xref: /openbmc/qemu/target/arm/cpu.c (revision 0d67249c6d30a626434815c4fc39ab6bc60708f6)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #ifdef CONFIG_TCG
40 #include "hw/intc/armv7m_nvic.h"
41 #endif /* CONFIG_TCG */
42 #endif /* !CONFIG_USER_ONLY */
43 #include "sysemu/tcg.h"
44 #include "sysemu/qtest.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_arm.h"
47 #include "disas/capstone.h"
48 #include "fpu/softfloat.h"
49 #include "cpregs.h"
50 
51 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
52 {
53     ARMCPU *cpu = ARM_CPU(cs);
54     CPUARMState *env = &cpu->env;
55 
56     if (is_a64(env)) {
57         env->pc = value;
58         env->thumb = false;
59     } else {
60         env->regs[15] = value & ~1;
61         env->thumb = value & 1;
62     }
63 }
64 
65 static vaddr arm_cpu_get_pc(CPUState *cs)
66 {
67     ARMCPU *cpu = ARM_CPU(cs);
68     CPUARMState *env = &cpu->env;
69 
70     if (is_a64(env)) {
71         return env->pc;
72     } else {
73         return env->regs[15];
74     }
75 }
76 
77 #ifdef CONFIG_TCG
78 void arm_cpu_synchronize_from_tb(CPUState *cs,
79                                  const TranslationBlock *tb)
80 {
81     /* The program counter is always up to date with CF_PCREL. */
82     if (!(tb_cflags(tb) & CF_PCREL)) {
83         CPUARMState *env = cpu_env(cs);
84         /*
85          * It's OK to look at env for the current mode here, because it's
86          * never possible for an AArch64 TB to chain to an AArch32 TB.
87          */
88         if (is_a64(env)) {
89             env->pc = tb->pc;
90         } else {
91             env->regs[15] = tb->pc;
92         }
93     }
94 }
95 
96 void arm_restore_state_to_opc(CPUState *cs,
97                               const TranslationBlock *tb,
98                               const uint64_t *data)
99 {
100     CPUARMState *env = cpu_env(cs);
101 
102     if (is_a64(env)) {
103         if (tb_cflags(tb) & CF_PCREL) {
104             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
105         } else {
106             env->pc = data[0];
107         }
108         env->condexec_bits = 0;
109         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
110     } else {
111         if (tb_cflags(tb) & CF_PCREL) {
112             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
113         } else {
114             env->regs[15] = data[0];
115         }
116         env->condexec_bits = data[1];
117         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
118     }
119 }
120 #endif /* CONFIG_TCG */
121 
122 static bool arm_cpu_has_work(CPUState *cs)
123 {
124     ARMCPU *cpu = ARM_CPU(cs);
125 
126     return (cpu->power_state != PSCI_OFF)
127         && cs->interrupt_request &
128         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
129          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
130          | CPU_INTERRUPT_EXITTB);
131 }
132 
133 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
134                                  void *opaque)
135 {
136     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
137 
138     entry->hook = hook;
139     entry->opaque = opaque;
140 
141     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
142 }
143 
144 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
145                                  void *opaque)
146 {
147     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
148 
149     entry->hook = hook;
150     entry->opaque = opaque;
151 
152     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
153 }
154 
155 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
156 {
157     /* Reset a single ARMCPRegInfo register */
158     ARMCPRegInfo *ri = value;
159     ARMCPU *cpu = opaque;
160 
161     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
162         return;
163     }
164 
165     if (ri->resetfn) {
166         ri->resetfn(&cpu->env, ri);
167         return;
168     }
169 
170     /* A zero offset is never possible as it would be regs[0]
171      * so we use it to indicate that reset is being handled elsewhere.
172      * This is basically only used for fields in non-core coprocessors
173      * (like the pxa2xx ones).
174      */
175     if (!ri->fieldoffset) {
176         return;
177     }
178 
179     if (cpreg_field_is_64bit(ri)) {
180         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
181     } else {
182         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
183     }
184 }
185 
186 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
187 {
188     /* Purely an assertion check: we've already done reset once,
189      * so now check that running the reset for the cpreg doesn't
190      * change its value. This traps bugs where two different cpregs
191      * both try to reset the same state field but to different values.
192      */
193     ARMCPRegInfo *ri = value;
194     ARMCPU *cpu = opaque;
195     uint64_t oldvalue, newvalue;
196 
197     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
198         return;
199     }
200 
201     oldvalue = read_raw_cp_reg(&cpu->env, ri);
202     cp_reg_reset(key, value, opaque);
203     newvalue = read_raw_cp_reg(&cpu->env, ri);
204     assert(oldvalue == newvalue);
205 }
206 
207 static void arm_cpu_reset_hold(Object *obj)
208 {
209     CPUState *s = CPU(obj);
210     ARMCPU *cpu = ARM_CPU(s);
211     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
212     CPUARMState *env = &cpu->env;
213 
214     if (acc->parent_phases.hold) {
215         acc->parent_phases.hold(obj);
216     }
217 
218     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
219 
220     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
221     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
222 
223     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
224     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
225     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
226     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
227 
228     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
229 
230     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232     }
233 
234     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
235         /* 64 bit CPUs always start in 64 bit mode */
236         env->aarch64 = true;
237 #if defined(CONFIG_USER_ONLY)
238         env->pstate = PSTATE_MODE_EL0t;
239         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
240         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
241         /* Enable all PAC keys.  */
242         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
243                                   SCTLR_EnDA | SCTLR_EnDB);
244         /* Trap on btype=3 for PACIxSP. */
245         env->cp15.sctlr_el[1] |= SCTLR_BT0;
246         /* Trap on implementation defined registers. */
247         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
248             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
249         }
250         /* and to the FP/Neon instructions */
251         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
252                                          CPACR_EL1, FPEN, 3);
253         /* and to the SVE instructions, with default vector length */
254         if (cpu_isar_feature(aa64_sve, cpu)) {
255             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
256                                              CPACR_EL1, ZEN, 3);
257             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
258         }
259         /* and for SME instructions, with default vector length, and TPIDR2 */
260         if (cpu_isar_feature(aa64_sme, cpu)) {
261             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
262             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
263                                              CPACR_EL1, SMEN, 3);
264             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
265             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
266                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
267                                                  SMCR, FA64, 1);
268             }
269         }
270         /*
271          * Enable 48-bit address space (TODO: take reserved_va into account).
272          * Enable TBI0 but not TBI1.
273          * Note that this must match useronly_clean_ptr.
274          */
275         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
276 
277         /* Enable MTE */
278         if (cpu_isar_feature(aa64_mte, cpu)) {
279             /* Enable tag access, but leave TCF0 as No Effect (0). */
280             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
281             /*
282              * Exclude all tags, so that tag 0 is always used.
283              * This corresponds to Linux current->thread.gcr_incl = 0.
284              *
285              * Set RRND, so that helper_irg() will generate a seed later.
286              * Here in cpu_reset(), the crypto subsystem has not yet been
287              * initialized.
288              */
289             env->cp15.gcr_el1 = 0x1ffff;
290         }
291         /*
292          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
293          * This is not yet exposed from the Linux kernel in any way.
294          */
295         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
296         /* Disable access to Debug Communication Channel (DCC). */
297         env->cp15.mdscr_el1 |= 1 << 12;
298 #else
299         /* Reset into the highest available EL */
300         if (arm_feature(env, ARM_FEATURE_EL3)) {
301             env->pstate = PSTATE_MODE_EL3h;
302         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
303             env->pstate = PSTATE_MODE_EL2h;
304         } else {
305             env->pstate = PSTATE_MODE_EL1h;
306         }
307 
308         /* Sample rvbar at reset.  */
309         env->cp15.rvbar = cpu->rvbar_prop;
310         env->pc = env->cp15.rvbar;
311 #endif
312     } else {
313 #if defined(CONFIG_USER_ONLY)
314         /* Userspace expects access to cp10 and cp11 for FP/Neon */
315         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
316                                          CPACR, CP10, 3);
317         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
318                                          CPACR, CP11, 3);
319 #endif
320         if (arm_feature(env, ARM_FEATURE_V8)) {
321             env->cp15.rvbar = cpu->rvbar_prop;
322             env->regs[15] = cpu->rvbar_prop;
323         }
324     }
325 
326 #if defined(CONFIG_USER_ONLY)
327     env->uncached_cpsr = ARM_CPU_MODE_USR;
328     /* For user mode we must enable access to coprocessors */
329     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
330     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
331         env->cp15.c15_cpar = 3;
332     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
333         env->cp15.c15_cpar = 1;
334     }
335 #else
336 
337     /*
338      * If the highest available EL is EL2, AArch32 will start in Hyp
339      * mode; otherwise it starts in SVC. Note that if we start in
340      * AArch64 then these values in the uncached_cpsr will be ignored.
341      */
342     if (arm_feature(env, ARM_FEATURE_EL2) &&
343         !arm_feature(env, ARM_FEATURE_EL3)) {
344         env->uncached_cpsr = ARM_CPU_MODE_HYP;
345     } else {
346         env->uncached_cpsr = ARM_CPU_MODE_SVC;
347     }
348     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
349 
350     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
351      * executing as AArch32 then check if highvecs are enabled and
352      * adjust the PC accordingly.
