xref: /openbmc/qemu/target/arm/cpu.c (revision ba6558461cb0280ad861b376cbfff4680be82570)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "cpu-features.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #ifdef CONFIG_TCG
41 #include "hw/intc/armv7m_nvic.h"
42 #endif /* CONFIG_TCG */
43 #endif /* !CONFIG_USER_ONLY */
44 #include "sysemu/tcg.h"
45 #include "sysemu/qtest.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_arm.h"
48 #include "disas/capstone.h"
49 #include "fpu/softfloat.h"
50 #include "cpregs.h"
51 #include "target/arm/cpu-qom.h"
52 #include "target/arm/gtimer.h"
53 
54 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
55 {
56     ARMCPU *cpu = ARM_CPU(cs);
57     CPUARMState *env = &cpu->env;
58 
59     if (is_a64(env)) {
60         env->pc = value;
61         env->thumb = false;
62     } else {
63         env->regs[15] = value & ~1;
64         env->thumb = value & 1;
65     }
66 }
67 
68 static vaddr arm_cpu_get_pc(CPUState *cs)
69 {
70     ARMCPU *cpu = ARM_CPU(cs);
71     CPUARMState *env = &cpu->env;
72 
73     if (is_a64(env)) {
74         return env->pc;
75     } else {
76         return env->regs[15];
77     }
78 }
79 
80 #ifdef CONFIG_TCG
81 void arm_cpu_synchronize_from_tb(CPUState *cs,
82                                  const TranslationBlock *tb)
83 {
84     /* The program counter is always up to date with CF_PCREL. */
85     if (!(tb_cflags(tb) & CF_PCREL)) {
86         CPUARMState *env = cpu_env(cs);
87         /*
88          * It's OK to look at env for the current mode here, because it's
89          * never possible for an AArch64 TB to chain to an AArch32 TB.
90          */
91         if (is_a64(env)) {
92             env->pc = tb->pc;
93         } else {
94             env->regs[15] = tb->pc;
95         }
96     }
97 }
98 
99 void arm_restore_state_to_opc(CPUState *cs,
100                               const TranslationBlock *tb,
101                               const uint64_t *data)
102 {
103     CPUARMState *env = cpu_env(cs);
104 
105     if (is_a64(env)) {
106         if (tb_cflags(tb) & CF_PCREL) {
107             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
108         } else {
109             env->pc = data[0];
110         }
111         env->condexec_bits = 0;
112         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
113     } else {
114         if (tb_cflags(tb) & CF_PCREL) {
115             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
116         } else {
117             env->regs[15] = data[0];
118         }
119         env->condexec_bits = data[1];
120         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
121     }
122 }
123 #endif /* CONFIG_TCG */
124 
125 /*
126  * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with
127  * IRQ without Superpriority. Moreover, if the GIC is configured so that
128  * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see
129  * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here
130  * unconditionally.
131  */
132 static bool arm_cpu_has_work(CPUState *cs)
133 {
134     ARMCPU *cpu = ARM_CPU(cs);
135 
136     return (cpu->power_state != PSCI_OFF)
137         && cs->interrupt_request &
138         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
139          | CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI
140          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
141          | CPU_INTERRUPT_EXITTB);
142 }
143 
144 static int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
145 {
146     return arm_env_mmu_index(cpu_env(cs));
147 }
148 
149 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
150                                  void *opaque)
151 {
152     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
153 
154     entry->hook = hook;
155     entry->opaque = opaque;
156 
157     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
158 }
159 
160 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
161                                  void *opaque)
162 {
163     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
164 
165     entry->hook = hook;
166     entry->opaque = opaque;
167 
168     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
169 }
170 
171 /*
172  * Set the float_status behaviour to match the Arm defaults:
173  *  * tininess-before-rounding
174  *  * 2-input NaN propagation prefers SNaN over QNaN, and then
175  *    operand A over operand B (see FPProcessNaNs() pseudocode)
176  */
177 static void arm_set_default_fp_behaviours(float_status *s)
178 {
179     set_float_detect_tininess(float_tininess_before_rounding, s);
180     set_float_2nan_prop_rule(float_2nan_prop_s_ab, s);
181 }
182 
183 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
184 {
185     /* Reset a single ARMCPRegInfo register */
186     ARMCPRegInfo *ri = value;
187     ARMCPU *cpu = opaque;
188 
189     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
190         return;
191     }
192 
193     if (ri->resetfn) {
194         ri->resetfn(&cpu->env, ri);
195         return;
196     }
197 
198     /* A zero offset is never possible as it would be regs[0]
199      * so we use it to indicate that reset is being handled elsewhere.
200      * This is basically only used for fields in non-core coprocessors
201      * (like the pxa2xx ones).
202      */
203     if (!ri->fieldoffset) {
204         return;
205     }
206 
207     if (cpreg_field_is_64bit(ri)) {
208         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
209     } else {
210         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
211     }
212 }
213 
214 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
215 {
216     /* Purely an assertion check: we've already done reset once,
217      * so now check that running the reset for the cpreg doesn't
218      * change its value. This traps bugs where two different cpregs
219      * both try to reset the same state field but to different values.
220      */
221     ARMCPRegInfo *ri = value;
222     ARMCPU *cpu = opaque;
223     uint64_t oldvalue, newvalue;
224 
225     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
226         return;
227     }
228 
229     oldvalue = read_raw_cp_reg(&cpu->env, ri);
230     cp_reg_reset(key, value, opaque);
231     newvalue = read_raw_cp_reg(&cpu->env, ri);
232     assert(oldvalue == newvalue);
233 }
234 
235 static void arm_cpu_reset_hold(Object *obj, ResetType type)
236 {
237     CPUState *cs = CPU(obj);
238     ARMCPU *cpu = ARM_CPU(cs);
239     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
240     CPUARMState *env = &cpu->env;
241 
242     if (acc->parent_phases.hold) {
243         acc->parent_phases.hold(obj, type);
244     }
245 
246     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
247 
248     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
249     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
250 
251     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
252     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
253     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
254     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
255 
256     cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON;
257 
258     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
259         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
260     }
261 
262     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
263         /* 64 bit CPUs always start in 64 bit mode */
264         env->aarch64 = true;
265 #if defined(CONFIG_USER_ONLY)
266         env->pstate = PSTATE_MODE_EL0t;
267         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
268         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
269         /* Enable all PAC keys.  */
270         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
271                                   SCTLR_EnDA | SCTLR_EnDB);
272         /* Trap on btype=3 for PACIxSP. */
273         env->cp15.sctlr_el[1] |= SCTLR_BT0;
274         /* Trap on implementation defined registers. */
275         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
276             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
277         }
278         /* and to the FP/Neon instructions */
279         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
280                                          CPACR_EL1, FPEN, 3);
281         /* and to the SVE instructions, with default vector length */
282         if (cpu_isar_feature(aa64_sve, cpu)) {
283             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
284                                              CPACR_EL1, ZEN, 3);
285             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
286         }
287         /* and for SME instructions, with default vector length, and TPIDR2 */
288         if (cpu_isar_feature(aa64_sme, cpu)) {
289             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
290             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
291                                              CPACR_EL1, SMEN, 3);
292             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
293             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
294                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
295                                                  SMCR, FA64, 1);
296             }
297         }
298         /*
299          * Enable 48-bit address space (TODO: take reserved_va into account).
300          * Enable TBI0 but not TBI1.
301          * Note that this must match useronly_clean_ptr.
302          */
303         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
304 
305         /* Enable MTE */
306         if (cpu_isar_feature(aa64_mte, cpu)) {
307             /* Enable tag access, but leave TCF0 as No Effect (0). */
308             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
309             /*
310              * Exclude all tags, so that tag 0 is always used.
311              * This corresponds to Linux current->thread.gcr_incl = 0.
312              *
313              * Set RRND, so that helper_irg() will generate a seed later.
314              * Here in cpu_reset(), the crypto subsystem has not yet been
315              * initialized.
316              */
317             env->cp15.gcr_el1 = 0x1ffff;
318         }
319         /*
320          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
321          * This is not yet exposed from the Linux kernel in any way.
322          */
323         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
324         /* Disable access to Debug Communication Channel (DCC). */
325         env->cp15.mdscr_el1 |= 1 << 12;
326         /* Enable FEAT_MOPS */
327         env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
328 #else
329         /* Reset into the highest available EL */
330         if (arm_feature(env, ARM_FEATURE_EL3)) {
331             env->pstate = PSTATE_MODE_EL3h;
332         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
333             env->pstate = PSTATE_MODE_EL2h;
334         } else {
335             env->pstate = PSTATE_MODE_EL1h;
336         }
337 
338         /* Sample rvbar at reset.  */
339         env->cp15.rvbar = cpu->rvbar_prop;
340         env->pc = env->cp15.rvbar;
341 #endif
342     } else {
343 #if defined(CONFIG_USER_ONLY)
344         /* Userspace expects access to cp10 and cp11 for FP/Neon */
345         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
346                                          CPACR, CP10, 3);
347         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
348                                          CPACR, CP11, 3);
349 #endif
350         if (arm_feature(env, ARM_FEATURE_V8)) {
351             env->cp15.rvbar = cpu->rvbar_prop;
352             env->regs[15] = cpu->rvbar_prop;
353         }
354     }
355 
356 #if defined(CONFIG_USER_ONLY)
357     env->uncached_cpsr = ARM_CPU_MODE_USR;
358     /* For user mode we must enable access to coprocessors */
359     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
360     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
361         env->cp15.c15_cpar = 3;
362     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
363         env->cp15.c15_cpar = 1;
364     }
365 #else
366 
367     /*
368      * If the highest available EL is EL2, AArch32 will start in Hyp
369      * mode; otherwise it starts in SVC. Note that if we start in
370      * AArch64 then these values in the uncached_cpsr will be ignored.
371      */
372     if (arm_feature(env, ARM_FEATURE_EL2) &&
373         !arm_feature(env, ARM_FEATURE_EL3)) {
374         env->uncached_cpsr = ARM_CPU_MODE_HYP;
375     } else {
376         env->uncached_cpsr = ARM_CPU_MODE_SVC;
377     }
378     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
379 
380     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
381      * executing as AArch32 then check if highvecs are enabled and
382      * adjust the PC accordingly.
