, target_el,
556                               cur_el, secure, hcr_el2)) {
557             goto found;
558         }
559     }
560     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
561         excp_idx = EXCP_VFIQ;
562         target_el = 1;
563         if (arm_excp_unmasked(cs, excp_idx, target_el,
564                               cur_el, secure, hcr_el2)) {
565             goto found;
566         }
567     }
568     return false;
569 
570  found:
571     cs->exception_index = excp_idx;
572     env->exception.target_el = target_el;
573     cc->do_interrupt(cs);
574     return true;
575 }
576 
577 void arm_cpu_update_virq(ARMCPU *cpu)
578 {
579     /*
580      * Update the interrupt level for VIRQ, which is the logical OR of
581      * the HCR_EL2.VI bit and the input line level from the GIC.
582      */
583     CPUARMState *env = &cpu->env;
584     CPUState *cs = CPU(cpu);
585 
586     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
587         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
588 
589     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
590         if (new_state) {
591             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
592         } else {
593             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
594         }
595     }
596 }
597 
598 void arm_cpu_update_vfiq(ARMCPU *cpu)
599 {
600     /*
601      * Update the interrupt level for VFIQ, which is the logical OR of
602      * the HCR_EL2.VF bit and the input line level from the GIC.
603      */
604     CPUARMState *env = &cpu->env;
605     CPUState *cs = CPU(cpu);
606 
607     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
608         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
609 
610     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
611         if (new_state) {
612             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
613         } else {
614             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
615         }
616     }
617 }
618 
619 #ifndef CONFIG_USER_ONLY
620 static void arm_cpu_set_irq(void *opaque, int irq, int level)
621 {
622     ARMCPU *cpu = opaque;
623     CPUARMState *env = &cpu->env;
624     CPUState *cs = CPU(cpu);
625     static const int mask[] = {
626         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
627         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
628         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
629         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
630     };
631 
632     if (level) {
633         env->irq_line_state |= mask[irq];
634     } else {
635         env->irq_line_state &= ~mask[irq];
636     }
637 
638     switch (irq) {
639     case ARM_CPU_VIRQ:
640         assert(arm_feature(env, ARM_FEATURE_EL2));
641         arm_cpu_update_virq(cpu);
642         break;
643     case ARM_CPU_VFIQ:
644         assert(arm_feature(env, ARM_FEATURE_EL2));
645         arm_cpu_update_vfiq(cpu);
646         break;
647     case ARM_CPU_IRQ:
648     case ARM_CPU_FIQ:
649         if (level) {
650             cpu_interrupt(cs, mask[irq]);
651         } else {
652             cpu_reset_interrupt(cs, mask[irq]);
653         }
654         break;
655     default:
656         g_assert_not_reached();
657     }
658 }
659 
660 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
661 {
662 #ifdef CONFIG_KVM
663     ARMCPU *cpu = opaque;
664     CPUARMState *env = &cpu->env;
665     CPUState *cs = CPU(cpu);
666     uint32_t linestate_bit;
667     int irq_id;
668 
669     switch (irq) {
670     case ARM_CPU_IRQ:
671         irq_id = KVM_ARM_IRQ_CPU_IRQ;
672         linestate_bit = CPU_INTERRUPT_HARD;
673         break;
674     case ARM_CPU_FIQ:
675         irq_id = KVM_ARM_IRQ_CPU_FIQ;
676         linestate_bit = CPU_INTERRUPT_FIQ;
677         break;
678     default:
679         g_assert_not_reached();
680     }
681 
682     if (level) {
683         env->irq_line_state |= linestate_bit;
684     } else {
685         env->irq_line_state &= ~linestate_bit;
686     }
687     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
688 #endif
689 }
690 
691 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
692 {
693     ARMCPU *cpu = ARM_CPU(cs);
694     CPUARMState *env = &cpu->env;
695 
696     cpu_synchronize_state(cs);
697     return arm_cpu_data_is_big_endian(env);
698 }
699 
700 #endif
701 
702 static int
703 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
704 {
705   return print_insn_arm(pc | 1, info);
706 }
707 
708 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
709 {
710     ARMCPU *ac = ARM_CPU(cpu);
711     CPUARMState *env = &ac->env;
712     bool sctlr_b;
713 
714     if (is_a64(env)) {
715         /* We might not be compiled with the A64 disassembler
716          * because it needs a C++ compiler. Leave print_insn
717          * unset in this case to use the caller default behaviour.
718          */
719 #if defined(CONFIG_ARM_A64_DIS)
720         info->print_insn = print_insn_arm_a64;
721 #endif
722         info->cap_arch = CS_ARCH_ARM64;
723         info->cap_insn_unit = 4;
724         info->cap_insn_split = 4;
725     } else {
726         int cap_mode;
727         if (env->thumb) {
728             info->print_insn = print_insn_thumb1;
729             info->cap_insn_unit = 2;
730             info->cap_insn_split = 4;
731             cap_mode = CS_MODE_THUMB;
732         } else {
733             info->print_insn = print_insn_arm;
734             info->cap_insn_unit = 4;
735             info->cap_insn_split = 4;
736             cap_mode = CS_MODE_ARM;
737         }
738         if (arm_feature(env, ARM_FEATURE_V8)) {
739             cap_mode |= CS_MODE_V8;
740         }
741         if (arm_feature(env, ARM_FEATURE_M)) {
742             cap_mode |= CS_MODE_MCLASS;
743         }
744         info->cap_arch = CS_ARCH_ARM;
745         info->cap_mode = cap_mode;
746     }
747 
748     sctlr_b = arm_sctlr_b(env);
749     if (bswap_code(sctlr_b)) {
750 #ifdef TARGET_WORDS_BIGENDIAN
751         info->endian = BFD_ENDIAN_LITTLE;
752 #else
753         info->endian = BFD_ENDIAN_BIG;
754 #endif
755     }
756     info->flags &= ~INSN_ARM_BE32;
757 #ifndef CONFIG_USER_ONLY
758     if (sctlr_b) {
759         info->flags |= INSN_ARM_BE32;
760     }
761 #endif
762 }
763 
764 #ifdef TARGET_AARCH64
765 
766 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
767 {
768     ARMCPU *cpu = ARM_CPU(cs);
769     CPUARMState *env = &cpu->env;
770     uint32_t psr = pstate_read(env);
771     int i;
772     int el = arm_current_el(env);
773     const char *ns_status;
774 
775     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
776     for (i = 0; i < 32; i++) {
777         if (i == 31) {
778             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
779         } else {
780             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
781                          (i + 2) % 3 ? " " : "\n");
782         }
783     }
784 
785     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
786         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
787     } else {
788         ns_status = "";
789     }
790     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
791                  psr,
792                  psr & PSTATE_N ? 'N' : '-',
793                  psr & PSTATE_Z ? 'Z' : '-',
794                  psr & PSTATE_C ? 'C' : '-',
795                  psr & PSTATE_V ? 'V' : '-',
796                  ns_status,
797                  el,
798                  psr & PSTATE_SP ? 'h' : 't');
799 
