1HXCOMM Use DEFHEADING() to define headings in both help text and texi 2HXCOMM Text between STEXI and ETEXI are copied to texi version and 3HXCOMM discarded from C version 4HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to 5HXCOMM construct option structures, enums and help message for specified 6HXCOMM architectures. 7HXCOMM HXCOMM can be used for comments, discarded from both texi and C 8 9DEFHEADING(Standard options) 10STEXI 11@table @option 12ETEXI 13 14DEF("help", 0, QEMU_OPTION_h, 15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL) 16STEXI 17@item -h 18@findex -h 19Display help and exit 20ETEXI 21 22DEF("version", 0, QEMU_OPTION_version, 23 "-version display version information and exit\n", QEMU_ARCH_ALL) 24STEXI 25@item -version 26@findex -version 27Display version information and exit 28ETEXI 29 30DEF("machine", HAS_ARG, QEMU_OPTION_machine, \ 31 "-machine [type=]name[,prop[=value][,...]]\n" 32 " selects emulated machine ('-machine help' for list)\n" 33 " property accel=accel1[:accel2[:...]] selects accelerator\n" 34 " supported accelerators are kvm, xen, hax or tcg (default: tcg)\n" 35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n" 36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n" 37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n" 38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n" 39 " mem-merge=on|off controls memory merge support (default: on)\n" 40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n" 41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n" 42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n" 43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n" 44 " nvdimm=on|off controls NVDIMM support (default=off)\n" 45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n", 46 QEMU_ARCH_ALL) 47STEXI 48@item -machine [type=]@var{name}[,prop=@var{value}[,...]] 49@findex -machine 50Select the emulated machine by @var{name}. Use @code{-machine help} to list 51available machines. Supported machine properties are: 52@table @option 53@item accel=@var{accels1}[:@var{accels2}[:...]] 54This is used to enable an accelerator. Depending on the target architecture, 55kvm, xen, hax or tcg can be available. By default, tcg is used. If there is 56more than one accelerator specified, the next one is used if the previous one 57fails to initialize. 58@item kernel_irqchip=on|off 59Controls in-kernel irqchip support for the chosen accelerator when available. 60@item gfx_passthru=on|off 61Enables IGD GFX passthrough support for the chosen machine when available. 62@item vmport=on|off|auto 63Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the 64value based on accel. For accel=xen the default is off otherwise the default 65is on. 66@item kvm_shadow_mem=size 67Defines the size of the KVM shadow MMU. 68@item dump-guest-core=on|off 69Include guest memory in a core dump. The default is on. 70@item mem-merge=on|off 71Enables or disables memory merge support. This feature, when supported by 72the host, de-duplicates identical memory pages among VMs instances 73(enabled by default). 74@item aes-key-wrap=on|off 75Enables or disables AES key wrapping support on s390-ccw hosts. This feature 76controls whether AES wrapping keys will be created to allow 77execution of AES cryptographic functions. The default is on. 78@item dea-key-wrap=on|off 79Enables or disables DEA key wrapping support on s390-ccw hosts. This feature 80controls whether DEA wrapping keys will be created to allow 81execution of DEA cryptographic functions. The default is on. 82@item nvdimm=on|off 83Enables or disables NVDIMM support. The default is off. 84@end table 85ETEXI 86 87HXCOMM Deprecated by -machine 88DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL) 89 90DEF("cpu", HAS_ARG, QEMU_OPTION_cpu, 91 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL) 92STEXI 93@item -cpu @var{model} 94@findex -cpu 95Select CPU model (@code{-cpu help} for list and additional feature selection) 96ETEXI 97 98DEF("accel", HAS_ARG, QEMU_OPTION_accel, 99 "-accel [accel=]accelerator[,thread=single|multi]\n" 100 " select accelerator (kvm, xen, hax or tcg; use 'help' for a list)\n" 101 " thread=single|multi (enable multi-threaded TCG)", QEMU_ARCH_ALL) 102STEXI 103@item -accel @var{name}[,prop=@var{value}[,...]] 104@findex -accel 105This is used to enable an accelerator. Depending on the target architecture, 106kvm, xen, hax or tcg can be available. By default, tcg is used. If there is 107more than one accelerator specified, the next one is used if the previous one 108fails to initialize. 109@table @option 110@item thread=single|multi 111Controls number of TCG threads. When the TCG is multi-threaded there will be one 112thread per vCPU therefor taking advantage of additional host cores. The default 113is to enable multi-threading where both the back-end and front-ends support it and 114no incompatible TCG features have been enabled (e.g. icount/replay). 115@end table 116ETEXI 117 118DEF("smp", HAS_ARG, QEMU_OPTION_smp, 119 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n" 120 " set the number of CPUs to 'n' [default=1]\n" 121 " maxcpus= maximum number of total cpus, including\n" 122 " offline CPUs for hotplug, etc\n" 123 " cores= number of CPU cores on one socket\n" 124 " threads= number of threads on one CPU core\n" 125 " sockets= number of discrete sockets in the system\n", 126 QEMU_ARCH_ALL) 127STEXI 128@item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}] 129@findex -smp 130Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255 131CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs 132to 4. 133For the PC target, the number of @var{cores} per socket, the number 134of @var{threads} per cores and the total number of @var{sockets} can be 135specified. Missing values will be computed. If any on the three values is 136given, the total number of CPUs @var{n} can be omitted. @var{maxcpus} 137specifies the maximum number of hotpluggable CPUs. 138ETEXI 139 140DEF("numa", HAS_ARG, QEMU_OPTION_numa, 141 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n" 142 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n", QEMU_ARCH_ALL) 143STEXI 144@item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}] 145@itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}] 146@findex -numa 147Define a NUMA node and assign RAM and VCPUs to it. 148 149@var{firstcpu} and @var{lastcpu} are CPU indexes. Each 150@samp{cpus} option represent a contiguous range of CPU indexes 151(or a single VCPU if @var{lastcpu} is omitted). A non-contiguous 152set of VCPUs can be represented by providing multiple @samp{cpus} 153options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically 154split between them. 155 156For example, the following option assigns VCPUs 0, 1, 2 and 5 to 157a NUMA node: 158@example 159-numa node,cpus=0-2,cpus=5 160@end example 161 162@samp{mem} assigns a given RAM amount to a node. @samp{memdev} 163assigns RAM from a given memory backend device to a node. If 164@samp{mem} and @samp{memdev} are omitted in all nodes, RAM is 165split equally between them. 166 167@samp{mem} and @samp{memdev} are mutually exclusive. Furthermore, 168if one node uses @samp{memdev}, all of them have to use it. 169 170Note that the -@option{numa} option doesn't allocate any of the 171specified resources, it just assigns existing resources to NUMA 172nodes. This means that one still has to use the @option{-m}, 173@option{-smp} options to allocate RAM and VCPUs respectively. 174 175ETEXI 176 177DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd, 178 "-add-fd fd=fd,set=set[,opaque=opaque]\n" 179 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL) 180STEXI 181@item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}] 182@findex -add-fd 183 184Add a file descriptor to an fd set. Valid options are: 185 186@table @option 187@item fd=@var{fd} 188This option defines the file descriptor of which a duplicate is added to fd set. 189The file descriptor cannot be stdin, stdout, or stderr. 190@item set=@var{set} 191This option defines the ID of the fd set to add the file descriptor to. 192@item opaque=@var{opaque} 193This option defines a free-form string that can be used to describe @var{fd}. 194@end table 195 196You can open an image using pre-opened file descriptors from an fd set: 197@example 198qemu-system-i386 199-add-fd fd=3,set=2,opaque="rdwr:/path/to/file" 200-add-fd fd=4,set=2,opaque="rdonly:/path/to/file" 201-drive file=/dev/fdset/2,index=0,media=disk 202@end example 203ETEXI 204 205DEF("set", HAS_ARG, QEMU_OPTION_set, 206 "-set group.id.arg=value\n" 207 " set <arg> parameter for item <id> of type <group>\n" 208 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL) 209STEXI 210@item -set @var{group}.@var{id}.@var{arg}=@var{value} 211@findex -set 212Set parameter @var{arg} for item @var{id} of type @var{group} 213ETEXI 214 215DEF("global", HAS_ARG, QEMU_OPTION_global, 216 "-global driver.property=value\n" 217 "-global driver=driver,property=property,value=value\n" 218 " set a global default for a driver property\n", 219 QEMU_ARCH_ALL) 220STEXI 221@item -global @var{driver}.@var{prop}=@var{value} 222@itemx -global driver=@var{driver},property=@var{property},value=@var{value} 223@findex -global 224Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.: 225 226@example 227qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk 228@end example 229 230In particular, you can use this to set driver properties for devices which are 231created automatically by the machine model. To create a device which is not 232created automatically and set properties on it, use -@option{device}. 233 234-global @var{driver}.@var{prop}=@var{value} is shorthand for -global 235driver=@var{driver},property=@var{prop},value=@var{value}. The 236longhand syntax works even when @var{driver} contains a dot. 237ETEXI 238 239DEF("boot", HAS_ARG, QEMU_OPTION_boot, 240 "-boot [order=drives][,once=drives][,menu=on|off]\n" 241 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n" 242 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n" 243 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n" 244 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n" 245 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n", 246 QEMU_ARCH_ALL) 247STEXI 248@item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off] 249@findex -boot 250Specify boot order @var{drives} as a string of drive letters. Valid 251drive letters depend on the target architecture. The x86 PC uses: a, b 252(floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot 253from network adapter 1-4), hard disk boot is the default. To apply a 254particular boot order only on the first startup, specify it via 255@option{once}. Note that the @option{order} or @option{once} parameter 256should not be used together with the @option{bootindex} property of 257devices, since the firmware implementations normally do not support both 258at the same time. 259 260Interactive boot menus/prompts can be enabled via @option{menu=on} as far 261as firmware/BIOS supports them. The default is non-interactive boot. 262 263A splash picture could be passed to bios, enabling user to show it as logo, 264when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS 265supports them. Currently Seabios for X86 system support it. 266limitation: The splash file could be a jpeg file or a BMP file in 24 BPP 267format(true color). The resolution should be supported by the SVGA mode, so 268the recommended is 320x240, 640x480, 800x640. 269 270A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms 271when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not 272reboot, qemu passes '-1' to bios by default. Currently Seabios for X86 273system support it. 274 275Do strict boot via @option{strict=on} as far as firmware/BIOS 276supports it. This only effects when boot priority is changed by 277bootindex options. The default is non-strict boot. 278 279@example 280# try to boot from network first, then from hard disk 281qemu-system-i386 -boot order=nc 282# boot from CD-ROM first, switch back to default order after reboot 283qemu-system-i386 -boot once=d 284# boot with a splash picture for 5 seconds. 285qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000 286@end example 287 288Note: The legacy format '-boot @var{drives}' is still supported but its 289use is discouraged as it may be removed from future versions. 290ETEXI 291 292DEF("m", HAS_ARG, QEMU_OPTION_m, 293 "-m [size=]megs[,slots=n,maxmem=size]\n" 294 " configure guest RAM\n" 295 " size: initial amount of guest memory\n" 296 " slots: number of hotplug slots (default: none)\n" 297 " maxmem: maximum amount of guest memory (default: none)\n" 298 "NOTE: Some architectures might enforce a specific granularity\n", 299 QEMU_ARCH_ALL) 300STEXI 301@item -m [size=]@var{megs}[,slots=n,maxmem=size] 302@findex -m 303Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB. 304Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in 305megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem} 306could be used to set amount of hotpluggable memory slots and maximum amount of 307memory. Note that @var{maxmem} must be aligned to the page size. 308 309For example, the following command-line sets the guest startup RAM size to 3101GB, creates 3 slots to hotplug additional memory and sets the maximum 311memory the guest can reach to 4GB: 312 313@example 314qemu-system-x86_64 -m 1G,slots=3,maxmem=4G 315@end example 316 317If @var{slots} and @var{maxmem} are not specified, memory hotplug won't 318be enabled and the guest startup RAM will never increase. 319ETEXI 320 321DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath, 322 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL) 323STEXI 324@item -mem-path @var{path} 325@findex -mem-path 326Allocate guest RAM from a temporarily created file in @var{path}. 327ETEXI 328 329DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc, 330 "-mem-prealloc preallocate guest memory (use with -mem-path)\n", 331 QEMU_ARCH_ALL) 332STEXI 333@item -mem-prealloc 334@findex -mem-prealloc 335Preallocate memory when using -mem-path. 336ETEXI 337 338DEF("k", HAS_ARG, QEMU_OPTION_k, 339 "-k language use keyboard layout (for example 'fr' for French)\n", 340 QEMU_ARCH_ALL) 341STEXI 342@item -k @var{language} 343@findex -k 344Use keyboard layout @var{language} (for example @code{fr} for 345French). This option is only needed where it is not easy to get raw PC 346keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses 347display). You don't normally need to use it on PC/Linux or PC/Windows 348hosts. 349 350The available layouts are: 351@example 352ar de-ch es fo fr-ca hu ja mk no pt-br sv 353da en-gb et fr fr-ch is lt nl pl ru th 354de en-us fi fr-be hr it lv nl-be pt sl tr 355@end example 356 357The default is @code{en-us}. 358ETEXI 359 360 361DEF("audio-help", 0, QEMU_OPTION_audio_help, 362 "-audio-help print list of audio drivers and their options\n", 363 QEMU_ARCH_ALL) 364STEXI 365@item -audio-help 366@findex -audio-help 367Will show the audio subsystem help: list of drivers, tunable 368parameters. 369ETEXI 370 371DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw, 372 "-soundhw c1,... enable audio support\n" 373 " and only specified sound cards (comma separated list)\n" 374 " use '-soundhw help' to get the list of supported cards\n" 375 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL) 376STEXI 377@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all 378@findex -soundhw 379Enable audio and selected sound hardware. Use 'help' to print all 380available sound hardware. 381 382@example 383qemu-system-i386 -soundhw sb16,adlib disk.img 384qemu-system-i386 -soundhw es1370 disk.img 385qemu-system-i386 -soundhw ac97 disk.img 386qemu-system-i386 -soundhw hda disk.img 387qemu-system-i386 -soundhw all disk.img 388qemu-system-i386 -soundhw help 389@end example 390 391Note that Linux's i810_audio OSS kernel (for AC97) module might 392require manually specifying clocking. 393 394@example 395modprobe i810_audio clocking=48000 396@end example 397ETEXI 398 399DEF("balloon", HAS_ARG, QEMU_OPTION_balloon, 400 "-balloon none disable balloon device\n" 401 "-balloon virtio[,addr=str]\n" 402 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL) 403STEXI 404@item -balloon none 405@findex -balloon 406Disable balloon device. 407@item -balloon virtio[,addr=@var{addr}] 408Enable virtio balloon device (default), optionally with PCI address 409@var{addr}. 410ETEXI 411 412DEF("device", HAS_ARG, QEMU_OPTION_device, 413 "-device driver[,prop[=value][,...]]\n" 414 " add device (based on driver)\n" 415 " prop=value,... sets driver properties\n" 416 " use '-device help' to print all possible drivers\n" 417 " use '-device driver,help' to print all possible properties\n", 418 QEMU_ARCH_ALL) 419STEXI 420@item -device @var{driver}[,@var{prop}[=@var{value}][,...]] 421@findex -device 422Add device @var{driver}. @var{prop}=@var{value} sets driver 423properties. Valid properties depend on the driver. To get help on 424possible drivers and properties, use @code{-device help} and 425@code{-device @var{driver},help}. 426 427Some drivers are: 428@item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}] 429 430Add an IPMI BMC. This is a simulation of a hardware management 431interface processor that normally sits on a system. It provides 432a watchdog and the ability to reset and power control the system. 433You need to connect this to an IPMI interface to make it useful 434 435The IPMI slave address to use for the BMC. The default is 0x20. 436This address is the BMC's address on the I2C network of management 437controllers. If you don't know what this means, it is safe to ignore 438it. 439 440@table @option 441@item bmc=@var{id} 442The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above. 