383      */
384     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
385         env->regs[15] = 0xFFFF0000;
386     }
387 
388     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
389 #endif
390 
391     if (arm_feature(env, ARM_FEATURE_M)) {
392 #ifndef CONFIG_USER_ONLY
393         uint32_t initial_msp; /* Loaded from 0x0 */
394         uint32_t initial_pc; /* Loaded from 0x4 */
395         uint8_t *rom;
396         uint32_t vecbase;
397 #endif
398 
399         if (cpu_isar_feature(aa32_lob, cpu)) {
400             /*
401              * LTPSIZE is constant 4 if MVE not implemented, and resets
402              * to an UNKNOWN value if MVE is implemented. We choose to
403              * always reset to 4.
404              */
405             env->v7m.ltpsize = 4;
406             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
407             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
408             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
409         }
410 
411         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
412             env->v7m.secure = true;
413         } else {
414             /* This bit resets to 0 if security is supported, but 1 if
415              * it is not. The bit is not present in v7M, but we set it
416              * here so we can avoid having to make checks on it conditional
417              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
418              */
419             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
420             /*
421              * Set NSACR to indicate "NS access permitted to everything";
422              * this avoids having to have all the tests of it being
423              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
424              * v8.1M the guest-visible value of NSACR in a CPU without the
425              * Security Extension is 0xcff.
426              */
427             env->v7m.nsacr = 0xcff;
428         }
429 
430         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
431          * that it resets to 1, so QEMU always does that rather than making
432          * it dependent on CPU model. In v8M it is RES1.
433          */
434         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
435         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
436         if (arm_feature(env, ARM_FEATURE_V8)) {
437             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
438             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
439             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
440         }
441         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
442             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
443             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
444         }
445 
446         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
447             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
448             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
449                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
450         }
451 
452 #ifndef CONFIG_USER_ONLY
453         /* Unlike A/R profile, M profile defines the reset LR value */
454         env->regs[14] = 0xffffffff;
455 
456         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
457         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
458 
459         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
460         vecbase = env->v7m.vecbase[env->v7m.secure];
461         rom = rom_ptr_for_as(cs->as, vecbase, 8);
462         if (rom) {
463             /* Address zero is covered by ROM which hasn't yet been
464              * copied into physical memory.
465              */
466             initial_msp = ldl_p(rom);
467             initial_pc = ldl_p(rom + 4);
468         } else {
469             /* Address zero not covered by a ROM blob, or the ROM blob
470              * is in non-modifiable memory and this is a second reset after
471              * it got copied into memory. In the latter case, rom_ptr
472              * will return a NULL pointer and we should use ldl_phys instead.
473              */
474             initial_msp = ldl_phys(cs->as, vecbase);
475             initial_pc = ldl_phys(cs->as, vecbase + 4);
476         }
477 
478         qemu_log_mask(CPU_LOG_INT,
479                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
480                       initial_msp, initial_pc);
481 
482         env->regs[13] = initial_msp & 0xFFFFFFFC;
483         env->regs[15] = initial_pc & ~1;
484         env->thumb = initial_pc & 1;
485 #else
486         /*
487          * For user mode we run non-secure and with access to the FPU.
488          * The FPU context is active (ie does not need further setup)
489          * and is owned by non-secure.
490          */
491         env->v7m.secure = false;
492         env->v7m.nsacr = 0xcff;
493         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
494         env->v7m.fpccr[M_REG_S] &=
495             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
496         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
497 #endif
498     }
499 
500     /* M profile requires that reset clears the exclusive monitor;
501      * A profile does not, but clearing it makes more sense than having it
502      * set with an exclusive access on address zero.
503      */
504     arm_clear_exclusive(env);
505 
506     if (arm_feature(env, ARM_FEATURE_PMSA)) {
507         if (cpu->pmsav7_dregion > 0) {
508             if (arm_feature(env, ARM_FEATURE_V8)) {
509                 memset(env->pmsav8.rbar[M_REG_NS], 0,
510                        sizeof(*env->pmsav8.rbar[M_REG_NS])
511                        * cpu->pmsav7_dregion);
512                 memset(env->pmsav8.rlar[M_REG_NS], 0,
513                        sizeof(*env->pmsav8.rlar[M_REG_NS])
514                        * cpu->pmsav7_dregion);
515                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
516                     memset(env->pmsav8.rbar[M_REG_S], 0,
517                            sizeof(*env->pmsav8.rbar[M_REG_S])
518                            * cpu->pmsav7_dregion);
519                     memset(env->pmsav8.rlar[M_REG_S], 0,
520                            sizeof(*env->pmsav8.rlar[M_REG_S])
521                            * cpu->pmsav7_dregion);
522                 }
523             } else if (arm_feature(env, ARM_FEATURE_V7)) {
524                 memset(env->pmsav7.drbar, 0,
525                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
526                 memset(env->pmsav7.drsr, 0,
527                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
528                 memset(env->pmsav7.dracr, 0,
529                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
530             }
531         }
532 
533         if (cpu->pmsav8r_hdregion > 0) {
534             memset(env->pmsav8.hprbar, 0,
535                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
536             memset(env->pmsav8.hprlar, 0,
537                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
538         }
539 
540         env->pmsav7.rnr[M_REG_NS] = 0;
541         env->pmsav7.rnr[M_REG_S] = 0;
542         env->pmsav8.mair0[M_REG_NS] = 0;
543         env->pmsav8.mair0[M_REG_S] = 0;
544         env->pmsav8.mair1[M_REG_NS] = 0;
545         env->pmsav8.mair1[M_REG_S] = 0;
546     }
547 
548     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
549         if (cpu->sau_sregion > 0) {
550             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
551             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
552         }
553         env->sau.rnr = 0;
554         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
555          * the Cortex-M33 does.
556          */
557         env->sau.ctrl = 0;
558     }
559 
560     set_flush_to_zero(1, &env->vfp.standard_fp_status);
561     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
562     set_default_nan_mode(1, &env->vfp.standard_fp_status);
563     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
564     arm_set_default_fp_behaviours(&env->vfp.fp_status);
565     arm_set_default_fp_behaviours(&env->vfp.standard_fp_status);
566     arm_set_default_fp_behaviours(&env->vfp.fp_status_f16);
567     arm_set_default_fp_behaviours(&env->vfp.standard_fp_status_f16);
568 
569 #ifndef CONFIG_USER_ONLY
570     if (kvm_enabled()) {
571         kvm_arm_reset_vcpu(cpu);
572     }
573 #endif
574 
575     if (tcg_enabled()) {
576         hw_breakpoint_update_all(cpu);
577         hw_watchpoint_update_all(cpu);
578 
579         arm_rebuild_hflags(env);
580     }
581 }
582 
583 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
584 {
585     ARMCPU *cpu = ARM_CPU(cpustate);
586     CPUARMState *env = &cpu->env;
587     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
588     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
589 
590     /*
591      * Check we have the EL we're aiming for. If that is the
592      * highest implemented EL, then cpu_reset has already done
593      * all the work.
594      */
595     switch (target_el) {
596     case 3:
597         assert(have_el3);
598         return;
599     case 2:
600         assert(have_el2);
601         if (!have_el3) {
602             return;
603         }
604         break;
605     case 1:
606         if (!have_el3 && !have_el2) {
607             return;
608         }
609         break;
610     default:
611         g_assert_not_reached();
612     }
613 
614     if (have_el3) {
615         /*
616          * Set the EL3 state so code can run at EL2. This should match
617          * the requirements set by Linux in its booting spec.
618          */
619         if (env->aarch64) {
620             env->cp15.scr_el3 |= SCR_RW;
621             if (cpu_isar_feature(aa64_pauth, cpu)) {
622                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
623             }
624             if (cpu_isar_feature(aa64_mte, cpu)) {
625                 env->cp15.scr_el3 |= SCR_ATA;
626             }
627             if (cpu_isar_feature(aa64_sve, cpu)) {
628                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
629                 env->vfp.zcr_el[3] = 0xf;
630             }
631             if (cpu_isar_feature(aa64_sme, cpu)) {
632                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
633                 env->cp15.scr_el3 |= SCR_ENTP2;
634                 env->vfp.smcr_el[3] = 0xf;
635             }
636             if (cpu_isar_feature(aa64_hcx, cpu)) {
637                 env->cp15.scr_el3 |= SCR_HXEN;
638             }
639             if (cpu_isar_feature(aa64_fgt, cpu)) {
640                 env->cp15.scr_el3 |= SCR_FGTEN;
641             }
642         }
643 
644         if (target_el == 2) {
645             /* If the guest is at EL2 then Linux expects the HVC insn to work */
646             env->cp15.scr_el3 |= SCR_HCE;
647         }
648 
649         /* Put CPU into non-secure state */
650         env->cp15.scr_el3 |= SCR_NS;
651         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
652         env->cp15.nsacr |= 3 << 10;
653     }
654 
655     if (have_el2 && target_el < 2) {
656         /* Set EL2 state so code can run at EL1. */
657         if (env->aarch64) {
658             env->cp15.hcr_el2 |= HCR_RW;
659         }
660     }
661 
662     /* Set the CPU to the desired state */
663     if (env->aarch64) {
664         env->pstate = aarch64_pstate_mode(target_el, true);
665     } else {
666         static const uint32_t mode_for_el[] = {
667             0,
668             ARM_CPU_MODE_SVC,
669             ARM_CPU_MODE_HYP,
670             ARM_CPU_MODE_SVC,
671         };
672 
673         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
674     }
675 }
676 
677 
678 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
679 
680 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
681                                      unsigned int target_el,
682                                      unsigned int cur_el, bool secure,
683                                      uint64_t hcr_el2)
684 {
685     CPUARMState *env = cpu_env(cs);
686     bool pstate_unmasked;
687     bool unmasked = false;
688     bool allIntMask = false;
689 
690     /*
691      * Don't take exceptions if they target a lower EL.
692      * This check should catch any exceptions that would not be taken
693      * but left pending.
694      */
695     if (cur_el > target_el) {
696         return false;
697     }
698 
699     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
700         env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) {
701         allIntMask = env->pstate & PSTATE_ALLINT ||
702                      ((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) &&
703                       (env->pstate & PSTATE_SP));
704     }
705 
706     switch (excp_idx) {
707     case EXCP_NMI:
708         pstate_unmasked = !allIntMask;
709         break;
710 
711     case EXCP_VINMI:
712         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
713             /* VINMIs are only taken when hypervized.  */
714             return false;
715         }
716         return !allIntMask;
717     case EXCP_VFNMI:
718         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
719             /* VFNMIs are only taken when hypervized.  */
720             return false;
721         }
722         return !allIntMask;
723     case EXCP_FIQ:
724         pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask);
725         break;
726 
727     case EXCP_IRQ:
728         pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask);
729         break;
730 
731     case EXCP_VFIQ:
732         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
733             /* VFIQs are only taken when hypervized.  */
734             return false;
735         }
736         return !(env->daif & PSTATE_F) && (!allIntMask);
737     case EXCP_VIRQ:
738         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
739             /* VIRQs are only taken when hypervized.  */
740             return false;
741         }
742         return !(env->daif & PSTATE_I) && (!allIntMask);
743     case EXCP_VSERR:
744         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
745             /* VIRQs are only taken when hypervized.  */
746             return false;
747         }
748         return !(env->daif & PSTATE_A);
749     default:
750         g_assert_not_reached();
751     }
752 
753     /*
754      * Use the target EL, current execution state and SCR/HCR settings to
755      * determine whether the corresponding CPSR bit is used to mask the
756      * interrupt.
