xref: /openbmc/qemu/target/arm/cpu.c (revision 08267487c99e8150382420936ab72c1e0ad74ce3)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
39 
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
41 {
42     ARMCPU *cpu = ARM_CPU(cs);
43 
44     cpu->env.regs[15] = value;
45 }
46 
47 static bool arm_cpu_has_work(CPUState *cs)
48 {
49     ARMCPU *cpu = ARM_CPU(cs);
50 
51     return (cpu->power_state != PSCI_OFF)
52         && cs->interrupt_request &
53         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55          | CPU_INTERRUPT_EXITTB);
56 }
57 
58 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59                                  void *opaque)
60 {
61     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
62 
63     entry->hook = hook;
64     entry->opaque = opaque;
65 
66     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
67 }
68 
69 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
70 {
71     /* Reset a single ARMCPRegInfo register */
72     ARMCPRegInfo *ri = value;
73     ARMCPU *cpu = opaque;
74 
75     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
76         return;
77     }
78 
79     if (ri->resetfn) {
80         ri->resetfn(&cpu->env, ri);
81         return;
82     }
83 
84     /* A zero offset is never possible as it would be regs[0]
85      * so we use it to indicate that reset is being handled elsewhere.
86      * This is basically only used for fields in non-core coprocessors
87      * (like the pxa2xx ones).
88      */
89     if (!ri->fieldoffset) {
90         return;
91     }
92 
93     if (cpreg_field_is_64bit(ri)) {
94         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
95     } else {
96         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
97     }
98 }
99 
100 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
101 {
102     /* Purely an assertion check: we've already done reset once,
103      * so now check that running the reset for the cpreg doesn't
104      * change its value. This traps bugs where two different cpregs
105      * both try to reset the same state field but to different values.
106      */
107     ARMCPRegInfo *ri = value;
108     ARMCPU *cpu = opaque;
109     uint64_t oldvalue, newvalue;
110 
111     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
112         return;
113     }
114 
115     oldvalue = read_raw_cp_reg(&cpu->env, ri);
116     cp_reg_reset(key, value, opaque);
117     newvalue = read_raw_cp_reg(&cpu->env, ri);
118     assert(oldvalue == newvalue);
119 }
120 
121 /* CPUClass::reset() */
122 static void arm_cpu_reset(CPUState *s)
123 {
124     ARMCPU *cpu = ARM_CPU(s);
125     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
126     CPUARMState *env = &cpu->env;
127 
128     acc->parent_reset(s);
129 
130     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
131 
132     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
133     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
134 
135     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
136     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
137     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
138     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
139 
140     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
141     s->halted = cpu->start_powered_off;
142 
143     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
144         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
145     }
146 
147     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
148         /* 64 bit CPUs always start in 64 bit mode */
149         env->aarch64 = 1;
150 #if defined(CONFIG_USER_ONLY)
151         env->pstate = PSTATE_MODE_EL0t;
152         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
153         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
154         /* and to the FP/Neon instructions */
155         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
156 #else
157         /* Reset into the highest available EL */
158         if (arm_feature(env, ARM_FEATURE_EL3)) {
159             env->pstate = PSTATE_MODE_EL3h;
160         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
161             env->pstate = PSTATE_MODE_EL2h;
162         } else {
163             env->pstate = PSTATE_MODE_EL1h;
164         }
165         env->pc = cpu->rvbar;
166 #endif
167     } else {
168 #if defined(CONFIG_USER_ONLY)
169         /* Userspace expects access to cp10 and cp11 for FP/Neon */
170         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
171 #endif
172     }
173 
174 #if defined(CONFIG_USER_ONLY)
175     env->uncached_cpsr = ARM_CPU_MODE_USR;
176     /* For user mode we must enable access to coprocessors */
177     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
178     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
179         env->cp15.c15_cpar = 3;
180     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
181         env->cp15.c15_cpar = 1;
182     }
183 #else
184     /* SVC mode with interrupts disabled.  */
185     env->uncached_cpsr = ARM_CPU_MODE_SVC;
186     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
187 
188     if (arm_feature(env, ARM_FEATURE_M)) {
189         uint32_t initial_msp; /* Loaded from 0x0 */
190         uint32_t initial_pc; /* Loaded from 0x4 */
191         uint8_t *rom;
192         uint32_t vecbase;
193 
194         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
195             env->v7m.secure = true;
196         } else {
197             /* This bit resets to 0 if security is supported, but 1 if
198              * it is not. The bit is not present in v7M, but we set it
199              * here so we can avoid having to make checks on it conditional
200              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
201              */
202             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
203         }
204 
205         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
206          * that it resets to 1, so QEMU always does that rather than making
207          * it dependent on CPU model. In v8M it is RES1.
208          */
209         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
210         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
211         if (arm_feature(env, ARM_FEATURE_V8)) {
212             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
213             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
214             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
215         }
216 
217         /* Unlike A/R profile, M profile defines the reset LR value */
218         env->regs[14] = 0xffffffff;
219 
220         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
221 
222         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
223         vecbase = env->v7m.vecbase[env->v7m.secure];
224         rom = rom_ptr(vecbase);
225         if (rom) {
226             /* Address zero is covered by ROM which hasn't yet been
227              * copied into physical memory.
228              */
229             initial_msp = ldl_p(rom);
230             initial_pc = ldl_p(rom + 4);
231         } else {
232             /* Address zero not covered by a ROM blob, or the ROM blob
233              * is in non-modifiable memory and this is a second reset after
234              * it got copied into memory. In the latter case, rom_ptr
235              * will return a NULL pointer and we should use ldl_phys instead.
236              */
237             initial_msp = ldl_phys(s->as, vecbase);
238             initial_pc = ldl_phys(s->as, vecbase + 4);
239         }
240 
241         env->regs[13] = initial_msp & 0xFFFFFFFC;
242         env->regs[15] = initial_pc & ~1;
243         env->thumb = initial_pc & 1;
244     }
245 
246     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
247      * executing as AArch32 then check if highvecs are enabled and
248      * adjust the PC accordingly.
249      */
250     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
251         env->regs[15] = 0xFFFF0000;
252     }
253 
254     /* M profile requires that reset clears the exclusive monitor;
255      * A profile does not, but clearing it makes more sense than having it
256      * set with an exclusive access on address zero.
257      */
258     arm_clear_exclusive(env);
259 
260     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
261 #endif
262 
263     if (arm_feature(env, ARM_FEATURE_PMSA)) {
264         if (cpu->pmsav7_dregion > 0) {
265             if (arm_feature(env, ARM_FEATURE_V8)) {
266                 memset(env->pmsav8.rbar[M_REG_NS], 0,
267                        sizeof(*env->pmsav8.rbar[M_REG_NS])
268                        * cpu->pmsav7_dregion);
269                 memset(env->pmsav8.rlar[M_REG_NS], 0,
270                        sizeof(*env->pmsav8.rlar[M_REG_NS])
271                        * cpu->pmsav7_dregion);
272                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
273                     memset(env->pmsav8.rbar[M_REG_S], 0,
274                            sizeof(*env->pmsav8.rbar[M_REG_S])
275                            * cpu->pmsav7_dregion);
276                     memset(env->pmsav8.rlar[M_REG_S], 0,
277                            sizeof(*env->pmsav8.rlar[M_REG_S])
278                            * cpu->pmsav7_dregion);
279                 }
280             } else if (arm_feature(env, ARM_FEATURE_V7)) {
281                 memset(env->pmsav7.drbar, 0,
282                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
283                 memset(env->pmsav7.drsr, 0,
284                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
285                 memset(env->pmsav7.dracr, 0,
286                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
287             }
288         }
289         env->pmsav7.rnr[M_REG_NS] = 0;
290         env->pmsav7.rnr[M_REG_S] = 0;
291         env->pmsav8.mair0[M_REG_NS] = 0;
292         env->pmsav8.mair0[M_REG_S] = 0;
293         env->pmsav8.mair1[M_REG_NS] = 0;
294         env->pmsav8.mair1[M_REG_S] = 0;
295     }
296 
297     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
298         if (cpu->sau_sregion > 0) {
299             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
300             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
301         }
302         env->sau.rnr = 0;
303         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
304          * the Cortex-M33 does.