443@item slave_addr=@var{val} 444Define slave address to use for the BMC. The default is 0x20. 445@item sdrfile=@var{file} 446file containing raw Sensor Data Records (SDR) data. The default is none. 447@item fruareasize=@var{val} 448size of a Field Replaceable Unit (FRU) area. The default is 1024. 449@item frudatafile=@var{file} 450file containing raw Field Replaceable Unit (FRU) inventory data. The default is none. 451@end table 452 453@item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}] 454 455Add a connection to an external IPMI BMC simulator. Instead of 456locally emulating the BMC like the above item, instead connect 457to an external entity that provides the IPMI services. 458 459A connection is made to an external BMC simulator. If you do this, it 460is strongly recommended that you use the "reconnect=" chardev option 461to reconnect to the simulator if the connection is lost. Note that if 462this is not used carefully, it can be a security issue, as the 463interface has the ability to send resets, NMIs, and power off the VM. 464It's best if QEMU makes a connection to an external simulator running 465on a secure port on localhost, so neither the simulator nor QEMU is 466exposed to any outside network. 467 468See the "lanserv/README.vm" file in the OpenIPMI library for more 469details on the external interface. 470 471@item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}] 472 473Add a KCS IPMI interafce on the ISA bus. This also adds a 474corresponding ACPI and SMBIOS entries, if appropriate. 475 476@table @option 477@item bmc=@var{id} 478The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above. 479@item ioport=@var{val} 480Define the I/O address of the interface. The default is 0xca0 for KCS. 481@item irq=@var{val} 482Define the interrupt to use. The default is 5. To disable interrupts, 483set this to 0. 484@end table 485 486@item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}] 487 488Like the KCS interface, but defines a BT interface. The default port is 4890xe4 and the default interrupt is 5. 490 491ETEXI 492 493DEF("name", HAS_ARG, QEMU_OPTION_name, 494 "-name string1[,process=string2][,debug-threads=on|off]\n" 495 " set the name of the guest\n" 496 " string1 sets the window title and string2 the process name (on Linux)\n" 497 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n" 498 " NOTE: The thread names are for debugging and not a stable API.\n", 499 QEMU_ARCH_ALL) 500STEXI 501@item -name @var{name} 502@findex -name 503Sets the @var{name} of the guest. 504This name will be displayed in the SDL window caption. 505The @var{name} will also be used for the VNC server. 506Also optionally set the top visible process name in Linux. 507Naming of individual threads can also be enabled on Linux to aid debugging. 508ETEXI 509 510DEF("uuid", HAS_ARG, QEMU_OPTION_uuid, 511 "-uuid %08x-%04x-%04x-%04x-%012x\n" 512 " specify machine UUID\n", QEMU_ARCH_ALL) 513STEXI 514@item -uuid @var{uuid} 515@findex -uuid 516Set system UUID. 517ETEXI 518 519STEXI 520@end table 521ETEXI 522DEFHEADING() 523 524DEFHEADING(Block device options) 525STEXI 526@table @option 527ETEXI 528 529DEF("fda", HAS_ARG, QEMU_OPTION_fda, 530 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL) 531DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL) 532STEXI 533@item -fda @var{file} 534@itemx -fdb @var{file} 535@findex -fda 536@findex -fdb 537Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). 538ETEXI 539 540DEF("hda", HAS_ARG, QEMU_OPTION_hda, 541 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL) 542DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL) 543DEF("hdc", HAS_ARG, QEMU_OPTION_hdc, 544 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL) 545DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL) 546STEXI 547@item -hda @var{file} 548@itemx -hdb @var{file} 549@itemx -hdc @var{file} 550@itemx -hdd @var{file} 551@findex -hda 552@findex -hdb 553@findex -hdc 554@findex -hdd 555Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}). 556ETEXI 557 558DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom, 559 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n", 560 QEMU_ARCH_ALL) 561STEXI 562@item -cdrom @var{file} 563@findex -cdrom 564Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and 565@option{-cdrom} at the same time). You can use the host CD-ROM by 566using @file{/dev/cdrom} as filename (@pxref{host_drives}). 567ETEXI 568 569DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev, 570 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n" 571 " [,cache.direct=on|off][,cache.no-flush=on|off]\n" 572 " [,read-only=on|off][,detect-zeroes=on|off|unmap]\n" 573 " [,driver specific parameters...]\n" 574 " configure a block backend\n", QEMU_ARCH_ALL) 575 576DEF("drive", HAS_ARG, QEMU_OPTION_drive, 577 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n" 578 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n" 579 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n" 580 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n" 581 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n" 582 " [,readonly=on|off][,copy-on-read=on|off]\n" 583 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n" 584 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n" 585 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n" 586 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n" 587 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n" 588 " [[,iops_size=is]]\n" 589 " [[,group=g]]\n" 590 " use 'file' as a drive image\n", QEMU_ARCH_ALL) 591STEXI 592@item -drive @var{option}[,@var{option}[,@var{option}[,...]]] 593@findex -drive 594 595Define a new drive. Valid options are: 596 597@table @option 598@item file=@var{file} 599This option defines which disk image (@pxref{disk_images}) to use with 600this drive. If the filename contains comma, you must double it 601(for instance, "file=my,,file" to use file "my,file"). 602 603Special files such as iSCSI devices can be specified using protocol 604specific URLs. See the section for "Device URL Syntax" for more information. 605@item if=@var{interface} 606This option defines on which type on interface the drive is connected. 607Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio. 608@item bus=@var{bus},unit=@var{unit} 609These options define where is connected the drive by defining the bus number and 610the unit id. 611@item index=@var{index} 612This option defines where is connected the drive by using an index in the list 613of available connectors of a given interface type. 614@item media=@var{media} 615This option defines the type of the media: disk or cdrom. 616@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}] 617These options have the same definition as they have in @option{-hdachs}. 618@item snapshot=@var{snapshot} 619@var{snapshot} is "on" or "off" and controls snapshot mode for the given drive 620(see @option{-snapshot}). 621@item cache=@var{cache} 622@var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data. 623@item aio=@var{aio} 624@var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO. 625@item discard=@var{discard} 626@var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls whether @dfn{discard} (also known as @dfn{trim} or @dfn{unmap}) requests are ignored or passed to the filesystem. Some machine types may not support discard requests. 627@item format=@var{format} 628Specify which disk @var{format} will be used rather than detecting 629the format. Can be used to specify format=raw to avoid interpreting 630an untrusted format header. 631@item serial=@var{serial} 632This option specifies the serial number to assign to the device. 633@item addr=@var{addr} 634Specify the controller's PCI address (if=virtio only). 635@item werror=@var{action},rerror=@var{action} 636Specify which @var{action} to take on write and read errors. Valid actions are: 637"ignore" (ignore the error and try to continue), "stop" (pause QEMU), 638"report" (report the error to the guest), "enospc" (pause QEMU only if the 639host disk is full; report the error to the guest otherwise). 640The default setting is @option{werror=enospc} and @option{rerror=report}. 641@item readonly 642Open drive @option{file} as read-only. Guest write attempts will fail. 643@item copy-on-read=@var{copy-on-read} 644@var{copy-on-read} is "on" or "off" and enables whether to copy read backing 645file sectors into the image file. 646@item detect-zeroes=@var{detect-zeroes} 647@var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic 648conversion of plain zero writes by the OS to driver specific optimized 649zero write commands. You may even choose "unmap" if @var{discard} is set 650to "unmap" to allow a zero write to be converted to an UNMAP operation. 651@item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w} 652Specify bandwidth throttling limits in bytes per second, either for all request 653types or for reads or writes only. Small values can lead to timeouts or hangs 654inside the guest. A safe minimum for disks is 2 MB/s. 655@item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm} 656Specify bursts in bytes per second, either for all request types or for reads 657or writes only. Bursts allow the guest I/O to spike above the limit 658temporarily. 659@item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w} 660Specify request rate limits in requests per second, either for all request 661types or for reads or writes only. 662@item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm} 663Specify bursts in requests per second, either for all request types or for reads 664or writes only. Bursts allow the guest I/O to spike above the limit 665temporarily. 666@item iops_size=@var{is} 667Let every @var{is} bytes of a request count as a new request for iops 668throttling purposes. Use this option to prevent guests from circumventing iops 669limits by sending fewer but larger requests. 670@item group=@var{g} 671Join a throttling quota group with given name @var{g}. All drives that are 672members of the same group are accounted for together. Use this option to 673prevent guests from circumventing throttling limits by using many small disks 674instead of a single larger disk. 675@end table 676 677By default, the @option{cache=writeback} mode is used. It will report data 678writes as completed as soon as the data is present in the host page cache. 679This is safe as long as your guest OS makes sure to correctly flush disk caches 680where needed. If your guest OS does not handle volatile disk write caches 681correctly and your host crashes or loses power, then the guest may experience 682data corruption. 683 684For such guests, you should consider using @option{cache=writethrough}. This 685means that the host page cache will be used to read and write data, but write 686notification will be sent to the guest only after QEMU has made sure to flush 687each write to the disk. Be aware that this has a major impact on performance. 688 689The host page cache can be avoided entirely with @option{cache=none}. This will 690attempt to do disk IO directly to the guest's memory. QEMU may still perform 691an internal copy of the data. Note that this is considered a writeback mode and 692the guest OS must handle the disk write cache correctly in order to avoid data 693corruption on host crashes. 694 695The host page cache can be avoided while only sending write notifications to 696the guest when the data has been flushed to the disk using 697@option{cache=directsync}. 698 699In case you don't care about data integrity over host failures, use 700@option{cache=unsafe}. This option tells QEMU that it never needs to write any 701data to the disk but can instead keep things in cache. If anything goes wrong, 702like your host losing power, the disk storage getting disconnected accidentally, 703etc. your image will most probably be rendered unusable. When using 704the @option{-snapshot} option, unsafe caching is always used. 705 706Copy-on-read avoids accessing the same backing file sectors repeatedly and is 707useful when the backing file is over a slow network. By default copy-on-read 708is off. 709 710Instead of @option{-cdrom} you can use: 711@example 712qemu-system-i386 -drive file=file,index=2,media=cdrom 713@end example 714 715Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can 716use: 717@example 718qemu-system-i386 -drive file=file,index=0,media=disk 719qemu-system-i386 -drive file=file,index=1,media=disk 720qemu-system-i386 -drive file=file,index=2,media=disk 721qemu-system-i386 -drive file=file,index=3,media=disk 722@end example 723 724You can open an image using pre-opened file descriptors from an fd set: 725@example 726qemu-system-i386 727-add-fd fd=3,set=2,opaque="rdwr:/path/to/file" 728-add-fd fd=4,set=2,opaque="rdonly:/path/to/file" 729-drive file=/dev/fdset/2,index=0,media=disk 730@end example 731 732You can connect a CDROM to the slave of ide0: 733@example 734qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom 735@end example 736 737If you don't specify the "file=" argument, you define an empty drive: 738@example 739qemu-system-i386 -drive if=ide,index=1,media=cdrom 740@end example 741 742Instead of @option{-fda}, @option{-fdb}, you can use: 743@example 744qemu-system-i386 -drive file=file,index=0,if=floppy 745qemu-system-i386 -drive file=file,index=1,if=floppy 746@end example 747 748By default, @var{interface} is "ide" and @var{index} is automatically 749incremented: 750@example 751qemu-system-i386 -drive file=a -drive file=b" 752@end example 753is interpreted like: 754@example 755qemu-system-i386 -hda a -hdb b 756@end example 757ETEXI 758 759DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock, 760 "-mtdblock file use 'file' as on-board Flash memory image\n", 761 QEMU_ARCH_ALL) 762STEXI 763@item -mtdblock @var{file} 764@findex -mtdblock 765Use @var{file} as on-board Flash memory image. 766ETEXI 767 768DEF("sd", HAS_ARG, QEMU_OPTION_sd, 769 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL) 770STEXI 771@item -sd @var{file} 772@findex -sd 773Use @var{file} as SecureDigital card image. 774ETEXI 775 776DEF("pflash", HAS_ARG, QEMU_OPTION_pflash, 777 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL) 778STEXI 779@item -pflash @var{file} 780@findex -pflash 781Use @var{file} as a parallel flash image. 782ETEXI 783 784DEF("snapshot", 0, QEMU_OPTION_snapshot, 785 "-snapshot write to temporary files instead of disk image files\n", 786 QEMU_ARCH_ALL) 787STEXI 788@item -snapshot 789@findex -snapshot 790Write to temporary files instead of disk image files. In this case, 791the raw disk image you use is not written back. You can however force 792the write back by pressing @key{C-a s} (@pxref{disk_images}). 793ETEXI 794 795DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \ 796 "-hdachs c,h,s[,t]\n" \ 797 " force hard disk 0 physical geometry and the optional BIOS\n" \ 798 " translation (t=none or lba) (usually QEMU can guess them)\n", 799 QEMU_ARCH_ALL) 800STEXI 801@item -hdachs @var{c},@var{h},@var{s},[,@var{t}] 802@findex -hdachs 803Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <= 804@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS 805translation mode (@var{t}=none, lba or auto). Usually QEMU can guess 806all those parameters. This option is deprecated, please use 807@code{-device ide-hd,cyls=c,heads=h,secs=s,...} instead. 808ETEXI 809 810DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev, 811 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n" 812 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n" 813 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n" 814 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n" 815 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n" 816 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n" 817 " [[,throttling.iops-size=is]]\n", 818 QEMU_ARCH_ALL) 819 820STEXI 821 822@item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}] 823@findex -fsdev 824Define a new file system device. Valid options are: 825@table @option 826@item @var{fsdriver} 827This option specifies the fs driver backend to use. 828Currently "local", "handle" and "proxy" file system drivers are supported. 829@item id=@var{id} 830Specifies identifier for this device 831@item path=@var{path} 832Specifies the export path for the file system device. Files under 833this path will be available to the 9p client on the guest. 834@item security_model=@var{security_model} 835Specifies the security model to be used for this export path. 836Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none". 837In "passthrough" security model, files are stored using the same 838credentials as they are created on the guest. This requires QEMU 839to run as root. In "mapped-xattr" security model, some of the file 840attributes like uid, gid, mode bits and link target are stored as 841file attributes. For "mapped-file" these attributes are stored in the 842hidden .virtfs_metadata directory. Directories exported by this security model cannot 843interact with other unix tools. "none" security model is same as 844passthrough except the sever won't report failures if it fails to 845set file attributes like ownership. Security model is mandatory 846only for local fsdriver. Other fsdrivers (like handle, proxy) don't take 847security model as a parameter. 848@item writeout=@var{writeout} 849This is an optional argument. The only supported value is "immediate". 850This means that host page cache will be used to read and write data but 851write notification will be sent to the guest only when the data has been 852reported as written by the storage subsystem. 853@item readonly 854Enables exporting 9p share as a readonly mount for guests. By default 855read-write access is given. 