353      */
354     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
355         env->regs[15] = 0xFFFF0000;
356     }
357 
358     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
359 #endif
360 
361     if (arm_feature(env, ARM_FEATURE_M)) {
362 #ifndef CONFIG_USER_ONLY
363         uint32_t initial_msp; /* Loaded from 0x0 */
364         uint32_t initial_pc; /* Loaded from 0x4 */
365         uint8_t *rom;
366         uint32_t vecbase;
367 #endif
368 
369         if (cpu_isar_feature(aa32_lob, cpu)) {
370             /*
371              * LTPSIZE is constant 4 if MVE not implemented, and resets
372              * to an UNKNOWN value if MVE is implemented. We choose to
373              * always reset to 4.
374              */
375             env->v7m.ltpsize = 4;
376             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
377             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
378             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
379         }
380 
381         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382             env->v7m.secure = true;
383         } else {
384             /* This bit resets to 0 if security is supported, but 1 if
385              * it is not. The bit is not present in v7M, but we set it
386              * here so we can avoid having to make checks on it conditional
387              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
388              */
389             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
390             /*
391              * Set NSACR to indicate "NS access permitted to everything";
392              * this avoids having to have all the tests of it being
393              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
394              * v8.1M the guest-visible value of NSACR in a CPU without the
395              * Security Extension is 0xcff.
396              */
397             env->v7m.nsacr = 0xcff;
398         }
399 
400         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
401          * that it resets to 1, so QEMU always does that rather than making
402          * it dependent on CPU model. In v8M it is RES1.
403          */
404         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
405         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
406         if (arm_feature(env, ARM_FEATURE_V8)) {
407             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
408             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
409             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
410         }
411         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
412             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
413             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
414         }
415 
416         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
417             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
418             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
419                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
420         }
421 
422 #ifndef CONFIG_USER_ONLY
423         /* Unlike A/R profile, M profile defines the reset LR value */
424         env->regs[14] = 0xffffffff;
425 
426         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
427         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
428 
429         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
430         vecbase = env->v7m.vecbase[env->v7m.secure];
431         rom = rom_ptr_for_as(s->as, vecbase, 8);
432         if (rom) {
433             /* Address zero is covered by ROM which hasn't yet been
434              * copied into physical memory.
435              */
436             initial_msp = ldl_p(rom);
437             initial_pc = ldl_p(rom + 4);
438         } else {
439             /* Address zero not covered by a ROM blob, or the ROM blob
440              * is in non-modifiable memory and this is a second reset after
441              * it got copied into memory. In the latter case, rom_ptr
442              * will return a NULL pointer and we should use ldl_phys instead.
443              */
444             initial_msp = ldl_phys(s->as, vecbase);
445             initial_pc = ldl_phys(s->as, vecbase + 4);
446         }
447 
448         qemu_log_mask(CPU_LOG_INT,
449                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
450                       initial_msp, initial_pc);
451 
452         env->regs[13] = initial_msp & 0xFFFFFFFC;
453         env->regs[15] = initial_pc & ~1;
454         env->thumb = initial_pc & 1;
455 #else
456         /*
457          * For user mode we run non-secure and with access to the FPU.
458          * The FPU context is active (ie does not need further setup)
459          * and is owned by non-secure.
460          */
461         env->v7m.secure = false;
462         env->v7m.nsacr = 0xcff;
463         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
464         env->v7m.fpccr[M_REG_S] &=
465             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
466         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
467 #endif
468     }
469 
470     /* M profile requires that reset clears the exclusive monitor;
471      * A profile does not, but clearing it makes more sense than having it
472      * set with an exclusive access on address zero.
473      */
474     arm_clear_exclusive(env);
475 
476     if (arm_feature(env, ARM_FEATURE_PMSA)) {
477         if (cpu->pmsav7_dregion > 0) {
478             if (arm_feature(env, ARM_FEATURE_V8)) {
479                 memset(env->pmsav8.rbar[M_REG_NS], 0,
480                        sizeof(*env->pmsav8.rbar[M_REG_NS])
481                        * cpu->pmsav7_dregion);
482                 memset(env->pmsav8.rlar[M_REG_NS], 0,
483                        sizeof(*env->pmsav8.rlar[M_REG_NS])
484                        * cpu->pmsav7_dregion);
485                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
486                     memset(env->pmsav8.rbar[M_REG_S], 0,
487                            sizeof(*env->pmsav8.rbar[M_REG_S])
488                            * cpu->pmsav7_dregion);
489                     memset(env->pmsav8.rlar[M_REG_S], 0,
490                            sizeof(*env->pmsav8.rlar[M_REG_S])
491                            * cpu->pmsav7_dregion);
492                 }
493             } else if (arm_feature(env, ARM_FEATURE_V7)) {
494                 memset(env->pmsav7.drbar, 0,
495                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
496                 memset(env->pmsav7.drsr, 0,
497                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
498                 memset(env->pmsav7.dracr, 0,
499                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
500             }
501         }
502 
503         if (cpu->pmsav8r_hdregion > 0) {
504             memset(env->pmsav8.hprbar, 0,
505                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
506             memset(env->pmsav8.hprlar, 0,
507                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
508         }
509 
510         env->pmsav7.rnr[M_REG_NS] = 0;
511         env->pmsav7.rnr[M_REG_S] = 0;
512         env->pmsav8.mair0[M_REG_NS] = 0;
513         env->pmsav8.mair0[M_REG_S] = 0;
514         env->pmsav8.mair1[M_REG_NS] = 0;
515         env->pmsav8.mair1[M_REG_S] = 0;
516     }
517 
518     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
519         if (cpu->sau_sregion > 0) {
520             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
521             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
522         }
523         env->sau.rnr = 0;
524         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
525          * the Cortex-M33 does.
526          */
527         env->sau.ctrl = 0;
528     }
529 
530     set_flush_to_zero(1, &env->vfp.standard_fp_status);
531     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
532     set_default_nan_mode(1, &env->vfp.standard_fp_status);
533     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
534     set_float_detect_tininess(float_tininess_before_rounding,
535                               &env->vfp.fp_status);
536     set_float_detect_tininess(float_tininess_before_rounding,
537                               &env->vfp.standard_fp_status);
538     set_float_detect_tininess(float_tininess_before_rounding,
539                               &env->vfp.fp_status_f16);
540     set_float_detect_tininess(float_tininess_before_rounding,
541                               &env->vfp.standard_fp_status_f16);
542 #ifndef CONFIG_USER_ONLY
543     if (kvm_enabled()) {
544         kvm_arm_reset_vcpu(cpu);
545     }
546 #endif
547 
548     if (tcg_enabled()) {
549         hw_breakpoint_update_all(cpu);
550         hw_watchpoint_update_all(cpu);
551 
552         arm_rebuild_hflags(env);
553     }
554 }
555 
556 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
557 {
558     ARMCPU *cpu = ARM_CPU(cpustate);
559     CPUARMState *env = &cpu->env;
560     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
561     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
562 
563     /*
564      * Check we have the EL we're aiming for. If that is the
565      * highest implemented EL, then cpu_reset has already done
566      * all the work.
567      */
568     switch (target_el) {
569     case 3:
570         assert(have_el3);
571         return;
572     case 2:
573         assert(have_el2);
574         if (!have_el3) {
575             return;
576         }
577         break;
578     case 1:
579         if (!have_el3 && !have_el2) {
580             return;
581         }
582         break;
583     default:
584         g_assert_not_reached();
585     }
586 
587     if (have_el3) {
588         /*
589          * Set the EL3 state so code can run at EL2. This should match
590          * the requirements set by Linux in its booting spec.
591          */
592         if (env->aarch64) {
593             env->cp15.scr_el3 |= SCR_RW;
594             if (cpu_isar_feature(aa64_pauth, cpu)) {
595                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
596             }
597             if (cpu_isar_feature(aa64_mte, cpu)) {
598                 env->cp15.scr_el3 |= SCR_ATA;
599             }
600             if (cpu_isar_feature(aa64_sve, cpu)) {
601                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
602                 env->vfp.zcr_el[3] = 0xf;
603             }
604             if (cpu_isar_feature(aa64_sme, cpu)) {
605                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
606                 env->cp15.scr_el3 |= SCR_ENTP2;
607                 env->vfp.smcr_el[3] = 0xf;
608             }
609             if (cpu_isar_feature(aa64_hcx, cpu)) {
610                 env->cp15.scr_el3 |= SCR_HXEN;
611             }
612             if (cpu_isar_feature(aa64_fgt, cpu)) {
613                 env->cp15.scr_el3 |= SCR_FGTEN;
614             }
615         }
616 
617         if (target_el == 2) {
618             /* If the guest is at EL2 then Linux expects the HVC insn to work */
619             env->cp15.scr_el3 |= SCR_HCE;
620         }
621 
622         /* Put CPU into non-secure state */
623         env->cp15.scr_el3 |= SCR_NS;
624         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
625         env->cp15.nsacr |= 3 << 10;
626     }
627 
628     if (have_el2 && target_el < 2) {
629         /* Set EL2 state so code can run at EL1. */
630         if (env->aarch64) {
631             env->cp15.hcr_el2 |= HCR_RW;
632         }
633     }
634 
635     /* Set the CPU to the desired state */
636     if (env->aarch64) {
637         env->pstate = aarch64_pstate_mode(target_el, true);
638     } else {
639         static const uint32_t mode_for_el[] = {
640             0,
641             ARM_CPU_MODE_SVC,
642             ARM_CPU_MODE_HYP,
643             ARM_CPU_MODE_SVC,
644         };
645 
646         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
647     }
648 }
649 
650 
651 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
652 
653 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
654                                      unsigned int target_el,
655                                      unsigned int cur_el, bool secure,
656                                      uint64_t hcr_el2)
657 {
658     CPUARMState *env = cpu_env(cs);
659     bool pstate_unmasked;
660     bool unmasked = false;
661 
662     /*
663      * Don't take exceptions if they target a lower EL.