305          */
306         env->sau.ctrl = 0;
307     }
308 
309     set_flush_to_zero(1, &env->vfp.standard_fp_status);
310     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
311     set_default_nan_mode(1, &env->vfp.standard_fp_status);
312     set_float_detect_tininess(float_tininess_before_rounding,
313                               &env->vfp.fp_status);
314     set_float_detect_tininess(float_tininess_before_rounding,
315                               &env->vfp.standard_fp_status);
316 #ifndef CONFIG_USER_ONLY
317     if (kvm_enabled()) {
318         kvm_arm_reset_vcpu(cpu);
319     }
320 #endif
321 
322     hw_breakpoint_update_all(cpu);
323     hw_watchpoint_update_all(cpu);
324 }
325 
326 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
327 {
328     CPUClass *cc = CPU_GET_CLASS(cs);
329     CPUARMState *env = cs->env_ptr;
330     uint32_t cur_el = arm_current_el(env);
331     bool secure = arm_is_secure(env);
332     uint32_t target_el;
333     uint32_t excp_idx;
334     bool ret = false;
335 
336     if (interrupt_request & CPU_INTERRUPT_FIQ) {
337         excp_idx = EXCP_FIQ;
338         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
339         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
340             cs->exception_index = excp_idx;
341             env->exception.target_el = target_el;
342             cc->do_interrupt(cs);
343             ret = true;
344         }
345     }
346     if (interrupt_request & CPU_INTERRUPT_HARD) {
347         excp_idx = EXCP_IRQ;
348         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
349         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
350             cs->exception_index = excp_idx;
351             env->exception.target_el = target_el;
352             cc->do_interrupt(cs);
353             ret = true;
354         }
355     }
356     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
357         excp_idx = EXCP_VIRQ;
358         target_el = 1;
359         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
360             cs->exception_index = excp_idx;
361             env->exception.target_el = target_el;
362             cc->do_interrupt(cs);
363             ret = true;
364         }
365     }
366     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
367         excp_idx = EXCP_VFIQ;
368         target_el = 1;
369         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
370             cs->exception_index = excp_idx;
371             env->exception.target_el = target_el;
372             cc->do_interrupt(cs);
373             ret = true;
374         }
375     }
376 
377     return ret;
378 }
379 
380 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
381 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
382 {
383     CPUClass *cc = CPU_GET_CLASS(cs);
384     ARMCPU *cpu = ARM_CPU(cs);
385     CPUARMState *env = &cpu->env;
386     bool ret = false;
387 
388     /* ARMv7-M interrupt masking works differently than -A or -R.
389      * There is no FIQ/IRQ distinction. Instead of I and F bits
390      * masking FIQ and IRQ interrupts, an exception is taken only
391      * if it is higher priority than the current execution priority
392      * (which depends on state like BASEPRI, FAULTMASK and the
393      * currently active exception).
394      */
395     if (interrupt_request & CPU_INTERRUPT_HARD
396         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
397         cs->exception_index = EXCP_IRQ;
398         cc->do_interrupt(cs);
399         ret = true;
400     }
401     return ret;
402 }
403 #endif
404 
405 #ifndef CONFIG_USER_ONLY
406 static void arm_cpu_set_irq(void *opaque, int irq, int level)
407 {
408     ARMCPU *cpu = opaque;
409     CPUARMState *env = &cpu->env;
410     CPUState *cs = CPU(cpu);
411     static const int mask[] = {
412         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
413         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
414         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
415         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
416     };
417 
418     switch (irq) {
419     case ARM_CPU_VIRQ:
420     case ARM_CPU_VFIQ:
421         assert(arm_feature(env, ARM_FEATURE_EL2));
422         /* fall through */
423     case ARM_CPU_IRQ:
424     case ARM_CPU_FIQ:
425         if (level) {
426             cpu_interrupt(cs, mask[irq]);
427         } else {
428             cpu_reset_interrupt(cs, mask[irq]);
429         }
430         break;
431     default:
432         g_assert_not_reached();
433     }
434 }
435 
436 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
437 {
438 #ifdef CONFIG_KVM
439     ARMCPU *cpu = opaque;
440     CPUState *cs = CPU(cpu);
441     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
442 
443     switch (irq) {
444     case ARM_CPU_IRQ:
445         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
446         break;
447     case ARM_CPU_FIQ:
448         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
449         break;
450     default:
451         g_assert_not_reached();
452     }
453     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
454     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
455 #endif
456 }
457 
458 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
459 {
460     ARMCPU *cpu = ARM_CPU(cs);
461     CPUARMState *env = &cpu->env;
462 
463     cpu_synchronize_state(cs);
464     return arm_cpu_data_is_big_endian(env);
465 }
466 
467 #endif
468 
469 static inline void set_feature(CPUARMState *env, int feature)
470 {
471     env->features |= 1ULL << feature;
472 }
473 
474 static inline void unset_feature(CPUARMState *env, int feature)
475 {
476     env->features &= ~(1ULL << feature);
477 }
478 
479 static int
480 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
481 {
482   return print_insn_arm(pc | 1, info);
483 }
484 
485 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
486 {
487     ARMCPU *ac = ARM_CPU(cpu);
488     CPUARMState *env = &ac->env;
489     bool sctlr_b;
490 
491     if (is_a64(env)) {
492         /* We might not be compiled with the A64 disassembler
493          * because it needs a C++ compiler. Leave print_insn
494          * unset in this case to use the caller default behaviour.
495          */
496 #if defined(CONFIG_ARM_A64_DIS)
497         info->print_insn = print_insn_arm_a64;
498 #endif
499         info->cap_arch = CS_ARCH_ARM64;
500         info->cap_insn_unit = 4;
501         info->cap_insn_split = 4;
502     } else {
503         int cap_mode;
504         if (env->thumb) {
505             info->print_insn = print_insn_thumb1;
506             info->cap_insn_unit = 2;
507             info->cap_insn_split = 4;
508             cap_mode = CS_MODE_THUMB;
509         } else {
510             info->print_insn = print_insn_arm;
511             info->cap_insn_unit = 4;
512             info->cap_insn_split = 4;
513             cap_mode = CS_MODE_ARM;
514         }
515         if (arm_feature(env, ARM_FEATURE_V8)) {
516             cap_mode |= CS_MODE_V8;
517         }
518         if (arm_feature(env, ARM_FEATURE_M)) {
519             cap_mode |= CS_MODE_MCLASS;
520         }
521         info->cap_arch = CS_ARCH_ARM;
522         info->cap_mode = cap_mode;
523     }
524 
525     sctlr_b = arm_sctlr_b(env);
526     if (bswap_code(sctlr_b)) {
527 #ifdef TARGET_WORDS_BIGENDIAN
528         info->endian = BFD_ENDIAN_LITTLE;
529 #else
530         info->endian = BFD_ENDIAN_BIG;
531 #endif
532     }
533     info->flags &= ~INSN_ARM_BE32;
534 #ifndef CONFIG_USER_ONLY
535     if (sctlr_b) {
536         info->flags |= INSN_ARM_BE32;
537     }
538 #endif
539 }
540 
541 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
542 {
543     uint32_t Aff1 = idx / clustersz;
544     uint32_t Aff0 = idx % clustersz;
545     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
546 }
547 
548 static void arm_cpu_initfn(Object *obj)
549 {
550     CPUState *cs = CPU(obj);
551     ARMCPU *cpu = ARM_CPU(obj);
552 
553     cs->env_ptr = &cpu->env;
554     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
555                                          g_free, g_free);
556 
557     QLIST_INIT(&cpu->el_change_hooks);
558 
559 #ifndef CONFIG_USER_ONLY
560     /* Our inbound IRQ and FIQ lines */
561     if (kvm_enabled()) {
562         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
563          * the same interface as non-KVM CPUs.
564          */
565         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
566     } else {
567         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
568     }
569 
570     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
571                                                 arm_gt_ptimer_cb, cpu);
572     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
573                                                 arm_gt_vtimer_cb, cpu);
574     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
575                                                 arm_gt_htimer_cb, cpu);
576     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
577                                                 arm_gt_stimer_cb, cpu);
578     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
579                        ARRAY_SIZE(cpu->gt_timer_outputs));
580 
581     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
582                              "gicv3-maintenance-interrupt", 1);
583     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
584                              "pmu-interrupt", 1);
585 #endif
586 
587     /* DTB consumers generally don't in fact care what the 'compatible'
588      * string is, so always provide some string and trust that a hypothetical
589      * picky DTB consumer will also provide a helpful error message.