757      */
758     if ((target_el > cur_el) && (target_el != 1)) {
759         /* Exceptions targeting a higher EL may not be maskable */
760         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
761             switch (target_el) {
762             case 2:
763                 /*
764                  * According to ARM DDI 0487H.a, an interrupt can be masked
765                  * when HCR_E2H and HCR_TGE are both set regardless of the
766                  * current Security state. Note that we need to revisit this
767                  * part again once we need to support NMI.
768                  */
769                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
770                         unmasked = true;
771                 }
772                 break;
773             case 3:
774                 /* Interrupt cannot be masked when the target EL is 3 */
775                 unmasked = true;
776                 break;
777             default:
778                 g_assert_not_reached();
779             }
780         } else {
781             /*
782              * The old 32-bit-only environment has a more complicated
783              * masking setup. HCR and SCR bits not only affect interrupt
784              * routing but also change the behaviour of masking.
785              */
786             bool hcr, scr;
787 
788             switch (excp_idx) {
789             case EXCP_FIQ:
790                 /*
791                  * If FIQs are routed to EL3 or EL2 then there are cases where
792                  * we override the CPSR.F in determining if the exception is
793                  * masked or not. If neither of these are set then we fall back
794                  * to the CPSR.F setting otherwise we further assess the state
795                  * below.
796                  */
797                 hcr = hcr_el2 & HCR_FMO;
798                 scr = (env->cp15.scr_el3 & SCR_FIQ);
799 
800                 /*
801                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
802                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
803                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
804                  * when non-secure but only when FIQs are only routed to EL3.
805                  */
806                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
807                 break;
808             case EXCP_IRQ:
809                 /*
810                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
811                  * we may override the CPSR.I masking when in non-secure state.
812                  * The SCR.IRQ setting has already been taken into consideration
813                  * when setting the target EL, so it does not have a further
814                  * affect here.
815                  */
816                 hcr = hcr_el2 & HCR_IMO;
817                 scr = false;
818                 break;
819             default:
820                 g_assert_not_reached();
821             }
822 
823             if ((scr || hcr) && !secure) {
824                 unmasked = true;
825             }
826         }
827     }
828 
829     /*
830      * The PSTATE bits only mask the interrupt if we have not overridden the
831      * ability above.
832      */
833     return unmasked || pstate_unmasked;
834 }
835 
836 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
837 {
838     CPUClass *cc = CPU_GET_CLASS(cs);
839     CPUARMState *env = cpu_env(cs);
840     uint32_t cur_el = arm_current_el(env);
841     bool secure = arm_is_secure(env);
842     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
843     uint32_t target_el;
844     uint32_t excp_idx;
845 
846     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
847 
848     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
849         (arm_sctlr(env, cur_el) & SCTLR_NMI)) {
850         if (interrupt_request & CPU_INTERRUPT_NMI) {
851             excp_idx = EXCP_NMI;
852             target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
853             if (arm_excp_unmasked(cs, excp_idx, target_el,
854                                   cur_el, secure, hcr_el2)) {
855                 goto found;
856             }
857         }
858         if (interrupt_request & CPU_INTERRUPT_VINMI) {
859             excp_idx = EXCP_VINMI;
860             target_el = 1;
861             if (arm_excp_unmasked(cs, excp_idx, target_el,
862                                   cur_el, secure, hcr_el2)) {
863                 goto found;
864             }
865         }
866         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
867             excp_idx = EXCP_VFNMI;
868             target_el = 1;
869             if (arm_excp_unmasked(cs, excp_idx, target_el,
870                                   cur_el, secure, hcr_el2)) {
871                 goto found;
872             }
873         }
874     } else {
875         /*
876          * NMI disabled: interrupts with superpriority are handled
877          * as if they didn't have it
878          */
879         if (interrupt_request & CPU_INTERRUPT_NMI) {
880             interrupt_request |= CPU_INTERRUPT_HARD;
881         }
882         if (interrupt_request & CPU_INTERRUPT_VINMI) {
883             interrupt_request |= CPU_INTERRUPT_VIRQ;
884         }
885         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
886             interrupt_request |= CPU_INTERRUPT_VFIQ;
887         }
888     }
889 
890     if (interrupt_request & CPU_INTERRUPT_FIQ) {
891         excp_idx = EXCP_FIQ;
892         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
893         if (arm_excp_unmasked(cs, excp_idx, target_el,
894                               cur_el, secure, hcr_el2)) {
895             goto found;
896         }
897     }
898     if (interrupt_request & CPU_INTERRUPT_HARD) {
899         excp_idx = EXCP_IRQ;
900         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
901         if (arm_excp_unmasked(cs, excp_idx, target_el,
902                               cur_el, secure, hcr_el2)) {
903             goto found;
904         }
905     }
906     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
907         excp_idx = EXCP_VIRQ;
908         target_el = 1;
909         if (arm_excp_unmasked(cs, excp_idx, target_el,
910                               cur_el, secure, hcr_el2)) {
911             goto found;
912         }
913     }
914     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
915         excp_idx = EXCP_VFIQ;
916         target_el = 1;
917         if (arm_excp_unmasked(cs, excp_idx, target_el,
918                               cur_el, secure, hcr_el2)) {
919             goto found;
920         }
921     }
922     if (interrupt_request & CPU_INTERRUPT_VSERR) {
923         excp_idx = EXCP_VSERR;
924         target_el = 1;
925         if (arm_excp_unmasked(cs, excp_idx, target_el,
926                               cur_el, secure, hcr_el2)) {
927             /* Taking a virtual abort clears HCR_EL2.VSE */
928             env->cp15.hcr_el2 &= ~HCR_VSE;
929             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
930             goto found;
931         }
932     }
933     return false;
934 
935  found:
936     cs->exception_index = excp_idx;
937     env->exception.target_el = target_el;
938     cc->tcg_ops->do_interrupt(cs);
939     return true;
940 }
941 
942 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
943 
944 void arm_cpu_update_virq(ARMCPU *cpu)
945 {
946     /*
947      * Update the interrupt level for VIRQ, which is the logical OR of
948      * the HCR_EL2.VI bit and the input line level from the GIC.
949      */
950     CPUARMState *env = &cpu->env;
951     CPUState *cs = CPU(cpu);
952 
953     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
954         !(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
955         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
956 
957     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
958         if (new_state) {
959             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
960         } else {
961             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
962         }
963     }
964 }
965 
966 void arm_cpu_update_vfiq(ARMCPU *cpu)
967 {
968     /*
969      * Update the interrupt level for VFIQ, which is the logical OR of
970      * the HCR_EL2.VF bit and the input line level from the GIC.
971      */
972     CPUARMState *env = &cpu->env;
973     CPUState *cs = CPU(cpu);
974 
975     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) &&
976         !(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) ||
977         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
978 
979     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
980         if (new_state) {
981             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
982         } else {
983             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
984         }
985     }
986 }
987 
988 void arm_cpu_update_vinmi(ARMCPU *cpu)
989 {
990     /*
991      * Update the interrupt level for VINMI, which is the logical OR of
992      * the HCRX_EL2.VINMI bit and the input line level from the GIC.
993      */
994     CPUARMState *env = &cpu->env;
995     CPUState *cs = CPU(cpu);
996 
997     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
998                       (arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
999         (env->irq_line_state & CPU_INTERRUPT_VINMI);
1000 
1001     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) {
1002         if (new_state) {
1003             cpu_interrupt(cs, CPU_INTERRUPT_VINMI);
1004         } else {
1005             cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI);
1006         }
1007     }
1008 }
1009 
1010 void arm_cpu_update_vfnmi(ARMCPU *cpu)
1011 {
1012     /*
1013      * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
1014      */
1015     CPUARMState *env = &cpu->env;
1016     CPUState *cs = CPU(cpu);
1017 
1018     bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) &&
1019                       (arm_hcrx_el2_eff(env) & HCRX_VFNMI);
1020 
1021     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) {
1022         if (new_state) {
1023             cpu_interrupt(cs, CPU_INTERRUPT_VFNMI);
1024         } else {
1025             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI);
1026         }
1027     }
1028 }
1029 
1030 void arm_cpu_update_vserr(ARMCPU *cpu)
1031 {
1032     /*
1033      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
1034      */
1035     CPUARMState *env = &cpu->env;
1036     CPUState *cs = CPU(cpu);
1037 
1038     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
1039 
1040     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
1041         if (new_state) {
1042             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
1043         } else {
1044             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
1045         }
1046     }
1047 }
1048 
1049 #ifndef CONFIG_USER_ONLY
1050 static void arm_cpu_set_irq(void *opaque, int irq, int level)
1051 {
1052     ARMCPU *cpu = opaque;
1053     CPUARMState *env = &cpu->env;
1054     CPUState *cs = CPU(cpu);
1055     static const int mask[] = {
1056         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
1057         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
1058         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
1059         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ,
1060         [ARM_CPU_NMI] = CPU_INTERRUPT_NMI,
1061         [ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI,
1062     };
1063 
1064     if (!arm_feature(env, ARM_FEATURE_EL2) &&
1065         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
1066         /*
1067          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
1068          * have EL2 support we don't care. (Unless the guest is doing something
1069          * silly this will only be calls saying "level is still 0".)
