xref: /openbmc/qemu/target/arm/arch_dump.c (revision ab1b2ba9c9e9871bb622b0f14a1b2e3f4adaa68f)
1 /* Support for writing ELF notes for ARM architectures
2  *
3  * Copyright (C) 2015 Red Hat Inc.
4  *
5  * Author: Andrew Jones <drjones@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "elf.h"
24 #include "sysemu/dump.h"
25 
26 /* struct user_pt_regs from arch/arm64/include/uapi/asm/ptrace.h */
27 struct aarch64_user_regs {
28     uint64_t regs[31];
29     uint64_t sp;
30     uint64_t pc;
31     uint64_t pstate;
32 } QEMU_PACKED;
33 
34 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_regs) != 272);
35 
36 /* struct elf_prstatus from include/uapi/linux/elfcore.h */
37 struct aarch64_elf_prstatus {
38     char pad1[32]; /* 32 == offsetof(struct elf_prstatus, pr_pid) */
39     uint32_t pr_pid;
40     char pad2[76]; /* 76 == offsetof(struct elf_prstatus, pr_reg) -
41                             offsetof(struct elf_prstatus, pr_ppid) */
42     struct aarch64_user_regs pr_reg;
43     uint32_t pr_fpvalid;
44     char pad3[4];
45 } QEMU_PACKED;
46 
47 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_elf_prstatus) != 392);
48 
49 /* struct user_fpsimd_state from arch/arm64/include/uapi/asm/ptrace.h
50  *
51  * While the vregs member of user_fpsimd_state is of type __uint128_t,
52  * QEMU uses an array of uint64_t, where the high half of the 128-bit
53  * value is always in the 2n+1'th index. Thus we also break the 128-
54  * bit values into two halves in this reproduction of user_fpsimd_state.
55  */
56 struct aarch64_user_vfp_state {
57     uint64_t vregs[64];
58     uint32_t fpsr;
59     uint32_t fpcr;
60     char pad[8];
61 } QEMU_PACKED;
62 
63 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_vfp_state) != 528);
64 
65 /* struct user_sve_header from arch/arm64/include/uapi/asm/ptrace.h */
66 struct aarch64_user_sve_header {
67     uint32_t size;
68     uint32_t max_size;
69     uint16_t vl;
70     uint16_t max_vl;
71     uint16_t flags;
72     uint16_t reserved;
73 } QEMU_PACKED;
74 
75 struct aarch64_note {
76     Elf64_Nhdr hdr;
77     char name[8]; /* align_up(sizeof("CORE"), 4) */
78     union {
79         struct aarch64_elf_prstatus prstatus;
80         struct aarch64_user_vfp_state vfp;
81         struct aarch64_user_sve_header sve;
82     };
83 } QEMU_PACKED;
84 
85 #define AARCH64_NOTE_HEADER_SIZE offsetof(struct aarch64_note, prstatus)
86 #define AARCH64_PRSTATUS_NOTE_SIZE \
87             (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_elf_prstatus))
88 #define AARCH64_PRFPREG_NOTE_SIZE \
89             (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_user_vfp_state))
90 #define AARCH64_SVE_NOTE_SIZE(env) \
91             (AARCH64_NOTE_HEADER_SIZE + sve_size(env))
92 
93 static void aarch64_note_init(struct aarch64_note *note, DumpState *s,
94                               const char *name, Elf64_Word namesz,
95                               Elf64_Word type, Elf64_Word descsz)
96 {
97     memset(note, 0, sizeof(*note));
98 
99     note->hdr.n_namesz = cpu_to_dump32(s, namesz);
100     note->hdr.n_descsz = cpu_to_dump32(s, descsz);
101     note->hdr.n_type = cpu_to_dump32(s, type);
102 
103     memcpy(note->name, name, namesz);
104 }
105 
106 static int aarch64_write_elf64_prfpreg(WriteCoreDumpFunction f,
107                                        CPUARMState *env, int cpuid,
108                                        DumpState *s)
109 {
110     struct aarch64_note note;
111     int ret, i;
112 
113     aarch64_note_init(&note, s, "CORE", 5, NT_PRFPREG, sizeof(note.vfp));
114 
115     for (i = 0; i < 32; ++i) {
116         uint64_t *q = aa64_vfp_qreg(env, i);
117         note.vfp.vregs[2 * i + 0] = cpu_to_dump64(s, q[0]);
118         note.vfp.vregs[2 * i + 1] = cpu_to_dump64(s, q[1]);
119     }
120 
121     if (s->dump_info.d_endian == ELFDATA2MSB) {
122         /* For AArch64 we must always swap the vfp.regs's 2n and 2n+1
123          * entries when generating BE notes, because even big endian
124          * hosts use 2n+1 for the high half.