590      */
591     cpu->dtb_compatible = "qemu,unknown";
592     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
593     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
594 
595     if (tcg_enabled()) {
596         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
597     }
598 }
599 
600 static Property arm_cpu_reset_cbar_property =
601             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
602 
603 static Property arm_cpu_reset_hivecs_property =
604             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
605 
606 static Property arm_cpu_rvbar_property =
607             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
608 
609 static Property arm_cpu_has_el2_property =
610             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
611 
612 static Property arm_cpu_has_el3_property =
613             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
614 
615 static Property arm_cpu_cfgend_property =
616             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
617 
618 /* use property name "pmu" to match other archs and virt tools */
619 static Property arm_cpu_has_pmu_property =
620             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
621 
622 static Property arm_cpu_has_mpu_property =
623             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
624 
625 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
626  * because the CPU initfn will have already set cpu->pmsav7_dregion to
627  * the right value for that particular CPU type, and we don't want
628  * to override that with an incorrect constant value.
629  */
630 static Property arm_cpu_pmsav7_dregion_property =
631             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
632                                            pmsav7_dregion,
633                                            qdev_prop_uint32, uint32_t);
634 
635 /* M profile: initial value of the Secure VTOR */
636 static Property arm_cpu_initsvtor_property =
637             DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
638 
639 static void arm_cpu_post_init(Object *obj)
640 {
641     ARMCPU *cpu = ARM_CPU(obj);
642 
643     /* M profile implies PMSA. We have to do this here rather than
644      * in realize with the other feature-implication checks because
645      * we look at the PMSA bit to see if we should add some properties.
646      */
647     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
648         set_feature(&cpu->env, ARM_FEATURE_PMSA);
649     }
650 
651     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
652         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
653         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
654                                  &error_abort);
655     }
656 
657     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
658         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
659                                  &error_abort);
660     }
661 
662     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
663         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
664                                  &error_abort);
665     }
666 
667     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
668         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
669          * prevent "has_el3" from existing on CPUs which cannot support EL3.
670          */
671         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
672                                  &error_abort);
673 
674 #ifndef CONFIG_USER_ONLY
675         object_property_add_link(obj, "secure-memory",
676                                  TYPE_MEMORY_REGION,
677                                  (Object **)&cpu->secure_memory,
678                                  qdev_prop_allow_set_link_before_realize,
679                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
680                                  &error_abort);
681 #endif
682     }
683 
684     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
685         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
686                                  &error_abort);
687     }
688 
689     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
690         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
691                                  &error_abort);
692     }
693 
694     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
695         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
696                                  &error_abort);
697         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
698             qdev_property_add_static(DEVICE(obj),
699                                      &arm_cpu_pmsav7_dregion_property,
700                                      &error_abort);
701         }
702     }
703 
704     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
705         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
706                                  qdev_prop_allow_set_link_before_realize,
707                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
708                                  &error_abort);
709         qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
710                                  &error_abort);
711     }
712 
713     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
714                              &error_abort);
715 }
716 
717 static void arm_cpu_finalizefn(Object *obj)
718 {
719     ARMCPU *cpu = ARM_CPU(obj);
720     ARMELChangeHook *hook, *next;
721 
722     g_hash_table_destroy(cpu->cp_regs);
723 
724     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
725         QLIST_REMOVE(hook, node);
726         g_free(hook);
727     }
728 }
729 
730 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
731 {
732     CPUState *cs = CPU(dev);
733     ARMCPU *cpu = ARM_CPU(dev);
734     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
735     CPUARMState *env = &cpu->env;
736     int pagebits;
737     Error *local_err = NULL;
738 
739     /* If we needed to query the host kernel for the CPU features
740      * then it's possible that might have failed in the initfn, but
741      * this is the first point where we can report it.
742      */
743     if (cpu->host_cpu_probe_failed) {
744         if (!kvm_enabled()) {
745             error_setg(errp, "The 'host' CPU type can only be used with KVM");
746         } else {
747             error_setg(errp, "Failed to retrieve host CPU features");
748         }
749         return;
750     }
751 
752     cpu_exec_realizefn(cs, &local_err);
753     if (local_err != NULL) {
754         error_propagate(errp, local_err);
755         return;
756     }
757 
758     /* Some features automatically imply others: */
759     if (arm_feature(env, ARM_FEATURE_V8)) {
760         set_feature(env, ARM_FEATURE_V7);
761         set_feature(env, ARM_FEATURE_ARM_DIV);
762         set_feature(env, ARM_FEATURE_LPAE);
763     }
764     if (arm_feature(env, ARM_FEATURE_V7)) {
765         set_feature(env, ARM_FEATURE_VAPA);
766         set_feature(env, ARM_FEATURE_THUMB2);
767         set_feature(env, ARM_FEATURE_MPIDR);
768         if (!arm_feature(env, ARM_FEATURE_M)) {
769             set_feature(env, ARM_FEATURE_V6K);
770         } else {
771             set_feature(env, ARM_FEATURE_V6);
772         }
773 
774         /* Always define VBAR for V7 CPUs even if it doesn't exist in
775          * non-EL3 configs. This is needed by some legacy boards.
776          */
777         set_feature(env, ARM_FEATURE_VBAR);
778     }
779     if (arm_feature(env, ARM_FEATURE_V6K)) {
780         set_feature(env, ARM_FEATURE_V6);
781         set_feature(env, ARM_FEATURE_MVFR);
782     }
783     if (arm_feature(env, ARM_FEATURE_V6)) {
784         set_feature(env, ARM_FEATURE_V5);
785         set_feature(env, ARM_FEATURE_JAZELLE);
786         if (!arm_feature(env, ARM_FEATURE_M)) {
787             set_feature(env, ARM_FEATURE_AUXCR);
788         }
789     }
790     if (arm_feature(env, ARM_FEATURE_V5)) {
791         set_feature(env, ARM_FEATURE_V4T);
792     }
793     if (arm_feature(env, ARM_FEATURE_M)) {
794         set_feature(env, ARM_FEATURE_THUMB_DIV);
795     }
796     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
797         set_feature(env, ARM_FEATURE_THUMB_DIV);
798     }
799     if (arm_feature(env, ARM_FEATURE_VFP4)) {
800         set_feature(env, ARM_FEATURE_VFP3);
801         set_feature(env, ARM_FEATURE_VFP_FP16);
802     }
803     if (arm_feature(env, ARM_FEATURE_VFP3)) {
804         set_feature(env, ARM_FEATURE_VFP);
805     }
806     if (arm_feature(env, ARM_FEATURE_LPAE)) {
807         set_feature(env, ARM_FEATURE_V7MP);
808         set_feature(env, ARM_FEATURE_PXN);
809     }
810     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
811         set_feature(env, ARM_FEATURE_CBAR);
812     }
813     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
814         !arm_feature(env, ARM_FEATURE_M)) {
815         set_feature(env, ARM_FEATURE_THUMB_DSP);
816     }
817 
818     if (arm_feature(env, ARM_FEATURE_V7) &&
819         !arm_feature(env, ARM_FEATURE_M) &&
820         !arm_feature(env, ARM_FEATURE_PMSA)) {
821         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
822          * can use 4K pages.
823          */
824         pagebits = 12;
825     } else {
826         /* For CPUs which might have tiny 1K pages, or which have an
827          * MPU and might have small region sizes, stick with 1K pages.
828          */
829         pagebits = 10;
830     }
831     if (!set_preferred_target_page_bits(pagebits)) {
832         /* This can only ever happen for hotplugging a CPU, or if
833          * the board code incorrectly creates a CPU which it has
834          * promised via minimum_page_size that it will not.
835          */
836         error_setg(errp, "This CPU requires a smaller page size than the "
837                    "system is using");
838         return;
839     }
840 
841     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
842      * We don't support setting cluster ID ([16..23]) (known as Aff2
843      * in later ARM ARM versions), or any of the higher affinity level fields,
844      * so these bits always RAZ.
845      */
846     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
847         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
848                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
849     }
850 
851     if (cpu->reset_hivecs) {
852             cpu->reset_sctlr |= (1 << 13);
853     }
854 
855     if (cpu->cfgend) {
856         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
857             cpu->reset_sctlr |= SCTLR_EE;
858         } else {
859             cpu->reset_sctlr |= SCTLR_B;
860         }
861     }
862 
863     if (!cpu->has_el3) {
864         /* If the has_el3 CPU property is disabled then we need to disable the
865          * feature.