800     if (cpu_isar_feature(aa64_bti, cpu)) {
801         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
802     }
803     if (!(flags & CPU_DUMP_FPU)) {
804         qemu_fprintf(f, "\n");
805         return;
806     }
807     if (fp_exception_el(env, el) != 0) {
808         qemu_fprintf(f, "    FPU disabled\n");
809         return;
810     }
811     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
812                  vfp_get_fpcr(env), vfp_get_fpsr(env));
813 
814     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
815         int j, zcr_len = sve_zcr_len_for_el(env, el);
816 
817         for (i = 0; i <= FFR_PRED_NUM; i++) {
818             bool eol;
819             if (i == FFR_PRED_NUM) {
820                 qemu_fprintf(f, "FFR=");
821                 /* It's last, so end the line.  */
822                 eol = true;
823             } else {
824                 qemu_fprintf(f, "P%02d=", i);
825                 switch (zcr_len) {
826                 case 0:
827                     eol = i % 8 == 7;
828                     break;
829                 case 1:
830                     eol = i % 6 == 5;
831                     break;
832                 case 2:
833                 case 3:
834                     eol = i % 3 == 2;
835                     break;
836                 default:
837                     /* More than one quadword per predicate.  */
838                     eol = true;
839                     break;
840                 }
841             }
842             for (j = zcr_len / 4; j >= 0; j--) {
843                 int digits;
844                 if (j * 4 + 4 <= zcr_len + 1) {
845                     digits = 16;
846                 } else {
847                     digits = (zcr_len % 4 + 1) * 4;
848                 }
849                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
850                              env->vfp.pregs[i].p[j],
851                              j ? ":" : eol ? "\n" : " ");
852             }
853         }
854 
855         for (i = 0; i < 32; i++) {
856             if (zcr_len == 0) {
857                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
858                              i, env->vfp.zregs[i].d[1],
859                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
860             } else if (zcr_len == 1) {
861                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
862                              ":%016" PRIx64 ":%016" PRIx64 "\n",
863                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
864                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
865             } else {
866                 for (j = zcr_len; j >= 0; j--) {
867                     bool odd = (zcr_len - j) % 2 != 0;
868                     if (j == zcr_len) {
869                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
870                     } else if (!odd) {
871                         if (j > 0) {
872                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
873                         } else {
874                             qemu_fprintf(f, "     [%x]=", j);
875                         }
876                     }
877                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
878                                  env->vfp.zregs[i].d[j * 2 + 1],
879                                  env->vfp.zregs[i].d[j * 2],
880                                  odd || j == 0 ? "\n" : ":");
881                 }
882             }
883         }
884     } else {
885         for (i = 0; i < 32; i++) {
886             uint64_t *q = aa64_vfp_qreg(env, i);
887             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
888                          i, q[1], q[0], (i & 1 ? "\n" : " "));
889         }
890     }
891 }
892 
893 #else
894 
895 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
896 {
897     g_assert_not_reached();
898 }
899 
900 #endif
901 
902 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
903 {
904     ARMCPU *cpu = ARM_CPU(cs);
905     CPUARMState *env = &cpu->env;
906     int i;
907 
908     if (is_a64(env)) {
909         aarch64_cpu_dump_state(cs, f, flags);
910         return;
911     }
912 
913     for (i = 0; i < 16; i++) {
914         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
915         if ((i % 4) == 3) {
916             qemu_fprintf(f, "\n");
917         } else {
918             qemu_fprintf(f, " ");
919         }
920     }
921 
922     if (arm_feature(env, ARM_FEATURE_M)) {
923         uint32_t xpsr = xpsr_read(env);
924         const char *mode;
925         const char *ns_status = "";
926 
927         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
928             ns_status = env->v7m.secure ? "S " : "NS ";
929         }
930 
931         if (xpsr & XPSR_EXCP) {
932             mode = "handler";
933         } else {
934             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
935                 mode = "unpriv-thread";
936             } else {
937                 mode = "priv-thread";
938             }
939         }
940 
941         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
942                      xpsr,
943                      xpsr & XPSR_N ? 'N' : '-',
944                      xpsr & XPSR_Z ? 'Z' : '-',
945                      xpsr & XPSR_C ? 'C' : '-',
946                      xpsr & XPSR_V ? 'V' : '-',
947                      xpsr & XPSR_T ? 'T' : 'A',
948                      ns_status,
949                      mode);
950     } else {
951         uint32_t psr = cpsr_read(env);
952         const char *ns_status = "";
953 
954         if (arm_feature(env, ARM_FEATURE_EL3) &&
955             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
956             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
957         }
958 
959         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
960                      psr,
961                      psr & CPSR_N ? 'N' : '-',
962                      psr & CPSR_Z ? 'Z' : '-',
963                      psr & CPSR_C ? 'C' : '-',
964                      psr & CPSR_V ? 'V' : '-',
965                      psr & CPSR_T ? 'T' : 'A',
966                      ns_status,
967                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
968     }
969 
970     if (flags & CPU_DUMP_FPU) {
971         int numvfpregs = 0;
972         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
973             numvfpregs = 32;
974         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
975             numvfpregs = 16;
976         }
977         for (i = 0; i < numvfpregs; i++) {
978             uint64_t v = *aa32_vfp_dreg(env, i);
979             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
980                          i * 2, (uint32_t)v,
981                          i * 2 + 1, (uint32_t)(v >> 32),
982                          i, v);
983         }
984         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
985     }
986 }
987 
988 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
989 {
990     uint32_t Aff1 = idx / clustersz;
991     uint32_t Aff0 = idx % clustersz;
992     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
993 }
994 
995 static void cpreg_hashtable_data_destroy(gpointer data)
996 {
997     /*
998      * Destroy function for cpu->cp_regs hashtable data entries.
999      * We must free the name string because it was g_strdup()ed in
1000      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1001      * from r->name because we know we definitely allocated it.