125          */
126         for (i = 0; i < 32; ++i) {
127             uint64_t tmp = note.vfp.vregs[2*i];
128             note.vfp.vregs[2 * i] = note.vfp.vregs[2 * i + 1];
129             note.vfp.vregs[2 * i + 1] = tmp;
130         }
131     }
132 
133     note.vfp.fpsr = cpu_to_dump32(s, vfp_get_fpsr(env));
134     note.vfp.fpcr = cpu_to_dump32(s, vfp_get_fpcr(env));
135 
136     ret = f(&note, AARCH64_PRFPREG_NOTE_SIZE, s);
137     if (ret < 0) {
138         return -1;
139     }
140 
141     return 0;
142 }
143 
144 #ifdef TARGET_AARCH64
145 static off_t sve_zreg_offset(uint32_t vq, int n)
146 {
147     off_t off = sizeof(struct aarch64_user_sve_header);
148     return ROUND_UP(off, 16) + vq * 16 * n;
149 }
150 
151 static off_t sve_preg_offset(uint32_t vq, int n)
152 {
153     return sve_zreg_offset(vq, 32) + vq * 16 / 8 * n;
154 }
155 
156 static off_t sve_fpsr_offset(uint32_t vq)
157 {
158     off_t off = sve_preg_offset(vq, 17);
159     return ROUND_UP(off, 16);
160 }
161 
162 static off_t sve_fpcr_offset(uint32_t vq)
163 {
164     return sve_fpsr_offset(vq) + sizeof(uint32_t);
165 }
166 
167 static uint32_t sve_current_vq(CPUARMState *env)
168 {
169     return sve_vqm1_for_el(env, arm_current_el(env)) + 1;
170 }
171 
172 static size_t sve_size_vq(uint32_t vq)
173 {
174     off_t off = sve_fpcr_offset(vq) + sizeof(uint32_t);
175     return ROUND_UP(off, 16);
176 }
177 
178 static size_t sve_size(CPUARMState *env)
179 {
180     return sve_size_vq(sve_current_vq(env));
181 }
182 
183 static int aarch64_write_elf64_sve(WriteCoreDumpFunction f,
184                                    CPUARMState *env, int cpuid,
185                                    DumpState *s)
186 {
187     struct aarch64_note *note;
188     ARMCPU *cpu = env_archcpu(env);
189     uint32_t vq = sve_current_vq(env);
190     uint64_t tmp[ARM_MAX_VQ * 2], *r;
191     uint32_t fpr;
192     uint8_t *buf;
193     int ret, i;
194 
195     note = g_malloc0(AARCH64_SVE_NOTE_SIZE(env));
196     buf = (uint8_t *)&note->sve;
197 
198     aarch64_note_init(note, s, "LINUX", 6, NT_ARM_SVE, sve_size_vq(vq));
199 
200     note->sve.size = cpu_to_dump32(s, sve_size_vq(vq));
201     note->sve.max_size = cpu_to_dump32(s, sve_size_vq(cpu->sve_max_vq));
202     note->sve.vl = cpu_to_dump16(s, vq * 16);
203     note->sve.max_vl = cpu_to_dump16(s, cpu->sve_max_vq * 16);
204     note->sve.flags = cpu_to_dump16(s, 1);
205 
206     for (i = 0; i < 32; ++i) {
207         r = sve_bswap64(tmp, &env->vfp.zregs[i].d[0], vq * 2);
208         memcpy(&buf[sve_zreg_offset(vq, i)], r, vq * 16);
209     }
210 
211     for (i = 0; i < 17; ++i) {
212         r = sve_bswap64(tmp, r = &env->vfp.pregs[i].p[0],
213                         DIV_ROUND_UP(vq * 2, 8));
214         memcpy(&buf[sve_preg_offset(vq, i)], r, vq * 16 / 8);
215     }
216 
217     fpr = cpu_to_dump32(s, vfp_get_fpsr(env));
218     memcpy(&buf[sve_fpsr_offset(vq)], &fpr, sizeof(uint32_t));
219 
220     fpr = cpu_to_dump32(s, vfp_get_fpcr(env));
221     memcpy(&buf[sve_fpcr_offset(vq)], &fpr, sizeof(uint32_t));
222 
223     ret = f(note, AARCH64_SVE_NOTE_SIZE(env), s);
224     g_free(note);
225 
226     if (ret < 0) {
227         return -1;
228     }
229 
230     return 0;
231 }
232 #endif
233 
234 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
235                              int cpuid, DumpState *s)
236 {
237     struct aarch64_note note;
238     ARMCPU *cpu = ARM_CPU(cs);
239     CPUARMState *env = &cpu->env;
240     uint64_t pstate, sp;
241     int ret, i;
242 
243     aarch64_note_init(&note, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus));
244 