866          */
867         unset_feature(env, ARM_FEATURE_EL3);
868 
869         /* Disable the security extension feature bits in the processor feature
870          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
871          */
872         cpu->id_pfr1 &= ~0xf0;
873         cpu->id_aa64pfr0 &= ~0xf000;
874     }
875 
876     if (!cpu->has_el2) {
877         unset_feature(env, ARM_FEATURE_EL2);
878     }
879 
880     if (!cpu->has_pmu) {
881         unset_feature(env, ARM_FEATURE_PMU);
882         cpu->id_aa64dfr0 &= ~0xf00;
883     }
884 
885     if (!arm_feature(env, ARM_FEATURE_EL2)) {
886         /* Disable the hypervisor feature bits in the processor feature
887          * registers if we don't have EL2. These are id_pfr1[15:12] and
888          * id_aa64pfr0_el1[11:8].
889          */
890         cpu->id_aa64pfr0 &= ~0xf00;
891         cpu->id_pfr1 &= ~0xf000;
892     }
893 
894     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
895      * to false or by setting pmsav7-dregion to 0.
896      */
897     if (!cpu->has_mpu) {
898         cpu->pmsav7_dregion = 0;
899     }
900     if (cpu->pmsav7_dregion == 0) {
901         cpu->has_mpu = false;
902     }
903 
904     if (arm_feature(env, ARM_FEATURE_PMSA) &&
905         arm_feature(env, ARM_FEATURE_V7)) {
906         uint32_t nr = cpu->pmsav7_dregion;
907 
908         if (nr > 0xff) {
909             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
910             return;
911         }
912 
913         if (nr) {
914             if (arm_feature(env, ARM_FEATURE_V8)) {
915                 /* PMSAv8 */
916                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
917                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
918                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
919                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
920                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
921                 }
922             } else {
923                 env->pmsav7.drbar = g_new0(uint32_t, nr);
924                 env->pmsav7.drsr = g_new0(uint32_t, nr);
925                 env->pmsav7.dracr = g_new0(uint32_t, nr);
926             }
927         }
928     }
929 
930     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
931         uint32_t nr = cpu->sau_sregion;
932 
933         if (nr > 0xff) {
934             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
935             return;
936         }
937 
938         if (nr) {
939             env->sau.rbar = g_new0(uint32_t, nr);
940             env->sau.rlar = g_new0(uint32_t, nr);
941         }
942     }
943 
944     if (arm_feature(env, ARM_FEATURE_EL3)) {
945         set_feature(env, ARM_FEATURE_VBAR);
946     }
947 
948     register_cp_regs_for_features(cpu);
949     arm_cpu_register_gdb_regs_for_features(cpu);
950 
951     init_cpreg_list(cpu);
952 
953 #ifndef CONFIG_USER_ONLY
954     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
955         cs->num_ases = 2;
956 
957         if (!cpu->secure_memory) {
958             cpu->secure_memory = cs->memory;
959         }
960         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
961                                cpu->secure_memory);
962     } else {
963         cs->num_ases = 1;
964     }
965     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
966 
967     /* No core_count specified, default to smp_cpus. */
968     if (cpu->core_count == -1) {
969         cpu->core_count = smp_cpus;
970     }
971 #endif
972 
973     qemu_init_vcpu(cs);
974     cpu_reset(cs);
975 
976     acc->parent_realize(dev, errp);
977 }
978 
979 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
980 {
981     ObjectClass *oc;
982     char *typename;
983     char **cpuname;
984     const char *cpunamestr;
985 
986     cpuname = g_strsplit(cpu_model, ",", 1);
987     cpunamestr = cpuname[0];
988 #ifdef CONFIG_USER_ONLY
989     /* For backwards compatibility usermode emulation allows "-cpu any",
990      * which has the same semantics as "-cpu max".
991      */
992     if (!strcmp(cpunamestr, "any")) {
993         cpunamestr = "max";
994     }
995 #endif
996     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
997     oc = object_class_by_name(typename);
998     g_strfreev(cpuname);
999     g_free(typename);
1000     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1001         object_class_is_abstract(oc)) {
1002         return NULL;
1003     }
1004     return oc;
1005 }
1006 
1007 /* CPU models. These are not needed for the AArch64 linux-user build. */
1008 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1009 
1010 static void arm926_initfn(Object *obj)
1011 {
1012     ARMCPU *cpu = ARM_CPU(obj);
1013 
1014     cpu->dtb_compatible = "arm,arm926";
1015     set_feature(&cpu->env, ARM_FEATURE_V5);
1016     set_feature(&cpu->env, ARM_FEATURE_VFP);
1017     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1018     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1019     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1020     cpu->midr = 0x41069265;
1021     cpu->reset_fpsid = 0x41011090;
1022     cpu->ctr = 0x1dd20d2;
1023     cpu->reset_sctlr = 0x00090078;
1024 }
1025 
1026 static void arm946_initfn(Object *obj)
1027 {
1028     ARMCPU *cpu = ARM_CPU(obj);
1029 
1030     cpu->dtb_compatible = "arm,arm946";
1031     set_feature(&cpu->env, ARM_FEATURE_V5);
1032     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1033     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1034     cpu->midr = 0x41059461;
1035     cpu->ctr = 0x0f004006;
1036     cpu->reset_sctlr = 0x00000078;
1037 }
1038 
1039 static void arm1026_initfn(Object *obj)
1040 {
1041     ARMCPU *cpu = ARM_CPU(obj);
1042 
1043     cpu->dtb_compatible = "arm,arm1026";
1044     set_feature(&cpu->env, ARM_FEATURE_V5);
1045     set_feature(&cpu->env, ARM_FEATURE_VFP);
1046     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1047     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1048     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1049     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1050     cpu->midr = 0x4106a262;
1051     cpu->reset_fpsid = 0x410110a0;
1052     cpu->ctr = 0x1dd20d2;
1053     cpu->reset_sctlr = 0x00090078;
1054     cpu->reset_auxcr = 1;
1055     {
1056         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1057         ARMCPRegInfo ifar = {
1058             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1059             .access = PL1_RW,
1060             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1061             .resetvalue = 0
1062         };
1063         define_one_arm_cp_reg(cpu, &ifar);
1064     }
1065 }
1066 
1067 static void arm1136_r2_initfn(Object *obj)
1068 {
1069     ARMCPU *cpu = ARM_CPU(obj);
1070     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1071      * older core than plain "arm1136". In particular this does not
1072      * have the v6K features.
1073      * These ID register values are correct for 1136 but may be wrong
1074      * for 1136_r2 (in particular r0p2 does not actually implement most
1075      * of the ID registers).