856@item socket=@var{socket} 857Enables proxy filesystem driver to use passed socket file for communicating 858with virtfs-proxy-helper 859@item sock_fd=@var{sock_fd} 860Enables proxy filesystem driver to use passed socket descriptor for 861communicating with virtfs-proxy-helper. Usually a helper like libvirt 862will create socketpair and pass one of the fds as sock_fd 863@end table 864 865-fsdev option is used along with -device driver "virtio-9p-pci". 866@item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag} 867Options for virtio-9p-pci driver are: 868@table @option 869@item fsdev=@var{id} 870Specifies the id value specified along with -fsdev option 871@item mount_tag=@var{mount_tag} 872Specifies the tag name to be used by the guest to mount this export point 873@end table 874 875ETEXI 876 877DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs, 878 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n" 879 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n", 880 QEMU_ARCH_ALL) 881 882STEXI 883 884@item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}] 885@findex -virtfs 886 887The general form of a Virtual File system pass-through options are: 888@table @option 889@item @var{fsdriver} 890This option specifies the fs driver backend to use. 891Currently "local", "handle" and "proxy" file system drivers are supported. 892@item id=@var{id} 893Specifies identifier for this device 894@item path=@var{path} 895Specifies the export path for the file system device. Files under 896this path will be available to the 9p client on the guest. 897@item security_model=@var{security_model} 898Specifies the security model to be used for this export path. 899Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none". 900In "passthrough" security model, files are stored using the same 901credentials as they are created on the guest. This requires QEMU 902to run as root. In "mapped-xattr" security model, some of the file 903attributes like uid, gid, mode bits and link target are stored as 904file attributes. For "mapped-file" these attributes are stored in the 905hidden .virtfs_metadata directory. Directories exported by this security model cannot 906interact with other unix tools. "none" security model is same as 907passthrough except the sever won't report failures if it fails to 908set file attributes like ownership. Security model is mandatory only 909for local fsdriver. Other fsdrivers (like handle, proxy) don't take security 910model as a parameter. 911@item writeout=@var{writeout} 912This is an optional argument. The only supported value is "immediate". 913This means that host page cache will be used to read and write data but 914write notification will be sent to the guest only when the data has been 915reported as written by the storage subsystem. 916@item readonly 917Enables exporting 9p share as a readonly mount for guests. By default 918read-write access is given. 919@item socket=@var{socket} 920Enables proxy filesystem driver to use passed socket file for 921communicating with virtfs-proxy-helper. Usually a helper like libvirt 922will create socketpair and pass one of the fds as sock_fd 923@item sock_fd 924Enables proxy filesystem driver to use passed 'sock_fd' as the socket 925descriptor for interfacing with virtfs-proxy-helper 926@end table 927ETEXI 928 929DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth, 930 "-virtfs_synth Create synthetic file system image\n", 931 QEMU_ARCH_ALL) 932STEXI 933@item -virtfs_synth 934@findex -virtfs_synth 935Create synthetic file system image 936ETEXI 937 938STEXI 939@end table 940ETEXI 941DEFHEADING() 942 943DEFHEADING(USB options) 944STEXI 945@table @option 946ETEXI 947 948DEF("usb", 0, QEMU_OPTION_usb, 949 "-usb enable the USB driver (will be the default soon)\n", 950 QEMU_ARCH_ALL) 951STEXI 952@item -usb 953@findex -usb 954Enable the USB driver (will be the default soon) 955ETEXI 956 957DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice, 958 "-usbdevice name add the host or guest USB device 'name'\n", 959 QEMU_ARCH_ALL) 960STEXI 961 962@item -usbdevice @var{devname} 963@findex -usbdevice 964Add the USB device @var{devname}. @xref{usb_devices}. 965 966@table @option 967 968@item mouse 969Virtual Mouse. This will override the PS/2 mouse emulation when activated. 970 971@item tablet 972Pointer device that uses absolute coordinates (like a touchscreen). This 973means QEMU is able to report the mouse position without having to grab the 974mouse. Also overrides the PS/2 mouse emulation when activated. 975 976@item disk:[format=@var{format}]:@var{file} 977Mass storage device based on file. The optional @var{format} argument 978will be used rather than detecting the format. Can be used to specify 979@code{format=raw} to avoid interpreting an untrusted format header. 980 981@item host:@var{bus}.@var{addr} 982Pass through the host device identified by @var{bus}.@var{addr} (Linux only). 983 984@item host:@var{vendor_id}:@var{product_id} 985Pass through the host device identified by @var{vendor_id}:@var{product_id} 986(Linux only). 987 988@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev} 989Serial converter to host character device @var{dev}, see @code{-serial} for the 990available devices. 991 992@item braille 993Braille device. This will use BrlAPI to display the braille output on a real 994or fake device. 995 996@item net:@var{options} 997Network adapter that supports CDC ethernet and RNDIS protocols. 998 999@end table 1000ETEXI 1001 1002STEXI 1003@end table 1004ETEXI 1005DEFHEADING() 1006 1007DEFHEADING(Display options) 1008STEXI 1009@table @option 1010ETEXI 1011 1012DEF("display", HAS_ARG, QEMU_OPTION_display, 1013 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n" 1014 " [,window_close=on|off][,gl=on|off]\n" 1015 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n" 1016 "-display vnc=<display>[,<optargs>]\n" 1017 "-display curses\n" 1018 "-display none" 1019 " select display type\n" 1020 "The default display is equivalent to\n" 1021#if defined(CONFIG_GTK) 1022 "\t\"-display gtk\"\n" 1023#elif defined(CONFIG_SDL) 1024 "\t\"-display sdl\"\n" 1025#elif defined(CONFIG_COCOA) 1026 "\t\"-display cocoa\"\n" 1027#elif defined(CONFIG_VNC) 1028 "\t\"-vnc localhost:0,to=99,id=default\"\n" 1029#else 1030 "\t\"-display none\"\n" 1031#endif 1032 , QEMU_ARCH_ALL) 1033STEXI 1034@item -display @var{type} 1035@findex -display 1036Select type of display to use. This option is a replacement for the 1037old style -sdl/-curses/... options. Valid values for @var{type} are 1038@table @option 1039@item sdl 1040Display video output via SDL (usually in a separate graphics 1041window; see the SDL documentation for other possibilities). 1042@item curses 1043Display video output via curses. For graphics device models which 1044support a text mode, QEMU can display this output using a 1045curses/ncurses interface. Nothing is displayed when the graphics 1046device is in graphical mode or if the graphics device does not support 1047a text mode. Generally only the VGA device models support text mode. 1048@item none 1049Do not display video output. The guest will still see an emulated 1050graphics card, but its output will not be displayed to the QEMU 1051user. This option differs from the -nographic option in that it 1052only affects what is done with video output; -nographic also changes 1053the destination of the serial and parallel port data. 1054@item gtk 1055Display video output in a GTK window. This interface provides drop-down 1056menus and other UI elements to configure and control the VM during 1057runtime. 1058@item vnc 1059Start a VNC server on display <arg> 1060@end table 1061ETEXI 1062 1063DEF("nographic", 0, QEMU_OPTION_nographic, 1064 "-nographic disable graphical output and redirect serial I/Os to console\n", 1065 QEMU_ARCH_ALL) 1066STEXI 1067@item -nographic 1068@findex -nographic 1069Normally, if QEMU is compiled with graphical window support, it displays 1070output such as guest graphics, guest console, and the QEMU monitor in a 1071window. With this option, you can totally disable graphical output so 1072that QEMU is a simple command line application. The emulated serial port 1073is redirected on the console and muxed with the monitor (unless 1074redirected elsewhere explicitly). Therefore, you can still use QEMU to 1075debug a Linux kernel with a serial console. Use @key{C-a h} for help on 1076switching between the console and monitor. 1077ETEXI 1078 1079DEF("curses", 0, QEMU_OPTION_curses, 1080 "-curses shorthand for -display curses\n", 1081 QEMU_ARCH_ALL) 1082STEXI 1083@item -curses 1084@findex -curses 1085Normally, if QEMU is compiled with graphical window support, it displays 1086output such as guest graphics, guest console, and the QEMU monitor in a 1087window. With this option, QEMU can display the VGA output when in text 1088mode using a curses/ncurses interface. Nothing is displayed in graphical 1089mode. 1090ETEXI 1091 1092DEF("no-frame", 0, QEMU_OPTION_no_frame, 1093 "-no-frame open SDL window without a frame and window decorations\n", 1094 QEMU_ARCH_ALL) 1095STEXI 1096@item -no-frame 1097@findex -no-frame 1098Do not use decorations for SDL windows and start them using the whole 1099available screen space. This makes the using QEMU in a dedicated desktop 1100workspace more convenient. 1101ETEXI 1102 1103DEF("alt-grab", 0, QEMU_OPTION_alt_grab, 1104 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n", 1105 QEMU_ARCH_ALL) 1106STEXI 1107@item -alt-grab 1108@findex -alt-grab 1109Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also 1110affects the special keys (for fullscreen, monitor-mode switching, etc). 1111ETEXI 1112 1113DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab, 1114 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n", 1115 QEMU_ARCH_ALL) 1116STEXI 1117@item -ctrl-grab 1118@findex -ctrl-grab 1119Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also 1120affects the special keys (for fullscreen, monitor-mode switching, etc). 1121ETEXI 1122 1123DEF("no-quit", 0, QEMU_OPTION_no_quit, 1124 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL) 1125STEXI 1126@item -no-quit 1127@findex -no-quit 1128Disable SDL window close capability. 1129ETEXI 1130 1131DEF("sdl", 0, QEMU_OPTION_sdl, 1132 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL) 1133STEXI 1134@item -sdl 1135@findex -sdl 1136Enable SDL. 1137ETEXI 1138 1139DEF("spice", HAS_ARG, QEMU_OPTION_spice, 1140 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n" 1141 " [,x509-key-file=<file>][,x509-key-password=<file>]\n" 1142 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n" 1143 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n" 1144 " [,tls-ciphers=<list>]\n" 1145 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n" 1146 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n" 1147 " [,sasl][,password=<secret>][,disable-ticketing]\n" 1148 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n" 1149 " [,jpeg-wan-compression=[auto|never|always]]\n" 1150 " [,zlib-glz-wan-compression=[auto|never|always]]\n" 1151 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n" 1152 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n" 1153 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n" 1154 " [,gl=[on|off]][,rendernode=<file>]\n" 1155 " enable spice\n" 1156 " at least one of {port, tls-port} is mandatory\n", 1157 QEMU_ARCH_ALL) 1158STEXI 1159@item -spice @var{option}[,@var{option}[,...]] 1160@findex -spice 1161Enable the spice remote desktop protocol. Valid options are 1162 1163@table @option 1164 1165@item port=<nr> 1166Set the TCP port spice is listening on for plaintext channels. 1167 1168@item addr=<addr> 1169Set the IP address spice is listening on. Default is any address. 1170 1171@item ipv4 1172@itemx ipv6 1173@itemx unix 1174Force using the specified IP version. 1175 1176@item password=<secret> 1177Set the password you need to authenticate. 1178 1179@item sasl 1180Require that the client use SASL to authenticate with the spice. 1181The exact choice of authentication method used is controlled from the 1182system / user's SASL configuration file for the 'qemu' service. This 1183is typically found in /etc/sasl2/qemu.conf. If running QEMU as an 1184unprivileged user, an environment variable SASL_CONF_PATH can be used 1185to make it search alternate locations for the service config. 1186While some SASL auth methods can also provide data encryption (eg GSSAPI), 1187it is recommended that SASL always be combined with the 'tls' and 1188'x509' settings to enable use of SSL and server certificates. This 1189ensures a data encryption preventing compromise of authentication 1190credentials. 1191 1192@item disable-ticketing 1193Allow client connects without authentication. 1194 1195@item disable-copy-paste 1196Disable copy paste between the client and the guest. 1197 1198@item disable-agent-file-xfer 1199Disable spice-vdagent based file-xfer between the client and the guest. 1200 1201@item tls-port=<nr> 1202Set the TCP port spice is listening on for encrypted channels. 1203 1204@item x509-dir=<dir> 1205Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir 1206 1207@item x509-key-file=<file> 1208@itemx x509-key-password=<file> 1209@itemx x509-cert-file=<file> 1210@itemx x509-cacert-file=<file> 1211@itemx x509-dh-key-file=<file> 1212The x509 file names can also be configured individually. 1213 1214@item tls-ciphers=<list> 1215Specify which ciphers to use. 1216 1217@item tls-channel=[main|display|cursor|inputs|record|playback] 1218@itemx plaintext-channel=[main|display|cursor|inputs|record|playback] 1219Force specific channel to be used with or without TLS encryption. The 1220options can be specified multiple times to configure multiple 1221channels. The special name "default" can be used to set the default 1222mode. For channels which are not explicitly forced into one mode the 1223spice client is allowed to pick tls/plaintext as he pleases. 1224 1225@item image-compression=[auto_glz|auto_lz|quic|glz|lz|off] 1226Configure image compression (lossless). 1227Default is auto_glz. 1228 1229@item jpeg-wan-compression=[auto|never|always] 1230@itemx zlib-glz-wan-compression=[auto|never|always] 1231Configure wan image compression (lossy for slow links). 1232Default is auto. 1233 1234@item streaming-video=[off|all|filter] 1235Configure video stream detection. Default is off. 1236 1237@item agent-mouse=[on|off] 1238Enable/disable passing mouse events via vdagent. Default is on. 1239 1240@item playback-compression=[on|off] 1241Enable/disable audio stream compression (using celt 0.5.1). Default is on. 1242 1243@item seamless-migration=[on|off] 1244Enable/disable spice seamless migration. Default is off. 1245 1246@item gl=[on|off] 1247Enable/disable OpenGL context. Default is off. 1248 1249@item rendernode=<file> 1250DRM render node for OpenGL rendering. If not specified, it will pick 1251the first available. (Since 2.9) 1252 1253@end table 1254ETEXI 1255 1256DEF("portrait", 0, QEMU_OPTION_portrait, 1257 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n", 1258 QEMU_ARCH_ALL) 1259STEXI 1260@item -portrait 1261@findex -portrait 1262Rotate graphical output 90 deg left (only PXA LCD). 1263ETEXI 1264 1265DEF("rotate", HAS_ARG, QEMU_OPTION_rotate, 1266 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n", 1267 QEMU_ARCH_ALL) 1268STEXI 1269@item -rotate @var{deg} 1270@findex -rotate 1271Rotate graphical output some deg left (only PXA LCD). 1272ETEXI 1273 1274DEF("vga", HAS_ARG, QEMU_OPTION_vga, 1275 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n" 1276 " select video card type\n", QEMU_ARCH_ALL) 1277STEXI 1278@item -vga @var{type} 1279@findex -vga 1280Select type of VGA card to emulate. Valid values for @var{type} are 1281@table @option 1282@item cirrus 1283Cirrus Logic GD5446 Video card. All Windows versions starting from 1284Windows 95 should recognize and use this graphic card. For optimal 1285performances, use 16 bit color depth in the guest and the host OS. 1286(This card was the default before QEMU 2.2) 1287@item std 1288Standard VGA card with Bochs VBE extensions. If your guest OS 1289supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want 1290to use high resolution modes (>= 1280x1024x16) then you should use 1291this option. (This card is the default since QEMU 2.2) 1292@item vmware 1293VMWare SVGA-II compatible adapter. Use it if you have sufficiently 1294recent XFree86/XOrg server or Windows guest with a driver for this 1295card. 1296@item qxl 1297QXL paravirtual graphic card. It is VGA compatible (including VESA 12982.0 VBE support). Works best with qxl guest drivers installed though. 1299Recommended choice when using the spice protocol. 1300@item tcx 1301(sun4m only) Sun TCX framebuffer. This is the default framebuffer for 1302sun4m machines and offers both 8-bit and 24-bit colour depths at a 1303fixed resolution of 1024x768. 1304@item cg3 1305(sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer 1306for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP) 1307resolutions aimed at people wishing to run older Solaris versions. 1308@item virtio 1309Virtio VGA card. 1310@item none 1311Disable VGA card. 1312@end table 1313ETEXI 1314 1315DEF("full-screen", 0, QEMU_OPTION_full_screen, 1316 "-full-screen start in full screen\n", QEMU_ARCH_ALL) 1317STEXI 1318@item -full-screen 1319@findex -full-screen 1320Start in full screen. 1321ETEXI 1322 1323DEF("g", 1, QEMU_OPTION_g , 1324 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n", 1325 QEMU_ARCH_PPC | QEMU_ARCH_SPARC) 1326STEXI 1327@item -g @var{width}x@var{height}[x@var{depth}] 1328@findex -g 1329Set the initial graphical resolution and depth (PPC, SPARC only). 