1002      */
1003     ARMCPRegInfo *r = data;
1004 
1005     g_free((void *)r->name);
1006     g_free(r);
1007 }
1008 
1009 static void arm_cpu_initfn(Object *obj)
1010 {
1011     ARMCPU *cpu = ARM_CPU(obj);
1012 
1013     cpu_set_cpustate_pointers(cpu);
1014     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1015                                          g_free, cpreg_hashtable_data_destroy);
1016 
1017     QLIST_INIT(&cpu->pre_el_change_hooks);
1018     QLIST_INIT(&cpu->el_change_hooks);
1019 
1020 #ifndef CONFIG_USER_ONLY
1021     /* Our inbound IRQ and FIQ lines */
1022     if (kvm_enabled()) {
1023         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1024          * the same interface as non-KVM CPUs.
1025          */
1026         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1027     } else {
1028         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1029     }
1030 
1031     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1032                        ARRAY_SIZE(cpu->gt_timer_outputs));
1033 
1034     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1035                              "gicv3-maintenance-interrupt", 1);
1036     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1037                              "pmu-interrupt", 1);
1038 #endif
1039 
1040     /* DTB consumers generally don't in fact care what the 'compatible'
1041      * string is, so always provide some string and trust that a hypothetical
1042      * picky DTB consumer will also provide a helpful error message.
1043      */
1044     cpu->dtb_compatible = "qemu,unknown";
1045     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1046     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1047 
1048     if (tcg_enabled()) {
1049         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1050     }
1051 }
1052 
1053 static Property arm_cpu_gt_cntfrq_property =
1054             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1055                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1056 
1057 static Property arm_cpu_reset_cbar_property =
1058             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1059 
1060 static Property arm_cpu_reset_hivecs_property =
1061             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1062 
1063 static Property arm_cpu_rvbar_property =
1064             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1065 
1066 #ifndef CONFIG_USER_ONLY
1067 static Property arm_cpu_has_el2_property =
1068             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1069 
1070 static Property arm_cpu_has_el3_property =
1071             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1072 #endif
1073 
1074 static Property arm_cpu_cfgend_property =
1075             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1076 
1077 static Property arm_cpu_has_vfp_property =
1078             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1079 
1080 static Property arm_cpu_has_neon_property =
1081             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1082 
1083 static Property arm_cpu_has_dsp_property =
1084             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1085 
1086 static Property arm_cpu_has_mpu_property =
1087             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1088 
1089 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1090  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1091  * the right value for that particular CPU type, and we don't want
1092  * to override that with an incorrect constant value.
1093  */
1094 static Property arm_cpu_pmsav7_dregion_property =
1095             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1096                                            pmsav7_dregion,
1097                                            qdev_prop_uint32, uint32_t);
1098 
1099 static bool arm_get_pmu(Object *obj, Error **errp)
1100 {
1101     ARMCPU *cpu = ARM_CPU(obj);
1102 
1103     return cpu->has_pmu;
1104 }
1105 
1106 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1107 {
1108     ARMCPU *cpu = ARM_CPU(obj);
1109 
1110     if (value) {
1111         if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1112             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1113             return;
1114         }
1115         set_feature(&cpu->env, ARM_FEATURE_PMU);
1116     } else {
1117         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1118     }
1119     cpu->has_pmu = value;
1120 }
1121 
1122 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1123 {
1124     /*
1125      * The exact approach to calculating guest ticks is:
1126      *
1127      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1128      *              NANOSECONDS_PER_SECOND);
1129      *
1130      * We don't do that. Rather we intentionally use integer division
1131      * truncation below and in the caller for the conversion of host monotonic
1132      * time to guest ticks to provide the exact inverse for the semantics of
1133      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1134      * it loses precision when representing frequencies where
1135      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1136      * provide an exact inverse leads to scheduling timers with negative
1137      * periods, which in turn leads to sticky behaviour in the guest.
1138      *
1139      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1140      * cannot become zero.
1141      */
1142     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1143       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1144 }
1145 
1146 void arm_cpu_post_init(Object *obj)
1147 {
1148     ARMCPU *cpu = ARM_CPU(obj);
1149 
1150     /* M profile implies PMSA. We have to do this here rather than
1151      * in realize with the other feature-implication checks because
1152      * we look at the PMSA bit to see if we should add some properties.
1153      */
1154     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1155         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1156     }
1157 
1158     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1159         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1160         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1161     }
1162 
1163     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1164         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1165     }
1166 
1167     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1168         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1169     }
1170 
1171 #ifndef CONFIG_USER_ONLY
1172     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1173         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1174          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1175          */
1176         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1177 
1178         object_property_add_link(obj, "secure-memory",
1179                                  TYPE_MEMORY_REGION,
1180                                  (Object **)&cpu->secure_memory,
1181                                  qdev_prop_allow_set_link_before_realize,
1182                                  OBJ_PROP_LINK_STRONG);
1183     }
1184 
1185     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1186         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1187     }
1188 #endif
1189 
1190     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1191         cpu->has_pmu = true;
1192         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1193     }
1194 
1195     /*
1196      * Allow user to turn off VFP and Neon support, but only for TCG --
1197      * KVM does not currently allow us to lie to the guest about its
1198      * ID/feature registers, so the guest always sees what the host has.
1199      */
1200     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1201         ? cpu_isar_feature(aa64_fp_simd, cpu)
1202         : cpu_isar_feature(aa32_vfp, cpu)) {
1203         cpu->has_vfp = true;
1204         if (!kvm_enabled()) {
1205             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1206         }
1207     }
1208 
1209     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1210         cpu->has_neon = true;
1211         if (!kvm_enabled()) {
1212             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1213         }
1214     }
1215 
1216     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1217         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1218         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1219     }
1220 
1221     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1222         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1223         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1224             qdev_property_add_static(DEVICE(obj),
1225                                      &arm_cpu_pmsav7_dregion_property);
1226         }
1227     }
1228 
1229     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1230         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1231                                  qdev_prop_allow_set_link_before_realize,
1232                                  OBJ_PROP_LINK_STRONG);
1233         /*
1234          * M profile: initial value of the Secure VTOR. We can't just use
1235          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1236          * the property to be set after realize.