1076      */
1077 
1078     cpu->dtb_compatible = "arm,arm1136";
1079     set_feature(&cpu->env, ARM_FEATURE_V6);
1080     set_feature(&cpu->env, ARM_FEATURE_VFP);
1081     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1082     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1083     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1084     cpu->midr = 0x4107b362;
1085     cpu->reset_fpsid = 0x410120b4;
1086     cpu->mvfr0 = 0x11111111;
1087     cpu->mvfr1 = 0x00000000;
1088     cpu->ctr = 0x1dd20d2;
1089     cpu->reset_sctlr = 0x00050078;
1090     cpu->id_pfr0 = 0x111;
1091     cpu->id_pfr1 = 0x1;
1092     cpu->id_dfr0 = 0x2;
1093     cpu->id_afr0 = 0x3;
1094     cpu->id_mmfr0 = 0x01130003;
1095     cpu->id_mmfr1 = 0x10030302;
1096     cpu->id_mmfr2 = 0x01222110;
1097     cpu->id_isar0 = 0x00140011;
1098     cpu->id_isar1 = 0x12002111;
1099     cpu->id_isar2 = 0x11231111;
1100     cpu->id_isar3 = 0x01102131;
1101     cpu->id_isar4 = 0x141;
1102     cpu->reset_auxcr = 7;
1103 }
1104 
1105 static void arm1136_initfn(Object *obj)
1106 {
1107     ARMCPU *cpu = ARM_CPU(obj);
1108 
1109     cpu->dtb_compatible = "arm,arm1136";
1110     set_feature(&cpu->env, ARM_FEATURE_V6K);
1111     set_feature(&cpu->env, ARM_FEATURE_V6);
1112     set_feature(&cpu->env, ARM_FEATURE_VFP);
1113     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1114     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1115     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1116     cpu->midr = 0x4117b363;
1117     cpu->reset_fpsid = 0x410120b4;
1118     cpu->mvfr0 = 0x11111111;
1119     cpu->mvfr1 = 0x00000000;
1120     cpu->ctr = 0x1dd20d2;
1121     cpu->reset_sctlr = 0x00050078;
1122     cpu->id_pfr0 = 0x111;
1123     cpu->id_pfr1 = 0x1;
1124     cpu->id_dfr0 = 0x2;
1125     cpu->id_afr0 = 0x3;
1126     cpu->id_mmfr0 = 0x01130003;
1127     cpu->id_mmfr1 = 0x10030302;
1128     cpu->id_mmfr2 = 0x01222110;
1129     cpu->id_isar0 = 0x00140011;
1130     cpu->id_isar1 = 0x12002111;
1131     cpu->id_isar2 = 0x11231111;
1132     cpu->id_isar3 = 0x01102131;
1133     cpu->id_isar4 = 0x141;
1134     cpu->reset_auxcr = 7;
1135 }
1136 
1137 static void arm1176_initfn(Object *obj)
1138 {
1139     ARMCPU *cpu = ARM_CPU(obj);
1140 
1141     cpu->dtb_compatible = "arm,arm1176";
1142     set_feature(&cpu->env, ARM_FEATURE_V6K);
1143     set_feature(&cpu->env, ARM_FEATURE_VFP);
1144     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1145     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1146     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1147     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1148     set_feature(&cpu->env, ARM_FEATURE_EL3);
1149     cpu->midr = 0x410fb767;
1150     cpu->reset_fpsid = 0x410120b5;
1151     cpu->mvfr0 = 0x11111111;
1152     cpu->mvfr1 = 0x00000000;
1153     cpu->ctr = 0x1dd20d2;
1154     cpu->reset_sctlr = 0x00050078;
1155     cpu->id_pfr0 = 0x111;
1156     cpu->id_pfr1 = 0x11;
1157     cpu->id_dfr0 = 0x33;
1158     cpu->id_afr0 = 0;
1159     cpu->id_mmfr0 = 0x01130003;
1160     cpu->id_mmfr1 = 0x10030302;
1161     cpu->id_mmfr2 = 0x01222100;
1162     cpu->id_isar0 = 0x0140011;
1163     cpu->id_isar1 = 0x12002111;
1164     cpu->id_isar2 = 0x11231121;
1165     cpu->id_isar3 = 0x01102131;
1166     cpu->id_isar4 = 0x01141;
1167     cpu->reset_auxcr = 7;
1168 }
1169 
1170 static void arm11mpcore_initfn(Object *obj)
1171 {
1172     ARMCPU *cpu = ARM_CPU(obj);
1173 
1174     cpu->dtb_compatible = "arm,arm11mpcore";
1175     set_feature(&cpu->env, ARM_FEATURE_V6K);
1176     set_feature(&cpu->env, ARM_FEATURE_VFP);
1177     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1178     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1179     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1180     cpu->midr = 0x410fb022;
1181     cpu->reset_fpsid = 0x410120b4;
1182     cpu->mvfr0 = 0x11111111;
1183     cpu->mvfr1 = 0x00000000;
1184     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1185     cpu->id_pfr0 = 0x111;
1186     cpu->id_pfr1 = 0x1;
1187     cpu->id_dfr0 = 0;
1188     cpu->id_afr0 = 0x2;
1189     cpu->id_mmfr0 = 0x01100103;
1190     cpu->id_mmfr1 = 0x10020302;
1191     cpu->id_mmfr2 = 0x01222000;
1192     cpu->id_isar0 = 0x00100011;
1193     cpu->id_isar1 = 0x12002111;
1194     cpu->id_isar2 = 0x11221011;
1195     cpu->id_isar3 = 0x01102131;
1196     cpu->id_isar4 = 0x141;
1197     cpu->reset_auxcr = 1;
1198 }
1199 
1200 static void cortex_m3_initfn(Object *obj)
1201 {
1202     ARMCPU *cpu = ARM_CPU(obj);
1203     set_feature(&cpu->env, ARM_FEATURE_V7);
1204     set_feature(&cpu->env, ARM_FEATURE_M);
1205     cpu->midr = 0x410fc231;
1206     cpu->pmsav7_dregion = 8;
1207     cpu->id_pfr0 = 0x00000030;
1208     cpu->id_pfr1 = 0x00000200;
1209     cpu->id_dfr0 = 0x00100000;
1210     cpu->id_afr0 = 0x00000000;
1211     cpu->id_mmfr0 = 0x00000030;
1212     cpu->id_mmfr1 = 0x00000000;
1213     cpu->id_mmfr2 = 0x00000000;
1214     cpu->id_mmfr3 = 0x00000000;
1215     cpu->id_isar0 = 0x01141110;
1216     cpu->id_isar1 = 0x02111000;
1217     cpu->id_isar2 = 0x21112231;
1218     cpu->id_isar3 = 0x01111110;
1219     cpu->id_isar4 = 0x01310102;
1220     cpu->id_isar5 = 0x00000000;
1221 }
1222 
1223 static void cortex_m4_initfn(Object *obj)
1224 {
1225     ARMCPU *cpu = ARM_CPU(obj);
1226 
1227     set_feature(&cpu->env, ARM_FEATURE_V7);
1228     set_feature(&cpu->env, ARM_FEATURE_M);
1229     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1230     cpu->midr = 0x410fc240; /* r0p0 */
1231     cpu->pmsav7_dregion = 8;
1232     cpu->id_pfr0 = 0x00000030;
1233     cpu->id_pfr1 = 0x00000200;
1234     cpu->id_dfr0 = 0x00100000;
1235     cpu->id_afr0 = 0x00000000;
1236     cpu->id_mmfr0 = 0x00000030;
1237     cpu->id_mmfr1 = 0x00000000;
1238     cpu->id_mmfr2 = 0x00000000;
1239     cpu->id_mmfr3 = 0x00000000;
1240     cpu->id_isar0 = 0x01141110;
1241     cpu->id_isar1 = 0x02111000;
1242     cpu->id_isar2 = 0x21112231;
1243     cpu->id_isar3 = 0x01111110;
1244     cpu->id_isar4 = 0x01310102;
1245     cpu->id_isar5 = 0x00000000;
1246 }
1247 
1248 static void cortex_m33_initfn(Object *obj)
1249 {
1250     ARMCPU *cpu = ARM_CPU(obj);
1251 
1252     set_feature(&cpu->env, ARM_FEATURE_V8);
1253     set_feature(&cpu->env, ARM_FEATURE_M);
1254     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1255     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1256     cpu->midr = 0x410fd213; /* r0p3 */
1257     cpu->pmsav7_dregion = 16;
1258     cpu->sau_sregion = 8;
1259     cpu->id_pfr0 = 0x00000030;
1260     cpu->id_pfr1 = 0x00000210;
1261     cpu->id_dfr0 = 0x00200000;
1262     cpu->id_afr0 = 0x00000000;
1263     cpu->id_mmfr0 = 0x00101F40;
1264     cpu->id_mmfr1 = 0x00000000;
1265     cpu->id_mmfr2 = 0x01000000;
1266     cpu->id_mmfr3 = 0x00000000;
1267     cpu->id_isar0 = 0x01101110;
1268     cpu->id_isar1 = 0x02212000;
1269     cpu->id_isar2 = 0x20232232;
1270     cpu->id_isar3 = 0x01111131;
1271     cpu->id_isar4 = 0x01310132;
1272     cpu->id_isar5 = 0x00000000;
1273     cpu->clidr = 0x00000000;
1274     cpu->ctr = 0x8000c000;
1275 }
1276 
1277 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1278 {
1279     CPUClass *cc = CPU_CLASS(oc);
1280 
1281 #ifndef CONFIG_USER_ONLY
1282     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1283 #endif
1284 
1285     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1286 }
1287 
1288 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1289     /* Dummy the TCM region regs for the moment */
1290     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1291       .access = PL1_RW, .type = ARM_CP_CONST },
1292     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1293       .access = PL1_RW, .type = ARM_CP_CONST },
1294     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1295       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1296     REGINFO_SENTINEL
1297 };
1298 
1299 static void cortex_r5_initfn(Object *obj)
1300 {
1301     ARMCPU *cpu = ARM_CPU(obj);
1302 
1303     set_feature(&cpu->env, ARM_FEATURE_V7);