1330ETEXI 1331 1332DEF("vnc", HAS_ARG, QEMU_OPTION_vnc , 1333 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL) 1334STEXI 1335@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]] 1336@findex -vnc 1337Normally, if QEMU is compiled with graphical window support, it displays 1338output such as guest graphics, guest console, and the QEMU monitor in a 1339window. With this option, you can have QEMU listen on VNC display 1340@var{display} and redirect the VGA display over the VNC session. It is 1341very useful to enable the usb tablet device when using this option 1342(option @option{-usbdevice tablet}). When using the VNC display, you 1343must use the @option{-k} parameter to set the keyboard layout if you are 1344not using en-us. Valid syntax for the @var{display} is 1345 1346@table @option 1347 1348@item to=@var{L} 1349 1350With this option, QEMU will try next available VNC @var{display}s, until the 1351number @var{L}, if the origianlly defined "-vnc @var{display}" is not 1352available, e.g. port 5900+@var{display} is already used by another 1353application. By default, to=0. 1354 1355@item @var{host}:@var{d} 1356 1357TCP connections will only be allowed from @var{host} on display @var{d}. 1358By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can 1359be omitted in which case the server will accept connections from any host. 1360 1361@item unix:@var{path} 1362 1363Connections will be allowed over UNIX domain sockets where @var{path} is the 1364location of a unix socket to listen for connections on. 1365 1366@item none 1367 1368VNC is initialized but not started. The monitor @code{change} command 1369can be used to later start the VNC server. 1370 1371@end table 1372 1373Following the @var{display} value there may be one or more @var{option} flags 1374separated by commas. Valid options are 1375 1376@table @option 1377 1378@item reverse 1379 1380Connect to a listening VNC client via a ``reverse'' connection. The 1381client is specified by the @var{display}. For reverse network 1382connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument 1383is a TCP port number, not a display number. 1384 1385@item websocket 1386 1387Opens an additional TCP listening port dedicated to VNC Websocket connections. 1388If a bare @var{websocket} option is given, the Websocket port is 13895700+@var{display}. An alternative port can be specified with the 1390syntax @code{websocket}=@var{port}. 1391 1392If @var{host} is specified connections will only be allowed from this host. 1393It is possible to control the websocket listen address independently, using 1394the syntax @code{websocket}=@var{host}:@var{port}. 1395 1396If no TLS credentials are provided, the websocket connection runs in 1397unencrypted mode. If TLS credentials are provided, the websocket connection 1398requires encrypted client connections. 1399 1400@item password 1401 1402Require that password based authentication is used for client connections. 1403 1404The password must be set separately using the @code{set_password} command in 1405the @ref{pcsys_monitor}. The syntax to change your password is: 1406@code{set_password <protocol> <password>} where <protocol> could be either 1407"vnc" or "spice". 1408 1409If you would like to change <protocol> password expiration, you should use 1410@code{expire_password <protocol> <expiration-time>} where expiration time could 1411be one of the following options: now, never, +seconds or UNIX time of 1412expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800 1413to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this 1414date and time). 1415 1416You can also use keywords "now" or "never" for the expiration time to 1417allow <protocol> password to expire immediately or never expire. 1418 1419@item tls-creds=@var{ID} 1420 1421Provides the ID of a set of TLS credentials to use to secure the 1422VNC server. They will apply to both the normal VNC server socket 1423and the websocket socket (if enabled). Setting TLS credentials 1424will cause the VNC server socket to enable the VeNCrypt auth 1425mechanism. The credentials should have been previously created 1426using the @option{-object tls-creds} argument. 1427 1428The @option{tls-creds} parameter obsoletes the @option{tls}, 1429@option{x509}, and @option{x509verify} options, and as such 1430it is not permitted to set both new and old type options at 1431the same time. 1432 1433@item tls 1434 1435Require that client use TLS when communicating with the VNC server. This 1436uses anonymous TLS credentials so is susceptible to a man-in-the-middle 1437attack. It is recommended that this option be combined with either the 1438@option{x509} or @option{x509verify} options. 1439 1440This option is now deprecated in favor of using the @option{tls-creds} 1441argument. 1442 1443@item x509=@var{/path/to/certificate/dir} 1444 1445Valid if @option{tls} is specified. Require that x509 credentials are used 1446for negotiating the TLS session. The server will send its x509 certificate 1447to the client. It is recommended that a password be set on the VNC server 1448to provide authentication of the client when this is used. The path following 1449this option specifies where the x509 certificates are to be loaded from. 1450See the @ref{vnc_security} section for details on generating certificates. 1451 1452This option is now deprecated in favour of using the @option{tls-creds} 1453argument. 1454 1455@item x509verify=@var{/path/to/certificate/dir} 1456 1457Valid if @option{tls} is specified. Require that x509 credentials are used 1458for negotiating the TLS session. The server will send its x509 certificate 1459to the client, and request that the client send its own x509 certificate. 1460The server will validate the client's certificate against the CA certificate, 1461and reject clients when validation fails. If the certificate authority is 1462trusted, this is a sufficient authentication mechanism. You may still wish 1463to set a password on the VNC server as a second authentication layer. The 1464path following this option specifies where the x509 certificates are to 1465be loaded from. See the @ref{vnc_security} section for details on generating 1466certificates. 1467 1468This option is now deprecated in favour of using the @option{tls-creds} 1469argument. 1470 1471@item sasl 1472 1473Require that the client use SASL to authenticate with the VNC server. 1474The exact choice of authentication method used is controlled from the 1475system / user's SASL configuration file for the 'qemu' service. This 1476is typically found in /etc/sasl2/qemu.conf. If running QEMU as an 1477unprivileged user, an environment variable SASL_CONF_PATH can be used 1478to make it search alternate locations for the service config. 1479While some SASL auth methods can also provide data encryption (eg GSSAPI), 1480it is recommended that SASL always be combined with the 'tls' and 1481'x509' settings to enable use of SSL and server certificates. This 1482ensures a data encryption preventing compromise of authentication 1483credentials. See the @ref{vnc_security} section for details on using 1484SASL authentication. 1485 1486@item acl 1487 1488Turn on access control lists for checking of the x509 client certificate 1489and SASL party. For x509 certs, the ACL check is made against the 1490certificate's distinguished name. This is something that looks like 1491@code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is 1492made against the username, which depending on the SASL plugin, may 1493include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}. 1494When the @option{acl} flag is set, the initial access list will be 1495empty, with a @code{deny} policy. Thus no one will be allowed to 1496use the VNC server until the ACLs have been loaded. This can be 1497achieved using the @code{acl} monitor command. 1498 1499@item lossy 1500 1501Enable lossy compression methods (gradient, JPEG, ...). If this 1502option is set, VNC client may receive lossy framebuffer updates 1503depending on its encoding settings. Enabling this option can save 1504a lot of bandwidth at the expense of quality. 1505 1506@item non-adaptive 1507 1508Disable adaptive encodings. Adaptive encodings are enabled by default. 1509An adaptive encoding will try to detect frequently updated screen regions, 1510and send updates in these regions using a lossy encoding (like JPEG). 1511This can be really helpful to save bandwidth when playing videos. Disabling 1512adaptive encodings restores the original static behavior of encodings 1513like Tight. 1514 1515@item share=[allow-exclusive|force-shared|ignore] 1516 1517Set display sharing policy. 'allow-exclusive' allows clients to ask 1518for exclusive access. As suggested by the rfb spec this is 1519implemented by dropping other connections. Connecting multiple 1520clients in parallel requires all clients asking for a shared session 1521(vncviewer: -shared switch). This is the default. 'force-shared' 1522disables exclusive client access. Useful for shared desktop sessions, 1523where you don't want someone forgetting specify -shared disconnect 1524everybody else. 'ignore' completely ignores the shared flag and 1525allows everybody connect unconditionally. Doesn't conform to the rfb 1526spec but is traditional QEMU behavior. 1527 1528@item key-delay-ms 1529 1530Set keyboard delay, for key down and key up events, in milliseconds. 1531Default is 1. Keyboards are low-bandwidth devices, so this slowdown 1532can help the device and guest to keep up and not lose events in case 1533events are arriving in bulk. Possible causes for the latter are flaky 1534network connections, or scripts for automated testing. 1535 1536@end table 1537ETEXI 1538 1539STEXI 1540@end table 1541ETEXI 1542ARCHHEADING(, QEMU_ARCH_I386) 1543 1544ARCHHEADING(i386 target only, QEMU_ARCH_I386) 1545STEXI 1546@table @option 1547ETEXI 1548 1549DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack, 1550 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n", 1551 QEMU_ARCH_I386) 1552STEXI 1553@item -win2k-hack 1554@findex -win2k-hack 1555Use it when installing Windows 2000 to avoid a disk full bug. After 1556Windows 2000 is installed, you no longer need this option (this option 1557slows down the IDE transfers). 1558ETEXI 1559 1560HXCOMM Deprecated by -rtc 1561DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386) 1562 1563DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk, 1564 "-no-fd-bootchk disable boot signature checking for floppy disks\n", 1565 QEMU_ARCH_I386) 1566STEXI 1567@item -no-fd-bootchk 1568@findex -no-fd-bootchk 1569Disable boot signature checking for floppy disks in BIOS. May 1570be needed to boot from old floppy disks. 1571ETEXI 1572 1573DEF("no-acpi", 0, QEMU_OPTION_no_acpi, 1574 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM) 1575STEXI 1576@item -no-acpi 1577@findex -no-acpi 1578Disable ACPI (Advanced Configuration and Power Interface) support. Use 1579it if your guest OS complains about ACPI problems (PC target machine 1580only). 1581ETEXI 1582 1583DEF("no-hpet", 0, QEMU_OPTION_no_hpet, 1584 "-no-hpet disable HPET\n", QEMU_ARCH_I386) 1585STEXI 1586@item -no-hpet 1587@findex -no-hpet 1588Disable HPET support. 1589ETEXI 1590 1591DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable, 1592 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n" 1593 " ACPI table description\n", QEMU_ARCH_I386) 1594STEXI 1595@item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...] 1596@findex -acpitable 1597Add ACPI table with specified header fields and context from specified files. 1598For file=, take whole ACPI table from the specified files, including all 1599ACPI headers (possible overridden by other options). 1600For data=, only data 1601portion of the table is used, all header information is specified in the 1602command line. 1603If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id 1604fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order 1605to ensure the field matches required by the Microsoft SLIC spec and the ACPI 1606spec. 1607ETEXI 1608 1609DEF("smbios", HAS_ARG, QEMU_OPTION_smbios, 1610 "-smbios file=binary\n" 1611 " load SMBIOS entry from binary file\n" 1612 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n" 1613 " [,uefi=on|off]\n" 1614 " specify SMBIOS type 0 fields\n" 1615 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n" 1616 " [,uuid=uuid][,sku=str][,family=str]\n" 1617 " specify SMBIOS type 1 fields\n" 1618 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n" 1619 " [,asset=str][,location=str]\n" 1620 " specify SMBIOS type 2 fields\n" 1621 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n" 1622 " [,sku=str]\n" 1623 " specify SMBIOS type 3 fields\n" 1624 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n" 1625 " [,asset=str][,part=str]\n" 1626 " specify SMBIOS type 4 fields\n" 1627 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n" 1628 " [,asset=str][,part=str][,speed=%d]\n" 1629 " specify SMBIOS type 17 fields\n", 1630 QEMU_ARCH_I386 | QEMU_ARCH_ARM) 1631STEXI 1632@item -smbios file=@var{binary} 1633@findex -smbios 1634Load SMBIOS entry from binary file. 1635 1636@item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off] 1637Specify SMBIOS type 0 fields 1638 1639@item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}] 1640Specify SMBIOS type 1 fields 1641 1642@item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}] 1643Specify SMBIOS type 2 fields 1644 1645@item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}] 1646Specify SMBIOS type 3 fields 1647 1648@item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}] 1649Specify SMBIOS type 4 fields 1650 1651@item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}] 1652Specify SMBIOS type 17 fields 1653ETEXI 1654 1655STEXI 1656@end table 1657ETEXI 1658DEFHEADING() 1659 1660DEFHEADING(Network options) 1661STEXI 1662@table @option 1663ETEXI 1664 1665HXCOMM Legacy slirp options (now moved to -net user): 1666#ifdef CONFIG_SLIRP 1667DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL) 1668DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL) 1669DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL) 1670#ifndef _WIN32 1671DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL) 1672#endif 1673#endif 1674 1675DEF("netdev", HAS_ARG, QEMU_OPTION_netdev, 1676#ifdef CONFIG_SLIRP 1677 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n" 1678 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n" 1679 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n" 1680 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,tftp=dir]\n" 1681 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]" 1682#ifndef _WIN32 1683 "[,smb=dir[,smbserver=addr]]\n" 1684#endif 1685 " configure a user mode network backend with ID 'str',\n" 1686 " its DHCP server and optional services\n" 1687#endif 1688#ifdef _WIN32 1689 "-netdev tap,id=str,ifname=name\n" 1690 " configure a host TAP network backend with ID 'str'\n" 1691#else 1692 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n" 1693 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n" 1694 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n" 1695 " [,poll-us=n]\n" 1696 " configure a host TAP network backend with ID 'str'\n" 1697 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n" 1698 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n" 1699 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n" 1700 " to deconfigure it\n" 1701 " use '[down]script=no' to disable script execution\n" 1702 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n" 1703 " configure it\n" 1704 " use 'fd=h' to connect to an already opened TAP interface\n" 1705 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n" 1706 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n" 1707 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n" 1708 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n" 1709 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n" 1710 " use vhost=on to enable experimental in kernel accelerator\n" 1711 " (only has effect for virtio guests which use MSIX)\n" 1712 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n" 1713 " use 'vhostfd=h' to connect to an already opened vhost net device\n" 1714 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n" 1715 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n" 1716 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n" 1717 " spent on busy polling for vhost net\n" 1718 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n" 1719 " configure a host TAP network backend with ID 'str' that is\n" 1720 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n" 1721 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n" 1722#endif 1723#ifdef __linux__ 1724 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n" 1725 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n" 1726 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n" 1727 " [,rxcookie=rxcookie][,offset=offset]\n" 1728 " configure a network backend with ID 'str' connected to\n" 1729 " an Ethernet over L2TPv3 pseudowire.\n" 1730 " Linux kernel 3.3+ as well as most routers can talk\n" 1731 " L2TPv3. This transport allows connecting a VM to a VM,\n" 1732 " VM to a router and even VM to Host. It is a nearly-universal\n" 1733 " standard (RFC3391). Note - this implementation uses static\n" 1734 " pre-configured tunnels (same as the Linux kernel).