664      * This check should catch any exceptions that would not be taken
665      * but left pending.
666      */
667     if (cur_el > target_el) {
668         return false;
669     }
670 
671     switch (excp_idx) {
672     case EXCP_FIQ:
673         pstate_unmasked = !(env->daif & PSTATE_F);
674         break;
675 
676     case EXCP_IRQ:
677         pstate_unmasked = !(env->daif & PSTATE_I);
678         break;
679 
680     case EXCP_VFIQ:
681         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
682             /* VFIQs are only taken when hypervized.  */
683             return false;
684         }
685         return !(env->daif & PSTATE_F);
686     case EXCP_VIRQ:
687         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
688             /* VIRQs are only taken when hypervized.  */
689             return false;
690         }
691         return !(env->daif & PSTATE_I);
692     case EXCP_VSERR:
693         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
694             /* VIRQs are only taken when hypervized.  */
695             return false;
696         }
697         return !(env->daif & PSTATE_A);
698     default:
699         g_assert_not_reached();
700     }
701 
702     /*
703      * Use the target EL, current execution state and SCR/HCR settings to
704      * determine whether the corresponding CPSR bit is used to mask the
705      * interrupt.
706      */
707     if ((target_el > cur_el) && (target_el != 1)) {
708         /* Exceptions targeting a higher EL may not be maskable */
709         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
710             switch (target_el) {
711             case 2:
712                 /*
713                  * According to ARM DDI 0487H.a, an interrupt can be masked
714                  * when HCR_E2H and HCR_TGE are both set regardless of the
715                  * current Security state. Note that we need to revisit this
716                  * part again once we need to support NMI.
717                  */
718                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
719                         unmasked = true;
720                 }
721                 break;
722             case 3:
723                 /* Interrupt cannot be masked when the target EL is 3 */
724                 unmasked = true;
725                 break;
726             default:
727                 g_assert_not_reached();
728             }
729         } else {
730             /*
731              * The old 32-bit-only environment has a more complicated
732              * masking setup. HCR and SCR bits not only affect interrupt
733              * routing but also change the behaviour of masking.
734              */
735             bool hcr, scr;
736 
737             switch (excp_idx) {
738             case EXCP_FIQ:
739                 /*
740                  * If FIQs are routed to EL3 or EL2 then there are cases where
741                  * we override the CPSR.F in determining if the exception is
742                  * masked or not. If neither of these are set then we fall back
743                  * to the CPSR.F setting otherwise we further assess the state
744                  * below.
745                  */
746                 hcr = hcr_el2 & HCR_FMO;
747                 scr = (env->cp15.scr_el3 & SCR_FIQ);
748 
749                 /*
750                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
751                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
752                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
753                  * when non-secure but only when FIQs are only routed to EL3.
754                  */
755                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
756                 break;
757             case EXCP_IRQ:
758                 /*
759                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
760                  * we may override the CPSR.I masking when in non-secure state.
761                  * The SCR.IRQ setting has already been taken into consideration
762                  * when setting the target EL, so it does not have a further
763                  * affect here.
764                  */
765                 hcr = hcr_el2 & HCR_IMO;
766                 scr = false;
767                 break;
768             default:
769                 g_assert_not_reached();
770             }
771 
772             if ((scr || hcr) && !secure) {
773                 unmasked = true;
774             }
775         }
776     }
777 
778     /*
779      * The PSTATE bits only mask the interrupt if we have not overridden the
780      * ability above.
781      */
782     return unmasked || pstate_unmasked;
783 }
784 
785 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
786 {
787     CPUClass *cc = CPU_GET_CLASS(cs);
788     CPUARMState *env = cpu_env(cs);
789     uint32_t cur_el = arm_current_el(env);
790     bool secure = arm_is_secure(env);
791     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
792     uint32_t target_el;
793     uint32_t excp_idx;
794 
795     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
796 
797     if (interrupt_request & CPU_INTERRUPT_FIQ) {
798         excp_idx = EXCP_FIQ;
799         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
800         if (arm_excp_unmasked(cs, excp_idx, target_el,
801                               cur_el, secure, hcr_el2)) {
802             goto found;
803         }
804     }
805     if (interrupt_request & CPU_INTERRUPT_HARD) {
806         excp_idx = EXCP_IRQ;
807         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
808         if (arm_excp_unmasked(cs, excp_idx, target_el,
809                               cur_el, secure, hcr_el2)) {
810             goto found;
811         }
812     }
813     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
814         excp_idx = EXCP_VIRQ;
815         target_el = 1;
816         if (arm_excp_unmasked(cs, excp_idx, target_el,
817                               cur_el, secure, hcr_el2)) {
818             goto found;
819         }
820     }
821     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
822         excp_idx = EXCP_VFIQ;
823         target_el = 1;
824         if (arm_excp_unmasked(cs, excp_idx, target_el,
825                               cur_el, secure, hcr_el2)) {
826             goto found;
827         }
828     }
829     if (interrupt_request & CPU_INTERRUPT_VSERR) {
830         excp_idx = EXCP_VSERR;
831         target_el = 1;
832         if (arm_excp_unmasked(cs, excp_idx, target_el,
833                               cur_el, secure, hcr_el2)) {
834             /* Taking a virtual abort clears HCR_EL2.VSE */
835             env->cp15.hcr_el2 &= ~HCR_VSE;
836             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
837             goto found;
838         }
839     }
840     return false;
841 
842  found:
843     cs->exception_index = excp_idx;
844     env->exception.target_el = target_el;
845     cc->tcg_ops->do_interrupt(cs);
846     return true;
847 }
848 
849 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
850 
851 void arm_cpu_update_virq(ARMCPU *cpu)
852 {
853     /*
854      * Update the interrupt level for VIRQ, which is the logical OR of
855      * the HCR_EL2.VI bit and the input line level from the GIC.
856      */
857     CPUARMState *env = &cpu->env;
858     CPUState *cs = CPU(cpu);
859 
860     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
861         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
862 
863     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
864         if (new_state) {
865             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
866         } else {
867             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
868         }
869     }
870 }
871 
872 void arm_cpu_update_vfiq(ARMCPU *cpu)
873 {
874     /*
875      * Update the interrupt level for VFIQ, which is the logical OR of
876      * the HCR_EL2.VF bit and the input line level from the GIC.
877      */
878     CPUARMState *env = &cpu->env;
879     CPUState *cs = CPU(cpu);
880 
881     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
882         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
883 
884     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
885         if (new_state) {
886             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
887         } else {
888             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
889         }
890     }
891 }
892 
893 void arm_cpu_update_vserr(ARMCPU *cpu)
894 {
895     /*
896      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
897      */
898     CPUARMState *env = &cpu->env;
899     CPUState *cs = CPU(cpu);
900 
901     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
902 
903     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
904         if (new_state) {
905             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
906         } else {
907             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
908         }
909     }
910 }
911 
912 #ifndef CONFIG_USER_ONLY
913 static void arm_cpu_set_irq(void *opaque, int irq, int level)
914 {
915     ARMCPU *cpu = opaque;
916     CPUARMState *env = &cpu->env;
917     CPUState *cs = CPU(cpu);
918     static const int mask[] = {
919         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
920         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
921         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
922         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
923     };
924 
925     if (!arm_feature(env, ARM_FEATURE_EL2) &&
926         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
927         /*
928          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
929          * have EL2 support we don't care. (Unless the guest is doing something
930          * silly this will only be calls saying "level is still 0".)