1304     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1305     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1306     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1307     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1308     cpu->midr = 0x411fc153; /* r1p3 */
1309     cpu->id_pfr0 = 0x0131;
1310     cpu->id_pfr1 = 0x001;
1311     cpu->id_dfr0 = 0x010400;
1312     cpu->id_afr0 = 0x0;
1313     cpu->id_mmfr0 = 0x0210030;
1314     cpu->id_mmfr1 = 0x00000000;
1315     cpu->id_mmfr2 = 0x01200000;
1316     cpu->id_mmfr3 = 0x0211;
1317     cpu->id_isar0 = 0x2101111;
1318     cpu->id_isar1 = 0x13112111;
1319     cpu->id_isar2 = 0x21232141;
1320     cpu->id_isar3 = 0x01112131;
1321     cpu->id_isar4 = 0x0010142;
1322     cpu->id_isar5 = 0x0;
1323     cpu->mp_is_up = true;
1324     cpu->pmsav7_dregion = 16;
1325     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1326 }
1327 
1328 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1329     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1330       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1331     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1332       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1333     REGINFO_SENTINEL
1334 };
1335 
1336 static void cortex_a8_initfn(Object *obj)
1337 {
1338     ARMCPU *cpu = ARM_CPU(obj);
1339 
1340     cpu->dtb_compatible = "arm,cortex-a8";
1341     set_feature(&cpu->env, ARM_FEATURE_V7);
1342     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1343     set_feature(&cpu->env, ARM_FEATURE_NEON);
1344     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1345     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1346     set_feature(&cpu->env, ARM_FEATURE_EL3);
1347     cpu->midr = 0x410fc080;
1348     cpu->reset_fpsid = 0x410330c0;
1349     cpu->mvfr0 = 0x11110222;
1350     cpu->mvfr1 = 0x00011111;
1351     cpu->ctr = 0x82048004;
1352     cpu->reset_sctlr = 0x00c50078;
1353     cpu->id_pfr0 = 0x1031;
1354     cpu->id_pfr1 = 0x11;
1355     cpu->id_dfr0 = 0x400;
1356     cpu->id_afr0 = 0;
1357     cpu->id_mmfr0 = 0x31100003;
1358     cpu->id_mmfr1 = 0x20000000;
1359     cpu->id_mmfr2 = 0x01202000;
1360     cpu->id_mmfr3 = 0x11;
1361     cpu->id_isar0 = 0x00101111;
1362     cpu->id_isar1 = 0x12112111;
1363     cpu->id_isar2 = 0x21232031;
1364     cpu->id_isar3 = 0x11112131;
1365     cpu->id_isar4 = 0x00111142;
1366     cpu->dbgdidr = 0x15141000;
1367     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1368     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1369     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1370     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1371     cpu->reset_auxcr = 2;
1372     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1373 }
1374 
1375 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1376     /* power_control should be set to maximum latency. Again,
1377      * default to 0 and set by private hook
1378      */
1379     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1380       .access = PL1_RW, .resetvalue = 0,
1381       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1382     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1383       .access = PL1_RW, .resetvalue = 0,
1384       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1385     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1386       .access = PL1_RW, .resetvalue = 0,
1387       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1388     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1389       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1390     /* TLB lockdown control */
1391     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1392       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1393     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1394       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1395     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1396       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1397     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1398       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1399     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1400       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1401     REGINFO_SENTINEL
1402 };
1403 
1404 static void cortex_a9_initfn(Object *obj)
1405 {
1406     ARMCPU *cpu = ARM_CPU(obj);
1407 
1408     cpu->dtb_compatible = "arm,cortex-a9";
1409     set_feature(&cpu->env, ARM_FEATURE_V7);
1410     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1411     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1412     set_feature(&cpu->env, ARM_FEATURE_NEON);
1413     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1414     set_feature(&cpu->env, ARM_FEATURE_EL3);
1415     /* Note that A9 supports the MP extensions even for
1416      * A9UP and single-core A9MP (which are both different
1417      * and valid configurations; we don't model A9UP).
1418      */
1419     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1420     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1421     cpu->midr = 0x410fc090;
1422     cpu->reset_fpsid = 0x41033090;
1423     cpu->mvfr0 = 0x11110222;
1424     cpu->mvfr1 = 0x01111111;
1425     cpu->ctr = 0x80038003;
1426     cpu->reset_sctlr = 0x00c50078;
1427     cpu->id_pfr0 = 0x1031;
1428     cpu->id_pfr1 = 0x11;
1429     cpu->id_dfr0 = 0x000;
1430     cpu->id_afr0 = 0;
1431     cpu->id_mmfr0 = 0x00100103;
1432     cpu->id_mmfr1 = 0x20000000;
1433     cpu->id_mmfr2 = 0x01230000;
1434     cpu->id_mmfr3 = 0x00002111;
1435     cpu->id_isar0 = 0x00101111;
1436     cpu->id_isar1 = 0x13112111;
1437     cpu->id_isar2 = 0x21232041;
1438     cpu->id_isar3 = 0x11112131;
1439     cpu->id_isar4 = 0x00111142;
1440     cpu->dbgdidr = 0x35141000;
1441     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1442     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1443     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1444     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1445 }
1446 
1447 #ifndef CONFIG_USER_ONLY
1448 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1449 {
1450     /* Linux wants the number of processors from here.
1451      * Might as well set the interrupt-controller bit too.
1452      */
1453     return ((smp_cpus - 1) << 24) | (1 << 23);
1454 }
1455 #endif
1456 
1457 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1458 #ifndef CONFIG_USER_ONLY
1459     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1460       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1461       .writefn = arm_cp_write_ignore, },
1462 #endif
1463     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1464       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1465     REGINFO_SENTINEL
1466 };
1467 
1468 static void cortex_a7_initfn(Object *obj)
1469 {
1470     ARMCPU *cpu = ARM_CPU(obj);
1471 
1472     cpu->dtb_compatible = "arm,cortex-a7";
1473     set_feature(&cpu->env, ARM_FEATURE_V7);
1474     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1475     set_feature(&cpu->env, ARM_FEATURE_NEON);
1476     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1477     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1478     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1479     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1480     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1481     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1482     set_feature(&cpu->env, ARM_FEATURE_EL3);
1483     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1484     cpu->midr = 0x410fc075;
1485     cpu->reset_fpsid = 0x41023075;
1486     cpu->mvfr0 = 0x10110222;
1487     cpu->mvfr1 = 0x11111111;
1488     cpu->ctr = 0x84448003;
1489     cpu->reset_sctlr = 0x00c50078;
1490     cpu->id_pfr0 = 0x00001131;
1491     cpu->id_pfr1 = 0x00011011;
1492     cpu->id_dfr0 = 0x02010555;
1493     cpu->pmceid0 = 0x00000000;
1494     cpu->pmceid1 = 0x00000000;
1495     cpu->id_afr0 = 0x00000000;
1496     cpu->id_mmfr0 = 0x10101105;
1497     cpu->id_mmfr1 = 0x40000000;
1498     cpu->id_mmfr2 = 0x01240000;