\n" 1735 " use 'src=' to specify source address\n" 1736 " use 'dst=' to specify destination address\n" 1737 " use 'udp=on' to specify udp encapsulation\n" 1738 " use 'srcport=' to specify source udp port\n" 1739 " use 'dstport=' to specify destination udp port\n" 1740 " use 'ipv6=on' to force v6\n" 1741 " L2TPv3 uses cookies to prevent misconfiguration as\n" 1742 " well as a weak security measure\n" 1743 " use 'rxcookie=0x012345678' to specify a rxcookie\n" 1744 " use 'txcookie=0x012345678' to specify a txcookie\n" 1745 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n" 1746 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n" 1747 " use 'pincounter=on' to work around broken counter handling in peer\n" 1748 " use 'offset=X' to add an extra offset between header and data\n" 1749#endif 1750 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n" 1751 " configure a network backend to connect to another network\n" 1752 " using a socket connection\n" 1753 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n" 1754 " configure a network backend to connect to a multicast maddr and port\n" 1755 " use 'localaddr=addr' to specify the host address to send packets from\n" 1756 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n" 1757 " configure a network backend to connect to another network\n" 1758 " using an UDP tunnel\n" 1759#ifdef CONFIG_VDE 1760 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n" 1761 " configure a network backend to connect to port 'n' of a vde switch\n" 1762 " running on host and listening for incoming connections on 'socketpath'.\n" 1763 " Use group 'groupname' and mode 'octalmode' to change default\n" 1764 " ownership and permissions for communication port.\n" 1765#endif 1766#ifdef CONFIG_NETMAP 1767 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n" 1768 " attach to the existing netmap-enabled network interface 'name', or to a\n" 1769 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n" 1770 " netmap device, defaults to '/dev/netmap')\n" 1771#endif 1772 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n" 1773 " configure a vhost-user network, backed by a chardev 'dev'\n" 1774 "-netdev hubport,id=str,hubid=n\n" 1775 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL) 1776DEF("net", HAS_ARG, QEMU_OPTION_net, 1777 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n" 1778 " old way to create a new NIC and connect it to VLAN 'n'\n" 1779 " (use the '-device devtype,netdev=str' option if possible instead)\n" 1780 "-net dump[,vlan=n][,file=f][,len=n]\n" 1781 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n" 1782 "-net none use it alone to have zero network devices. If no -net option\n" 1783 " is provided, the default is '-net nic -net user'\n" 1784 "-net [" 1785#ifdef CONFIG_SLIRP 1786 "user|" 1787#endif 1788 "tap|" 1789 "bridge|" 1790#ifdef CONFIG_VDE 1791 "vde|" 1792#endif 1793#ifdef CONFIG_NETMAP 1794 "netmap|" 1795#endif 1796 "socket][,vlan=n][,option][,option][,...]\n" 1797 " old way to initialize a host network interface\n" 1798 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL) 1799STEXI 1800@item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}] 1801@findex -net 1802Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n} 1803= 0 is the default). The NIC is an e1000 by default on the PC 1804target. Optionally, the MAC address can be changed to @var{mac}, the 1805device address set to @var{addr} (PCI cards only), 1806and a @var{name} can be assigned for use in monitor commands. 1807Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors 1808that the card should have; this option currently only affects virtio cards; set 1809@var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single 1810NIC is created. QEMU can emulate several different models of network card. 1811Valid values for @var{type} are 1812@code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er}, 1813@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139}, 1814@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}. 1815Not all devices are supported on all targets. Use @code{-net nic,model=help} 1816for a list of available devices for your target. 1817 1818@item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...] 1819@findex -netdev 1820@item -net user[,@var{option}][,@var{option}][,...] 1821Use the user mode network stack which requires no administrator 1822privilege to run. Valid options are: 1823 1824@table @option 1825@item vlan=@var{n} 1826Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default). 1827 1828@item id=@var{id} 1829@itemx name=@var{name} 1830Assign symbolic name for use in monitor commands. 1831 1832@option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must 1833be enabled. If neither is specified both protocols are enabled. 1834 1835@item net=@var{addr}[/@var{mask}] 1836Set IP network address the guest will see. Optionally specify the netmask, 1837either in the form a.b.c.d or as number of valid top-most bits. Default is 183810.0.2.0/24. 1839 1840@item host=@var{addr} 1841Specify the guest-visible address of the host. Default is the 2nd IP in the 1842guest network, i.e. x.x.x.2. 1843 1844@item ipv6-net=@var{addr}[/@var{int}] 1845Set IPv6 network address the guest will see (default is fec0::/64). The 1846network prefix is given in the usual hexadecimal IPv6 address 1847notation. The prefix size is optional, and is given as the number of 1848valid top-most bits (default is 64). 1849 1850@item ipv6-host=@var{addr} 1851Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in 1852the guest network, i.e. xxxx::2. 1853 1854@item restrict=on|off 1855If this option is enabled, the guest will be isolated, i.e. it will not be 1856able to contact the host and no guest IP packets will be routed over the host 1857to the outside. This option does not affect any explicitly set forwarding rules. 1858 1859@item hostname=@var{name} 1860Specifies the client hostname reported by the built-in DHCP server. 1861 1862@item dhcpstart=@var{addr} 1863Specify the first of the 16 IPs the built-in DHCP server can assign. Default 1864is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31. 1865 1866@item dns=@var{addr} 1867Specify the guest-visible address of the virtual nameserver. The address must 1868be different from the host address. Default is the 3rd IP in the guest network, 1869i.e. x.x.x.3. 1870 1871@item ipv6-dns=@var{addr} 1872Specify the guest-visible address of the IPv6 virtual nameserver. The address 1873must be different from the host address. Default is the 3rd IP in the guest 1874network, i.e. xxxx::3. 1875 1876@item dnssearch=@var{domain} 1877Provides an entry for the domain-search list sent by the built-in 1878DHCP server. More than one domain suffix can be transmitted by specifying 1879this option multiple times. If supported, this will cause the guest to 1880automatically try to append the given domain suffix(es) in case a domain name 1881can not be resolved. 1882 1883Example: 1884@example 1885qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...] 1886@end example 1887 1888@item tftp=@var{dir} 1889When using the user mode network stack, activate a built-in TFTP 1890server. The files in @var{dir} will be exposed as the root of a TFTP server. 1891The TFTP client on the guest must be configured in binary mode (use the command 1892@code{bin} of the Unix TFTP client). 1893 1894@item bootfile=@var{file} 1895When using the user mode network stack, broadcast @var{file} as the BOOTP 1896filename. In conjunction with @option{tftp}, this can be used to network boot 1897a guest from a local directory. 1898 1899Example (using pxelinux): 1900@example 1901qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0 1902@end example 1903 1904@item smb=@var{dir}[,smbserver=@var{addr}] 1905When using the user mode network stack, activate a built-in SMB 1906server so that Windows OSes can access to the host files in @file{@var{dir}} 1907transparently. The IP address of the SMB server can be set to @var{addr}. By 1908default the 4th IP in the guest network is used, i.e. x.x.x.4. 1909 1910In the guest Windows OS, the line: 1911@example 191210.0.2.4 smbserver 1913@end example 1914must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me) 1915or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000). 1916 1917Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}. 1918 1919Note that a SAMBA server must be installed on the host OS. 1920QEMU was tested successfully with smbd versions from Red Hat 9, 1921Fedora Core 3 and OpenSUSE 11.x. 1922 1923@item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport} 1924Redirect incoming TCP or UDP connections to the host port @var{hostport} to 1925the guest IP address @var{guestaddr} on guest port @var{guestport}. If 1926@var{guestaddr} is not specified, its value is x.x.x.15 (default first address 1927given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can 1928be bound to a specific host interface. If no connection type is set, TCP is 1929used. This option can be given multiple times. 1930 1931For example, to redirect host X11 connection from screen 1 to guest 1932screen 0, use the following: 1933 1934@example 1935# on the host 1936qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...] 1937# this host xterm should open in the guest X11 server 1938xterm -display :1 1939@end example 1940 1941To redirect telnet connections from host port 5555 to telnet port on 1942the guest, use the following: 1943 1944@example 1945# on the host 1946qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...] 1947telnet localhost 5555 1948@end example 1949 1950Then when you use on the host @code{telnet localhost 5555}, you 1951connect to the guest telnet server. 1952 1953@item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev} 1954@itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command} 1955Forward guest TCP connections to the IP address @var{server} on port @var{port} 1956to the character device @var{dev} or to a program executed by @var{cmd:command} 1957which gets spawned for each connection. This option can be given multiple times. 1958 1959You can either use a chardev directly and have that one used throughout QEMU's 1960lifetime, like in the following example: 1961 1962@example 1963# open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever 1964# the guest accesses it 1965qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...] 1966@end example 1967 1968Or you can execute a command on every TCP connection established by the guest, 1969so that QEMU behaves similar to an inetd process for that virtual server: 1970 1971@example 1972# call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234 1973# and connect the TCP stream to its stdin/stdout 1974qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321' 1975@end example 1976 1977@end table 1978 1979Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still 1980processed and applied to -net user. Mixing them with the new configuration 1981syntax gives undefined results. Their use for new applications is discouraged 1982as they will be removed from future versions. 1983 1984@item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}] 1985@itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}] 1986Connect the host TAP network interface @var{name} to VLAN @var{n}. 1987 1988Use the network script @var{file} to configure it and the network script 1989@var{dfile} to deconfigure it. If @var{name} is not provided, the OS 1990automatically provides one. The default network configure script is 1991@file{/etc/qemu-ifup} and the default network deconfigure script is 1992@file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no} 1993to disable script execution. 1994 1995If running QEMU as an unprivileged user, use the network helper 1996@var{helper} to configure the TAP interface and attach it to the bridge. 1997The default network helper executable is @file{/path/to/qemu-bridge-helper} 1998and the default bridge device is @file{br0}. 1999 2000@option{fd}=@var{h} can be used to specify the handle of an already 2001opened host TAP interface. 2002 2003Examples: 2004 2005@example 2006#launch a QEMU instance with the default network script 2007qemu-system-i386 linux.img -net nic -net tap 2008@end example 2009 2010@example 2011#launch a QEMU instance with two NICs, each one connected 2012#to a TAP device 2013qemu-system-i386 linux.img \ 2014 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \ 2015 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1 2016@end example 2017 2018@example 2019#launch a QEMU instance with the default network helper to 2020#connect a TAP device to bridge br0 2021qemu-system-i386 linux.img \ 2022 -net nic -net tap,"helper=/path/to/qemu-bridge-helper" 2023@end example 2024 2025@item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}] 2026@itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}] 2027Connect a host TAP network interface to a host bridge device. 2028 2029Use the network helper @var{helper} to configure the TAP interface and 2030attach it to the bridge. The default network helper executable is 2031@file{/path/to/qemu-bridge-helper} and the default bridge 2032device is @file{br0}. 2033 2034Examples: 2035 2036@example 2037#launch a QEMU instance with the default network helper to 2038#connect a TAP device to bridge br0 2039qemu-system-i386 linux.img -net bridge -net nic,model=virtio 2040@end example 2041 2042@example 2043#launch a QEMU instance with the default network helper to 2044#connect a TAP device to bridge qemubr0 2045qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio 2046@end example 2047 2048@item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}] 2049@itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}] 2050 2051Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual 2052machine using a TCP socket connection. If @option{listen} is 2053specified, QEMU waits for incoming connections on @var{port} 2054(@var{host} is optional). @option{connect} is used to connect to 2055another QEMU instance using the @option{listen} option. @option{fd}=@var{h} 2056specifies an already opened TCP socket. 2057 2058Example: 2059@example 2060# launch a first QEMU instance 2061qemu-system-i386 linux.img \ 2062 -net nic,macaddr=52:54:00:12:34:56 \ 2063 -net socket,listen=:1234 2064# connect the VLAN 0 of this instance to the VLAN 0 2065# of the first instance 2066qemu-system-i386 linux.img \ 2067 -net nic,macaddr=52:54:00:12:34:57 \ 2068 -net socket,connect=127.0.0.1:1234 2069@end example 2070 2071@item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]] 2072@itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]] 2073 2074Create a VLAN @var{n} shared with another QEMU virtual 2075machines using a UDP multicast socket, effectively making a bus for 2076every QEMU with same multicast address @var{maddr} and @var{port}. 2077NOTES: 2078@enumerate 2079@item 2080Several QEMU can be running on different hosts and share same bus (assuming 2081correct multicast setup for these hosts). 2082@item 2083mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see 2084@url{http://user-mode-linux.sf.net}. 2085@item 2086Use @option{fd=h} to specify an already opened UDP multicast socket. 2087@end enumerate 2088 2089Example: 2090@example 2091# launch one QEMU instance 2092qemu-system-i386 linux.img \ 2093 -net nic,macaddr=52:54:00:12:34:56 \ 2094 -net socket,mcast=230.0.0.1:1234 2095# launch another QEMU instance on same "bus" 2096qemu-system-i386 linux.img \ 2097 -net nic,macaddr=52:54:00:12:34:57 \ 2098 -net socket,mcast=230.0.0.1:1234 2099# launch yet another QEMU instance on same "bus" 2100qemu-system-i386 linux.img \ 2101 -net nic,macaddr=52:54:00:12:34:58 \ 2102 -net socket,mcast=230.0.0.1:1234 2103@end example 2104 2105Example (User Mode Linux compat.): 2106@example 2107# launch QEMU instance (note mcast address selected 2108# is UML's default) 2109qemu-system-i386 linux.img \ 2110 -net nic,macaddr=52:54:00:12:34:56 \ 2111 -net socket,mcast=239.192.168.1:1102 2112# launch UML 2113/path/to/linux ubd0=/path/to/root_fs eth0=mcast 2114@end example 2115 2116Example (send packets from host's 1.2.3.4): 2117@example 2118qemu-system-i386 linux.img \ 2119 -net nic,macaddr=52:54:00:12:34:56 \ 2120 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4 2121@end example 2122 2123@item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}] 2124@itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}] 2125Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular 2126protocol to transport Ethernet (and other Layer 2) data frames between 2127two systems. It is present in routers, firewalls and the Linux kernel 2128(from version 3.3 onwards). 2129 2130This transport allows a VM to communicate to another VM, router or firewall directly. 2131 2132@item src=@var{srcaddr} 2133 source address (mandatory) 2134@item dst=@var{dstaddr} 2135 destination address (mandatory) 2136@item udp 2137 select udp encapsulation (default is ip). 2138@item srcport=@var{srcport} 2139 source udp port. 2140@item dstport=@var{dstport} 2141 destination udp port. 2142@item ipv6 2143 force v6, otherwise defaults to v4. 2144@item rxcookie=@var{rxcookie} 2145@itemx txcookie=@var{txcookie} 2146 Cookies are a weak form of security in the l2tpv3 specification. 2147Their function is mostly to prevent misconfiguration. By default they are 32 2148bit. 2149@item cookie64 2150 Set cookie size to 64 bit instead of the default 32 2151@item counter=off 2152 Force a 'cut-down' L2TPv3 with no counter as in 2153draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00 2154@item pincounter=on 2155 Work around broken counter handling in peer. This may also help on 2156networks which have packet reorder. 2157@item offset=@var{offset} 2158 Add an extra offset between header and data 2159 2160For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan 2161on the remote Linux host 1.2.3.4: 2162@example 2163# Setup tunnel on linux host using raw ip as encapsulation 2164# on 1.2.3.4 2165ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \ 2166 encap udp udp_sport 16384 udp_dport 16384 2167ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \ 2168 0xFFFFFFFF peer_session_id 0xFFFFFFFF 2169ifconfig vmtunnel0 mtu 1500 2170ifconfig vmtunnel0 up 2171brctl addif br-lan vmtunnel0 2172 2173 2174# on 4.3.2.1 2175# launch QEMU instance - if your network has reorder or is very lossy add ,pincounter 2176 2177qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter 2178 2179 2180@end example 2181 2182@item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}] 2183@itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}] 2184Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and 2185listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname} 2186and MODE @var{octalmode} to change default ownership and permissions for 2187communication port. This option is only available if QEMU has been compiled 2188with vde support enabled. 