1237          */
1238         object_property_add_uint32_ptr(obj, "init-svtor",
1239                                        &cpu->init_svtor,
1240                                        OBJ_PROP_FLAG_READWRITE);
1241     }
1242 
1243     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1244 
1245     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1246         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1247     }
1248 }
1249 
1250 static void arm_cpu_finalizefn(Object *obj)
1251 {
1252     ARMCPU *cpu = ARM_CPU(obj);
1253     ARMELChangeHook *hook, *next;
1254 
1255     g_hash_table_destroy(cpu->cp_regs);
1256 
1257     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1258         QLIST_REMOVE(hook, node);
1259         g_free(hook);
1260     }
1261     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1262         QLIST_REMOVE(hook, node);
1263         g_free(hook);
1264     }
1265 #ifndef CONFIG_USER_ONLY
1266     if (cpu->pmu_timer) {
1267         timer_del(cpu->pmu_timer);
1268         timer_deinit(cpu->pmu_timer);
1269         timer_free(cpu->pmu_timer);
1270     }
1271 #endif
1272 }
1273 
1274 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1275 {
1276     Error *local_err = NULL;
1277 
1278     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1279         arm_cpu_sve_finalize(cpu, &local_err);
1280         if (local_err != NULL) {
1281             error_propagate(errp, local_err);
1282             return;
1283         }
1284     }
1285 }
1286 
1287 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1288 {
1289     CPUState *cs = CPU(dev);
1290     ARMCPU *cpu = ARM_CPU(dev);
1291     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1292     CPUARMState *env = &cpu->env;
1293     int pagebits;
1294     Error *local_err = NULL;
1295     bool no_aa32 = false;
1296 
1297     /* If we needed to query the host kernel for the CPU features
1298      * then it's possible that might have failed in the initfn, but
1299      * this is the first point where we can report it.
1300      */
1301     if (cpu->host_cpu_probe_failed) {
1302         if (!kvm_enabled()) {
1303             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1304         } else {
1305             error_setg(errp, "Failed to retrieve host CPU features");
1306         }
1307         return;
1308     }
1309 
1310 #ifndef CONFIG_USER_ONLY
1311     /* The NVIC and M-profile CPU are two halves of a single piece of
1312      * hardware; trying to use one without the other is a command line
1313      * error and will result in segfaults if not caught here.
1314      */
1315     if (arm_feature(env, ARM_FEATURE_M)) {
1316         if (!env->nvic) {
1317             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1318             return;
1319         }
1320     } else {
1321         if (env->nvic) {
1322             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1323             return;
1324         }
1325     }
1326 
1327     {
1328         uint64_t scale;
1329 
1330         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1331             if (!cpu->gt_cntfrq_hz) {
1332                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1333                            cpu->gt_cntfrq_hz);
1334                 return;
1335             }
1336             scale = gt_cntfrq_period_ns(cpu);
1337         } else {
1338             scale = GTIMER_SCALE;
1339         }
1340 
1341         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1342                                                arm_gt_ptimer_cb, cpu);
1343         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1344                                                arm_gt_vtimer_cb, cpu);
1345         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1346                                               arm_gt_htimer_cb, cpu);
1347         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1348                                               arm_gt_stimer_cb, cpu);
1349         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1350                                                   arm_gt_hvtimer_cb, cpu);
1351     }
1352 #endif
1353 
1354     cpu_exec_realizefn(cs, &local_err);
1355     if (local_err != NULL) {
1356         error_propagate(errp, local_err);
1357         return;
1358     }
1359 
1360     arm_cpu_finalize_features(cpu, &local_err);
1361     if (local_err != NULL) {
1362         error_propagate(errp, local_err);
1363         return;
1364     }
1365 
1366     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1367         cpu->has_vfp != cpu->has_neon) {
1368         /*
1369          * This is an architectural requirement for AArch64; AArch32 is
1370          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1371          */
1372         error_setg(errp,
1373                    "AArch64 CPUs must have both VFP and Neon or neither");
1374         return;
1375     }
1376 
1377     if (!cpu->has_vfp) {
1378         uint64_t t;
1379         uint32_t u;
1380 
1381         t = cpu->isar.id_aa64isar1;
1382         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1383         cpu->isar.id_aa64isar1 = t;
1384 
1385         t = cpu->isar.id_aa64pfr0;
1386         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1387         cpu->isar.id_aa64pfr0 = t;
1388 
1389         u = cpu->isar.id_isar6;
1390         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1391         cpu->isar.id_isar6 = u;
1392 
1393         u = cpu->isar.mvfr0;
1394         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1395         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1396         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1397         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1398         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1399         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1400         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1401         cpu->isar.mvfr0 = u;
1402 
1403         u = cpu->isar.mvfr1;
1404         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1405         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1406         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1407         cpu->isar.mvfr1 = u;
1408 
1409         u = cpu->isar.mvfr2;
1410         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1411         cpu->isar.mvfr2 = u;
1412     }
1413 
1414     if (!cpu->has_neon) {
1415         uint64_t t;
1416         uint32_t u;
1417 
1418         unset_feature(env, ARM_FEATURE_NEON);
1419 
1420         t = cpu->isar.id_aa64isar0;
1421         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1422         cpu->isar.id_aa64isar0 = t;
1423 
1424         t = cpu->isar.id_aa64isar1;
1425         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1426         cpu->isar.id_aa64isar1 = t;
1427 
1428         t = cpu->isar.id_aa64pfr0;
1429         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1430         cpu->isar.id_aa64pfr0 = t;
1431 
1432         u = cpu->isar.id_isar5;
1433         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1434         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1435         cpu->isar.id_isar5 = u;
1436 
1437         u = cpu->isar.id_isar6;
1438         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1439         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1440         cpu->isar.id_isar6 = u;
1441 
1442         u = cpu->isar.mvfr1;
1443         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1444         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1445         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1446         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1447         cpu->isar.mvfr1 = u;
1448 
1449         u = cpu->isar.mvfr2;
1450         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1451         cpu->isar.mvfr2 = u;
1452     }
1453 
1454     if (!cpu->has_neon && !cpu->has_vfp) {
1455         uint64_t t;
1456         uint32_t u;
1457 
1458         t = cpu->isar.id_aa64isar0;
1459         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1460         cpu->isar.id_aa64isar0 = t;
1461 
1462         t = cpu->isar.id_aa64isar1;
1463         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1464         cpu->isar.id_aa64isar1 = t;
1465 
1466         u = cpu->isar.mvfr0;
1467         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1468         cpu->isar.mvfr0 = u;
1469 
1470         /* Despite the name, this field covers both VFP and Neon */
1471         u = cpu->isar.mvfr1;
1472         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1473         cpu->isar.mvfr1 = u;
1474     }
1475 
1476     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1477         uint32_t u;
1478 
1479         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1480 
1481         u = cpu->isar.id_isar1;
1482         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1483         cpu->isar.id_isar1 = u;
1484 
1485         u = cpu->isar.id_isar2;
1486         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1487         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1488         cpu->isar.id_isar2 = u;
1489 
1490         u = cpu->isar.id_isar3;
1491         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1492         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1493         cpu->isar.id_isar3 = u;
1494     }
1495 
1496     /* Some features automatically imply others: */
1497     if (arm_feature(env, ARM_FEATURE_V8)) {
1498         if (arm_feature(env, ARM_FEATURE_M)) {
1499             set_feature(env, ARM_FEATURE_V7);
1500         } else {
1501             set_feature(env, ARM_FEATURE_V7VE);
1502         }
1503     }
1504 
1505     /*
1506      * There exist AArch64 cpus without AArch32 support.  When KVM
1507      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1508      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1509      * As a general principle, we also do not make ID register
1510      * consistency checks anywhere unless using TCG, because only
1511      * for TCG would a consistency-check failure be a QEMU bug.