931          */
932         return;
933     }
934 
935     if (level) {
936         env->irq_line_state |= mask[irq];
937     } else {
938         env->irq_line_state &= ~mask[irq];
939     }
940 
941     switch (irq) {
942     case ARM_CPU_VIRQ:
943         arm_cpu_update_virq(cpu);
944         break;
945     case ARM_CPU_VFIQ:
946         arm_cpu_update_vfiq(cpu);
947         break;
948     case ARM_CPU_IRQ:
949     case ARM_CPU_FIQ:
950         if (level) {
951             cpu_interrupt(cs, mask[irq]);
952         } else {
953             cpu_reset_interrupt(cs, mask[irq]);
954         }
955         break;
956     default:
957         g_assert_not_reached();
958     }
959 }
960 
961 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
962 {
963 #ifdef CONFIG_KVM
964     ARMCPU *cpu = opaque;
965     CPUARMState *env = &cpu->env;
966     CPUState *cs = CPU(cpu);
967     uint32_t linestate_bit;
968     int irq_id;
969 
970     switch (irq) {
971     case ARM_CPU_IRQ:
972         irq_id = KVM_ARM_IRQ_CPU_IRQ;
973         linestate_bit = CPU_INTERRUPT_HARD;
974         break;
975     case ARM_CPU_FIQ:
976         irq_id = KVM_ARM_IRQ_CPU_FIQ;
977         linestate_bit = CPU_INTERRUPT_FIQ;
978         break;
979     default:
980         g_assert_not_reached();
981     }
982 
983     if (level) {
984         env->irq_line_state |= linestate_bit;
985     } else {
986         env->irq_line_state &= ~linestate_bit;
987     }
988     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
989 #endif
990 }
991 
992 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
993 {
994     ARMCPU *cpu = ARM_CPU(cs);
995     CPUARMState *env = &cpu->env;
996 
997     cpu_synchronize_state(cs);
998     return arm_cpu_data_is_big_endian(env);
999 }
1000 
1001 #endif
1002 
1003 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1004 {
1005     ARMCPU *ac = ARM_CPU(cpu);
1006     CPUARMState *env = &ac->env;
1007     bool sctlr_b;
1008 
1009     if (is_a64(env)) {
1010         info->cap_arch = CS_ARCH_ARM64;
1011         info->cap_insn_unit = 4;
1012         info->cap_insn_split = 4;
1013     } else {
1014         int cap_mode;
1015         if (env->thumb) {
1016             info->cap_insn_unit = 2;
1017             info->cap_insn_split = 4;
1018             cap_mode = CS_MODE_THUMB;
1019         } else {
1020             info->cap_insn_unit = 4;
1021             info->cap_insn_split = 4;
1022             cap_mode = CS_MODE_ARM;
1023         }
1024         if (arm_feature(env, ARM_FEATURE_V8)) {
1025             cap_mode |= CS_MODE_V8;
1026         }
1027         if (arm_feature(env, ARM_FEATURE_M)) {
1028             cap_mode |= CS_MODE_MCLASS;
1029         }
1030         info->cap_arch = CS_ARCH_ARM;
1031         info->cap_mode = cap_mode;
1032     }
1033 
1034     sctlr_b = arm_sctlr_b(env);
1035     if (bswap_code(sctlr_b)) {
1036 #if TARGET_BIG_ENDIAN
1037         info->endian = BFD_ENDIAN_LITTLE;
1038 #else
1039         info->endian = BFD_ENDIAN_BIG;
1040 #endif
1041     }
1042     info->flags &= ~INSN_ARM_BE32;
1043 #ifndef CONFIG_USER_ONLY
1044     if (sctlr_b) {
1045         info->flags |= INSN_ARM_BE32;
1046     }
1047 #endif
1048 }
1049 
1050 #ifdef TARGET_AARCH64
1051 
1052 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1053 {
1054     ARMCPU *cpu = ARM_CPU(cs);
1055     CPUARMState *env = &cpu->env;
1056     uint32_t psr = pstate_read(env);
1057     int i, j;
1058     int el = arm_current_el(env);
1059     const char *ns_status;
1060     bool sve;
1061 
1062     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1063     for (i = 0; i < 32; i++) {
1064         if (i == 31) {
1065             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1066         } else {
1067             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1068                          (i + 2) % 3 ? " " : "\n");
1069         }
1070     }
1071 
1072     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1073         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1074     } else {
1075         ns_status = "";
1076     }
1077     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1078                  psr,
1079                  psr & PSTATE_N ? 'N' : '-',
1080                  psr & PSTATE_Z ? 'Z' : '-',
1081                  psr & PSTATE_C ? 'C' : '-',
1082                  psr & PSTATE_V ? 'V' : '-',
1083                  ns_status,
1084                  el,
1085                  psr & PSTATE_SP ? 'h' : 't');
1086 
1087     if (cpu_isar_feature(aa64_sme, cpu)) {
1088         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1089                      env->svcr,
1090                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1091                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1092     }
1093     if (cpu_isar_feature(aa64_bti, cpu)) {
1094         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1095     }
1096     if (!(flags & CPU_DUMP_FPU)) {
1097         qemu_fprintf(f, "\n");
1098         return;
1099     }
1100     if (fp_exception_el(env, el) != 0) {
1101         qemu_fprintf(f, "    FPU disabled\n");
1102         return;
1103     }
1104     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1105                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1106 
1107     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1108         sve = sme_exception_el(env, el) == 0;
1109     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1110         sve = sve_exception_el(env, el) == 0;
1111     } else {
1112         sve = false;
1113     }
1114 
1115     if (sve) {
1116         int zcr_len = sve_vqm1_for_el(env, el);
1117 
1118         for (i = 0; i <= FFR_PRED_NUM; i++) {
1119             bool eol;
1120             if (i == FFR_PRED_NUM) {
1121                 qemu_fprintf(f, "FFR=");
1122                 /* It's last, so end the line.  */
1123                 eol = true;
1124             } else {
1125                 qemu_fprintf(f, "P%02d=", i);
1126                 switch (zcr_len) {
1127                 case 0:
1128                     eol = i % 8 == 7;
1129                     break;
1130                 case 1:
1131                     eol = i % 6 == 5;
1132                     break;
1133                 case 2:
1134                 case 3:
1135                     eol = i % 3 == 2;
1136                     break;
1137                 default:
1138                     /* More than one quadword per predicate.  */
1139                     eol = true;
1140                     break;
1141                 }
1142             }
1143             for (j = zcr_len / 4; j >= 0; j--) {
1144                 int digits;
1145                 if (j * 4 + 4 <= zcr_len + 1) {
1146                     digits = 16;
1147                 } else {
1148                     digits = (zcr_len % 4 + 1) * 4;
1149                 }
1150                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1151                              env->vfp.pregs[i].p[j],
1152                              j ? ":" : eol ? "\n" : " ");
1153             }
1154         }
1155 
1156         if (zcr_len == 0) {
1157             /*
1158              * With vl=16, there are only 37 columns per register,
1159              * so output two registers per line.
1160              */
1161             for (i = 0; i < 32; i++) {
1162                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1163                              i, env->vfp.zregs[i].d[1],
1164                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1165             }
1166         } else {
1167             for (i = 0; i < 32; i++) {
1168                 qemu_fprintf(f, "Z%02d=", i);
1169                 for (j = zcr_len; j >= 0; j--) {
1170                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1171                                  env->vfp.zregs[i].d[j * 2 + 1],
1172                                  env->vfp.zregs[i].d[j * 2 + 0],
1173                                  j ? ":" : "\n");
1174                 }
1175             }
1176         }
1177     } else {
1178         for (i = 0; i < 32; i++) {
1179             uint64_t *q = aa64_vfp_qreg(env, i);
1180             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1181                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1182         }
1183     }
1184 
1185     if (cpu_isar_feature(aa64_sme, cpu) &&
1186         FIELD_EX64(env->svcr, SVCR, ZA) &&
1187         sme_exception_el(env, el) == 0) {
1188         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1189         int svl = (zcr_len + 1) * 16;
1190         int svl_lg10 = svl < 100 ? 2 : 3;
1191 
1192         for (i = 0; i < svl; i++) {
1193             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1194             for (j = zcr_len; j >= 0; --j) {
1195                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1196                              env->zarray[i].d[2 * j + 1],
1197                              env->zarray[i].d[2 * j],
1198                              j ? ':' : '\n');
1199             }
1200         }
1201     }
1202 }
1203 
1204 #else
1205 
1206 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1207 {
1208     g_assert_not_reached();
1209 }
1210 
1211 #endif
1212 
1213 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1214 {
1215     ARMCPU *cpu = ARM_CPU(cs);
1216     CPUARMState *env = &cpu->env;
1217     int i;
1218 
1219     if (is_a64(env)) {
1220         aarch64_cpu_dump_state(cs, f, flags);
1221         return;
1222     }
1223 
1224     for (i = 0; i < 16; i++) {
1225         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1226         if ((i % 4) == 3) {
1227             qemu_fprintf(f, "\n");
1228         } else {
1229             qemu_fprintf(f, " ");
1230         }
1231     }
1232 
1233     if (arm_feature(env, ARM_FEATURE_M)) {
1234         uint32_t xpsr = xpsr_read(env);
1235         const char *mode;
1236         const char *ns_status = "";
1237 
1238         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1239             ns_status = env->v7m.secure ? "S " : "NS ";
1240         }
1241 
1242         if (xpsr & XPSR_EXCP) {
1243             mode = "handler";
1244         } else {
1245             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1246                 mode = "unpriv-thread";
1247             } else {
1248                 mode = "priv-thread";
1249             }
1250         }
1251 
1252         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1253                      xpsr,
1254                      xpsr & XPSR_N ? 'N' : '-',
1255                      xpsr & XPSR_Z ? 'Z' : '-',
1256                      xpsr & XPSR_C ? 'C' : '-',
1257                      xpsr & XPSR_V ? 'V' : '-',
1258                      xpsr & XPSR_T ? 'T' : 'A',
1259                      ns_status,
1260                      mode);
1261     } else {
1262         uint32_t psr = cpsr_read(env);
1263         const char *ns_status = "";
1264 
1265         if (arm_feature(env, ARM_FEATURE_EL3) &&
1266             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1267             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1268         }
1269 
1270         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1271                      psr,
1272                      psr & CPSR_N ? 'N' : '-',
1273                      psr & CPSR_Z ? 'Z' : '-',
1274                      psr & CPSR_C ? 'C' : '-',
1275                      psr & CPSR_V ? 'V' : '-',
1276                      psr & CPSR_T ? 'T' : 'A',
1277                      ns_status,
1278                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1279     }
1280 
1281     if (flags & CPU_DUMP_FPU) {
1282         int numvfpregs = 0;
1283         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1284             numvfpregs = 32;
1285         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1286             numvfpregs = 16;
1287         }
1288         for (i = 0; i < numvfpregs; i++) {
1289             uint64_t v = *aa32_vfp_dreg(env, i);
1290             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1291                          i * 2, (uint32_t)v,
1292                          i * 2 + 1, (uint32_t)(v >> 32),
1293                          i, v);
1294         }
1295         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1296         if (cpu_isar_feature(aa32_mve, cpu)) {
1297             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1298         }
1299     }
1300 }
1301 
1302 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1303 {
1304     uint32_t Aff1 = idx / clustersz;
1305     uint32_t Aff0 = idx % clustersz;
1306     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1307 }
1308 
1309 static void arm_cpu_initfn(Object *obj)
1310 {
1311     ARMCPU *cpu = ARM_CPU(obj);
1312 
1313     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1314                                          NULL, g_free);
1315 
1316     QLIST_INIT(&cpu->pre_el_change_hooks);
1317     QLIST_INIT(&cpu->el_change_hooks);
1318 
1319 #ifdef CONFIG_USER_ONLY
1320 # ifdef TARGET_AARCH64
1321     /*
1322      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1323      * These values were chosen to fit within the default signal frame.