2189 2190Example: 2191@example 2192# launch vde switch 2193vde_switch -F -sock /tmp/myswitch 2194# launch QEMU instance 2195qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch 2196@end example 2197 2198@item -netdev hubport,id=@var{id},hubid=@var{hubid} 2199 2200Create a hub port on QEMU "vlan" @var{hubid}. 2201 2202The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single 2203netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the 2204required hub automatically. 2205 2206@item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n] 2207 2208Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should 2209be a unix domain socket backed one. The vhost-user uses a specifically defined 2210protocol to pass vhost ioctl replacement messages to an application on the other 2211end of the socket. On non-MSIX guests, the feature can be forced with 2212@var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to 2213be created for multiqueue vhost-user. 2214 2215Example: 2216@example 2217qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \ 2218 -numa node,memdev=mem \ 2219 -chardev socket,id=chr0,path=/path/to/socket \ 2220 -netdev type=vhost-user,id=net0,chardev=chr0 \ 2221 -device virtio-net-pci,netdev=net0 2222@end example 2223 2224@item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}] 2225Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default). 2226At most @var{len} bytes (64k by default) per packet are stored. The file format is 2227libpcap, so it can be analyzed with tools such as tcpdump or Wireshark. 2228Note: For devices created with '-netdev', use '-object filter-dump,...' instead. 2229 2230@item -net none 2231Indicate that no network devices should be configured. It is used to 2232override the default configuration (@option{-net nic -net user}) which 2233is activated if no @option{-net} options are provided. 2234ETEXI 2235 2236STEXI 2237@end table 2238ETEXI 2239DEFHEADING() 2240 2241DEFHEADING(Character device options) 2242STEXI 2243 2244The general form of a character device option is: 2245@table @option 2246ETEXI 2247 2248DEF("chardev", HAS_ARG, QEMU_OPTION_chardev, 2249 "-chardev help\n" 2250 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2251 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n" 2252 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n" 2253 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n" 2254 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n" 2255 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n" 2256 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n" 2257 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n" 2258 " [,logfile=PATH][,logappend=on|off]\n" 2259 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2260 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n" 2261 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2262 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n" 2263 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2264 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2265#ifdef _WIN32 2266 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2267 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2268#else 2269 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2270 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n" 2271#endif 2272#ifdef CONFIG_BRLAPI 2273 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2274#endif 2275#if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \ 2276 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) 2277 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2278 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2279#endif 2280#if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__) 2281 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2282 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2283#endif 2284#if defined(CONFIG_SPICE) 2285 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n" 2286 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n" 2287#endif 2288 , QEMU_ARCH_ALL 2289) 2290 2291STEXI 2292@item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}] 2293@findex -chardev 2294Backend is one of: 2295@option{null}, 2296@option{socket}, 2297@option{udp}, 2298@option{msmouse}, 2299@option{vc}, 2300@option{ringbuf}, 2301@option{file}, 2302@option{pipe}, 2303@option{console}, 2304@option{serial}, 2305@option{pty}, 2306@option{stdio}, 2307@option{braille}, 2308@option{tty}, 2309@option{parallel}, 2310@option{parport}, 2311@option{spicevmc}. 2312@option{spiceport}. 2313The specific backend will determine the applicable options. 2314 2315Use "-chardev help" to print all available chardev backend types. 2316 2317All devices must have an id, which can be any string up to 127 characters long. 2318It is used to uniquely identify this device in other command line directives. 2319 2320A character device may be used in multiplexing mode by multiple front-ends. 2321Specify @option{mux=on} to enable this mode. 2322A multiplexer is a "1:N" device, and here the "1" end is your specified chardev 2323backend, and the "N" end is the various parts of QEMU that can talk to a chardev. 2324If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will 2325create a multiplexer with your specified ID, and you can then configure multiple 2326front ends to use that chardev ID for their input/output. Up to four different 2327front ends can be connected to a single multiplexed chardev. (Without 2328multiplexing enabled, a chardev can only be used by a single front end.) 2329For instance you could use this to allow a single stdio chardev to be used by 2330two serial ports and the QEMU monitor: 2331 2332@example 2333-chardev stdio,mux=on,id=char0 \ 2334-mon chardev=char0,mode=readline \ 2335-serial chardev:char0 \ 2336-serial chardev:char0 2337@end example 2338 2339You can have more than one multiplexer in a system configuration; for instance 2340you could have a TCP port multiplexed between UART 0 and UART 1, and stdio 2341multiplexed between the QEMU monitor and a parallel port: 2342 2343@example 2344-chardev stdio,mux=on,id=char0 \ 2345-mon chardev=char0,mode=readline \ 2346-parallel chardev:char0 \ 2347-chardev tcp,...,mux=on,id=char1 \ 2348-serial chardev:char1 \ 2349-serial chardev:char1 2350@end example 2351 2352When you're using a multiplexed character device, some escape sequences are 2353interpreted in the input. @xref{mux_keys, Keys in the character backend 2354multiplexer}. 2355 2356Note that some other command line options may implicitly create multiplexed 2357character backends; for instance @option{-serial mon:stdio} creates a 2358multiplexed stdio backend connected to the serial port and the QEMU monitor, 2359and @option{-nographic} also multiplexes the console and the monitor to 2360stdio. 2361 2362There is currently no support for multiplexing in the other direction 2363(where a single QEMU front end takes input and output from multiple chardevs). 2364 2365Every backend supports the @option{logfile} option, which supplies the path 2366to a file to record all data transmitted via the backend. The @option{logappend} 2367option controls whether the log file will be truncated or appended to when 2368opened. 2369 2370Further options to each backend are described below. 2371 2372@item -chardev null ,id=@var{id} 2373A void device. This device will not emit any data, and will drop any data it 2374receives. The null backend does not take any options. 2375 2376@item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}] [,tls-creds=@var{id}] 2377 2378Create a two-way stream socket, which can be either a TCP or a unix socket. A 2379unix socket will be created if @option{path} is specified. Behaviour is 2380undefined if TCP options are specified for a unix socket. 2381 2382@option{server} specifies that the socket shall be a listening socket. 2383 2384@option{nowait} specifies that QEMU should not block waiting for a client to 2385connect to a listening socket. 2386 2387@option{telnet} specifies that traffic on the socket should interpret telnet 2388escape sequences. 2389 2390@option{reconnect} sets the timeout for reconnecting on non-server sockets when 2391the remote end goes away. qemu will delay this many seconds and then attempt 2392to reconnect. Zero disables reconnecting, and is the default. 2393 2394@option{tls-creds} requests enablement of the TLS protocol for encryption, 2395and specifies the id of the TLS credentials to use for the handshake. The 2396credentials must be previously created with the @option{-object tls-creds} 2397argument. 2398 2399TCP and unix socket options are given below: 2400 2401@table @option 2402 2403@item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay] 2404 2405@option{host} for a listening socket specifies the local address to be bound. 2406For a connecting socket species the remote host to connect to. @option{host} is 2407optional for listening sockets. If not specified it defaults to @code{0.0.0.0}. 2408 2409@option{port} for a listening socket specifies the local port to be bound. For a 2410connecting socket specifies the port on the remote host to connect to. 2411@option{port} can be given as either a port number or a service name. 2412@option{port} is required. 2413 2414@option{to} is only relevant to listening sockets. If it is specified, and 2415@option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up 2416to and including @option{to} until it succeeds. @option{to} must be specified 2417as a port number. 2418 2419@option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used. 2420If neither is specified the socket may use either protocol. 2421 2422@option{nodelay} disables the Nagle algorithm. 2423 2424@item unix options: path=@var{path} 2425 2426@option{path} specifies the local path of the unix socket. @option{path} is 2427required. 2428 2429@end table 2430 2431@item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6] 2432 2433Sends all traffic from the guest to a remote host over UDP. 2434 2435@option{host} specifies the remote host to connect to. If not specified it 2436defaults to @code{localhost}. 2437 2438@option{port} specifies the port on the remote host to connect to. @option{port} 2439is required. 2440 2441@option{localaddr} specifies the local address to bind to. If not specified it 2442defaults to @code{0.0.0.0}. 2443 2444@option{localport} specifies the local port to bind to. If not specified any 2445available local port will be used. 2446 2447@option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used. 2448If neither is specified the device may use either protocol. 2449 2450@item -chardev msmouse ,id=@var{id} 2451 2452Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not 2453take any options. 2454 2455@item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]] 2456 2457Connect to a QEMU text console. @option{vc} may optionally be given a specific 2458size. 2459 2460@option{width} and @option{height} specify the width and height respectively of 2461the console, in pixels. 2462 2463@option{cols} and @option{rows} specify that the console be sized to fit a text 2464console with the given dimensions. 2465 2466@item -chardev ringbuf ,id=@var{id} [,size=@var{size}] 2467 2468Create a ring buffer with fixed size @option{size}. 2469@var{size} must be a power of two and defaults to @code{64K}. 2470 2471@item -chardev file ,id=@var{id} ,path=@var{path} 2472 2473Log all traffic received from the guest to a file. 2474 2475@option{path} specifies the path of the file to be opened. This file will be 2476created if it does not already exist, and overwritten if it does. @option{path} 2477is required. 2478 2479@item -chardev pipe ,id=@var{id} ,path=@var{path} 2480 2481Create a two-way connection to the guest. The behaviour differs slightly between 2482Windows hosts and other hosts: 2483 2484On Windows, a single duplex pipe will be created at 2485@file{\\.pipe\@option{path}}. 2486 2487On other hosts, 2 pipes will be created called @file{@option{path}.in} and 2488@file{@option{path}.out}. Data written to @file{@option{path}.in} will be 2489received by the guest. Data written by the guest can be read from 2490@file{@option{path}.out}. QEMU will not create these fifos, and requires them to 2491be present. 2492 2493@option{path} forms part of the pipe path as described above. @option{path} is 2494required. 2495 2496@item -chardev console ,id=@var{id} 2497 2498Send traffic from the guest to QEMU's standard output. @option{console} does not 2499take any options. 2500 2501@option{console} is only available on Windows hosts. 2502 2503@item -chardev serial ,id=@var{id} ,path=@option{path} 2504 2505Send traffic from the guest to a serial device on the host. 2506 2507On Unix hosts serial will actually accept any tty device, 2508not only serial lines. 2509 2510@option{path} specifies the name of the serial device to open. 2511 2512@item -chardev pty ,id=@var{id} 2513 2514Create a new pseudo-terminal on the host and connect to it. @option{pty} does 2515not take any options. 2516 2517@option{pty} is not available on Windows hosts. 2518 2519@item -chardev stdio ,id=@var{id} [,signal=on|off] 2520Connect to standard input and standard output of the QEMU process. 2521 2522@option{signal} controls if signals are enabled on the terminal, that includes 2523exiting QEMU with the key sequence @key{Control-c}. This option is enabled by 2524default, use @option{signal=off} to disable it. 2525 2526@item -chardev braille ,id=@var{id} 2527 2528Connect to a local BrlAPI server. @option{braille} does not take any options. 2529 2530@item -chardev tty ,id=@var{id} ,path=@var{path} 2531 2532@option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and 2533DragonFlyBSD hosts. It is an alias for @option{serial}. 2534 2535@option{path} specifies the path to the tty. @option{path} is required. 2536 2537@item -chardev parallel ,id=@var{id} ,path=@var{path} 2538@itemx -chardev parport ,id=@var{id} ,path=@var{path} 2539 2540@option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts. 2541 2542Connect to a local parallel port. 2543 2544@option{path} specifies the path to the parallel port device. @option{path} is 2545required. 2546 2547@item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name} 2548 2549@option{spicevmc} is only available when spice support is built in. 2550 2551@option{debug} debug level for spicevmc 2552 2553@option{name} name of spice channel to connect to 2554 2555Connect to a spice virtual machine channel, such as vdiport. 2556 2557@item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name} 2558 2559@option{spiceport} is only available when spice support is built in. 2560 2561@option{debug} debug level for spicevmc 2562 2563@option{name} name of spice port to connect to 2564 2565Connect to a spice port, allowing a Spice client to handle the traffic 2566identified by a name (preferably a fqdn). 2567ETEXI 2568 2569STEXI 2570@end table 2571ETEXI 2572DEFHEADING() 2573 2574DEFHEADING(Device URL Syntax) 2575STEXI 2576 2577In addition to using normal file images for the emulated storage devices, 2578QEMU can also use networked resources such as iSCSI devices. These are 2579specified using a special URL syntax. 2580 2581@table @option 2582@item iSCSI 2583iSCSI support allows QEMU to access iSCSI resources directly and use as 2584images for the guest storage. Both disk and cdrom images are supported. 2585 2586Syntax for specifying iSCSI LUNs is 2587``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>'' 2588 2589By default qemu will use the iSCSI initiator-name 2590'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command 2591line or a configuration file. 2592 2593Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect 2594stalled requests and force a reestablishment of the session. The timeout 2595is specified in seconds. The default is 0 which means no timeout. Libiscsi 25961.15.0 or greater is required for this feature. 2597 2598Example (without authentication): 2599@example 2600qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \ 2601 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \ 2602 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1 2603@end example 2604 2605Example (CHAP username/password via URL): 2606@example 2607qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1 2608@end example 2609 2610Example (CHAP username/password via environment variables): 2611@example 2612LIBISCSI_CHAP_USERNAME="user" \ 2613LIBISCSI_CHAP_PASSWORD="password" \ 2614qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1 2615@end example 2616 2617iSCSI support is an optional feature of QEMU and only available when 2618compiled and linked against libiscsi. 2619ETEXI 2620DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi, 2621 "-iscsi [user=user][,password=password]\n" 2622 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n" 2623 " [,initiator-name=initiator-iqn][,id=target-iqn]\n" 2624 " [,timeout=timeout]\n" 2625 " iSCSI session parameters\n", QEMU_ARCH_ALL) 2626STEXI 2627 2628iSCSI parameters such as username and password can also be specified via 2629a configuration file. See qemu-doc for more information and examples. 2630 2631@item NBD 2632QEMU supports NBD (Network Block Devices) both using TCP protocol as well 2633as Unix Domain Sockets. 2634 2635Syntax for specifying a NBD device using TCP 2636``nbd:<server-ip>:<port>[:exportname=<export>]'' 2637 2638Syntax for specifying a NBD device using Unix Domain Sockets 2639``nbd:unix:<domain-socket>[:exportname=<export>]'' 2640 2641 2642Example for TCP 2643@example 2644qemu-system-i386 --drive file=nbd:192.0.2.1:30000 2645@end example 2646 2647Example for Unix Domain Sockets 2648@example 2649qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket 2650@end example 2651 2652@item SSH 2653QEMU supports SSH (Secure Shell) access to remote disks. 