1499     cpu->id_mmfr3 = 0x02102211;
1500     cpu->id_isar0 = 0x01101110;
1501     cpu->id_isar1 = 0x13112111;
1502     cpu->id_isar2 = 0x21232041;
1503     cpu->id_isar3 = 0x11112131;
1504     cpu->id_isar4 = 0x10011142;
1505     cpu->dbgdidr = 0x3515f005;
1506     cpu->clidr = 0x0a200023;
1507     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1508     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1509     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1510     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1511 }
1512 
1513 static void cortex_a15_initfn(Object *obj)
1514 {
1515     ARMCPU *cpu = ARM_CPU(obj);
1516 
1517     cpu->dtb_compatible = "arm,cortex-a15";
1518     set_feature(&cpu->env, ARM_FEATURE_V7);
1519     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1520     set_feature(&cpu->env, ARM_FEATURE_NEON);
1521     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1522     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1523     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1524     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1525     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1526     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1527     set_feature(&cpu->env, ARM_FEATURE_EL3);
1528     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1529     cpu->midr = 0x412fc0f1;
1530     cpu->reset_fpsid = 0x410430f0;
1531     cpu->mvfr0 = 0x10110222;
1532     cpu->mvfr1 = 0x11111111;
1533     cpu->ctr = 0x8444c004;
1534     cpu->reset_sctlr = 0x00c50078;
1535     cpu->id_pfr0 = 0x00001131;
1536     cpu->id_pfr1 = 0x00011011;
1537     cpu->id_dfr0 = 0x02010555;
1538     cpu->pmceid0 = 0x0000000;
1539     cpu->pmceid1 = 0x00000000;
1540     cpu->id_afr0 = 0x00000000;
1541     cpu->id_mmfr0 = 0x10201105;
1542     cpu->id_mmfr1 = 0x20000000;
1543     cpu->id_mmfr2 = 0x01240000;
1544     cpu->id_mmfr3 = 0x02102211;
1545     cpu->id_isar0 = 0x02101110;
1546     cpu->id_isar1 = 0x13112111;
1547     cpu->id_isar2 = 0x21232041;
1548     cpu->id_isar3 = 0x11112131;
1549     cpu->id_isar4 = 0x10011142;
1550     cpu->dbgdidr = 0x3515f021;
1551     cpu->clidr = 0x0a200023;
1552     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1553     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1554     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1555     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1556 }
1557 
1558 static void ti925t_initfn(Object *obj)
1559 {
1560     ARMCPU *cpu = ARM_CPU(obj);
1561     set_feature(&cpu->env, ARM_FEATURE_V4T);
1562     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1563     cpu->midr = ARM_CPUID_TI925T;
1564     cpu->ctr = 0x5109149;
1565     cpu->reset_sctlr = 0x00000070;
1566 }
1567 
1568 static void sa1100_initfn(Object *obj)
1569 {
1570     ARMCPU *cpu = ARM_CPU(obj);
1571 
1572     cpu->dtb_compatible = "intel,sa1100";
1573     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1574     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1575     cpu->midr = 0x4401A11B;
1576     cpu->reset_sctlr = 0x00000070;
1577 }
1578 
1579 static void sa1110_initfn(Object *obj)
1580 {
1581     ARMCPU *cpu = ARM_CPU(obj);
1582     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1583     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1584     cpu->midr = 0x6901B119;
1585     cpu->reset_sctlr = 0x00000070;
1586 }
1587 
1588 static void pxa250_initfn(Object *obj)
1589 {
1590     ARMCPU *cpu = ARM_CPU(obj);
1591 
1592     cpu->dtb_compatible = "marvell,xscale";
1593     set_feature(&cpu->env, ARM_FEATURE_V5);
1594     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1595     cpu->midr = 0x69052100;
1596     cpu->ctr = 0xd172172;
1597     cpu->reset_sctlr = 0x00000078;
1598 }
1599 
1600 static void pxa255_initfn(Object *obj)
1601 {
1602     ARMCPU *cpu = ARM_CPU(obj);
1603 
1604     cpu->dtb_compatible = "marvell,xscale";
1605     set_feature(&cpu->env, ARM_FEATURE_V5);
1606     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1607     cpu->midr = 0x69052d00;
1608     cpu->ctr = 0xd172172;
1609     cpu->reset_sctlr = 0x00000078;
1610 }
1611 
1612 static void pxa260_initfn(Object *obj)
1613 {
1614     ARMCPU *cpu = ARM_CPU(obj);
1615 
1616     cpu->dtb_compatible = "marvell,xscale";
1617     set_feature(&cpu->env, ARM_FEATURE_V5);
1618     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1619     cpu->midr = 0x69052903;
1620     cpu->ctr = 0xd172172;
1621     cpu->reset_sctlr = 0x00000078;
1622 }
1623 
1624 static void pxa261_initfn(Object *obj)
1625 {
1626     ARMCPU *cpu = ARM_CPU(obj);
1627 
1628     cpu->dtb_compatible = "marvell,xscale";
1629     set_feature(&cpu->env, ARM_FEATURE_V5);
1630     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1631     cpu->midr = 0x69052d05;
1632     cpu->ctr = 0xd172172;
1633     cpu->reset_sctlr = 0x00000078;
1634 }
1635 
1636 static void pxa262_initfn(Object *obj)
1637 {
1638     ARMCPU *cpu = ARM_CPU(obj);
1639 
1640     cpu->dtb_compatible = "marvell,xscale";
1641     set_feature(&cpu->env, ARM_FEATURE_V5);
1642     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1643     cpu->midr = 0x69052d06;
1644     cpu->ctr = 0xd172172;
1645     cpu->reset_sctlr = 0x00000078;
1646 }
1647 
1648 static void pxa270a0_initfn(Object *obj)
1649 {
1650     ARMCPU *cpu = ARM_CPU(obj);
1651 
1652     cpu->dtb_compatible = "marvell,xscale";
1653     set_feature(&cpu->env, ARM_FEATURE_V5);
1654     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1655     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1656     cpu->midr = 0x69054110;
1657     cpu->ctr = 0xd172172;
1658     cpu->reset_sctlr = 0x00000078;
1659 }
1660 
1661 static void pxa270a1_initfn(Object *obj)
1662 {
1663     ARMCPU *cpu = ARM_CPU(obj);
1664 
1665     cpu->dtb_compatible = "marvell,xscale";
1666     set_feature(&cpu->env, ARM_FEATURE_V5);
1667     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1668     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1669     cpu->midr = 0x69054111;
1670     cpu->ctr = 0xd172172;
1671     cpu->reset_sctlr = 0x00000078;
1672 }
1673 
1674 static void pxa270b0_initfn(Object *obj)
1675 {
1676     ARMCPU *cpu = ARM_CPU(obj);
1677 
1678     cpu->dtb_compatible = "marvell,xscale";
1679     set_feature(&cpu->env, ARM_FEATURE_V5);
1680     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1681     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1682     cpu->midr = 0x69054112;
1683     cpu->ctr = 0xd172172;
1684     cpu->reset_sctlr = 0x00000078;
1685 }
1686 
1687 static void pxa270b1_initfn(Object *obj)
1688 {
1689     ARMCPU *cpu = ARM_CPU(obj);
1690 
1691     cpu->dtb_compatible = "marvell,xscale";
1692     set_feature(&cpu->env, ARM_FEATURE_V5);
1693     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1694     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1695     cpu->midr = 0x69054113;
1696     cpu->ctr = 0xd172172;
1697     cpu->reset_sctlr = 0x00000078;
1698 }
1699 
1700 static void pxa270c0_initfn(Object *obj)
1701 {
1702     ARMCPU *cpu = ARM_CPU(obj);
1703 
1704     cpu->dtb_compatible = "marvell,xscale";
1705     set_feature(&cpu->env, ARM_FEATURE_V5);
1706     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1707     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1708     cpu->midr = 0x69054114;
1709     cpu->ctr = 0xd172172;
1710     cpu->reset_sctlr = 0x00000078;
1711 }
1712 
1713 static void pxa270c5_initfn(Object *obj)
1714 {
1715     ARMCPU *cpu = ARM_CPU(obj);
1716 
1717     cpu->dtb_compatible = "marvell,xscale";
1718     set_feature(&cpu->env, ARM_FEATURE_V5);
1719     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1720     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1721     cpu->midr = 0x69054117;
1722     cpu->ctr = 0xd172172;
1723     cpu->reset_sctlr = 0x00000078;
1724 }
1725 
1726 #ifndef TARGET_AARCH64
1727 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1728  * otherwise, a CPU with as many features enabled as our emulation supports.
1729  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1730  * this only needs to handle 32 bits.