1070          */
1071         return;
1072     }
1073 
1074     if (level) {
1075         env->irq_line_state |= mask[irq];
1076     } else {
1077         env->irq_line_state &= ~mask[irq];
1078     }
1079 
1080     switch (irq) {
1081     case ARM_CPU_VIRQ:
1082         arm_cpu_update_virq(cpu);
1083         break;
1084     case ARM_CPU_VFIQ:
1085         arm_cpu_update_vfiq(cpu);
1086         break;
1087     case ARM_CPU_VINMI:
1088         arm_cpu_update_vinmi(cpu);
1089         break;
1090     case ARM_CPU_IRQ:
1091     case ARM_CPU_FIQ:
1092     case ARM_CPU_NMI:
1093         if (level) {
1094             cpu_interrupt(cs, mask[irq]);
1095         } else {
1096             cpu_reset_interrupt(cs, mask[irq]);
1097         }
1098         break;
1099     default:
1100         g_assert_not_reached();
1101     }
1102 }
1103 
1104 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
1105 {
1106 #ifdef CONFIG_KVM
1107     ARMCPU *cpu = opaque;
1108     CPUARMState *env = &cpu->env;
1109     CPUState *cs = CPU(cpu);
1110     uint32_t linestate_bit;
1111     int irq_id;
1112 
1113     switch (irq) {
1114     case ARM_CPU_IRQ:
1115         irq_id = KVM_ARM_IRQ_CPU_IRQ;
1116         linestate_bit = CPU_INTERRUPT_HARD;
1117         break;
1118     case ARM_CPU_FIQ:
1119         irq_id = KVM_ARM_IRQ_CPU_FIQ;
1120         linestate_bit = CPU_INTERRUPT_FIQ;
1121         break;
1122     default:
1123         g_assert_not_reached();
1124     }
1125 
1126     if (level) {
1127         env->irq_line_state |= linestate_bit;
1128     } else {
1129         env->irq_line_state &= ~linestate_bit;
1130     }
1131     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
1132 #endif
1133 }
1134 
1135 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
1136 {
1137     ARMCPU *cpu = ARM_CPU(cs);
1138     CPUARMState *env = &cpu->env;
1139 
1140     cpu_synchronize_state(cs);
1141     return arm_cpu_data_is_big_endian(env);
1142 }
1143 
1144 #ifdef CONFIG_TCG
1145 bool arm_cpu_exec_halt(CPUState *cs)
1146 {
1147     bool leave_halt = cpu_has_work(cs);
1148 
1149     if (leave_halt) {
1150         /* We're about to come out of WFI/WFE: disable the WFxT timer */
1151         ARMCPU *cpu = ARM_CPU(cs);
1152         if (cpu->wfxt_timer) {
1153             timer_del(cpu->wfxt_timer);
1154         }
1155     }
1156     return leave_halt;
1157 }
1158 #endif
1159 
1160 static void arm_wfxt_timer_cb(void *opaque)
1161 {
1162     ARMCPU *cpu = opaque;
1163     CPUState *cs = CPU(cpu);
1164 
1165     /*
1166      * We expect the CPU to be halted; this will cause arm_cpu_is_work()
1167      * to return true (so we will come out of halt even with no other
1168      * pending interrupt), and the TCG accelerator's cpu_exec_interrupt()
1169      * function auto-clears the CPU_INTERRUPT_EXITTB flag for us.
1170      */
1171     cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
1172 }
1173 #endif
1174 
1175 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1176 {
1177     ARMCPU *ac = ARM_CPU(cpu);
1178     CPUARMState *env = &ac->env;
1179     bool sctlr_b;
1180 
1181     if (is_a64(env)) {
1182         info->cap_arch = CS_ARCH_ARM64;
1183         info->cap_insn_unit = 4;
1184         info->cap_insn_split = 4;
1185     } else {
1186         int cap_mode;
1187         if (env->thumb) {
1188             info->cap_insn_unit = 2;
1189             info->cap_insn_split = 4;
1190             cap_mode = CS_MODE_THUMB;
1191         } else {
1192             info->cap_insn_unit = 4;
1193             info->cap_insn_split = 4;
1194             cap_mode = CS_MODE_ARM;
1195         }
1196         if (arm_feature(env, ARM_FEATURE_V8)) {
1197             cap_mode |= CS_MODE_V8;
1198         }
1199         if (arm_feature(env, ARM_FEATURE_M)) {
1200             cap_mode |= CS_MODE_MCLASS;
1201         }
1202         info->cap_arch = CS_ARCH_ARM;
1203         info->cap_mode = cap_mode;
1204     }
1205 
1206     sctlr_b = arm_sctlr_b(env);
1207     if (bswap_code(sctlr_b)) {
1208 #if TARGET_BIG_ENDIAN
1209         info->endian = BFD_ENDIAN_LITTLE;
1210 #else
1211         info->endian = BFD_ENDIAN_BIG;
1212 #endif
1213     }
1214     info->flags &= ~INSN_ARM_BE32;
1215 #ifndef CONFIG_USER_ONLY
1216     if (sctlr_b) {
1217         info->flags |= INSN_ARM_BE32;
1218     }
1219 #endif
1220 }
1221 
1222 #ifdef TARGET_AARCH64
1223 
1224 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1225 {
1226     ARMCPU *cpu = ARM_CPU(cs);
1227     CPUARMState *env = &cpu->env;
1228     uint32_t psr = pstate_read(env);
1229     int i, j;
1230     int el = arm_current_el(env);
1231     uint64_t hcr = arm_hcr_el2_eff(env);
1232     const char *ns_status;
1233     bool sve;
1234 
1235     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1236     for (i = 0; i < 32; i++) {
1237         if (i == 31) {
1238             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1239         } else {
1240             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1241                          (i + 2) % 3 ? " " : "\n");
1242         }
1243     }
1244 
1245     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1246         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1247     } else {
1248         ns_status = "";
1249     }
1250     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1251                  psr,
1252                  psr & PSTATE_N ? 'N' : '-',
1253                  psr & PSTATE_Z ? 'Z' : '-',
1254                  psr & PSTATE_C ? 'C' : '-',
1255                  psr & PSTATE_V ? 'V' : '-',
1256                  ns_status,
1257                  el,
1258                  psr & PSTATE_SP ? 'h' : 't');
1259 
1260     if (cpu_isar_feature(aa64_sme, cpu)) {
1261         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1262                      env->svcr,
1263                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1264                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1265     }
1266     if (cpu_isar_feature(aa64_bti, cpu)) {
1267         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1268     }
1269     qemu_fprintf(f, "%s%s%s",
1270                  (hcr & HCR_NV) ? " NV" : "",
1271                  (hcr & HCR_NV1) ? " NV1" : "",
1272                  (hcr & HCR_NV2) ? " NV2" : "");
1273     if (!(flags & CPU_DUMP_FPU)) {
1274         qemu_fprintf(f, "\n");
1275         return;
1276     }
1277     if (fp_exception_el(env, el) != 0) {
1278         qemu_fprintf(f, "    FPU disabled\n");
1279         return;
1280     }
1281     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1282                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1283 
1284     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1285         sve = sme_exception_el(env, el) == 0;
1286     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1287         sve = sve_exception_el(env, el) == 0;
1288     } else {
1289         sve = false;
1290     }
1291 
1292     if (sve) {
1293         int zcr_len = sve_vqm1_for_el(env, el);
1294 
1295         for (i = 0; i <= FFR_PRED_NUM; i++) {
1296             bool eol;
1297             if (i == FFR_PRED_NUM) {
1298                 qemu_fprintf(f, "FFR=");
1299                 /* It's last, so end the line.  */
1300                 eol = true;
1301             } else {
1302                 qemu_fprintf(f, "P%02d=", i);
1303                 switch (zcr_len) {
1304                 case 0:
1305                     eol = i % 8 == 7;
1306                     break;
1307                 case 1:
1308                     eol = i % 6 == 5;
1309                     break;
1310                 case 2:
1311                 case 3:
1312                     eol = i % 3 == 2;
1313                     break;
1314                 default:
1315                     /* More than one quadword per predicate.  */
1316                     eol = true;
1317                     break;
1318                 }
1319             }
1320             for (j = zcr_len / 4; j >= 0; j--) {
1321                 int digits;
1322                 if (j * 4 + 4 <= zcr_len + 1) {
1323                     digits = 16;
1324                 } else {
1325                     digits = (zcr_len % 4 + 1) * 4;
1326                 }
1327                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1328                              env->vfp.pregs[i].p[j],
1329                              j ? ":" : eol ? "\n" : " ");
1330             }
1331         }
1332 
1333         if (zcr_len == 0) {
1334             /*
1335              * With vl=16, there are only 37 columns per register,
1336              * so output two registers per line.
1337              */
1338             for (i = 0; i < 32; i++) {
1339                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1340                              i, env->vfp.zregs[i].d[1],
1341                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1342             }
1343         } else {
1344             for (i = 0; i < 32; i++) {
1345                 qemu_fprintf(f, "Z%02d=", i);
1346                 for (j = zcr_len; j >= 0; j--) {
1347                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1348                                  env->vfp.zregs[i].d[j * 2 + 1],
1349                                  env->vfp.zregs[i].d[j * 2 + 0],
1350                                  j ? ":" : "\n");
1351                 }
1352             }
1353         }
1354     } else {
1355         for (i = 0; i < 32; i++) {
1356             uint64_t *q = aa64_vfp_qreg(env, i);
1357             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1358                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1359         }
1360     }
1361 
1362     if (cpu_isar_feature(aa64_sme, cpu) &&
1363         FIELD_EX64(env->svcr, SVCR, ZA) &&
1364         sme_exception_el(env, el) == 0) {
1365         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1366         int svl = (zcr_len + 1) * 16;
1367         int svl_lg10 = svl < 100 ? 2 : 3;
1368 
1369         for (i = 0; i < svl; i++) {
1370             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1371             for (j = zcr_len; j >= 0; --j) {
1372                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1373                              env->zarray[i].d[2 * j + 1],
1374                              env->zarray[i].d[2 * j],
1375                              j ? ':' : '\n');
1376             }
1377         }
1378     }
1379 }
1380 
1381 #else
1382 
1383 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1384 {
1385     g_assert_not_reached();
1386 }
1387 
1388 #endif
1389 
1390 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1391 {
1392     ARMCPU *cpu = ARM_CPU(cs);
1393     CPUARMState *env = &cpu->env;
1394     int i;
1395 
1396     if (is_a64(env)) {
1397         aarch64_cpu_dump_state(cs, f, flags);
1398         return;
1399     }
1400 
1401     for (i = 0; i < 16; i++) {
1402         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1403         if ((i % 4) == 3) {
1404             qemu_fprintf(f, "\n");
1405         } else {
1406             qemu_fprintf(f, " ");
1407         }
1408     }
1409 
1410     if (arm_feature(env, ARM_FEATURE_M)) {
1411         uint32_t xpsr = xpsr_read(env);
1412         const char *mode;
1413         const char *ns_status = "";
1414 
1415         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1416             ns_status = env->v7m.secure ? "S " : "NS ";
1417         }
1418 
1419         if (xpsr & XPSR_EXCP) {
1420             mode = "handler";
1421         } else {
1422             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1423                 mode = "unpriv-thread";
1424             } else {
1425                 mode = "priv-thread";
1426             }
1427         }
1428 
1429         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1430                      xpsr,
1431                      xpsr & XPSR_N ? 'N' : '-',
1432                      xpsr & XPSR_Z ? 'Z' : '-',
1433                      xpsr & XPSR_C ? 'C' : '-',
1434                      xpsr & XPSR_V ? 'V' : '-',
1435                      xpsr & XPSR_T ? 'T' : 'A',
1436                      ns_status,
1437                      mode);
1438     } else {
1439         uint32_t psr = cpsr_read(env);
1440         const char *ns_status = "";
1441 
1442         if (arm_feature(env, ARM_FEATURE_EL3) &&
1443             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1444             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1445         }
1446 
1447         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1448                      psr,
1449                      psr & CPSR_N ? 'N' : '-',
1450                      psr & CPSR_Z ? 'Z' : '-',
1451                      psr & CPSR_C ? 'C' : '-',
1452                      psr & CPSR_V ? 'V' : '-',
1453                      psr & CPSR_T ? 'T' : 'A',
1454                      ns_status,
1455                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1456     }
1457 
1458     if (flags & CPU_DUMP_FPU) {
1459         int numvfpregs = 0;
1460         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1461             numvfpregs = 32;
1462         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1463             numvfpregs = 16;
1464         }
1465         for (i = 0; i < numvfpregs; i++) {
1466             uint64_t v = *aa32_vfp_dreg(env, i);
1467             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1468                          i * 2, (uint32_t)v,
1469                          i * 2 + 1, (uint32_t)(v >> 32),
1470                          i, v);
1471         }
1472         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1473         if (cpu_isar_feature(aa32_mve, cpu)) {
1474             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1475         }
1476     }
1477 }
1478 
1479 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1480 {
1481     uint32_t Aff1 = idx / clustersz;
1482     uint32_t Aff0 = idx % clustersz;
1483     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1484 }
1485 
1486 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1487 {
1488     return cpu->mp_affinity;
1489 }
1490 
1491 static void arm_cpu_initfn(Object *obj)
1492 {
1493     ARMCPU *cpu = ARM_CPU(obj);
1494 
1495     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1496                                          NULL, g_free);
1497 
1498     QLIST_INIT(&cpu->pre_el_change_hooks);
1499     QLIST_INIT(&cpu->el_change_hooks);
1500 
1501 #ifdef CONFIG_USER_ONLY
1502 # ifdef TARGET_AARCH64
1503     /*
1504      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1505      * These values were chosen to fit within the default signal frame.