1324      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1325      * and our corresponding cpu property.
1326      */
1327     cpu->sve_default_vq = 4;
1328     cpu->sme_default_vq = 2;
1329 # endif
1330 #else
1331     /* Our inbound IRQ and FIQ lines */
1332     if (kvm_enabled()) {
1333         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1334          * the same interface as non-KVM CPUs.
1335          */
1336         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1337     } else {
1338         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1339     }
1340 
1341     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1342                        ARRAY_SIZE(cpu->gt_timer_outputs));
1343 
1344     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1345                              "gicv3-maintenance-interrupt", 1);
1346     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1347                              "pmu-interrupt", 1);
1348 #endif
1349 
1350     /* DTB consumers generally don't in fact care what the 'compatible'
1351      * string is, so always provide some string and trust that a hypothetical
1352      * picky DTB consumer will also provide a helpful error message.
1353      */
1354     cpu->dtb_compatible = "qemu,unknown";
1355     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1356     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1357 
1358     if (tcg_enabled() || hvf_enabled()) {
1359         /* TCG and HVF implement PSCI 1.1 */
1360         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1361     }
1362 }
1363 
1364 static Property arm_cpu_gt_cntfrq_property =
1365             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1366                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1367 
1368 static Property arm_cpu_reset_cbar_property =
1369             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1370 
1371 static Property arm_cpu_reset_hivecs_property =
1372             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1373 
1374 #ifndef CONFIG_USER_ONLY
1375 static Property arm_cpu_has_el2_property =
1376             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1377 
1378 static Property arm_cpu_has_el3_property =
1379             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1380 #endif
1381 
1382 static Property arm_cpu_cfgend_property =
1383             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1384 
1385 static Property arm_cpu_has_vfp_property =
1386             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1387 
1388 static Property arm_cpu_has_vfp_d32_property =
1389             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1390 
1391 static Property arm_cpu_has_neon_property =
1392             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1393 
1394 static Property arm_cpu_has_dsp_property =
1395             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1396 
1397 static Property arm_cpu_has_mpu_property =
1398             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1399 
1400 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1401  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1402  * the right value for that particular CPU type, and we don't want
1403  * to override that with an incorrect constant value.
1404  */
1405 static Property arm_cpu_pmsav7_dregion_property =
1406             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1407                                            pmsav7_dregion,
1408                                            qdev_prop_uint32, uint32_t);
1409 
1410 static bool arm_get_pmu(Object *obj, Error **errp)
1411 {
1412     ARMCPU *cpu = ARM_CPU(obj);
1413 
1414     return cpu->has_pmu;
1415 }
1416 
1417 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1418 {
1419     ARMCPU *cpu = ARM_CPU(obj);
1420 
1421     if (value) {
1422         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1423             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1424             return;
1425         }
1426         set_feature(&cpu->env, ARM_FEATURE_PMU);
1427     } else {
1428         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1429     }
1430     cpu->has_pmu = value;
1431 }
1432 
1433 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1434 {
1435     /*
1436      * The exact approach to calculating guest ticks is:
1437      *
1438      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1439      *              NANOSECONDS_PER_SECOND);
1440      *
1441      * We don't do that. Rather we intentionally use integer division
1442      * truncation below and in the caller for the conversion of host monotonic
1443      * time to guest ticks to provide the exact inverse for the semantics of
1444      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1445      * it loses precision when representing frequencies where
1446      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1447      * provide an exact inverse leads to scheduling timers with negative
1448      * periods, which in turn leads to sticky behaviour in the guest.
1449      *
1450      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1451      * cannot become zero.
1452      */
1453     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1454       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1455 }
1456 
1457 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1458 {
1459     CPUARMState *env = &cpu->env;
1460     bool no_aa32 = false;
1461 
1462     /*
1463      * Some features automatically imply others: set the feature
1464      * bits explicitly for these cases.
1465      */
1466 
1467     if (arm_feature(env, ARM_FEATURE_M)) {
1468         set_feature(env, ARM_FEATURE_PMSA);
1469     }
1470 
1471     if (arm_feature(env, ARM_FEATURE_V8)) {
1472         if (arm_feature(env, ARM_FEATURE_M)) {
1473             set_feature(env, ARM_FEATURE_V7);
1474         } else {
1475             set_feature(env, ARM_FEATURE_V7VE);
1476         }
1477     }
1478 
1479     /*
1480      * There exist AArch64 cpus without AArch32 support.  When KVM
1481      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1482      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1483      * As a general principle, we also do not make ID register
1484      * consistency checks anywhere unless using TCG, because only
1485      * for TCG would a consistency-check failure be a QEMU bug.
1486      */
1487     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1488         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1489     }
1490 
1491     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1492         /*
1493          * v7 Virtualization Extensions. In real hardware this implies
1494          * EL2 and also the presence of the Security Extensions.
1495          * For QEMU, for backwards-compatibility we implement some
1496          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1497          * include the various other features that V7VE implies.
1498          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1499          * Security Extensions is ARM_FEATURE_EL3.
1500          */
1501         assert(!tcg_enabled() || no_aa32 ||
1502                cpu_isar_feature(aa32_arm_div, cpu));
1503         set_feature(env, ARM_FEATURE_LPAE);
1504         set_feature(env, ARM_FEATURE_V7);
1505     }
1506     if (arm_feature(env, ARM_FEATURE_V7)) {
1507         set_feature(env, ARM_FEATURE_VAPA);
1508         set_feature(env, ARM_FEATURE_THUMB2);
1509         set_feature(env, ARM_FEATURE_MPIDR);
1510         if (!arm_feature(env, ARM_FEATURE_M)) {
1511             set_feature(env, ARM_FEATURE_V6K);
1512         } else {
1513             set_feature(env, ARM_FEATURE_V6);
1514         }
1515 
1516         /*
1517          * Always define VBAR for V7 CPUs even if it doesn't exist in
1518          * non-EL3 configs. This is needed by some legacy boards.
1519          */
1520         set_feature(env, ARM_FEATURE_VBAR);
1521     }
1522     if (arm_feature(env, ARM_FEATURE_V6K)) {
1523         set_feature(env, ARM_FEATURE_V6);
1524         set_feature(env, ARM_FEATURE_MVFR);
1525     }
1526     if (arm_feature(env, ARM_FEATURE_V6)) {
1527         set_feature(env, ARM_FEATURE_V5);
1528         if (!arm_feature(env, ARM_FEATURE_M)) {
1529             assert(!tcg_enabled() || no_aa32 ||
1530                    cpu_isar_feature(aa32_jazelle, cpu));
1531             set_feature(env, ARM_FEATURE_AUXCR);
1532         }
1533     }
1534     if (arm_feature(env, ARM_FEATURE_V5)) {
1535         set_feature(env, ARM_FEATURE_V4T);
1536     }
1537     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1538         set_feature(env, ARM_FEATURE_V7MP);
1539     }
1540     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1541         set_feature(env, ARM_FEATURE_CBAR);
1542     }
1543     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1544         !arm_feature(env, ARM_FEATURE_M)) {
1545         set_feature(env, ARM_FEATURE_THUMB_DSP);
1546     }
1547 }
1548 
1549 void arm_cpu_post_init(Object *obj)
1550 {
1551     ARMCPU *cpu = ARM_CPU(obj);
1552 
1553     /*
1554      * Some features imply others. Figure this out now, because we
1555      * are going to look at the feature bits in deciding which
1556      * properties to add.
1557      */
1558     arm_cpu_propagate_feature_implications(cpu);
1559 
1560     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1561         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1562         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1563     }
1564 
1565     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1566         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1567     }
1568 
1569     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1570         object_property_add_uint64_ptr(obj, "rvbar",
1571                                        &cpu->rvbar_prop,
1572                                        OBJ_PROP_FLAG_READWRITE);
1573     }
1574 
1575 #ifndef CONFIG_USER_ONLY
1576     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1577         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1578          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1579          */
1580         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1581 
1582         object_property_add_link(obj, "secure-memory",
1583                                  TYPE_MEMORY_REGION,
1584                                  (Object **)&cpu->secure_memory,
1585                                  qdev_prop_allow_set_link_before_realize,
1586                                  OBJ_PROP_LINK_STRONG);
1587     }
1588 
1589     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1590         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1591     }
1592 #endif
1593 
1594     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1595         cpu->has_pmu = true;
1596         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1597     }
1598 
1599     /*
1600      * Allow user to turn off VFP and Neon support, but only for TCG --
1601      * KVM does not currently allow us to lie to the guest about its
1602      * ID/feature registers, so the guest always sees what the host has.
1603      */
1604     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1605         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1606             cpu->has_vfp = true;
1607             cpu->has_vfp_d32 = true;
1608             if (tcg_enabled() || qtest_enabled()) {
1609                 qdev_property_add_static(DEVICE(obj),
1610                                          &arm_cpu_has_vfp_property);
1611             }
1612         }
1613     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1614         cpu->has_vfp = true;
1615         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1616             cpu->has_vfp_d32 = true;
1617             /*
1618              * The permitted values of the SIMDReg bits [3:0] on
1619              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1620              * make sure that has_vfp_d32 can not be set to false.