1512      */
1513     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1514         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1515     }
1516 
1517     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1518         /* v7 Virtualization Extensions. In real hardware this implies
1519          * EL2 and also the presence of the Security Extensions.
1520          * For QEMU, for backwards-compatibility we implement some
1521          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1522          * include the various other features that V7VE implies.
1523          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1524          * Security Extensions is ARM_FEATURE_EL3.
1525          */
1526         assert(!tcg_enabled() || no_aa32 ||
1527                cpu_isar_feature(aa32_arm_div, cpu));
1528         set_feature(env, ARM_FEATURE_LPAE);
1529         set_feature(env, ARM_FEATURE_V7);
1530     }
1531     if (arm_feature(env, ARM_FEATURE_V7)) {
1532         set_feature(env, ARM_FEATURE_VAPA);
1533         set_feature(env, ARM_FEATURE_THUMB2);
1534         set_feature(env, ARM_FEATURE_MPIDR);
1535         if (!arm_feature(env, ARM_FEATURE_M)) {
1536             set_feature(env, ARM_FEATURE_V6K);
1537         } else {
1538             set_feature(env, ARM_FEATURE_V6);
1539         }
1540 
1541         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1542          * non-EL3 configs. This is needed by some legacy boards.
1543          */
1544         set_feature(env, ARM_FEATURE_VBAR);
1545     }
1546     if (arm_feature(env, ARM_FEATURE_V6K)) {
1547         set_feature(env, ARM_FEATURE_V6);
1548         set_feature(env, ARM_FEATURE_MVFR);
1549     }
1550     if (arm_feature(env, ARM_FEATURE_V6)) {
1551         set_feature(env, ARM_FEATURE_V5);
1552         if (!arm_feature(env, ARM_FEATURE_M)) {
1553             assert(!tcg_enabled() || no_aa32 ||
1554                    cpu_isar_feature(aa32_jazelle, cpu));
1555             set_feature(env, ARM_FEATURE_AUXCR);
1556         }
1557     }
1558     if (arm_feature(env, ARM_FEATURE_V5)) {
1559         set_feature(env, ARM_FEATURE_V4T);
1560     }
1561     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1562         set_feature(env, ARM_FEATURE_V7MP);
1563         set_feature(env, ARM_FEATURE_PXN);
1564     }
1565     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1566         set_feature(env, ARM_FEATURE_CBAR);
1567     }
1568     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1569         !arm_feature(env, ARM_FEATURE_M)) {
1570         set_feature(env, ARM_FEATURE_THUMB_DSP);
1571     }
1572 
1573     /*
1574      * We rely on no XScale CPU having VFP so we can use the same bits in the
1575      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1576      */
1577     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1578            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1579            !arm_feature(env, ARM_FEATURE_XSCALE));
1580 
1581     if (arm_feature(env, ARM_FEATURE_V7) &&
1582         !arm_feature(env, ARM_FEATURE_M) &&
1583         !arm_feature(env, ARM_FEATURE_PMSA)) {
1584         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1585          * can use 4K pages.
1586          */
1587         pagebits = 12;
1588     } else {
1589         /* For CPUs which might have tiny 1K pages, or which have an
1590          * MPU and might have small region sizes, stick with 1K pages.
1591          */
1592         pagebits = 10;
1593     }
1594     if (!set_preferred_target_page_bits(pagebits)) {
1595         /* This can only ever happen for hotplugging a CPU, or if
1596          * the board code incorrectly creates a CPU which it has
1597          * promised via minimum_page_size that it will not.
1598          */
1599         error_setg(errp, "This CPU requires a smaller page size than the "
1600                    "system is using");
1601         return;
1602     }
1603 
1604     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1605      * We don't support setting cluster ID ([16..23]) (known as Aff2
1606      * in later ARM ARM versions), or any of the higher affinity level fields,
1607      * so these bits always RAZ.
1608      */
1609     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1610         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1611                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1612     }
1613 
1614     if (cpu->reset_hivecs) {
1615             cpu->reset_sctlr |= (1 << 13);
1616     }
1617 
1618     if (cpu->cfgend) {
1619         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1620             cpu->reset_sctlr |= SCTLR_EE;
1621         } else {
1622             cpu->reset_sctlr |= SCTLR_B;
1623         }
1624     }
1625 
1626     if (!cpu->has_el3) {
1627         /* If the has_el3 CPU property is disabled then we need to disable the
1628          * feature.
1629          */
1630         unset_feature(env, ARM_FEATURE_EL3);
1631 
1632         /* Disable the security extension feature bits in the processor feature
1633          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1634          */
1635         cpu->id_pfr1 &= ~0xf0;
1636         cpu->isar.id_aa64pfr0 &= ~0xf000;
1637     }
1638 
1639     if (!cpu->has_el2) {
1640         unset_feature(env, ARM_FEATURE_EL2);
1641     }
1642 
1643     if (!cpu->has_pmu) {
1644         unset_feature(env, ARM_FEATURE_PMU);
1645     }
1646     if (arm_feature(env, ARM_FEATURE_PMU)) {
1647         pmu_init(cpu);
1648 
1649         if (!kvm_enabled()) {
1650             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1651             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1652         }
1653 
1654 #ifndef CONFIG_USER_ONLY
1655         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1656                 cpu);
1657 #endif
1658     } else {
1659         cpu->isar.id_aa64dfr0 =
1660             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1661         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1662         cpu->pmceid0 = 0;
1663         cpu->pmceid1 = 0;
1664     }
1665 
1666     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1667         /* Disable the hypervisor feature bits in the processor feature
1668          * registers if we don't have EL2. These are id_pfr1[15:12] and
1669          * id_aa64pfr0_el1[11:8].
1670          */
1671         cpu->isar.id_aa64pfr0 &= ~0xf00;
1672         cpu->id_pfr1 &= ~0xf000;
1673     }
1674 
1675     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1676      * to false or by setting pmsav7-dregion to 0.