1506      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1507      * and our corresponding cpu property.
1508      */
1509     cpu->sve_default_vq = 4;
1510     cpu->sme_default_vq = 2;
1511 # endif
1512 #else
1513     /* Our inbound IRQ and FIQ lines */
1514     if (kvm_enabled()) {
1515         /*
1516          * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add
1517          * them to maintain the same interface as non-KVM CPUs.
1518          */
1519         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6);
1520     } else {
1521         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6);
1522     }
1523 
1524     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1525                        ARRAY_SIZE(cpu->gt_timer_outputs));
1526 
1527     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1528                              "gicv3-maintenance-interrupt", 1);
1529     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1530                              "pmu-interrupt", 1);
1531 #endif
1532 
1533     /* DTB consumers generally don't in fact care what the 'compatible'
1534      * string is, so always provide some string and trust that a hypothetical
1535      * picky DTB consumer will also provide a helpful error message.
1536      */
1537     cpu->dtb_compatible = "qemu,unknown";
1538     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1539     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1540 
1541     if (tcg_enabled() || hvf_enabled()) {
1542         /* TCG and HVF implement PSCI 1.1 */
1543         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1544     }
1545 }
1546 
1547 /*
1548  * 0 means "unset, use the default value". That default might vary depending
1549  * on the CPU type, and is set in the realize fn.
1550  */
1551 static Property arm_cpu_gt_cntfrq_property =
1552             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 0);
1553 
1554 static Property arm_cpu_reset_cbar_property =
1555             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1556 
1557 static Property arm_cpu_reset_hivecs_property =
1558             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1559 
1560 #ifndef CONFIG_USER_ONLY
1561 static Property arm_cpu_has_el2_property =
1562             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1563 
1564 static Property arm_cpu_has_el3_property =
1565             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1566 #endif
1567 
1568 static Property arm_cpu_cfgend_property =
1569             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1570 
1571 static Property arm_cpu_has_vfp_property =
1572             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1573 
1574 static Property arm_cpu_has_vfp_d32_property =
1575             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1576 
1577 static Property arm_cpu_has_neon_property =
1578             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1579 
1580 static Property arm_cpu_has_dsp_property =
1581             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1582 
1583 static Property arm_cpu_has_mpu_property =
1584             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1585 
1586 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1587  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1588  * the right value for that particular CPU type, and we don't want
1589  * to override that with an incorrect constant value.
1590  */
1591 static Property arm_cpu_pmsav7_dregion_property =
1592             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1593                                            pmsav7_dregion,
1594                                            qdev_prop_uint32, uint32_t);
1595 
1596 static bool arm_get_pmu(Object *obj, Error **errp)
1597 {
1598     ARMCPU *cpu = ARM_CPU(obj);
1599 
1600     return cpu->has_pmu;
1601 }
1602 
1603 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1604 {
1605     ARMCPU *cpu = ARM_CPU(obj);
1606 
1607     if (value) {
1608         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1609             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1610             return;
1611         }
1612         set_feature(&cpu->env, ARM_FEATURE_PMU);
1613     } else {
1614         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1615     }
1616     cpu->has_pmu = value;
1617 }
1618 
1619 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1620 {
1621     /*
1622      * The exact approach to calculating guest ticks is:
1623      *
1624      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1625      *              NANOSECONDS_PER_SECOND);
1626      *
1627      * We don't do that. Rather we intentionally use integer division
1628      * truncation below and in the caller for the conversion of host monotonic
1629      * time to guest ticks to provide the exact inverse for the semantics of
1630      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1631      * it loses precision when representing frequencies where
1632      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1633      * provide an exact inverse leads to scheduling timers with negative
1634      * periods, which in turn leads to sticky behaviour in the guest.
1635      *
1636      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1637      * cannot become zero.
1638      */
1639     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1640       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1641 }
1642 
1643 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1644 {
1645     CPUARMState *env = &cpu->env;
1646     bool no_aa32 = false;
1647 
1648     /*
1649      * Some features automatically imply others: set the feature
1650      * bits explicitly for these cases.
1651      */
1652 
1653     if (arm_feature(env, ARM_FEATURE_M)) {
1654         set_feature(env, ARM_FEATURE_PMSA);
1655     }
1656 
1657     if (arm_feature(env, ARM_FEATURE_V8)) {
1658         if (arm_feature(env, ARM_FEATURE_M)) {
1659             set_feature(env, ARM_FEATURE_V7);
1660         } else {
1661             set_feature(env, ARM_FEATURE_V7VE);
1662         }
1663     }
1664 
1665     /*
1666      * There exist AArch64 cpus without AArch32 support.  When KVM
1667      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1668      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1669      * As a general principle, we also do not make ID register
1670      * consistency checks anywhere unless using TCG, because only
1671      * for TCG would a consistency-check failure be a QEMU bug.
1672      */
1673     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1674         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1675     }
1676 
1677     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1678         /*
1679          * v7 Virtualization Extensions. In real hardware this implies
1680          * EL2 and also the presence of the Security Extensions.
1681          * For QEMU, for backwards-compatibility we implement some
1682          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1683          * include the various other features that V7VE implies.
1684          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1685          * Security Extensions is ARM_FEATURE_EL3.
1686          */
1687         assert(!tcg_enabled() || no_aa32 ||
1688                cpu_isar_feature(aa32_arm_div, cpu));
1689         set_feature(env, ARM_FEATURE_LPAE);
1690         set_feature(env, ARM_FEATURE_V7);
1691     }
1692     if (arm_feature(env, ARM_FEATURE_V7)) {
1693         set_feature(env, ARM_FEATURE_VAPA);
1694         set_feature(env, ARM_FEATURE_THUMB2);
1695         set_feature(env, ARM_FEATURE_MPIDR);
1696         if (!arm_feature(env, ARM_FEATURE_M)) {
1697             set_feature(env, ARM_FEATURE_V6K);
1698         } else {
1699             set_feature(env, ARM_FEATURE_V6);
1700         }
1701 
1702         /*
1703          * Always define VBAR for V7 CPUs even if it doesn't exist in
1704          * non-EL3 configs. This is needed by some legacy boards.
1705          */
1706         set_feature(env, ARM_FEATURE_VBAR);
1707     }
1708     if (arm_feature(env, ARM_FEATURE_V6K)) {
1709         set_feature(env, ARM_FEATURE_V6);
1710         set_feature(env, ARM_FEATURE_MVFR);
1711     }
1712     if (arm_feature(env, ARM_FEATURE_V6)) {
1713         set_feature(env, ARM_FEATURE_V5);
1714         if (!arm_feature(env, ARM_FEATURE_M)) {
1715             assert(!tcg_enabled() || no_aa32 ||
1716                    cpu_isar_feature(aa32_jazelle, cpu));
1717             set_feature(env, ARM_FEATURE_AUXCR);
1718         }
1719     }
1720     if (arm_feature(env, ARM_FEATURE_V5)) {
1721         set_feature(env, ARM_FEATURE_V4T);
1722     }
1723     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1724         set_feature(env, ARM_FEATURE_V7MP);
1725     }
1726     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1727         set_feature(env, ARM_FEATURE_CBAR);
1728     }
1729     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1730         !arm_feature(env, ARM_FEATURE_M)) {
1731         set_feature(env, ARM_FEATURE_THUMB_DSP);
1732     }
1733 }
1734 
1735 void arm_cpu_post_init(Object *obj)
1736 {
1737     ARMCPU *cpu = ARM_CPU(obj);
1738 
1739     /*
1740      * Some features imply others. Figure this out now, because we
1741      * are going to look at the feature bits in deciding which
1742      * properties to add.