2654 2655Examples: 2656@example 2657qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img 2658qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img 2659@end example 2660 2661Currently authentication must be done using ssh-agent. Other 2662authentication methods may be supported in future. 2663 2664@item Sheepdog 2665Sheepdog is a distributed storage system for QEMU. 2666QEMU supports using either local sheepdog devices or remote networked 2667devices. 2668 2669Syntax for specifying a sheepdog device 2670@example 2671sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag] 2672@end example 2673 2674Example 2675@example 2676qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine 2677@end example 2678 2679See also @url{https://sheepdog.github.io/sheepdog/}. 2680 2681@item GlusterFS 2682GlusterFS is a user space distributed file system. 2683QEMU supports the use of GlusterFS volumes for hosting VM disk images using 2684TCP, Unix Domain Sockets and RDMA transport protocols. 2685 2686Syntax for specifying a VM disk image on GlusterFS volume is 2687@example 2688 2689URI: 2690gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...] 2691 2692JSON: 2693'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...", 2694@ "server":[@{"type":"tcp","host":"...","port":"..."@}, 2695@ @{"type":"unix","socket":"..."@}]@}@}' 2696@end example 2697 2698 2699Example 2700@example 2701URI: 2702qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img, 2703@ file.debug=9,file.logfile=/var/log/qemu-gluster.log 2704 2705JSON: 2706qemu-system-x86_64 'json:@{"driver":"qcow2", 2707@ "file":@{"driver":"gluster", 2708@ "volume":"testvol","path":"a.img", 2709@ "debug":9,"logfile":"/var/log/qemu-gluster.log", 2710@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@}, 2711@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}' 2712qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img, 2713@ file.debug=9,file.logfile=/var/log/qemu-gluster.log, 2714@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007, 2715@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket 2716@end example 2717 2718See also @url{http://www.gluster.org}. 2719 2720@item HTTP/HTTPS/FTP/FTPS 2721QEMU supports read-only access to files accessed over http(s) and ftp(s). 2722 2723Syntax using a single filename: 2724@example 2725<protocol>://[<username>[:<password>]@@]<host>/<path> 2726@end example 2727 2728where: 2729@table @option 2730@item protocol 2731'http', 'https', 'ftp', or 'ftps'. 2732 2733@item username 2734Optional username for authentication to the remote server. 2735 2736@item password 2737Optional password for authentication to the remote server. 2738 2739@item host 2740Address of the remote server. 2741 2742@item path 2743Path on the remote server, including any query string. 2744@end table 2745 2746The following options are also supported: 2747@table @option 2748@item url 2749The full URL when passing options to the driver explicitly. 2750 2751@item readahead 2752The amount of data to read ahead with each range request to the remote server. 2753This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it 2754does not have a suffix, it will be assumed to be in bytes. The value must be a 2755multiple of 512 bytes. It defaults to 256k. 2756 2757@item sslverify 2758Whether to verify the remote server's certificate when connecting over SSL. It 2759can have the value 'on' or 'off'. It defaults to 'on'. 2760 2761@item cookie 2762Send this cookie (it can also be a list of cookies separated by ';') with 2763each outgoing request. Only supported when using protocols such as HTTP 2764which support cookies, otherwise ignored. 2765 2766@item timeout 2767Set the timeout in seconds of the CURL connection. This timeout is the time 2768that CURL waits for a response from the remote server to get the size of the 2769image to be downloaded. If not set, the default timeout of 5 seconds is used. 2770@end table 2771 2772Note that when passing options to qemu explicitly, @option{driver} is the value 2773of <protocol>. 2774 2775Example: boot from a remote Fedora 20 live ISO image 2776@example 2777qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly 2778 2779qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly 2780@end example 2781 2782Example: boot from a remote Fedora 20 cloud image using a local overlay for 2783writes, copy-on-read, and a readahead of 64k 2784@example 2785qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2 2786 2787qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on 2788@end example 2789 2790Example: boot from an image stored on a VMware vSphere server with a self-signed 2791certificate using a local overlay for writes, a readahead of 64k and a timeout 2792of 10 seconds. 2793@example 2794qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2 2795 2796qemu-system-x86_64 -drive file=/tmp/test.qcow2 2797@end example 2798ETEXI 2799 2800STEXI 2801@end table 2802ETEXI 2803 2804DEFHEADING(Bluetooth(R) options) 2805STEXI 2806@table @option 2807ETEXI 2808 2809DEF("bt", HAS_ARG, QEMU_OPTION_bt, \ 2810 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \ 2811 "-bt hci,host[:id]\n" \ 2812 " use host's HCI with the given name\n" \ 2813 "-bt hci[,vlan=n]\n" \ 2814 " emulate a standard HCI in virtual scatternet 'n'\n" \ 2815 "-bt vhci[,vlan=n]\n" \ 2816 " add host computer to virtual scatternet 'n' using VHCI\n" \ 2817 "-bt device:dev[,vlan=n]\n" \ 2818 " emulate a bluetooth device 'dev' in scatternet 'n'\n", 2819 QEMU_ARCH_ALL) 2820STEXI 2821@item -bt hci[...] 2822@findex -bt 2823Defines the function of the corresponding Bluetooth HCI. -bt options 2824are matched with the HCIs present in the chosen machine type. For 2825example when emulating a machine with only one HCI built into it, only 2826the first @code{-bt hci[...]} option is valid and defines the HCI's 2827logic. The Transport Layer is decided by the machine type. Currently 2828the machines @code{n800} and @code{n810} have one HCI and all other 2829machines have none. 2830 2831@anchor{bt-hcis} 2832The following three types are recognized: 2833 2834@table @option 2835@item -bt hci,null 2836(default) The corresponding Bluetooth HCI assumes no internal logic 2837and will not respond to any HCI commands or emit events. 2838 2839@item -bt hci,host[:@var{id}] 2840(@code{bluez} only) The corresponding HCI passes commands / events 2841to / from the physical HCI identified by the name @var{id} (default: 2842@code{hci0}) on the computer running QEMU. Only available on @code{bluez} 2843capable systems like Linux. 2844 2845@item -bt hci[,vlan=@var{n}] 2846Add a virtual, standard HCI that will participate in the Bluetooth 2847scatternet @var{n} (default @code{0}). Similarly to @option{-net} 2848VLANs, devices inside a bluetooth network @var{n} can only communicate 2849with other devices in the same network (scatternet). 2850@end table 2851 2852@item -bt vhci[,vlan=@var{n}] 2853(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached 2854to the host bluetooth stack instead of to the emulated target. This 2855allows the host and target machines to participate in a common scatternet 2856and communicate. Requires the Linux @code{vhci} driver installed. Can 2857be used as following: 2858 2859@example 2860qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5 2861@end example 2862 2863@item -bt device:@var{dev}[,vlan=@var{n}] 2864Emulate a bluetooth device @var{dev} and place it in network @var{n} 2865(default @code{0}). QEMU can only emulate one type of bluetooth devices 2866currently: 2867 2868@table @option 2869@item keyboard 2870Virtual wireless keyboard implementing the HIDP bluetooth profile. 2871@end table 2872ETEXI 2873 2874STEXI 2875@end table 2876ETEXI 2877DEFHEADING() 2878 2879#ifdef CONFIG_TPM 2880DEFHEADING(TPM device options) 2881 2882DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \ 2883 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n" 2884 " use path to provide path to a character device; default is /dev/tpm0\n" 2885 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n" 2886 " not provided it will be searched for in /sys/class/misc/tpm?/device\n", 2887 QEMU_ARCH_ALL) 2888STEXI 2889 2890The general form of a TPM device option is: 2891@table @option 2892 2893@item -tpmdev @var{backend} ,id=@var{id} [,@var{options}] 2894@findex -tpmdev 2895Backend type must be: 2896@option{passthrough}. 2897 2898The specific backend type will determine the applicable options. 2899The @code{-tpmdev} option creates the TPM backend and requires a 2900@code{-device} option that specifies the TPM frontend interface model. 2901 2902Options to each backend are described below. 2903 2904Use 'help' to print all available TPM backend types. 2905@example 2906qemu -tpmdev help 2907@end example 2908 2909@item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path} 2910 2911(Linux-host only) Enable access to the host's TPM using the passthrough 2912driver. 2913 2914@option{path} specifies the path to the host's TPM device, i.e., on 2915a Linux host this would be @code{/dev/tpm0}. 2916@option{path} is optional and by default @code{/dev/tpm0} is used. 2917 2918@option{cancel-path} specifies the path to the host TPM device's sysfs 2919entry allowing for cancellation of an ongoing TPM command. 2920@option{cancel-path} is optional and by default QEMU will search for the 2921sysfs entry to use. 2922 2923Some notes about using the host's TPM with the passthrough driver: 2924 2925The TPM device accessed by the passthrough driver must not be 2926used by any other application on the host. 2927 2928Since the host's firmware (BIOS/UEFI) has already initialized the TPM, 2929the VM's firmware (BIOS/UEFI) will not be able to initialize the 2930TPM again and may therefore not show a TPM-specific menu that would 2931otherwise allow the user to configure the TPM, e.g., allow the user to 2932enable/disable or activate/deactivate the TPM. 2933Further, if TPM ownership is released from within a VM then the host's TPM 2934will get disabled and deactivated. To enable and activate the 2935TPM again afterwards, the host has to be rebooted and the user is 2936required to enter the firmware's menu to enable and activate the TPM. 2937If the TPM is left disabled and/or deactivated most TPM commands will fail. 2938 2939To create a passthrough TPM use the following two options: 2940@example 2941-tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0 2942@end example 2943Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by 2944@code{tpmdev=tpm0} in the device option. 2945 2946@end table 2947 2948ETEXI 2949 2950DEFHEADING() 2951 2952#endif 2953 2954DEFHEADING(Linux/Multiboot boot specific) 2955STEXI 2956 2957When using these options, you can use a given Linux or Multiboot 2958kernel without installing it in the disk image. It can be useful 2959for easier testing of various kernels. 2960 2961@table @option 2962ETEXI 2963 2964DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \ 2965 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL) 2966STEXI 2967@item -kernel @var{bzImage} 2968@findex -kernel 2969Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel 2970or in multiboot format. 2971ETEXI 2972 2973DEF("append", HAS_ARG, QEMU_OPTION_append, \ 2974 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL) 2975STEXI 2976@item -append @var{cmdline} 2977@findex -append 2978Use @var{cmdline} as kernel command line 2979ETEXI 2980 2981DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \ 2982 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL) 2983STEXI 2984@item -initrd @var{file} 2985@findex -initrd 2986Use @var{file} as initial ram disk. 2987 2988@item -initrd "@var{file1} arg=foo,@var{file2}" 2989 2990This syntax is only available with multiboot. 2991 2992Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the 2993first module. 2994ETEXI 2995 2996DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \ 2997 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL) 2998STEXI 2999@item -dtb @var{file} 3000@findex -dtb 3001Use @var{file} as a device tree binary (dtb) image and pass it to the kernel 3002on boot. 3003ETEXI 3004 3005STEXI 3006@end table 3007ETEXI 3008DEFHEADING() 3009 3010DEFHEADING(Debug/Expert options) 3011STEXI 3012@table @option 3013ETEXI 3014 3015DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg, 3016 "-fw_cfg [name=]<name>,file=<file>\n" 3017 " add named fw_cfg entry with contents from file\n" 3018 "-fw_cfg [name=]<name>,string=<str>\n" 3019 " add named fw_cfg entry with contents from string\n", 3020 QEMU_ARCH_ALL) 3021STEXI 3022 3023@item -fw_cfg [name=]@var{name},file=@var{file} 3024@findex -fw_cfg 3025Add named fw_cfg entry with contents from file @var{file}. 3026 3027@item -fw_cfg [name=]@var{name},string=@var{str} 3028Add named fw_cfg entry with contents from string @var{str}. 3029 3030The terminating NUL character of the contents of @var{str} will not be 3031included as part of the fw_cfg item data. To insert contents with 3032embedded NUL characters, you have to use the @var{file} parameter. 3033 3034The fw_cfg entries are passed by QEMU through to the guest. 3035 3036Example: 3037@example 3038 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin 3039@end example 3040creates an fw_cfg entry named opt/com.mycompany/blob with contents 3041from ./my_blob.bin. 3042 3043ETEXI 3044 3045DEF("serial", HAS_ARG, QEMU_OPTION_serial, \ 3046 "-serial dev redirect the serial port to char device 'dev'\n", 3047 QEMU_ARCH_ALL) 3048STEXI 3049@item -serial @var{dev} 3050@findex -serial 3051Redirect the virtual serial port to host character device 3052@var{dev}. The default device is @code{vc} in graphical mode and 3053@code{stdio} in non graphical mode. 3054 3055This option can be used several times to simulate up to 4 serial 3056ports. 3057 3058Use @code{-serial none} to disable all serial ports. 3059 3060Available character devices are: 3061@table @option 3062@item vc[:@var{W}x@var{H}] 3063Virtual console. Optionally, a width and height can be given in pixel with 3064@example 3065vc:800x600 3066@end example 3067It is also possible to specify width or height in characters: 3068@example 3069vc:80Cx24C 3070@end example 3071@item pty 3072[Linux only] Pseudo TTY (a new PTY is automatically allocated) 3073@item none 3074No device is allocated. 3075@item null 3076void device 3077@item chardev:@var{id} 3078Use a named character device defined with the @code{-chardev} option. 3079@item /dev/XXX 3080[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port 3081parameters are set according to the emulated ones. 3082@item /dev/parport@var{N} 3083[Linux only, parallel port only] Use host parallel port 3084@var{N}. Currently SPP and EPP parallel port features can be used. 3085@item file:@var{filename} 3086Write output to @var{filename}. No character can be read. 3087@item stdio 3088[Unix only] standard input/output 3089@item pipe:@var{filename} 3090name pipe @var{filename} 3091@item COM@var{n} 3092[Windows only] Use host serial port @var{n} 3093@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}] 3094This implements UDP Net Console. 3095When @var{remote_host} or @var{src_ip} are not specified 3096they default to @code{0.0.0.0}. 3097When not using a specified @var{src_port} a random port is automatically chosen. 3098 3099If you just want a simple readonly console you can use @code{netcat} or 3100@code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as: 3101@code{nc -u -l -p 4555}. Any time QEMU writes something to that port it 3102will appear in the netconsole session. 3103 3104If you plan to send characters back via netconsole or you want to stop 3105and start QEMU a lot of times, you should have QEMU use the same 3106source port each time by using something like @code{-serial 3107udp::4555@@:4556} to QEMU. Another approach is to use a patched 3108version of netcat which can listen to a TCP port and send and receive 3109characters via udp. If you have a patched version of netcat which 3110activates telnet remote echo and single char transfer, then you can 3111use the following options to set up a netcat redirector to allow 3112telnet on port 5555 to access the QEMU port. 3113@table @code 3114@item QEMU Options: 3115-serial udp::4555@@:4556 3116@item netcat options: 3117-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T 3118@item telnet options: 3119localhost 5555 3120@end table 3121 3122@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}] 3123The TCP Net Console has two modes of operation. It can send the serial 3124I/O to a location or wait for a connection from a location. By default 3125the TCP Net Console is sent to @var{host} at the @var{port}. If you use 3126the @var{server} option QEMU will wait for a client socket application 3127to connect to the port before continuing, unless the @code{nowait} 3128option was specified. The @code{nodelay} option disables the Nagle buffering 3129algorithm. The @code{reconnect} option only applies if @var{noserver} is 3130set, if the connection goes down it will attempt to reconnect at the 3131given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only 3132one TCP connection at a time is accepted. You can use @code{telnet} to 3133connect to the corresponding character device. 