1677      */
1678     if (!cpu->has_mpu) {
1679         cpu->pmsav7_dregion = 0;
1680     }
1681     if (cpu->pmsav7_dregion == 0) {
1682         cpu->has_mpu = false;
1683     }
1684 
1685     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1686         arm_feature(env, ARM_FEATURE_V7)) {
1687         uint32_t nr = cpu->pmsav7_dregion;
1688 
1689         if (nr > 0xff) {
1690             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1691             return;
1692         }
1693 
1694         if (nr) {
1695             if (arm_feature(env, ARM_FEATURE_V8)) {
1696                 /* PMSAv8 */
1697                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1698                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1699                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1700                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1701                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1702                 }
1703             } else {
1704                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1705                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1706                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1707             }
1708         }
1709     }
1710 
1711     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1712         uint32_t nr = cpu->sau_sregion;
1713 
1714         if (nr > 0xff) {
1715             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1716             return;
1717         }
1718 
1719         if (nr) {
1720             env->sau.rbar = g_new0(uint32_t, nr);
1721             env->sau.rlar = g_new0(uint32_t, nr);
1722         }
1723     }
1724 
1725     if (arm_feature(env, ARM_FEATURE_EL3)) {
1726         set_feature(env, ARM_FEATURE_VBAR);
1727     }
1728 
1729     register_cp_regs_for_features(cpu);
1730     arm_cpu_register_gdb_regs_for_features(cpu);
1731 
1732     init_cpreg_list(cpu);
1733 
1734 #ifndef CONFIG_USER_ONLY
1735     MachineState *ms = MACHINE(qdev_get_machine());
1736     unsigned int smp_cpus = ms->smp.cpus;
1737 
1738     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1739         cs->num_ases = 2;
1740 
1741         if (!cpu->secure_memory) {
1742             cpu->secure_memory = cs->memory;
1743         }
1744         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1745                                cpu->secure_memory);
1746     } else {
1747         cs->num_ases = 1;
1748     }
1749     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1750 
1751     /* No core_count specified, default to smp_cpus. */
1752     if (cpu->core_count == -1) {
1753         cpu->core_count = smp_cpus;
1754     }
1755 #endif
1756 
1757     qemu_init_vcpu(cs);
1758     cpu_reset(cs);
1759 
1760     acc->parent_realize(dev, errp);
1761 }
1762 
1763 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1764 {
1765     ObjectClass *oc;
1766     char *typename;
1767     char **cpuname;
1768     const char *cpunamestr;
1769 
1770     cpuname = g_strsplit(cpu_model, ",", 1);
1771     cpunamestr = cpuname[0];
1772 #ifdef CONFIG_USER_ONLY
1773     /* For backwards compatibility usermode emulation allows "-cpu any",
1774      * which has the same semantics as "-cpu max".
1775      */
1776     if (!strcmp(cpunamestr, "any")) {
1777         cpunamestr = "max";
1778     }
1779 #endif
1780     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1781     oc = object_class_by_name(typename);
1782     g_strfreev(cpuname);
1783     g_free(typename);
1784     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1785         object_class_is_abstract(oc)) {
1786         return NULL;
1787     }
1788     return oc;
1789 }
1790 
1791 /* CPU models. These are not needed for the AArch64 linux-user build. */
1792 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1793 
1794 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1795     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1796       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1797     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1798       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1799     REGINFO_SENTINEL
1800 };
1801 
1802 static void cortex_a8_initfn(Object *obj)
1803 {
1804     ARMCPU *cpu = ARM_CPU(obj);
1805 
1806     cpu->dtb_compatible = "arm,cortex-a8";
1807     set_feature(&cpu->env, ARM_FEATURE_V7);
1808     set_feature(&cpu->env, ARM_FEATURE_NEON);
1809     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1810     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1811     set_feature(&cpu->env, ARM_FEATURE_EL3);
1812     cpu->midr = 0x410fc080;
1813     cpu->reset_fpsid = 0x410330c0;
1814     cpu->isar.mvfr0 = 0x11110222;
1815     cpu->isar.mvfr1 = 0x00011111;
1816     cpu->ctr = 0x82048004;
1817     cpu->reset_sctlr = 0x00c50078;
1818     cpu->id_pfr0 = 0x1031;
1819     cpu->id_pfr1 = 0x11;
1820     cpu->isar.id_dfr0 = 0x400;
1821     cpu->id_afr0 = 0;
1822     cpu->isar.id_mmfr0 = 0x31100003;
1823     cpu->isar.id_mmfr1 = 0x20000000;
1824     cpu->isar.id_mmfr2 = 0x01202000;
1825     cpu->isar.id_mmfr3 = 0x11;
1826     cpu->isar.id_isar0 = 0x00101111;
1827     cpu->isar.id_isar1 = 0x12112111;
1828     cpu->isar.id_isar2 = 0x21232031;
1829     cpu->isar.id_isar3 = 0x11112131;
1830     cpu->isar.id_isar4 = 0x00111142;
1831     cpu->isar.dbgdidr = 0x15141000;
1832     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1833     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1834     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1835     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1836     cpu->reset_auxcr = 2;
1837     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1838 }
1839 
1840 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1841     /* power_control should be set to maximum latency. Again,
1842      * default to 0 and set by private hook
1843      */
1844     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1845       .access = PL1_RW, .resetvalue = 0,
1846       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1847     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1848       .access = PL1_RW, .resetvalue = 0,
1849       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1850     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1851       .access = PL1_RW, .resetvalue = 0,
1852       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1853     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1854       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1855     /* TLB lockdown control */
1856     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1857       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1858     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1859       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1860     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1861       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1862     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1863       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1864     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1865       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1866     REGINFO_SENTINEL
1867 };
1868 
1869 static void cortex_a9_initfn(Object *obj)
1870 {
1871     ARMCPU *cpu = ARM_CPU(obj);
1872 
1873     cpu->dtb_compatible = "arm,cortex-a9";
1874     set_feature(&cpu->env, ARM_FEATURE_V7);
1875     set_feature(&cpu->env, ARM_FEATURE_NEON);
1876     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1877     set_feature(&cpu->env, ARM_FEATURE_EL3);
1878     /* Note that A9 supports the MP extensions even for
1879      * A9UP and single-core A9MP (which are both different
1880      * and valid configurations; we don't model A9UP).