245     note.prstatus.pr_pid = cpu_to_dump32(s, cpuid);
246     note.prstatus.pr_fpvalid = cpu_to_dump32(s, 1);
247 
248     if (!is_a64(env)) {
249         aarch64_sync_32_to_64(env);
250         pstate = cpsr_read(env);
251         sp = 0;
252     } else {
253         pstate = pstate_read(env);
254         sp = env->xregs[31];
255     }
256 
257     for (i = 0; i < 31; ++i) {
258         note.prstatus.pr_reg.regs[i] = cpu_to_dump64(s, env->xregs[i]);
259     }
260     note.prstatus.pr_reg.sp = cpu_to_dump64(s, sp);
261     note.prstatus.pr_reg.pc = cpu_to_dump64(s, env->pc);
262     note.prstatus.pr_reg.pstate = cpu_to_dump64(s, pstate);
263 
264     ret = f(&note, AARCH64_PRSTATUS_NOTE_SIZE, s);
265     if (ret < 0) {
266         return -1;
267     }
268 
269     ret = aarch64_write_elf64_prfpreg(f, env, cpuid, s);
270     if (ret) {
271         return ret;
272     }
273 
274 #ifdef TARGET_AARCH64
275     if (cpu_isar_feature(aa64_sve, cpu)) {
276         ret = aarch64_write_elf64_sve(f, env, cpuid, s);
277     }
278 #endif
279 
280     return ret;
281 }
282 
283 /* struct pt_regs from arch/arm/include/asm/ptrace.h */
284 struct arm_user_regs {
285     uint32_t regs[17];
286     char pad[4];
287 } QEMU_PACKED;
288 
289 QEMU_BUILD_BUG_ON(sizeof(struct arm_user_regs) != 72);
290 
291 /* struct elf_prstatus from include/uapi/linux/elfcore.h */
292 struct arm_elf_prstatus {
293     char pad1[24]; /* 24 == offsetof(struct elf_prstatus, pr_pid) */
294     uint32_t pr_pid;
295     char pad2[44]; /* 44 == offsetof(struct elf_prstatus, pr_reg) -
296                             offsetof(struct elf_prstatus, pr_ppid) */
297     struct arm_user_regs pr_reg;
298     uint32_t pr_fpvalid;
299 } QEMU_PACKED arm_elf_prstatus;
300 
301 QEMU_BUILD_BUG_ON(sizeof(struct arm_elf_prstatus) != 148);
302 
303 /* struct user_vfp from arch/arm/include/asm/user.h */
304 struct arm_user_vfp_state {
305     uint64_t vregs[32];
306     uint32_t fpscr;
307 } QEMU_PACKED;
308 
309 QEMU_BUILD_BUG_ON(sizeof(struct arm_user_vfp_state) != 260);
310 
311 struct arm_note {
312     Elf32_Nhdr hdr;
313     char name[8]; /* align_up(sizeof("LINUX"), 4) */
314     union {
315         struct arm_elf_prstatus prstatus;
316         struct arm_user_vfp_state vfp;
317     };
318 } QEMU_PACKED;
319 
320 #define ARM_NOTE_HEADER_SIZE offsetof(struct arm_note, prstatus)
321 #define ARM_PRSTATUS_NOTE_SIZE \
322             (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_elf_prstatus))
323 #define ARM_VFP_NOTE_SIZE \
324             (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_user_vfp_state))
325 
326 static void arm_note_init(struct arm_note *note, DumpState *s,
327                           const char *name, Elf32_Word namesz,
328                           Elf32_Word type, Elf32_Word descsz)
329 {
330     memset(note, 0, sizeof(*note));
331 
332     note->hdr.n_namesz = cpu_to_dump32(s, namesz);
333     note->hdr.n_descsz = cpu_to_dump32(s, descsz);
334     note->hdr.n_type = cpu_to_dump32(s, type);
335 
336     memcpy(note->name, name, namesz);
337 }
338 
339 static int arm_write_elf32_vfp(WriteCoreDumpFunction f, CPUARMState *env,
340                                int cpuid, DumpState *s)
341 {
342     struct arm_note note;
343     int ret, i;
344 
345     arm_note_init(&note, s, "LINUX", 6, NT_ARM_VFP, sizeof(note.vfp));
346 
347     for (i = 0; i < 32; ++i) {
348         note.vfp.vregs[i] = cpu_to_dump64(s, *aa32_vfp_dreg(env, i));
349     }
350 
351     note.vfp.fpscr = cpu_to_dump32(s, vfp_get_fpscr(env));
352 
353     ret = f(&note, ARM_VFP_NOTE_SIZE, s);
354     if (ret < 0) {
355         return -1;