1621              */
1622             if ((tcg_enabled() || qtest_enabled())
1623                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1624                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1625                 qdev_property_add_static(DEVICE(obj),
1626                                          &arm_cpu_has_vfp_d32_property);
1627             }
1628         }
1629     }
1630 
1631     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1632         cpu->has_neon = true;
1633         if (!kvm_enabled()) {
1634             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1635         }
1636     }
1637 
1638     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1639         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1640         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1641     }
1642 
1643     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1644         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1645         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1646             qdev_property_add_static(DEVICE(obj),
1647                                      &arm_cpu_pmsav7_dregion_property);
1648         }
1649     }
1650 
1651     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1652         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1653                                  qdev_prop_allow_set_link_before_realize,
1654                                  OBJ_PROP_LINK_STRONG);
1655         /*
1656          * M profile: initial value of the Secure VTOR. We can't just use
1657          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1658          * the property to be set after realize.
1659          */
1660         object_property_add_uint32_ptr(obj, "init-svtor",
1661                                        &cpu->init_svtor,
1662                                        OBJ_PROP_FLAG_READWRITE);
1663     }
1664     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1665         /*
1666          * Initial value of the NS VTOR (for cores without the Security
1667          * extension, this is the only VTOR)
1668          */
1669         object_property_add_uint32_ptr(obj, "init-nsvtor",
1670                                        &cpu->init_nsvtor,
1671                                        OBJ_PROP_FLAG_READWRITE);
1672     }
1673 
1674     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1675     object_property_add_uint32_ptr(obj, "psci-conduit",
1676                                    &cpu->psci_conduit,
1677                                    OBJ_PROP_FLAG_READWRITE);
1678 
1679     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1680 
1681     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1682         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1683     }
1684 
1685     if (kvm_enabled()) {
1686         kvm_arm_add_vcpu_properties(obj);
1687     }
1688 
1689 #ifndef CONFIG_USER_ONLY
1690     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1691         cpu_isar_feature(aa64_mte, cpu)) {
1692         object_property_add_link(obj, "tag-memory",
1693                                  TYPE_MEMORY_REGION,
1694                                  (Object **)&cpu->tag_memory,
1695                                  qdev_prop_allow_set_link_before_realize,
1696                                  OBJ_PROP_LINK_STRONG);
1697 
1698         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1699             object_property_add_link(obj, "secure-tag-memory",
1700                                      TYPE_MEMORY_REGION,
1701                                      (Object **)&cpu->secure_tag_memory,
1702                                      qdev_prop_allow_set_link_before_realize,
1703                                      OBJ_PROP_LINK_STRONG);
1704         }
1705     }
1706 #endif
1707 }
1708 
1709 static void arm_cpu_finalizefn(Object *obj)
1710 {
1711     ARMCPU *cpu = ARM_CPU(obj);
1712     ARMELChangeHook *hook, *next;
1713 
1714     g_hash_table_destroy(cpu->cp_regs);
1715 
1716     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1717         QLIST_REMOVE(hook, node);
1718         g_free(hook);
1719     }
1720     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1721         QLIST_REMOVE(hook, node);
1722         g_free(hook);
1723     }
1724 #ifndef CONFIG_USER_ONLY
1725     if (cpu->pmu_timer) {
1726         timer_free(cpu->pmu_timer);
1727     }
1728 #endif
1729 }
1730 
1731 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1732 {
1733     Error *local_err = NULL;
1734 
1735 #ifdef TARGET_AARCH64
1736     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1737         arm_cpu_sve_finalize(cpu, &local_err);
1738         if (local_err != NULL) {
1739             error_propagate(errp, local_err);
1740             return;
1741         }
1742 
1743         arm_cpu_sme_finalize(cpu, &local_err);
1744         if (local_err != NULL) {
1745             error_propagate(errp, local_err);
1746             return;
1747         }
1748 
1749         arm_cpu_pauth_finalize(cpu, &local_err);
1750         if (local_err != NULL) {
1751             error_propagate(errp, local_err);
1752             return;
1753         }
1754 
1755         arm_cpu_lpa2_finalize(cpu, &local_err);
1756         if (local_err != NULL) {
1757             error_propagate(errp, local_err);
1758             return;
1759         }
1760     }
1761 #endif
1762 
1763     if (kvm_enabled()) {
1764         kvm_arm_steal_time_finalize(cpu, &local_err);
1765         if (local_err != NULL) {
1766             error_propagate(errp, local_err);
1767             return;
1768         }
1769     }
1770 }
1771 
1772 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1773 {
1774     CPUState *cs = CPU(dev);
1775     ARMCPU *cpu = ARM_CPU(dev);
1776     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1777     CPUARMState *env = &cpu->env;
1778     int pagebits;
1779     Error *local_err = NULL;
1780 
1781     /* Use pc-relative instructions in system-mode */
1782 #ifndef CONFIG_USER_ONLY
1783     cs->tcg_cflags |= CF_PCREL;
1784 #endif
1785 
1786     /* If we needed to query the host kernel for the CPU features
1787      * then it's possible that might have failed in the initfn, but
1788      * this is the first point where we can report it.
1789      */
1790     if (cpu->host_cpu_probe_failed) {
1791         if (!kvm_enabled() && !hvf_enabled()) {
1792             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1793         } else {
1794             error_setg(errp, "Failed to retrieve host CPU features");
1795         }
1796         return;
1797     }
1798 
1799 #ifndef CONFIG_USER_ONLY
1800     /* The NVIC and M-profile CPU are two halves of a single piece of
1801      * hardware; trying to use one without the other is a command line
1802      * error and will result in segfaults if not caught here.
1803      */
1804     if (arm_feature(env, ARM_FEATURE_M)) {
1805         if (!env->nvic) {
1806             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1807             return;
1808         }
1809     } else {
1810         if (env->nvic) {
1811             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1812             return;
1813         }
1814     }
1815 
1816     if (!tcg_enabled() && !qtest_enabled()) {
1817         /*
1818          * We assume that no accelerator except TCG (and the "not really an
1819          * accelerator" qtest) can handle these features, because Arm hardware
1820          * virtualization can't virtualize them.
1821          *
1822          * Catch all the cases which might cause us to create more than one
1823          * address space for the CPU (otherwise we will assert() later in
1824          * cpu_address_space_init()).
1825          */
1826         if (arm_feature(env, ARM_FEATURE_M)) {
1827             error_setg(errp,
1828                        "Cannot enable %s when using an M-profile guest CPU",
1829                        current_accel_name());
1830             return;
1831         }
1832         if (cpu->has_el3) {
1833             error_setg(errp,
1834                        "Cannot enable %s when guest CPU has EL3 enabled",
1835                        current_accel_name());
1836             return;
1837         }
1838         if (cpu->tag_memory) {
1839             error_setg(errp,
1840                        "Cannot enable %s when guest CPUs has MTE enabled",
1841                        current_accel_name());
1842             return;
1843         }
1844     }
1845 
1846     {
1847         uint64_t scale;
1848 
1849         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1850             if (!cpu->gt_cntfrq_hz) {
1851                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1852                            cpu->gt_cntfrq_hz);
1853                 return;
1854             }
1855             scale = gt_cntfrq_period_ns(cpu);
1856         } else {
1857             scale = GTIMER_SCALE;
1858         }
1859 
1860         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1861                                                arm_gt_ptimer_cb, cpu);
1862         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1863                                                arm_gt_vtimer_cb, cpu);
1864         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1865                                               arm_gt_htimer_cb, cpu);
1866         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1867                                               arm_gt_stimer_cb, cpu);
1868         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1869                                                   arm_gt_hvtimer_cb, cpu);
1870     }
1871 #endif
1872 
1873     cpu_exec_realizefn(cs, &local_err);
1874     if (local_err != NULL) {
1875         error_propagate(errp, local_err);
1876         return;
1877     }
1878 
1879     arm_cpu_finalize_features(cpu, &local_err);
1880     if (local_err != NULL) {
1881         error_propagate(errp, local_err);
1882         return;
1883     }
1884 
1885 #ifdef CONFIG_USER_ONLY
1886     /*
1887      * User mode relies on IC IVAU instructions to catch modification of
1888      * dual-mapped code.
1889      *
1890      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1891      * IC IVAU even if the emulated processor does not normally require it.