1743      */
1744     arm_cpu_propagate_feature_implications(cpu);
1745 
1746     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1747         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1748         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1749     }
1750 
1751     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1752         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1753     }
1754 
1755     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1756         object_property_add_uint64_ptr(obj, "rvbar",
1757                                        &cpu->rvbar_prop,
1758                                        OBJ_PROP_FLAG_READWRITE);
1759     }
1760 
1761 #ifndef CONFIG_USER_ONLY
1762     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1763         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1764          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1765          */
1766         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1767 
1768         object_property_add_link(obj, "secure-memory",
1769                                  TYPE_MEMORY_REGION,
1770                                  (Object **)&cpu->secure_memory,
1771                                  qdev_prop_allow_set_link_before_realize,
1772                                  OBJ_PROP_LINK_STRONG);
1773     }
1774 
1775     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1776         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1777     }
1778 #endif
1779 
1780     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1781         cpu->has_pmu = true;
1782         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1783     }
1784 
1785     /*
1786      * Allow user to turn off VFP and Neon support, but only for TCG --
1787      * KVM does not currently allow us to lie to the guest about its
1788      * ID/feature registers, so the guest always sees what the host has.
1789      */
1790     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1791         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1792             cpu->has_vfp = true;
1793             cpu->has_vfp_d32 = true;
1794             if (tcg_enabled() || qtest_enabled()) {
1795                 qdev_property_add_static(DEVICE(obj),
1796                                          &arm_cpu_has_vfp_property);
1797             }
1798         }
1799     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1800         cpu->has_vfp = true;
1801         if (tcg_enabled() || qtest_enabled()) {
1802             qdev_property_add_static(DEVICE(obj),
1803                                      &arm_cpu_has_vfp_property);
1804         }
1805         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1806             cpu->has_vfp_d32 = true;
1807             /*
1808              * The permitted values of the SIMDReg bits [3:0] on
1809              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1810              * make sure that has_vfp_d32 can not be set to false.
1811              */
1812             if ((tcg_enabled() || qtest_enabled())
1813                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1814                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1815                 qdev_property_add_static(DEVICE(obj),
1816                                          &arm_cpu_has_vfp_d32_property);
1817             }
1818         }
1819     }
1820 
1821     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1822         cpu->has_neon = true;
1823         if (!kvm_enabled()) {
1824             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1825         }
1826     }
1827 
1828     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1829         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1830         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1831     }
1832 
1833     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1834         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1835         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1836             qdev_property_add_static(DEVICE(obj),
1837                                      &arm_cpu_pmsav7_dregion_property);
1838         }
1839     }
1840 
1841     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1842         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1843                                  qdev_prop_allow_set_link_before_realize,
1844                                  OBJ_PROP_LINK_STRONG);
1845         /*
1846          * M profile: initial value of the Secure VTOR. We can't just use
1847          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1848          * the property to be set after realize.
1849          */
1850         object_property_add_uint32_ptr(obj, "init-svtor",
1851                                        &cpu->init_svtor,
1852                                        OBJ_PROP_FLAG_READWRITE);
1853     }
1854     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1855         /*
1856          * Initial value of the NS VTOR (for cores without the Security
1857          * extension, this is the only VTOR)
1858          */
1859         object_property_add_uint32_ptr(obj, "init-nsvtor",
1860                                        &cpu->init_nsvtor,
1861                                        OBJ_PROP_FLAG_READWRITE);
1862     }
1863 
1864     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1865     object_property_add_uint32_ptr(obj, "psci-conduit",
1866                                    &cpu->psci_conduit,
1867                                    OBJ_PROP_FLAG_READWRITE);
1868 
1869     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1870 
1871     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1872         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1873     }
1874 
1875     if (kvm_enabled()) {
1876         kvm_arm_add_vcpu_properties(cpu);
1877     }
1878 
1879 #ifndef CONFIG_USER_ONLY
1880     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1881         cpu_isar_feature(aa64_mte, cpu)) {
1882         object_property_add_link(obj, "tag-memory",
1883                                  TYPE_MEMORY_REGION,
1884                                  (Object **)&cpu->tag_memory,
1885                                  qdev_prop_allow_set_link_before_realize,
1886                                  OBJ_PROP_LINK_STRONG);
1887 
1888         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1889             object_property_add_link(obj, "secure-tag-memory",
1890                                      TYPE_MEMORY_REGION,
1891                                      (Object **)&cpu->secure_tag_memory,
1892                                      qdev_prop_allow_set_link_before_realize,
1893                                      OBJ_PROP_LINK_STRONG);
1894         }
1895     }
1896 #endif
1897 }
1898 
1899 static void arm_cpu_finalizefn(Object *obj)
1900 {
1901     ARMCPU *cpu = ARM_CPU(obj);
1902     ARMELChangeHook *hook, *next;
1903 
1904     g_hash_table_destroy(cpu->cp_regs);
1905 
1906     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1907         QLIST_REMOVE(hook, node);
1908         g_free(hook);
1909     }
1910     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1911         QLIST_REMOVE(hook, node);
1912         g_free(hook);
1913     }
1914 #ifndef CONFIG_USER_ONLY
1915     if (cpu->pmu_timer) {
1916         timer_free(cpu->pmu_timer);
1917     }
1918     if (cpu->wfxt_timer) {
1919         timer_free(cpu->wfxt_timer);
1920     }
1921 #endif
1922 }
1923 
1924 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1925 {
1926     Error *local_err = NULL;
1927 
1928 #ifdef TARGET_AARCH64
1929     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1930         arm_cpu_sve_finalize(cpu, &local_err);
1931         if (local_err != NULL) {
1932             error_propagate(errp, local_err);
1933             return;
1934         }
1935 
1936         /*
1937          * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1938          * FEAT_SME_FA64 is present). However our implementation currently
1939          * assumes it, so if the user asked for sve=off then turn off SME also.
1940          * (KVM doesn't currently support SME at all.)
1941          */
1942         if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1943             object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1944         }
1945 
1946         arm_cpu_sme_finalize(cpu, &local_err);
1947         if (local_err != NULL) {
1948             error_propagate(errp, local_err);
1949             return;
1950         }
1951 
1952         arm_cpu_pauth_finalize(cpu, &local_err);
1953         if (local_err != NULL) {
1954             error_propagate(errp, local_err);
1955             return;
1956         }
1957 
1958         arm_cpu_lpa2_finalize(cpu, &local_err);
1959         if (local_err != NULL) {
1960             error_propagate(errp, local_err);
1961             return;
1962         }
1963     }
1964 #endif
1965 
1966     if (kvm_enabled()) {
1967         kvm_arm_steal_time_finalize(cpu, &local_err);
1968         if (local_err != NULL) {
1969             error_propagate(errp, local_err);
1970             return;
1971         }
1972     }
1973 }
1974 
1975 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1976 {
1977     CPUState *cs = CPU(dev);
1978     ARMCPU *cpu = ARM_CPU(dev);
1979     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1980     CPUARMState *env = &cpu->env;
1981     Error *local_err = NULL;
1982 
1983 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1984     /* Use pc-relative instructions in system-mode */
1985     tcg_cflags_set(cs, CF_PCREL);
1986 #endif
1987 
1988     /* If we needed to query the host kernel for the CPU features
1989      * then it's possible that might have failed in the initfn, but
1990      * this is the first point where we can report it.
1991      */
1992     if (cpu->host_cpu_probe_failed) {
1993         if (!kvm_enabled() && !hvf_enabled()) {
1994             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1995         } else {
1996             error_setg(errp, "Failed to retrieve host CPU features");
1997         }
1998         return;
1999     }
2000 
2001     if (!cpu->gt_cntfrq_hz) {
2002         /*
2003          * 0 means "the board didn't set a value, use the default". (We also
2004          * get here for the CONFIG_USER_ONLY case.)
2005          * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
2006          * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
2007          * which gives a 16ns tick period.
2008          *
2009          * We will use the back-compat value:
2010          *  - for QEMU CPU types added before we standardized on 1GHz
2011          *  - for versioned machine types with a version of 9.0 or earlier
2012          */
2013         if (arm_feature(env, ARM_FEATURE_BACKCOMPAT_CNTFRQ) ||
2014             cpu->backcompat_cntfrq) {
2015             cpu->gt_cntfrq_hz = GTIMER_BACKCOMPAT_HZ;
2016         } else {
2017             cpu->gt_cntfrq_hz = GTIMER_DEFAULT_HZ;
2018         }
2019     }
2020 
2021 #ifndef CONFIG_USER_ONLY
2022     /* The NVIC and M-profile CPU are two halves of a single piece of
2023      * hardware; trying to use one without the other is a command line
2024      * error and will result in segfaults if not caught here.
2025      */
2026     if (arm_feature(env, ARM_FEATURE_M)) {
2027         if (!env->nvic) {
2028             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
2029             return;
2030         }
2031     } else {
2032         if (env->nvic) {
2033             error_setg(errp, "This board can only be used with Cortex-M CPUs");
2034             return;
2035         }
2036     }
2037 
2038     if (!tcg_enabled() && !qtest_enabled()) {
2039         /*
2040          * We assume that no accelerator except TCG (and the "not really an
2041          * accelerator" qtest) can handle these features, because Arm hardware
2042          * virtualization can't virtualize them.
2043          *
2044          * Catch all the cases which might cause us to create more than one
2045          * address space for the CPU (otherwise we will assert() later in
2046          * cpu_address_space_init()).
2047          */
2048         if (arm_feature(env, ARM_FEATURE_M)) {
2049             error_setg(errp,
2050                        "Cannot enable %s when using an M-profile guest CPU",
2051                        current_accel_name());
2052             return;
2053         }
2054         if (cpu->has_el3) {
2055             error_setg(errp,
2056                        "Cannot enable %s when guest CPU has EL3 enabled",
2057                        current_accel_name());
2058             return;
2059         }
2060         if (cpu->tag_memory) {
2061             error_setg(errp,
2062                        "Cannot enable %s when guest CPUs has MTE enabled",
2063                        current_accel_name());
2064             return;
2065         }
2066     }
2067 
2068     {
2069         uint64_t scale = gt_cntfrq_period_ns(cpu);
2070 
2071         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2072                                                arm_gt_ptimer_cb, cpu);
2073         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2074                                                arm_gt_vtimer_cb, cpu);
2075         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2076                                               arm_gt_htimer_cb, cpu);
2077         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2078                                               arm_gt_stimer_cb, cpu);
2079         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2080                                                   arm_gt_hvtimer_cb, cpu);
2081     }
2082 #endif
2083 
2084     cpu_exec_realizefn(cs, &local_err);
2085     if (local_err != NULL) {
2086         error_propagate(errp, local_err);
2087         return;
2088     }
2089 
2090     arm_cpu_finalize_features(cpu, &local_err);
2091     if (local_err != NULL) {
2092         error_propagate(errp, local_err);
2093         return;
2094     }
2095 
2096 #ifdef CONFIG_USER_ONLY
2097     /*
2098      * User mode relies on IC IVAU instructions to catch modification of
2099      * dual-mapped code.
2100      *
2101      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
2102      * IC IVAU even if the emulated processor does not normally require it.