356     }
357 
358     return 0;
359 }
360 
361 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
362                              int cpuid, DumpState *s)
363 {
364     struct arm_note note;
365     ARMCPU *cpu = ARM_CPU(cs);
366     CPUARMState *env = &cpu->env;
367     int ret, i;
368     bool fpvalid = cpu_isar_feature(aa32_vfp_simd, cpu);
369 
370     arm_note_init(&note, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus));
371 
372     note.prstatus.pr_pid = cpu_to_dump32(s, cpuid);
373     note.prstatus.pr_fpvalid = cpu_to_dump32(s, fpvalid);
374 
375     for (i = 0; i < 16; ++i) {
376         note.prstatus.pr_reg.regs[i] = cpu_to_dump32(s, env->regs[i]);
377     }
378     note.prstatus.pr_reg.regs[16] = cpu_to_dump32(s, cpsr_read(env));
379 
380     ret = f(&note, ARM_PRSTATUS_NOTE_SIZE, s);
381     if (ret < 0) {
382         return -1;
383     } else if (fpvalid) {
384         return arm_write_elf32_vfp(f, env, cpuid, s);
385     }
386 
387     return 0;
388 }
389 
390 int cpu_get_dump_info(ArchDumpInfo *info,
391                       const GuestPhysBlockList *guest_phys_blocks)
392 {
393     ARMCPU *cpu;
394     CPUARMState *env;
395     GuestPhysBlock *block;
396     hwaddr lowest_addr = ULLONG_MAX;
397 
398     if (first_cpu == NULL) {
399         return -1;
400     }
401 
402     cpu = ARM_CPU(first_cpu);
403     env = &cpu->env;
404 
405     /* Take a best guess at the phys_base. If we get it wrong then crash
406      * will need '--machdep phys_offset=<phys-offset>' added to its command
407      * line, which isn't any worse than assuming we can use zero, but being
408      * wrong. This is the same algorithm the crash utility uses when
409      * attempting to guess as it loads non-dumpfile formatted files.
410      */
411     QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
412         if (block->target_start < lowest_addr) {
413             lowest_addr = block->target_start;
414         }
415     }
416 
417     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
418         info->d_machine = EM_AARCH64;
419         info->d_class = ELFCLASS64;
420         info->page_size = (1 << 16); /* aarch64 max pagesize */
421         if (lowest_addr != ULLONG_MAX) {
422             info->phys_base = lowest_addr;
423         }
424     } else {
425         info->d_machine = EM_ARM;
426         info->d_class = ELFCLASS32;
427         info->page_size = (1 << 12);
428         if (lowest_addr < UINT_MAX) {
429             info->phys_base = lowest_addr;
430         }
431     }
432 
433     /* We assume the relevant endianness is that of EL1; this is right
434      * for kernels, but might give the wrong answer if you're trying to
435      * dump a hypervisor that happens to be running an opposite-endian
436      * kernel.
437      */
438     info->d_endian = (env->cp15.sctlr_el[1] & SCTLR_EE) != 0
439                      ? ELFDATA2MSB : ELFDATA2LSB;
440 
441     return 0;
442 }
443 
444 ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
445 {
446     ARMCPU *cpu = ARM_CPU(first_cpu);
447     size_t note_size;
448 
449     if (class == ELFCLASS64) {
450         note_size = AARCH64_PRSTATUS_NOTE_SIZE;
451         note_size += AARCH64_PRFPREG_NOTE_SIZE;
452 #ifdef TARGET_AARCH64
453         if (cpu_isar_feature(aa64_sve, cpu)) {
454             note_size += AARCH64_SVE_NOTE_SIZE(&cpu->env);
455         }
456 #endif
457     } else {
458         note_size = ARM_PRSTATUS_NOTE_SIZE;
459         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
460             note_size += ARM_VFP_NOTE_SIZE;
461         }
462     }
463 
464     return note_size * nr_cpus;
465 }
466