1881      */
1882     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1883     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1884     cpu->midr = 0x410fc090;
1885     cpu->reset_fpsid = 0x41033090;
1886     cpu->isar.mvfr0 = 0x11110222;
1887     cpu->isar.mvfr1 = 0x01111111;
1888     cpu->ctr = 0x80038003;
1889     cpu->reset_sctlr = 0x00c50078;
1890     cpu->id_pfr0 = 0x1031;
1891     cpu->id_pfr1 = 0x11;
1892     cpu->isar.id_dfr0 = 0x000;
1893     cpu->id_afr0 = 0;
1894     cpu->isar.id_mmfr0 = 0x00100103;
1895     cpu->isar.id_mmfr1 = 0x20000000;
1896     cpu->isar.id_mmfr2 = 0x01230000;
1897     cpu->isar.id_mmfr3 = 0x00002111;
1898     cpu->isar.id_isar0 = 0x00101111;
1899     cpu->isar.id_isar1 = 0x13112111;
1900     cpu->isar.id_isar2 = 0x21232041;
1901     cpu->isar.id_isar3 = 0x11112131;
1902     cpu->isar.id_isar4 = 0x00111142;
1903     cpu->isar.dbgdidr = 0x35141000;
1904     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1905     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1906     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1907     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1908 }
1909 
1910 #ifndef CONFIG_USER_ONLY
1911 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1912 {
1913     MachineState *ms = MACHINE(qdev_get_machine());
1914 
1915     /* Linux wants the number of processors from here.
1916      * Might as well set the interrupt-controller bit too.
1917      */
1918     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
1919 }
1920 #endif
1921 
1922 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1923 #ifndef CONFIG_USER_ONLY
1924     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1925       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1926       .writefn = arm_cp_write_ignore, },
1927 #endif
1928     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1929       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1930     REGINFO_SENTINEL
1931 };
1932 
1933 static void cortex_a7_initfn(Object *obj)
1934 {
1935     ARMCPU *cpu = ARM_CPU(obj);
1936 
1937     cpu->dtb_compatible = "arm,cortex-a7";
1938     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1939     set_feature(&cpu->env, ARM_FEATURE_NEON);
1940     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1941     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1942     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1943     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1944     set_feature(&cpu->env, ARM_FEATURE_EL2);
1945     set_feature(&cpu->env, ARM_FEATURE_EL3);
1946     set_feature(&cpu->env, ARM_FEATURE_PMU);
1947     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1948     cpu->midr = 0x410fc075;
1949     cpu->reset_fpsid = 0x41023075;
1950     cpu->isar.mvfr0 = 0x10110222;
1951     cpu->isar.mvfr1 = 0x11111111;
1952     cpu->ctr = 0x84448003;
1953     cpu->reset_sctlr = 0x00c50078;
1954     cpu->id_pfr0 = 0x00001131;
1955     cpu->id_pfr1 = 0x00011011;
1956     cpu->isar.id_dfr0 = 0x02010555;
1957     cpu->id_afr0 = 0x00000000;
1958     cpu->isar.id_mmfr0 = 0x10101105;
1959     cpu->isar.id_mmfr1 = 0x40000000;
1960     cpu->isar.id_mmfr2 = 0x01240000;
1961     cpu->isar.id_mmfr3 = 0x02102211;
1962     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1963      * table 4-41 gives 0x02101110, which includes the arm div insns.
1964      */
1965     cpu->isar.id_isar0 = 0x02101110;
1966     cpu->isar.id_isar1 = 0x13112111;
1967     cpu->isar.id_isar2 = 0x21232041;
1968     cpu->isar.id_isar3 = 0x11112131;
1969     cpu->isar.id_isar4 = 0x10011142;
1970     cpu->isar.dbgdidr = 0x3515f005;
1971     cpu->clidr = 0x0a200023;
1972     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1973     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1974     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1975     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1976 }
1977 
1978 static void cortex_a15_initfn(Object *obj)
1979 {
1980     ARMCPU *cpu = ARM_CPU(obj);
1981 
1982     cpu->dtb_compatible = "arm,cortex-a15";
1983     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1984     set_feature(&cpu->env, ARM_FEATURE_NEON);
1985     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1986     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1987     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1988     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1989     set_feature(&cpu->env, ARM_FEATURE_EL2);
1990     set_feature(&cpu->env, ARM_FEATURE_EL3);
1991     set_feature(&cpu->env, ARM_FEATURE_PMU);
1992     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1993     cpu->midr = 0x412fc0f1;
1994     cpu->reset_fpsid = 0x410430f0;
1995     cpu->isar.mvfr0 = 0x10110222;
1996     cpu->isar.mvfr1 = 0x11111111;
1997     cpu->ctr = 0x8444c004;
1998     cpu->reset_sctlr = 0x00c50078;
1999     cpu->id_pfr0 = 0x00001131;
2000     cpu->id_pfr1 = 0x00011011;
2001     cpu->isar.id_dfr0 = 0x02010555;
2002     cpu->id_afr0 = 0x00000000;
2003     cpu->isar.id_mmfr0 = 0x10201105;
2004     cpu->isar.id_mmfr1 = 0x20000000;
2005     cpu->isar.id_mmfr2 = 0x01240000;
2006     cpu->isar.id_mmfr3 = 0x02102211;
2007     cpu->isar.id_isar0 = 0x02101110;
2008     cpu->isar.id_isar1 = 0x13112111;
2009     cpu->isar.id_isar2 = 0x21232041;
2010     cpu->isar.id_isar3 = 0x11112131;
2011     cpu->isar.id_isar4 = 0x10011142;
2012     cpu->isar.dbgdidr = 0x3515f021;
2013     cpu->clidr = 0x0a200023;
2014     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2015     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2016     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2017     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2018 }
2019 
2020 #ifndef TARGET_AARCH64
2021 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2022  * otherwise, a CPU with as many features enabled as our emulation supports.
2023  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2024  * this only needs to handle 32 bits.
2025  */
2026 static void arm_max_initfn(Object *obj)
2027 {
2028     ARMCPU *cpu = ARM_CPU(obj);
2029 
2030     if (kvm_enabled()) {
2031         kvm_arm_set_cpu_features_from_host(cpu);
2032         kvm_arm_add_vcpu_properties(obj);
2033     } else {
2034         cortex_a15_initfn(obj);
2035 
2036         /* old-style VFP short-vector support */
2037         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2038 
2039 #ifdef CONFIG_USER_ONLY
2040         /* We don't set these in system emulation mode for the moment,
2041          * since we don't correctly set (all of) the ID registers to
2042          * advertise them.