2103      */
2104     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
2105 #endif
2106 
2107     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2108         cpu->has_vfp != cpu->has_neon) {
2109         /*
2110          * This is an architectural requirement for AArch64; AArch32 is
2111          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
2112          */
2113         error_setg(errp,
2114                    "AArch64 CPUs must have both VFP and Neon or neither");
2115         return;
2116     }
2117 
2118     if (cpu->has_vfp_d32 != cpu->has_neon) {
2119         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
2120         return;
2121     }
2122 
2123    if (!cpu->has_vfp_d32) {
2124         uint32_t u;
2125 
2126         u = cpu->isar.mvfr0;
2127         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
2128         cpu->isar.mvfr0 = u;
2129     }
2130 
2131     if (!cpu->has_vfp) {
2132         uint64_t t;
2133         uint32_t u;
2134 
2135         t = cpu->isar.id_aa64isar1;
2136         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
2137         cpu->isar.id_aa64isar1 = t;
2138 
2139         t = cpu->isar.id_aa64pfr0;
2140         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
2141         cpu->isar.id_aa64pfr0 = t;
2142 
2143         u = cpu->isar.id_isar6;
2144         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
2145         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2146         cpu->isar.id_isar6 = u;
2147 
2148         u = cpu->isar.mvfr0;
2149         u = FIELD_DP32(u, MVFR0, FPSP, 0);
2150         u = FIELD_DP32(u, MVFR0, FPDP, 0);
2151         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
2152         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
2153         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
2154         if (!arm_feature(env, ARM_FEATURE_M)) {
2155             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
2156             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
2157         }
2158         cpu->isar.mvfr0 = u;
2159 
2160         u = cpu->isar.mvfr1;
2161         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
2162         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
2163         u = FIELD_DP32(u, MVFR1, FPHP, 0);
2164         if (arm_feature(env, ARM_FEATURE_M)) {
2165             u = FIELD_DP32(u, MVFR1, FP16, 0);
2166         }
2167         cpu->isar.mvfr1 = u;
2168 
2169         u = cpu->isar.mvfr2;
2170         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
2171         cpu->isar.mvfr2 = u;
2172     }
2173 
2174     if (!cpu->has_neon) {
2175         uint64_t t;
2176         uint32_t u;
2177 
2178         unset_feature(env, ARM_FEATURE_NEON);
2179 
2180         t = cpu->isar.id_aa64isar0;
2181         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
2182         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
2183         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
2184         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
2185         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2186         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2187         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2188         cpu->isar.id_aa64isar0 = t;
2189 
2190         t = cpu->isar.id_aa64isar1;
2191         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2192         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2193         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2194         cpu->isar.id_aa64isar1 = t;
2195 
2196         t = cpu->isar.id_aa64pfr0;
2197         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2198         cpu->isar.id_aa64pfr0 = t;
2199 
2200         u = cpu->isar.id_isar5;
2201         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2202         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2203         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2204         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2205         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2206         cpu->isar.id_isar5 = u;
2207 
2208         u = cpu->isar.id_isar6;
2209         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2210         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2211         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2212         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2213         cpu->isar.id_isar6 = u;
2214 
2215         if (!arm_feature(env, ARM_FEATURE_M)) {
2216             u = cpu->isar.mvfr1;
2217             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2218             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2219             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2220             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2221             cpu->isar.mvfr1 = u;
2222 
2223             u = cpu->isar.mvfr2;
2224             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2225             cpu->isar.mvfr2 = u;
2226         }
2227     }
2228 
2229     if (!cpu->has_neon && !cpu->has_vfp) {
2230         uint64_t t;
2231         uint32_t u;
2232 
2233         t = cpu->isar.id_aa64isar0;
2234         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2235         cpu->isar.id_aa64isar0 = t;
2236 
2237         t = cpu->isar.id_aa64isar1;
2238         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2239         cpu->isar.id_aa64isar1 = t;
2240 
2241         u = cpu->isar.mvfr0;
2242         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2243         cpu->isar.mvfr0 = u;
2244 
2245         /* Despite the name, this field covers both VFP and Neon */
2246         u = cpu->isar.mvfr1;
2247         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2248         cpu->isar.mvfr1 = u;
2249     }
2250 
2251     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2252         uint32_t u;
2253 
2254         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2255 
2256         u = cpu->isar.id_isar1;
2257         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2258         cpu->isar.id_isar1 = u;
2259 
2260         u = cpu->isar.id_isar2;
2261         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2262         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2263         cpu->isar.id_isar2 = u;
2264 
2265         u = cpu->isar.id_isar3;
2266         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2267         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2268         cpu->isar.id_isar3 = u;
2269     }
2270 
2271 
2272     /*
2273      * We rely on no XScale CPU having VFP so we can use the same bits in the
2274      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2275      */
2276     assert(arm_feature(env, ARM_FEATURE_AARCH64) ||
2277            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2278            !arm_feature(env, ARM_FEATURE_XSCALE));
2279 
2280 #ifndef CONFIG_USER_ONLY
2281     {
2282         int pagebits;
2283         if (arm_feature(env, ARM_FEATURE_V7) &&
2284             !arm_feature(env, ARM_FEATURE_M) &&
2285             !arm_feature(env, ARM_FEATURE_PMSA)) {
2286             /*
2287              * v7VMSA drops support for the old ARMv5 tiny pages,
2288              * so we can use 4K pages.
2289              */
2290             pagebits = 12;
2291         } else {
2292             /*
2293              * For CPUs which might have tiny 1K pages, or which have an
2294              * MPU and might have small region sizes, stick with 1K pages.
2295              */
2296             pagebits = 10;
2297         }
2298         if (!set_preferred_target_page_bits(pagebits)) {
2299             /*
2300              * This can only ever happen for hotplugging a CPU, or if
2301              * the board code incorrectly creates a CPU which it has
2302              * promised via minimum_page_size that it will not.
2303              */
2304             error_setg(errp, "This CPU requires a smaller page size "
2305                        "than the system is using");
2306             return;
2307         }
2308     }
2309 #endif
2310 
2311     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2312      * We don't support setting cluster ID ([16..23]) (known as Aff2
2313      * in later ARM ARM versions), or any of the higher affinity level fields,
2314      * so these bits always RAZ.
2315      */
2316     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2317         cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2318                                                  ARM_DEFAULT_CPUS_PER_CLUSTER);
2319     }
2320 
2321     if (cpu->reset_hivecs) {
2322             cpu->reset_sctlr |= (1 << 13);
2323     }
2324 
2325     if (cpu->cfgend) {
2326         if (arm_feature(env, ARM_FEATURE_V7)) {
2327             cpu->reset_sctlr |= SCTLR_EE;
2328         } else {
2329             cpu->reset_sctlr |= SCTLR_B;
2330         }
2331     }
2332 
2333     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2334         /* If the has_el3 CPU property is disabled then we need to disable the
2335          * feature.
2336          */
2337         unset_feature(env, ARM_FEATURE_EL3);
2338 
2339         /*
2340          * Disable the security extension feature bits in the processor
2341          * feature registers as well.
2342          */
2343         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2344         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2345         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2346                                            ID_AA64PFR0, EL3, 0);
2347 
2348         /* Disable the realm management extension, which requires EL3. */
2349         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2350                                            ID_AA64PFR0, RME, 0);
2351     }
2352 
2353     if (!cpu->has_el2) {
2354         unset_feature(env, ARM_FEATURE_EL2);
2355     }
2356 
2357     if (!cpu->has_pmu) {
2358         unset_feature(env, ARM_FEATURE_PMU);
2359     }
2360     if (arm_feature(env, ARM_FEATURE_PMU)) {
2361         pmu_init(cpu);
2362 
2363         if (!kvm_enabled()) {
2364             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2365             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2366         }
2367 
2368 #ifndef CONFIG_USER_ONLY
2369         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2370                 cpu);
2371 #endif
2372     } else {
2373         cpu->isar.id_aa64dfr0 =
2374             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2375         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2376         cpu->pmceid0 = 0;
2377         cpu->pmceid1 = 0;
2378     }
2379 
2380     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2381         /*
2382          * Disable the hypervisor feature bits in the processor feature
2383          * registers if we don't have EL2.
2384          */
2385         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2386                                            ID_AA64PFR0, EL2, 0);
2387         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2388                                        ID_PFR1, VIRTUALIZATION, 0);
2389     }
2390 
2391     if (cpu_isar_feature(aa64_mte, cpu)) {
2392         /*
2393          * The architectural range of GM blocksize is 2-6, however qemu
2394          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2395          */
2396         if (tcg_enabled()) {
2397             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2398         }
2399 
2400 #ifndef CONFIG_USER_ONLY
2401         /*
2402          * If we run with TCG and do not have tag-memory provided by
2403          * the machine, then reduce MTE support to instructions enabled at EL0.
2404          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2405          */
2406         if (tcg_enabled() && cpu->tag_memory == NULL) {
2407             cpu->isar.id_aa64pfr1 =
2408                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2409         }
2410 
2411         /*
2412          * If MTE is supported by the host, however it should not be
2413          * enabled on the guest (i.e mte=off), clear guest's MTE bits."
2414          */
2415         if (kvm_enabled() && !cpu->kvm_mte) {
2416                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2417         }
2418 #endif
2419     }
2420 
2421 #ifndef CONFIG_USER_ONLY
2422     if (tcg_enabled() && cpu_isar_feature(aa64_wfxt, cpu)) {
2423         cpu->wfxt_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2424                                        arm_wfxt_timer_cb, cpu);
2425     }
2426 #endif
2427 
2428     if (tcg_enabled()) {
2429         /*
2430          * Don't report some architectural features in the ID registers
2431          * where TCG does not yet implement it (not even a minimal
2432          * stub version). This avoids guests falling over when they
2433          * try to access the non-existent system registers for them.
2434          */
2435         /* FEAT_SPE (Statistical Profiling Extension) */
2436         cpu->isar.id_aa64dfr0 =
2437             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2438         /* FEAT_TRBE (Trace Buffer Extension) */
2439         cpu->isar.id_aa64dfr0 =
2440             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2441         /* FEAT_TRF (Self-hosted Trace Extension) */
2442         cpu->isar.id_aa64dfr0 =
2443             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2444         cpu->isar.id_dfr0 =
2445             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2446         /* Trace Macrocell system register access */
2447         cpu->isar.id_aa64dfr0 =
2448             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2449         cpu->isar.id_dfr0 =
2450             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2451         /* Memory mapped trace */
2452         cpu->isar.id_dfr0 =
2453             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2454         /* FEAT_AMU (Activity Monitors Extension) */
2455         cpu->isar.id_aa64pfr0 =
2456             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2457         cpu->isar.id_pfr0 =
2458             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2459         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2460         cpu->isar.id_aa64pfr0 =
2461             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2462     }
2463 
2464     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2465      * to false or by setting pmsav7-dregion to 0.