1892      */
1893     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1894 #endif
1895 
1896     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1897         cpu->has_vfp != cpu->has_neon) {
1898         /*
1899          * This is an architectural requirement for AArch64; AArch32 is
1900          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1901          */
1902         error_setg(errp,
1903                    "AArch64 CPUs must have both VFP and Neon or neither");
1904         return;
1905     }
1906 
1907     if (cpu->has_vfp_d32 != cpu->has_neon) {
1908         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1909         return;
1910     }
1911 
1912    if (!cpu->has_vfp_d32) {
1913         uint32_t u;
1914 
1915         u = cpu->isar.mvfr0;
1916         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1917         cpu->isar.mvfr0 = u;
1918     }
1919 
1920     if (!cpu->has_vfp) {
1921         uint64_t t;
1922         uint32_t u;
1923 
1924         t = cpu->isar.id_aa64isar1;
1925         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1926         cpu->isar.id_aa64isar1 = t;
1927 
1928         t = cpu->isar.id_aa64pfr0;
1929         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1930         cpu->isar.id_aa64pfr0 = t;
1931 
1932         u = cpu->isar.id_isar6;
1933         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1934         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1935         cpu->isar.id_isar6 = u;
1936 
1937         u = cpu->isar.mvfr0;
1938         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1939         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1940         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1941         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1942         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1943         if (!arm_feature(env, ARM_FEATURE_M)) {
1944             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1945             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1946         }
1947         cpu->isar.mvfr0 = u;
1948 
1949         u = cpu->isar.mvfr1;
1950         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1951         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1952         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1953         if (arm_feature(env, ARM_FEATURE_M)) {
1954             u = FIELD_DP32(u, MVFR1, FP16, 0);
1955         }
1956         cpu->isar.mvfr1 = u;
1957 
1958         u = cpu->isar.mvfr2;
1959         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1960         cpu->isar.mvfr2 = u;
1961     }
1962 
1963     if (!cpu->has_neon) {
1964         uint64_t t;
1965         uint32_t u;
1966 
1967         unset_feature(env, ARM_FEATURE_NEON);
1968 
1969         t = cpu->isar.id_aa64isar0;
1970         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1971         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1972         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1973         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1974         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1975         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1976         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1977         cpu->isar.id_aa64isar0 = t;
1978 
1979         t = cpu->isar.id_aa64isar1;
1980         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1981         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1982         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1983         cpu->isar.id_aa64isar1 = t;
1984 
1985         t = cpu->isar.id_aa64pfr0;
1986         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1987         cpu->isar.id_aa64pfr0 = t;
1988 
1989         u = cpu->isar.id_isar5;
1990         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1991         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1992         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1993         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1994         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1995         cpu->isar.id_isar5 = u;
1996 
1997         u = cpu->isar.id_isar6;
1998         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1999         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2000         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2001         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2002         cpu->isar.id_isar6 = u;
2003 
2004         if (!arm_feature(env, ARM_FEATURE_M)) {
2005             u = cpu->isar.mvfr1;
2006             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2007             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2008             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2009             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2010             cpu->isar.mvfr1 = u;
2011 
2012             u = cpu->isar.mvfr2;
2013             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2014             cpu->isar.mvfr2 = u;
2015         }
2016     }
2017 
2018     if (!cpu->has_neon && !cpu->has_vfp) {
2019         uint64_t t;
2020         uint32_t u;
2021 
2022         t = cpu->isar.id_aa64isar0;
2023         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2024         cpu->isar.id_aa64isar0 = t;
2025 
2026         t = cpu->isar.id_aa64isar1;
2027         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2028         cpu->isar.id_aa64isar1 = t;
2029 
2030         u = cpu->isar.mvfr0;
2031         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2032         cpu->isar.mvfr0 = u;
2033 
2034         /* Despite the name, this field covers both VFP and Neon */
2035         u = cpu->isar.mvfr1;
2036         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2037         cpu->isar.mvfr1 = u;
2038     }
2039 
2040     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2041         uint32_t u;
2042 
2043         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2044 
2045         u = cpu->isar.id_isar1;
2046         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2047         cpu->isar.id_isar1 = u;
2048 
2049         u = cpu->isar.id_isar2;
2050         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2051         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2052         cpu->isar.id_isar2 = u;
2053 
2054         u = cpu->isar.id_isar3;
2055         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2056         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2057         cpu->isar.id_isar3 = u;
2058     }
2059 
2060 
2061     /*
2062      * We rely on no XScale CPU having VFP so we can use the same bits in the
2063      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2064      */
2065     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
2066            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2067            !arm_feature(env, ARM_FEATURE_XSCALE));
2068 
2069     if (arm_feature(env, ARM_FEATURE_V7) &&
2070         !arm_feature(env, ARM_FEATURE_M) &&
2071         !arm_feature(env, ARM_FEATURE_PMSA)) {
2072         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
2073          * can use 4K pages.
2074          */
2075         pagebits = 12;
2076     } else {
2077         /* For CPUs which might have tiny 1K pages, or which have an
2078          * MPU and might have small region sizes, stick with 1K pages.
2079          */
2080         pagebits = 10;
2081     }
2082     if (!set_preferred_target_page_bits(pagebits)) {
2083         /* This can only ever happen for hotplugging a CPU, or if
2084          * the board code incorrectly creates a CPU which it has
2085          * promised via minimum_page_size that it will not.
2086          */
2087         error_setg(errp, "This CPU requires a smaller page size than the "
2088                    "system is using");
2089         return;
2090     }
2091 
2092     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2093      * We don't support setting cluster ID ([16..23]) (known as Aff2
2094      * in later ARM ARM versions), or any of the higher affinity level fields,
2095      * so these bits always RAZ.
2096      */
2097     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2098         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
2099                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
2100     }
2101 
2102     if (cpu->reset_hivecs) {
2103             cpu->reset_sctlr |= (1 << 13);
2104     }
2105 
2106     if (cpu->cfgend) {
2107         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2108             cpu->reset_sctlr |= SCTLR_EE;
2109         } else {
2110             cpu->reset_sctlr |= SCTLR_B;
2111         }
2112     }
2113 
2114     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2115         /* If the has_el3 CPU property is disabled then we need to disable the
2116          * feature.
2117          */
2118         unset_feature(env, ARM_FEATURE_EL3);
2119 
2120         /*
2121          * Disable the security extension feature bits in the processor
2122          * feature registers as well.
2123          */
2124         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2125         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2126         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2127                                            ID_AA64PFR0, EL3, 0);
2128 
2129         /* Disable the realm management extension, which requires EL3. */
2130         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2131                                            ID_AA64PFR0, RME, 0);
2132     }
2133 
2134     if (!cpu->has_el2) {
2135         unset_feature(env, ARM_FEATURE_EL2);
2136     }
2137 
2138     if (!cpu->has_pmu) {
2139         unset_feature(env, ARM_FEATURE_PMU);
2140     }
2141     if (arm_feature(env, ARM_FEATURE_PMU)) {
2142         pmu_init(cpu);
2143 
2144         if (!kvm_enabled()) {
2145             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2146             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2147         }
2148 
2149 #ifndef CONFIG_USER_ONLY
2150         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2151                 cpu);
2152 #endif
2153     } else {
2154         cpu->isar.id_aa64dfr0 =
2155             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2156         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2157         cpu->pmceid0 = 0;
2158         cpu->pmceid1 = 0;
2159     }
2160 
2161     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2162         /*
2163          * Disable the hypervisor feature bits in the processor feature
2164          * registers if we don't have EL2.
2165          */
2166         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2167                                            ID_AA64PFR0, EL2, 0);
2168         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2169                                        ID_PFR1, VIRTUALIZATION, 0);
2170     }
2171 
2172     if (cpu_isar_feature(aa64_mte, cpu)) {
2173         /*
2174          * The architectural range of GM blocksize is 2-6, however qemu
2175          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2176          */
2177         if (tcg_enabled()) {
2178             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2179         }
2180 
2181 #ifndef CONFIG_USER_ONLY
2182         /*
2183          * If we do not have tag-memory provided by the machine,
2184          * reduce MTE support to instructions enabled at EL0.
2185          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2186          */
2187         if (cpu->tag_memory == NULL) {
2188             cpu->isar.id_aa64pfr1 =
2189                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2190         }
2191 #endif
2192     }
2193 
2194     if (tcg_enabled()) {
2195         /*
2196          * Don't report some architectural features in the ID registers
2197          * where TCG does not yet implement it (not even a minimal
2198          * stub version). This avoids guests falling over when they
2199          * try to access the non-existent system registers for them.
2200          */
2201         /* FEAT_SPE (Statistical Profiling Extension) */
2202         cpu->isar.id_aa64dfr0 =
2203             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2204         /* FEAT_TRBE (Trace Buffer Extension) */
2205         cpu->isar.id_aa64dfr0 =
2206             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2207         /* FEAT_TRF (Self-hosted Trace Extension) */
2208         cpu->isar.id_aa64dfr0 =
2209             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2210         cpu->isar.id_dfr0 =
2211             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2212         /* Trace Macrocell system register access */
2213         cpu->isar.id_aa64dfr0 =
2214             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2215         cpu->isar.id_dfr0 =
2216             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2217         /* Memory mapped trace */
2218         cpu->isar.id_dfr0 =
2219             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2220         /* FEAT_AMU (Activity Monitors Extension) */
2221         cpu->isar.id_aa64pfr0 =
2222             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2223         cpu->isar.id_pfr0 =
2224             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2225         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2226         cpu->isar.id_aa64pfr0 =
2227             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2228         /* FEAT_NV (Nested Virtualization) */
2229         cpu->isar.id_aa64mmfr2 =
2230             FIELD_DP64(cpu->isar.id_aa64mmfr2, ID_AA64MMFR2, NV, 0);
2231     }
2232 
2233     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2234      * to false or by setting pmsav7-dregion to 0.