2043          */
2044         set_feature(&cpu->env, ARM_FEATURE_V8);
2045         {
2046             uint32_t t;
2047 
2048             t = cpu->isar.id_isar5;
2049             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2050             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2051             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2052             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2053             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2054             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2055             cpu->isar.id_isar5 = t;
2056 
2057             t = cpu->isar.id_isar6;
2058             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2059             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2060             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2061             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2062             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2063             cpu->isar.id_isar6 = t;
2064 
2065             t = cpu->isar.mvfr1;
2066             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2067             cpu->isar.mvfr1 = t;
2068 
2069             t = cpu->isar.mvfr2;
2070             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2071             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2072             cpu->isar.mvfr2 = t;
2073 
2074             t = cpu->isar.id_mmfr3;
2075             t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2076             cpu->isar.id_mmfr3 = t;
2077 
2078             t = cpu->isar.id_mmfr4;
2079             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2080             t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2081             t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2082             t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2083             cpu->isar.id_mmfr4 = t;
2084         }
2085 #endif
2086     }
2087 }
2088 #endif
2089 
2090 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2091 
2092 static const ARMCPUInfo arm_cpus[] = {
2093 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2094     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2095     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2096     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2097     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2098 #ifndef TARGET_AARCH64
2099     { .name = "max",         .initfn = arm_max_initfn },
2100 #endif
2101 #ifdef CONFIG_USER_ONLY
2102     { .name = "any",         .initfn = arm_max_initfn },
2103 #endif
2104 #endif
2105 };
2106 
2107 static Property arm_cpu_properties[] = {
2108     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2109     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2110     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2111     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2112                         mp_affinity, ARM64_AFFINITY_INVALID),
2113     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2114     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2115     DEFINE_PROP_END_OF_LIST()
2116 };
2117 
2118 static gchar *arm_gdb_arch_name(CPUState *cs)
2119 {
2120     ARMCPU *cpu = ARM_CPU(cs);
2121     CPUARMState *env = &cpu->env;
2122 
2123     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2124         return g_strdup("iwmmxt");
2125     }
2126     return g_strdup("arm");
2127 }
2128 
2129 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2130 {
2131     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2132     CPUClass *cc = CPU_CLASS(acc);
2133     DeviceClass *dc = DEVICE_CLASS(oc);
2134 
2135     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2136                                     &acc->parent_realize);
2137 
2138     device_class_set_props(dc, arm_cpu_properties);
2139     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2140 
2141     cc->class_by_name = arm_cpu_class_by_name;
2142     cc->has_work = arm_cpu_has_work;
2143     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2144     cc->dump_state = arm_cpu_dump_state;
2145     cc->set_pc = arm_cpu_set_pc;
2146     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2147     cc->gdb_read_register = arm_cpu_gdb_read_register;
2148     cc->gdb_write_register = arm_cpu_gdb_write_register;
2149 #ifndef CONFIG_USER_ONLY
2150     cc->do_interrupt = arm_cpu_do_interrupt;
2151     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2152     cc->asidx_from_attrs = arm_asidx_from_attrs;
2153     cc->vmsd = &vmstate_arm_cpu;
2154     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2155     cc->write_elf64_note = arm_cpu_write_elf64_note;
2156     cc->write_elf32_note = arm_cpu_write_elf32_note;
2157 #endif
2158     cc->gdb_num_core_regs = 26;
2159     cc->gdb_core_xml_file = "arm-core.xml";
2160     cc->gdb_arch_name = arm_gdb_arch_name;
2161     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2162     cc->gdb_stop_before_watchpoint = true;
2163     cc->disas_set_info = arm_disas_set_info;
2164 #ifdef CONFIG_TCG
2165     cc->tcg_initialize = arm_translate_init;
2166     cc->tlb_fill = arm_cpu_tlb_fill;
2167     cc->debug_excp_handler = arm_debug_excp_handler;
2168     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2169 #if !defined(CONFIG_USER_ONLY)
2170     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2171     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2172     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2173 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2174 #endif
2175 }
2176 
2177 #ifdef CONFIG_KVM
2178 static void arm_host_initfn(Object *obj)
2179 {
2180     ARMCPU *cpu = ARM_CPU(obj);
2181 
2182     kvm_arm_set_cpu_features_from_host(cpu);
2183     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2184         aarch64_add_sve_properties(obj);
2185     }
2186     kvm_arm_add_vcpu_properties(obj);
2187     arm_cpu_post_init(obj);
2188 }
2189 
2190 static const TypeInfo host_arm_cpu_type_info = {
2191     .name = TYPE_ARM_HOST_CPU,
2192 #ifdef TARGET_AARCH64
2193     .parent = TYPE_AARCH64_CPU,
2194 #else
2195     .parent = TYPE_ARM_CPU,
2196 #endif
2197     .instance_init = arm_host_initfn,
2198 };
2199 
2200 #endif
2201 
2202 static void arm_cpu_instance_init(Object *obj)
2203 {
2204     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2205 
2206     acc->info->initfn(obj);
2207     arm_cpu_post_init(obj);
2208 }
2209 
2210 static void cpu_register_class_init(ObjectClass *oc, void *data)
2211 {
2212     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2213 
2214     acc->info = data;
2215 }
2216 
2217 void arm_cpu_register(const ARMCPUInfo *info)
2218 {
2219     TypeInfo type_info = {
2220         .parent = TYPE_ARM_CPU,
2221         .instance_size = sizeof(ARMCPU),
2222         .instance_init = arm_cpu_instance_init,
2223         .class_size = sizeof(ARMCPUClass),
2224         .class_init = info->class_init ?: cpu_register_class_init,
2225         .class_data = (void *)info,
2226     };
2227 
2228     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2229     type_register(&type_info);
2230     g_free((void *)type_info.name);
2231 }
2232 
2233 static const TypeInfo arm_cpu_type_info = {
2234     .name = TYPE_ARM_CPU,
2235     .parent = TYPE_CPU,
2236     .instance_size = sizeof(ARMCPU),
2237     .instance_init = arm_cpu_initfn,
2238     .instance_finalize = arm_cpu_finalizefn,
2239     .abstract = true,
2240     .class_size = sizeof(ARMCPUClass),
2241     .class_init = arm_cpu_class_init,
2242 };
2243 
2244 static const TypeInfo idau_interface_type_info = {
2245     .name = TYPE_IDAU_INTERFACE,
2246     .parent = TYPE_INTERFACE,
2247     .class_size = sizeof(IDAUInterfaceClass),
2248 };
2249 
2250 static void arm_cpu_register_types(void)
2251 {
2252     const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2253 
2254     type_register_static(&arm_cpu_type_info);
2255 
2256 #ifdef CONFIG_KVM
2257     type_register_static(&host_arm_cpu_type_info);
2258 #endif
2259 
2260     if (cpu_count) {
2261         size_t i;
2262 
2263         type_register_static(&idau_interface_type_info);
2264         for (i = 0; i < cpu_count; ++i) {
2265             arm_cpu_register(&arm_cpus[i]);
2266         }
2267     }
2268 }
2269 
2270 type_init(arm_cpu_register_types)
2271