2466      */
2467     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2468         cpu->has_mpu = false;
2469         cpu->pmsav7_dregion = 0;
2470         cpu->pmsav8r_hdregion = 0;
2471     }
2472 
2473     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2474         arm_feature(env, ARM_FEATURE_V7)) {
2475         uint32_t nr = cpu->pmsav7_dregion;
2476 
2477         if (nr > 0xff) {
2478             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2479             return;
2480         }
2481 
2482         if (nr) {
2483             if (arm_feature(env, ARM_FEATURE_V8)) {
2484                 /* PMSAv8 */
2485                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2486                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2487                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2488                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2489                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2490                 }
2491             } else {
2492                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2493                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2494                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2495             }
2496         }
2497 
2498         if (cpu->pmsav8r_hdregion > 0xff) {
2499             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2500                               cpu->pmsav8r_hdregion);
2501             return;
2502         }
2503 
2504         if (cpu->pmsav8r_hdregion) {
2505             env->pmsav8.hprbar = g_new0(uint32_t,
2506                                         cpu->pmsav8r_hdregion);
2507             env->pmsav8.hprlar = g_new0(uint32_t,
2508                                         cpu->pmsav8r_hdregion);
2509         }
2510     }
2511 
2512     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2513         uint32_t nr = cpu->sau_sregion;
2514 
2515         if (nr > 0xff) {
2516             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2517             return;
2518         }
2519 
2520         if (nr) {
2521             env->sau.rbar = g_new0(uint32_t, nr);
2522             env->sau.rlar = g_new0(uint32_t, nr);
2523         }
2524     }
2525 
2526     if (arm_feature(env, ARM_FEATURE_EL3)) {
2527         set_feature(env, ARM_FEATURE_VBAR);
2528     }
2529 
2530 #ifndef CONFIG_USER_ONLY
2531     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2532         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2533     }
2534 #endif
2535 
2536     register_cp_regs_for_features(cpu);
2537     arm_cpu_register_gdb_regs_for_features(cpu);
2538     arm_cpu_register_gdb_commands(cpu);
2539 
2540     init_cpreg_list(cpu);
2541 
2542 #ifndef CONFIG_USER_ONLY
2543     MachineState *ms = MACHINE(qdev_get_machine());
2544     unsigned int smp_cpus = ms->smp.cpus;
2545     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2546 
2547     /*
2548      * We must set cs->num_ases to the final value before
2549      * the first call to cpu_address_space_init.
2550      */
2551     if (cpu->tag_memory != NULL) {
2552         cs->num_ases = 3 + has_secure;
2553     } else {
2554         cs->num_ases = 1 + has_secure;
2555     }
2556 
2557     if (has_secure) {
2558         if (!cpu->secure_memory) {
2559             cpu->secure_memory = cs->memory;
2560         }
2561         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2562                                cpu->secure_memory);
2563     }
2564 
2565     if (cpu->tag_memory != NULL) {
2566         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2567                                cpu->tag_memory);
2568         if (has_secure) {
2569             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2570                                    cpu->secure_tag_memory);
2571         }
2572     }
2573 
2574     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2575 
2576     /* No core_count specified, default to smp_cpus. */
2577     if (cpu->core_count == -1) {
2578         cpu->core_count = smp_cpus;
2579     }
2580 #endif
2581 
2582     if (tcg_enabled()) {
2583         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2584 
2585         /*
2586          * We only support DCZ blocklen that fits on one page.
2587          *
2588          * Architectually this is always true.  However TARGET_PAGE_SIZE
2589          * is variable and, for compatibility with -machine virt-2.7,
2590          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2591          * But even then, while the largest architectural DCZ blocklen
2592          * is 2KiB, no cpu actually uses such a large blocklen.
2593          */
2594         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2595 
2596         /*
2597          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2598          * both nibbles of each byte storing tag data may be written at once.
2599          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2600          */
2601         if (cpu_isar_feature(aa64_mte, cpu)) {
2602             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2603         }
2604     }
2605 
2606     qemu_init_vcpu(cs);
2607     cpu_reset(cs);
2608 
2609     acc->parent_realize(dev, errp);
2610 }
2611 
2612 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2613 {
2614     ObjectClass *oc;
2615     char *typename;
2616     char **cpuname;
2617     const char *cpunamestr;
2618 
2619     cpuname = g_strsplit(cpu_model, ",", 1);
2620     cpunamestr = cpuname[0];
2621 #ifdef CONFIG_USER_ONLY
2622     /* For backwards compatibility usermode emulation allows "-cpu any",
2623      * which has the same semantics as "-cpu max".
2624      */
2625     if (!strcmp(cpunamestr, "any")) {
2626         cpunamestr = "max";
2627     }
2628 #endif
2629     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2630     oc = object_class_by_name(typename);
2631     g_strfreev(cpuname);
2632     g_free(typename);
2633 
2634     return oc;
2635 }
2636 
2637 static Property arm_cpu_properties[] = {
2638     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2639     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2640                         mp_affinity, ARM64_AFFINITY_INVALID),
2641     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2642     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2643     /* True to default to the backward-compat old CNTFRQ rather than 1Ghz */
2644     DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU, backcompat_cntfrq, false),
2645     DEFINE_PROP_END_OF_LIST()
2646 };
2647 
2648 static const gchar *arm_gdb_arch_name(CPUState *cs)
2649 {
2650     ARMCPU *cpu = ARM_CPU(cs);
2651     CPUARMState *env = &cpu->env;
2652 
2653     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2654         return "iwmmxt";
2655     }
2656     return "arm";
2657 }
2658 
2659 #ifndef CONFIG_USER_ONLY
2660 #include "hw/core/sysemu-cpu-ops.h"
2661 
2662 static const struct SysemuCPUOps arm_sysemu_ops = {
2663     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2664     .asidx_from_attrs = arm_asidx_from_attrs,
2665     .write_elf32_note = arm_cpu_write_elf32_note,
2666     .write_elf64_note = arm_cpu_write_elf64_note,
2667     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2668     .legacy_vmsd = &vmstate_arm_cpu,
2669 };
2670 #endif
2671 
2672 #ifdef CONFIG_TCG
2673 static const TCGCPUOps arm_tcg_ops = {
2674     .initialize = arm_translate_init,
2675     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2676     .debug_excp_handler = arm_debug_excp_handler,
2677     .restore_state_to_opc = arm_restore_state_to_opc,
2678 
2679 #ifdef CONFIG_USER_ONLY
2680     .record_sigsegv = arm_cpu_record_sigsegv,
2681     .record_sigbus = arm_cpu_record_sigbus,
2682 #else
2683     .tlb_fill_align = arm_cpu_tlb_fill_align,
2684     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2685     .cpu_exec_halt = arm_cpu_exec_halt,
2686     .do_interrupt = arm_cpu_do_interrupt,
2687     .do_transaction_failed = arm_cpu_do_transaction_failed,
2688     .do_unaligned_access = arm_cpu_do_unaligned_access,
2689     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2690     .debug_check_watchpoint = arm_debug_check_watchpoint,
2691     .debug_check_breakpoint = arm_debug_check_breakpoint,
2692 #endif /* !CONFIG_USER_ONLY */
2693 };
2694 #endif /* CONFIG_TCG */
2695 
2696 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2697 {
2698     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2699     CPUClass *cc = CPU_CLASS(acc);
2700     DeviceClass *dc = DEVICE_CLASS(oc);
2701     ResettableClass *rc = RESETTABLE_CLASS(oc);
2702 
2703     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2704                                     &acc->parent_realize);
2705 
2706     device_class_set_props(dc, arm_cpu_properties);
2707 
2708     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2709                                        &acc->parent_phases);
2710 
2711     cc->class_by_name = arm_cpu_class_by_name;
2712     cc->has_work = arm_cpu_has_work;
2713     cc->mmu_index = arm_cpu_mmu_index;
2714     cc->dump_state = arm_cpu_dump_state;
2715     cc->set_pc = arm_cpu_set_pc;
2716     cc->get_pc = arm_cpu_get_pc;
2717     cc->gdb_read_register = arm_cpu_gdb_read_register;
2718     cc->gdb_write_register = arm_cpu_gdb_write_register;
2719 #ifndef CONFIG_USER_ONLY
2720     cc->sysemu_ops = &arm_sysemu_ops;
2721 #endif
2722     cc->gdb_arch_name = arm_gdb_arch_name;
2723     cc->gdb_stop_before_watchpoint = true;
2724     cc->disas_set_info = arm_disas_set_info;
2725 
2726 #ifdef CONFIG_TCG
2727     cc->tcg_ops = &arm_tcg_ops;
2728 #endif /* CONFIG_TCG */
2729 }
2730 
2731 static void arm_cpu_instance_init(Object *obj)
2732 {
2733     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2734 
2735     acc->info->initfn(obj);
2736     arm_cpu_post_init(obj);
2737 }
2738 
2739 static void cpu_register_class_init(ObjectClass *oc, void *data)
2740 {
2741     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2742     CPUClass *cc = CPU_CLASS(acc);
2743 
2744     acc->info = data;
2745     cc->gdb_core_xml_file = "arm-core.xml";
2746 }
2747 
2748 void arm_cpu_register(const ARMCPUInfo *info)
2749 {
2750     TypeInfo type_info = {
2751         .parent = TYPE_ARM_CPU,
2752         .instance_init = arm_cpu_instance_init,
2753         .class_init = info->class_init ?: cpu_register_class_init,
2754         .class_data = (void *)info,
2755     };
2756 
2757     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2758     type_register(&type_info);
2759     g_free((void *)type_info.name);
2760 }
2761 
2762 static const TypeInfo arm_cpu_type_info = {
2763     .name = TYPE_ARM_CPU,
2764     .parent = TYPE_CPU,
2765     .instance_size = sizeof(ARMCPU),
2766     .instance_align = __alignof__(ARMCPU),
2767     .instance_init = arm_cpu_initfn,
2768     .instance_finalize = arm_cpu_finalizefn,
2769     .abstract = true,
2770     .class_size = sizeof(ARMCPUClass),
2771     .class_init = arm_cpu_class_init,
2772 };
2773 
2774 static void arm_cpu_register_types(void)
2775 {
2776     type_register_static(&arm_cpu_type_info);
2777 }
2778 
2779 type_init(arm_cpu_register_types)
2780