2235      */
2236     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2237         cpu->has_mpu = false;
2238         cpu->pmsav7_dregion = 0;
2239         cpu->pmsav8r_hdregion = 0;
2240     }
2241 
2242     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2243         arm_feature(env, ARM_FEATURE_V7)) {
2244         uint32_t nr = cpu->pmsav7_dregion;
2245 
2246         if (nr > 0xff) {
2247             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2248             return;
2249         }
2250 
2251         if (nr) {
2252             if (arm_feature(env, ARM_FEATURE_V8)) {
2253                 /* PMSAv8 */
2254                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2255                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2256                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2257                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2258                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2259                 }
2260             } else {
2261                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2262                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2263                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2264             }
2265         }
2266 
2267         if (cpu->pmsav8r_hdregion > 0xff) {
2268             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2269                               cpu->pmsav8r_hdregion);
2270             return;
2271         }
2272 
2273         if (cpu->pmsav8r_hdregion) {
2274             env->pmsav8.hprbar = g_new0(uint32_t,
2275                                         cpu->pmsav8r_hdregion);
2276             env->pmsav8.hprlar = g_new0(uint32_t,
2277                                         cpu->pmsav8r_hdregion);
2278         }
2279     }
2280 
2281     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2282         uint32_t nr = cpu->sau_sregion;
2283 
2284         if (nr > 0xff) {
2285             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2286             return;
2287         }
2288 
2289         if (nr) {
2290             env->sau.rbar = g_new0(uint32_t, nr);
2291             env->sau.rlar = g_new0(uint32_t, nr);
2292         }
2293     }
2294 
2295     if (arm_feature(env, ARM_FEATURE_EL3)) {
2296         set_feature(env, ARM_FEATURE_VBAR);
2297     }
2298 
2299 #ifndef CONFIG_USER_ONLY
2300     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2301         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2302     }
2303 #endif
2304 
2305     register_cp_regs_for_features(cpu);
2306     arm_cpu_register_gdb_regs_for_features(cpu);
2307 
2308     init_cpreg_list(cpu);
2309 
2310 #ifndef CONFIG_USER_ONLY
2311     MachineState *ms = MACHINE(qdev_get_machine());
2312     unsigned int smp_cpus = ms->smp.cpus;
2313     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2314 
2315     /*
2316      * We must set cs->num_ases to the final value before
2317      * the first call to cpu_address_space_init.
2318      */
2319     if (cpu->tag_memory != NULL) {
2320         cs->num_ases = 3 + has_secure;
2321     } else {
2322         cs->num_ases = 1 + has_secure;
2323     }
2324 
2325     if (has_secure) {
2326         if (!cpu->secure_memory) {
2327             cpu->secure_memory = cs->memory;
2328         }
2329         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2330                                cpu->secure_memory);
2331     }
2332 
2333     if (cpu->tag_memory != NULL) {
2334         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2335                                cpu->tag_memory);
2336         if (has_secure) {
2337             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2338                                    cpu->secure_tag_memory);
2339         }
2340     }
2341 
2342     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2343 
2344     /* No core_count specified, default to smp_cpus. */
2345     if (cpu->core_count == -1) {
2346         cpu->core_count = smp_cpus;
2347     }
2348 #endif
2349 
2350     if (tcg_enabled()) {
2351         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2352 
2353         /*
2354          * We only support DCZ blocklen that fits on one page.
2355          *
2356          * Architectually this is always true.  However TARGET_PAGE_SIZE
2357          * is variable and, for compatibility with -machine virt-2.7,
2358          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2359          * But even then, while the largest architectural DCZ blocklen
2360          * is 2KiB, no cpu actually uses such a large blocklen.
2361          */
2362         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2363 
2364         /*
2365          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2366          * both nibbles of each byte storing tag data may be written at once.
2367          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2368          */
2369         if (cpu_isar_feature(aa64_mte, cpu)) {
2370             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2371         }
2372     }
2373 
2374     qemu_init_vcpu(cs);
2375     cpu_reset(cs);
2376 
2377     acc->parent_realize(dev, errp);
2378 }
2379 
2380 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2381 {
2382     ObjectClass *oc;
2383     char *typename;
2384     char **cpuname;
2385     const char *cpunamestr;
2386 
2387     cpuname = g_strsplit(cpu_model, ",", 1);
2388     cpunamestr = cpuname[0];
2389 #ifdef CONFIG_USER_ONLY
2390     /* For backwards compatibility usermode emulation allows "-cpu any",
2391      * which has the same semantics as "-cpu max".
2392      */
2393     if (!strcmp(cpunamestr, "any")) {
2394         cpunamestr = "max";
2395     }
2396 #endif
2397     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2398     oc = object_class_by_name(typename);
2399     g_strfreev(cpuname);
2400     g_free(typename);
2401     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2402         object_class_is_abstract(oc)) {
2403         return NULL;
2404     }
2405     return oc;
2406 }
2407 
2408 static Property arm_cpu_properties[] = {
2409     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2410     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2411                         mp_affinity, ARM64_AFFINITY_INVALID),
2412     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2413     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2414     DEFINE_PROP_END_OF_LIST()
2415 };
2416 
2417 static const gchar *arm_gdb_arch_name(CPUState *cs)
2418 {
2419     ARMCPU *cpu = ARM_CPU(cs);
2420     CPUARMState *env = &cpu->env;
2421 
2422     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2423         return "iwmmxt";
2424     }
2425     return "arm";
2426 }
2427 
2428 #ifndef CONFIG_USER_ONLY
2429 #include "hw/core/sysemu-cpu-ops.h"
2430 
2431 static const struct SysemuCPUOps arm_sysemu_ops = {
2432     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2433     .asidx_from_attrs = arm_asidx_from_attrs,
2434     .write_elf32_note = arm_cpu_write_elf32_note,
2435     .write_elf64_note = arm_cpu_write_elf64_note,
2436     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2437     .legacy_vmsd = &vmstate_arm_cpu,
2438 };
2439 #endif
2440 
2441 #ifdef CONFIG_TCG
2442 static const struct TCGCPUOps arm_tcg_ops = {
2443     .initialize = arm_translate_init,
2444     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2445     .debug_excp_handler = arm_debug_excp_handler,
2446     .restore_state_to_opc = arm_restore_state_to_opc,
2447 
2448 #ifdef CONFIG_USER_ONLY
2449     .record_sigsegv = arm_cpu_record_sigsegv,
2450     .record_sigbus = arm_cpu_record_sigbus,
2451 #else
2452     .tlb_fill = arm_cpu_tlb_fill,
2453     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2454     .do_interrupt = arm_cpu_do_interrupt,
2455     .do_transaction_failed = arm_cpu_do_transaction_failed,
2456     .do_unaligned_access = arm_cpu_do_unaligned_access,
2457     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2458     .debug_check_watchpoint = arm_debug_check_watchpoint,
2459     .debug_check_breakpoint = arm_debug_check_breakpoint,
2460 #endif /* !CONFIG_USER_ONLY */
2461 };
2462 #endif /* CONFIG_TCG */
2463 
2464 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2465 {
2466     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2467     CPUClass *cc = CPU_CLASS(acc);
2468     DeviceClass *dc = DEVICE_CLASS(oc);
2469     ResettableClass *rc = RESETTABLE_CLASS(oc);
2470 
2471     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2472                                     &acc->parent_realize);
2473 
2474     device_class_set_props(dc, arm_cpu_properties);
2475 
2476     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2477                                        &acc->parent_phases);
2478 
2479     cc->class_by_name = arm_cpu_class_by_name;
2480     cc->has_work = arm_cpu_has_work;
2481     cc->dump_state = arm_cpu_dump_state;
2482     cc->set_pc = arm_cpu_set_pc;
2483     cc->get_pc = arm_cpu_get_pc;
2484     cc->gdb_read_register = arm_cpu_gdb_read_register;
2485     cc->gdb_write_register = arm_cpu_gdb_write_register;
2486 #ifndef CONFIG_USER_ONLY
2487     cc->sysemu_ops = &arm_sysemu_ops;
2488 #endif
2489     cc->gdb_num_core_regs = 26;
2490     cc->gdb_arch_name = arm_gdb_arch_name;
2491     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2492     cc->gdb_stop_before_watchpoint = true;
2493     cc->disas_set_info = arm_disas_set_info;
2494 
2495 #ifdef CONFIG_TCG
2496     cc->tcg_ops = &arm_tcg_ops;
2497 #endif /* CONFIG_TCG */
2498 }
2499 
2500 static void arm_cpu_instance_init(Object *obj)
2501 {
2502     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2503 
2504     acc->info->initfn(obj);
2505     arm_cpu_post_init(obj);
2506 }
2507 
2508 static void cpu_register_class_init(ObjectClass *oc, void *data)
2509 {
2510     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2511     CPUClass *cc = CPU_CLASS(acc);
2512 
2513     acc->info = data;
2514     cc->gdb_core_xml_file = "arm-core.xml";
2515 }
2516 
2517 void arm_cpu_register(const ARMCPUInfo *info)
2518 {
2519     TypeInfo type_info = {
2520         .parent = TYPE_ARM_CPU,
2521         .instance_init = arm_cpu_instance_init,
2522         .class_init = info->class_init ?: cpu_register_class_init,
2523         .class_data = (void *)info,
2524     };
2525 
2526     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2527     type_register(&type_info);
2528     g_free((void *)type_info.name);
2529 }
2530 
2531 static const TypeInfo arm_cpu_type_info = {
2532     .name = TYPE_ARM_CPU,
2533     .parent = TYPE_CPU,
2534     .instance_size = sizeof(ARMCPU),
2535     .instance_align = __alignof__(ARMCPU),
2536     .instance_init = arm_cpu_initfn,
2537     .instance_finalize = arm_cpu_finalizefn,
2538     .abstract = true,
2539     .class_size = sizeof(ARMCPUClass),
2540     .class_init = arm_cpu_class_init,
2541 };
2542 
2543 static void arm_cpu_register_types(void)
2544 {
2545     type_register_static(&arm_cpu_type_info);
2546 }
2547 
2548 type_init(arm_cpu_register_types)
2549