1731  */
1732 static void arm_max_initfn(Object *obj)
1733 {
1734     ARMCPU *cpu = ARM_CPU(obj);
1735 
1736     if (kvm_enabled()) {
1737         kvm_arm_set_cpu_features_from_host(cpu);
1738     } else {
1739         cortex_a15_initfn(obj);
1740 #ifdef CONFIG_USER_ONLY
1741         /* We don't set these in system emulation mode for the moment,
1742          * since we don't correctly set the ID registers to advertise them,
1743          */
1744         set_feature(&cpu->env, ARM_FEATURE_V8);
1745         set_feature(&cpu->env, ARM_FEATURE_VFP4);
1746         set_feature(&cpu->env, ARM_FEATURE_NEON);
1747         set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1748         set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1749         set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1750         set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1751         set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1752         set_feature(&cpu->env, ARM_FEATURE_CRC);
1753         set_feature(&cpu->env, ARM_FEATURE_V8_RDM);
1754         set_feature(&cpu->env, ARM_FEATURE_V8_FCMA);
1755 #endif
1756     }
1757 }
1758 #endif
1759 
1760 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1761 
1762 typedef struct ARMCPUInfo {
1763     const char *name;
1764     void (*initfn)(Object *obj);
1765     void (*class_init)(ObjectClass *oc, void *data);
1766 } ARMCPUInfo;
1767 
1768 static const ARMCPUInfo arm_cpus[] = {
1769 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1770     { .name = "arm926",      .initfn = arm926_initfn },
1771     { .name = "arm946",      .initfn = arm946_initfn },
1772     { .name = "arm1026",     .initfn = arm1026_initfn },
1773     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1774      * older core than plain "arm1136". In particular this does not
1775      * have the v6K features.
1776      */
1777     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1778     { .name = "arm1136",     .initfn = arm1136_initfn },
1779     { .name = "arm1176",     .initfn = arm1176_initfn },
1780     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1781     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1782                              .class_init = arm_v7m_class_init },
1783     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1784                              .class_init = arm_v7m_class_init },
1785     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
1786                              .class_init = arm_v7m_class_init },
1787     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1788     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1789     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1790     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1791     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1792     { .name = "ti925t",      .initfn = ti925t_initfn },
1793     { .name = "sa1100",      .initfn = sa1100_initfn },
1794     { .name = "sa1110",      .initfn = sa1110_initfn },
1795     { .name = "pxa250",      .initfn = pxa250_initfn },
1796     { .name = "pxa255",      .initfn = pxa255_initfn },
1797     { .name = "pxa260",      .initfn = pxa260_initfn },
1798     { .name = "pxa261",      .initfn = pxa261_initfn },
1799     { .name = "pxa262",      .initfn = pxa262_initfn },
1800     /* "pxa270" is an alias for "pxa270-a0" */
1801     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1802     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1803     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1804     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1805     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1806     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1807     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1808 #ifndef TARGET_AARCH64
1809     { .name = "max",         .initfn = arm_max_initfn },
1810 #endif
1811 #ifdef CONFIG_USER_ONLY
1812     { .name = "any",         .initfn = arm_max_initfn },
1813 #endif
1814 #endif
1815     { .name = NULL }
1816 };
1817 
1818 static Property arm_cpu_properties[] = {
1819     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1820     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1821     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1822     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1823                         mp_affinity, ARM64_AFFINITY_INVALID),
1824     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1825     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1826     DEFINE_PROP_END_OF_LIST()
1827 };
1828 
1829 #ifdef CONFIG_USER_ONLY
1830 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
1831                                     int rw, int mmu_idx)
1832 {
1833     ARMCPU *cpu = ARM_CPU(cs);
1834     CPUARMState *env = &cpu->env;
1835 
1836     env->exception.vaddress = address;
1837     if (rw == 2) {
1838         cs->exception_index = EXCP_PREFETCH_ABORT;
1839     } else {
1840         cs->exception_index = EXCP_DATA_ABORT;
1841     }
1842     return 1;
1843 }
1844 #endif
1845 
1846 static gchar *arm_gdb_arch_name(CPUState *cs)
1847 {
1848     ARMCPU *cpu = ARM_CPU(cs);
1849     CPUARMState *env = &cpu->env;
1850 
1851     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1852         return g_strdup("iwmmxt");
1853     }
1854     return g_strdup("arm");
1855 }
1856 
1857 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1858 {
1859     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1860     CPUClass *cc = CPU_CLASS(acc);
1861     DeviceClass *dc = DEVICE_CLASS(oc);
1862 
1863     device_class_set_parent_realize(dc, arm_cpu_realizefn,
1864                                     &acc->parent_realize);
1865     dc->props = arm_cpu_properties;
1866 
1867     acc->parent_reset = cc->reset;
1868     cc->reset = arm_cpu_reset;
1869 
1870     cc->class_by_name = arm_cpu_class_by_name;
1871     cc->has_work = arm_cpu_has_work;
1872     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1873     cc->dump_state = arm_cpu_dump_state;
1874     cc->set_pc = arm_cpu_set_pc;
1875     cc->gdb_read_register = arm_cpu_gdb_read_register;
1876     cc->gdb_write_register = arm_cpu_gdb_write_register;
1877 #ifdef CONFIG_USER_ONLY
1878     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1879 #else
1880     cc->do_interrupt = arm_cpu_do_interrupt;
1881     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1882     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1883     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1884     cc->asidx_from_attrs = arm_asidx_from_attrs;
1885     cc->vmsd = &vmstate_arm_cpu;
1886     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1887     cc->write_elf64_note = arm_cpu_write_elf64_note;
1888     cc->write_elf32_note = arm_cpu_write_elf32_note;
1889 #endif
1890     cc->gdb_num_core_regs = 26;
1891     cc->gdb_core_xml_file = "arm-core.xml";
1892     cc->gdb_arch_name = arm_gdb_arch_name;
1893     cc->gdb_stop_before_watchpoint = true;
1894     cc->debug_excp_handler = arm_debug_excp_handler;
1895     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1896 #if !defined(CONFIG_USER_ONLY)
1897     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1898 #endif
1899 
1900     cc->disas_set_info = arm_disas_set_info;
1901 #ifdef CONFIG_TCG
1902     cc->tcg_initialize = arm_translate_init;
1903 #endif
1904 }
1905 
1906 #ifdef CONFIG_KVM
1907 static void arm_host_initfn(Object *obj)
1908 {
1909     ARMCPU *cpu = ARM_CPU(obj);
1910 
1911     kvm_arm_set_cpu_features_from_host(cpu);
1912 }
1913 
1914 static const TypeInfo host_arm_cpu_type_info = {
1915     .name = TYPE_ARM_HOST_CPU,
1916 #ifdef TARGET_AARCH64
1917     .parent = TYPE_AARCH64_CPU,
1918 #else
1919     .parent = TYPE_ARM_CPU,
1920 #endif
1921     .instance_init = arm_host_initfn,
1922 };
1923 
1924 #endif
1925 
1926 static void cpu_register(const ARMCPUInfo *info)
1927 {
1928     TypeInfo type_info = {
1929         .parent = TYPE_ARM_CPU,
1930         .instance_size = sizeof(ARMCPU),
1931         .instance_init = info->initfn,
1932         .class_size = sizeof(ARMCPUClass),
1933         .class_init = info->class_init,
1934     };
1935 
1936     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1937     type_register(&type_info);
1938     g_free((void *)type_info.name);
1939 }
1940 
1941 static const TypeInfo arm_cpu_type_info = {
1942     .name = TYPE_ARM_CPU,
1943     .parent = TYPE_CPU,
1944     .instance_size = sizeof(ARMCPU),
1945     .instance_init = arm_cpu_initfn,
1946     .instance_post_init = arm_cpu_post_init,
1947     .instance_finalize = arm_cpu_finalizefn,
1948     .abstract = true,
1949     .class_size = sizeof(ARMCPUClass),
1950     .class_init = arm_cpu_class_init,
1951 };
1952 
1953 static const TypeInfo idau_interface_type_info = {
1954     .name = TYPE_IDAU_INTERFACE,
1955     .parent = TYPE_INTERFACE,
1956     .class_size = sizeof(IDAUInterfaceClass),
1957 };
1958 
1959 static void arm_cpu_register_types(void)
1960 {
1961     const ARMCPUInfo *info = arm_cpus;
1962 
1963     type_register_static(&arm_cpu_type_info);
1964     type_register_static(&idau_interface_type_info);
1965 
1966     while (info->name) {
1967         cpu_register(info);
1968         info++;
1969     }
1970 
1971 #ifdef CONFIG_KVM
1972     type_register_static(&host_arm_cpu_type_info);
1973 #endif
1974 }
1975 
1976 type_init(arm_cpu_register_types)
1977