3134@table @code 3135@item Example to send tcp console to 192.168.0.2 port 4444 3136-serial tcp:192.168.0.2:4444 3137@item Example to listen and wait on port 4444 for connection 3138-serial tcp::4444,server 3139@item Example to not wait and listen on ip 192.168.0.100 port 4444 3140-serial tcp:192.168.0.100:4444,server,nowait 3141@end table 3142 3143@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay] 3144The telnet protocol is used instead of raw tcp sockets. The options 3145work the same as if you had specified @code{-serial tcp}. The 3146difference is that the port acts like a telnet server or client using 3147telnet option negotiation. This will also allow you to send the 3148MAGIC_SYSRQ sequence if you use a telnet that supports sending the break 3149sequence. Typically in unix telnet you do it with Control-] and then 3150type "send break" followed by pressing the enter key. 3151 3152@item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}] 3153A unix domain socket is used instead of a tcp socket. The option works the 3154same as if you had specified @code{-serial tcp} except the unix domain socket 3155@var{path} is used for connections. 3156 3157@item mon:@var{dev_string} 3158This is a special option to allow the monitor to be multiplexed onto 3159another serial port. The monitor is accessed with key sequence of 3160@key{Control-a} and then pressing @key{c}. 3161@var{dev_string} should be any one of the serial devices specified 3162above. An example to multiplex the monitor onto a telnet server 3163listening on port 4444 would be: 3164@table @code 3165@item -serial mon:telnet::4444,server,nowait 3166@end table 3167When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate 3168QEMU any more but will be passed to the guest instead. 3169 3170@item braille 3171Braille device. This will use BrlAPI to display the braille output on a real 3172or fake device. 3173 3174@item msmouse 3175Three button serial mouse. Configure the guest to use Microsoft protocol. 3176@end table 3177ETEXI 3178 3179DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \ 3180 "-parallel dev redirect the parallel port to char device 'dev'\n", 3181 QEMU_ARCH_ALL) 3182STEXI 3183@item -parallel @var{dev} 3184@findex -parallel 3185Redirect the virtual parallel port to host device @var{dev} (same 3186devices as the serial port). On Linux hosts, @file{/dev/parportN} can 3187be used to use hardware devices connected on the corresponding host 3188parallel port. 3189 3190This option can be used several times to simulate up to 3 parallel 3191ports. 3192 3193Use @code{-parallel none} to disable all parallel ports. 3194ETEXI 3195 3196DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \ 3197 "-monitor dev redirect the monitor to char device 'dev'\n", 3198 QEMU_ARCH_ALL) 3199STEXI 3200@item -monitor @var{dev} 3201@findex -monitor 3202Redirect the monitor to host device @var{dev} (same devices as the 3203serial port). 3204The default device is @code{vc} in graphical mode and @code{stdio} in 3205non graphical mode. 3206Use @code{-monitor none} to disable the default monitor. 3207ETEXI 3208DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \ 3209 "-qmp dev like -monitor but opens in 'control' mode\n", 3210 QEMU_ARCH_ALL) 3211STEXI 3212@item -qmp @var{dev} 3213@findex -qmp 3214Like -monitor but opens in 'control' mode. 3215ETEXI 3216DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \ 3217 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n", 3218 QEMU_ARCH_ALL) 3219STEXI 3220@item -qmp-pretty @var{dev} 3221@findex -qmp-pretty 3222Like -qmp but uses pretty JSON formatting. 3223ETEXI 3224 3225DEF("mon", HAS_ARG, QEMU_OPTION_mon, \ 3226 "-mon [chardev=]name[,mode=readline|control]\n", QEMU_ARCH_ALL) 3227STEXI 3228@item -mon [chardev=]name[,mode=readline|control] 3229@findex -mon 3230Setup monitor on chardev @var{name}. 3231ETEXI 3232 3233DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \ 3234 "-debugcon dev redirect the debug console to char device 'dev'\n", 3235 QEMU_ARCH_ALL) 3236STEXI 3237@item -debugcon @var{dev} 3238@findex -debugcon 3239Redirect the debug console to host device @var{dev} (same devices as the 3240serial port). The debug console is an I/O port which is typically port 32410xe9; writing to that I/O port sends output to this device. 3242The default device is @code{vc} in graphical mode and @code{stdio} in 3243non graphical mode. 3244ETEXI 3245 3246DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \ 3247 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL) 3248STEXI 3249@item -pidfile @var{file} 3250@findex -pidfile 3251Store the QEMU process PID in @var{file}. It is useful if you launch QEMU 3252from a script. 3253ETEXI 3254 3255DEF("singlestep", 0, QEMU_OPTION_singlestep, \ 3256 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL) 3257STEXI 3258@item -singlestep 3259@findex -singlestep 3260Run the emulation in single step mode. 3261ETEXI 3262 3263DEF("S", 0, QEMU_OPTION_S, \ 3264 "-S freeze CPU at startup (use 'c' to start execution)\n", 3265 QEMU_ARCH_ALL) 3266STEXI 3267@item -S 3268@findex -S 3269Do not start CPU at startup (you must type 'c' in the monitor). 3270ETEXI 3271 3272DEF("realtime", HAS_ARG, QEMU_OPTION_realtime, 3273 "-realtime [mlock=on|off]\n" 3274 " run qemu with realtime features\n" 3275 " mlock=on|off controls mlock support (default: on)\n", 3276 QEMU_ARCH_ALL) 3277STEXI 3278@item -realtime mlock=on|off 3279@findex -realtime 3280Run qemu with realtime features. 3281mlocking qemu and guest memory can be enabled via @option{mlock=on} 3282(enabled by default). 3283ETEXI 3284 3285DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \ 3286 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL) 3287STEXI 3288@item -gdb @var{dev} 3289@findex -gdb 3290Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical 3291connections will likely be TCP-based, but also UDP, pseudo TTY, or even 3292stdio are reasonable use case. The latter is allowing to start QEMU from 3293within gdb and establish the connection via a pipe: 3294@example 3295(gdb) target remote | exec qemu-system-i386 -gdb stdio ... 3296@end example 3297ETEXI 3298 3299DEF("s", 0, QEMU_OPTION_s, \ 3300 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n", 3301 QEMU_ARCH_ALL) 3302STEXI 3303@item -s 3304@findex -s 3305Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234 3306(@pxref{gdb_usage}). 3307ETEXI 3308 3309DEF("d", HAS_ARG, QEMU_OPTION_d, \ 3310 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n", 3311 QEMU_ARCH_ALL) 3312STEXI 3313@item -d @var{item1}[,...] 3314@findex -d 3315Enable logging of specified items. Use '-d help' for a list of log items. 3316ETEXI 3317 3318DEF("D", HAS_ARG, QEMU_OPTION_D, \ 3319 "-D logfile output log to logfile (default stderr)\n", 3320 QEMU_ARCH_ALL) 3321STEXI 3322@item -D @var{logfile} 3323@findex -D 3324Output log in @var{logfile} instead of to stderr 3325ETEXI 3326 3327DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \ 3328 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n", 3329 QEMU_ARCH_ALL) 3330STEXI 3331@item -dfilter @var{range1}[,...] 3332@findex -dfilter 3333Filter debug output to that relevant to a range of target addresses. The filter 3334spec can be either @var{start}+@var{size}, @var{start}-@var{size} or 3335@var{start}..@var{end} where @var{start} @var{end} and @var{size} are the 3336addresses and sizes required. For example: 3337@example 3338 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000 3339@end example 3340Will dump output for any code in the 0x1000 sized block starting at 0x8000 and 3341the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized 3342block starting at 0xffffffc00005f000. 3343ETEXI 3344 3345DEF("L", HAS_ARG, QEMU_OPTION_L, \ 3346 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n", 3347 QEMU_ARCH_ALL) 3348STEXI 3349@item -L @var{path} 3350@findex -L 3351Set the directory for the BIOS, VGA BIOS and keymaps. 3352 3353To list all the data directories, use @code{-L help}. 3354ETEXI 3355 3356DEF("bios", HAS_ARG, QEMU_OPTION_bios, \ 3357 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL) 3358STEXI 3359@item -bios @var{file} 3360@findex -bios 3361Set the filename for the BIOS. 3362ETEXI 3363 3364DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \ 3365 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL) 3366STEXI 3367@item -enable-kvm 3368@findex -enable-kvm 3369Enable KVM full virtualization support. This option is only available 3370if KVM support is enabled when compiling. 3371ETEXI 3372 3373DEF("enable-hax", 0, QEMU_OPTION_enable_hax, \ 3374 "-enable-hax enable HAX virtualization support\n", QEMU_ARCH_I386) 3375STEXI 3376@item -enable-hax 3377@findex -enable-hax 3378Enable HAX (Hardware-based Acceleration eXecution) support. This option 3379is only available if HAX support is enabled when compiling. HAX is only 3380applicable to MAC and Windows platform, and thus does not conflict with 3381KVM. 3382ETEXI 3383 3384DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid, 3385 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL) 3386DEF("xen-create", 0, QEMU_OPTION_xen_create, 3387 "-xen-create create domain using xen hypercalls, bypassing xend\n" 3388 " warning: should not be used when xend is in use\n", 3389 QEMU_ARCH_ALL) 3390DEF("xen-attach", 0, QEMU_OPTION_xen_attach, 3391 "-xen-attach attach to existing xen domain\n" 3392 " xend will use this when starting QEMU\n", 3393 QEMU_ARCH_ALL) 3394DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict, 3395 "-xen-domid-restrict restrict set of available xen operations\n" 3396 " to specified domain id. (Does not affect\n" 3397 " xenpv machine type).\n", 3398 QEMU_ARCH_ALL) 3399STEXI 3400@item -xen-domid @var{id} 3401@findex -xen-domid 3402Specify xen guest domain @var{id} (XEN only). 3403@item -xen-create 3404@findex -xen-create 3405Create domain using xen hypercalls, bypassing xend. 3406Warning: should not be used when xend is in use (XEN only). 3407@item -xen-attach 3408@findex -xen-attach 3409Attach to existing xen domain. 3410xend will use this when starting QEMU (XEN only). 3411@findex -xen-domid-restrict 3412Restrict set of available xen operations to specified domain id (XEN only). 3413ETEXI 3414 3415DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \ 3416 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL) 3417STEXI 3418@item -no-reboot 3419@findex -no-reboot 3420Exit instead of rebooting. 3421ETEXI 3422 3423DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \ 3424 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL) 3425STEXI 3426@item -no-shutdown 3427@findex -no-shutdown 3428Don't exit QEMU on guest shutdown, but instead only stop the emulation. 3429This allows for instance switching to monitor to commit changes to the 3430disk image. 3431ETEXI 3432 3433DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \ 3434 "-loadvm [tag|id]\n" \ 3435 " start right away with a saved state (loadvm in monitor)\n", 3436 QEMU_ARCH_ALL) 3437STEXI 3438@item -loadvm @var{file} 3439@findex -loadvm 3440Start right away with a saved state (@code{loadvm} in monitor) 3441ETEXI 3442 3443#ifndef _WIN32 3444DEF("daemonize", 0, QEMU_OPTION_daemonize, \ 3445 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL) 3446#endif 3447STEXI 3448@item -daemonize 3449@findex -daemonize 3450Daemonize the QEMU process after initialization. QEMU will not detach from 3451standard IO until it is ready to receive connections on any of its devices. 3452This option is a useful way for external programs to launch QEMU without having 3453to cope with initialization race conditions. 3454ETEXI 3455 3456DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \ 3457 "-option-rom rom load a file, rom, into the option ROM space\n", 3458 QEMU_ARCH_ALL) 3459STEXI 3460@item -option-rom @var{file} 3461@findex -option-rom 3462Load the contents of @var{file} as an option ROM. 3463This option is useful to load things like EtherBoot. 3464ETEXI 3465 3466HXCOMM Silently ignored for compatibility 3467DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL) 3468 3469HXCOMM Options deprecated by -rtc 3470DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL) 3471DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL) 3472 3473DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \ 3474 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \ 3475 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n", 3476 QEMU_ARCH_ALL) 3477 3478STEXI 3479 3480@item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew] 3481@findex -rtc 3482Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current 3483UTC or local time, respectively. @code{localtime} is required for correct date in 3484MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the 3485format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC. 3486 3487By default the RTC is driven by the host system time. This allows using of the 3488RTC as accurate reference clock inside the guest, specifically if the host 3489time is smoothly following an accurate external reference clock, e.g. via NTP. 3490If you want to isolate the guest time from the host, you can set @option{clock} 3491to @code{rt} instead. To even prevent it from progressing during suspension, 3492you can set it to @code{vm}. 3493 3494Enable @option{driftfix} (i386 targets only) if you experience time drift problems, 3495specifically with Windows' ACPI HAL. This option will try to figure out how 3496many timer interrupts were not processed by the Windows guest and will 3497re-inject them. 3498ETEXI 3499 3500DEF("icount", HAS_ARG, QEMU_OPTION_icount, \ 3501 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \ 3502 " enable virtual instruction counter with 2^N clock ticks per\n" \ 3503 " instruction, enable aligning the host and virtual clocks\n" \ 3504 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL) 3505STEXI 3506@item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}] 3507@findex -icount 3508Enable virtual instruction counter. The virtual cpu will execute one 3509instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified 3510then the virtual cpu speed will be automatically adjusted to keep virtual 3511time within a few seconds of real time. 3512 3513When the virtual cpu is sleeping, the virtual time will advance at default 3514speed unless @option{sleep=on|off} is specified. 3515With @option{sleep=on|off}, the virtual time will jump to the next timer deadline 3516instantly whenever the virtual cpu goes to sleep mode and will not advance 3517if no timer is enabled. This behavior give deterministic execution times from 3518the guest point of view. 3519 3520Note that while this option can give deterministic behavior, it does not 3521provide cycle accurate emulation. Modern CPUs contain superscalar out of 3522order cores with complex cache hierarchies. The number of instructions 3523executed often has little or no correlation with actual performance. 3524 3525@option{align=on} will activate the delay algorithm which will try 3526to synchronise the host clock and the virtual clock. The goal is to 3527have a guest running at the real frequency imposed by the shift option. 3528Whenever the guest clock is behind the host clock and if 3529@option{align=on} is specified then we print a message to the user 3530to inform about the delay. 3531Currently this option does not work when @option{shift} is @code{auto}. 3532Note: The sync algorithm will work for those shift values for which 3533the guest clock runs ahead of the host clock. Typically this happens 3534when the shift value is high (how high depends on the host machine). 3535 3536When @option{rr} option is specified deterministic record/replay is enabled. 3537Replay log is written into @var{filename} file in record mode and 3538read from this file in replay mode. 3539 3540Option rrsnapshot is used to create new vm snapshot named @var{snapshot} 3541at the start of execution recording. In replay mode this option is used 3542to load the initial VM state. 3543ETEXI 3544 3545DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \ 3546 "-watchdog model\n" \ 3547 " enable virtual hardware watchdog [default=none]\n", 3548 QEMU_ARCH_ALL) 3549STEXI 3550@item -watchdog @var{model} 3551@findex -watchdog 3552Create a virtual hardware watchdog device. Once enabled (by a guest 3553action), the watchdog must be periodically polled by an agent inside 3554the guest or else the guest will be restarted. Choose a model for 3555which your guest has drivers. 3556 3557The @var{model} is the model of hardware watchdog to emulate. Use 3558@code{-watchdog help} to list available hardware models. Only one 3559watchdog can be enabled for a guest. 3560 3561The following models may be available: 3562@table @option 3563@item ib700 3564iBASE 700 is a very simple ISA watchdog with a single timer. 3565@item i6300esb 3566Intel 6300ESB I/O controller hub is a much more featureful PCI-based 3567dual-timer watchdog. 3568@item diag288 3569A virtual watchdog for s390x backed by the diagnose 288 hypercall 3570(currently KVM only). 3571@end table 3572ETEXI 3573 3574DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \ 3575 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \ 3576 " action when watchdog fires [default=reset]\n", 3577 QEMU_ARCH_ALL) 3578STEXI 3579@item -watchdog-action @var{action} 3580@findex -watchdog-action 3581 3582The @var{action} controls what QEMU will do when the watchdog timer 3583expires. 3584The default is 3585@code{reset} (forcefully reset the guest). 3586Other possible actions are: 3587@code{shutdown} (attempt to gracefully shutdown the guest), 3588@code{poweroff} (forcefully poweroff the guest), 3589@code{pause} (pause the guest), 3590@code{debug} (print a debug message and continue), or 3591@code{none} (do nothing). 3592 3593Note that the @code{shutdown} action requires that the guest responds 3594to ACPI signals, which it may not be able to do in the sort of 3595situations where the watchdog would have expired, and thus 3596@code{-watchdog-action shutdown} is not recommended for production use. 3597 3598Examples: 3599 3600@table @code 3601@item -watchdog i6300esb -watchdog-action pause 3602@itemx -watchdog ib700 3603@end table 3604ETEXI 3605 3606DEF("echr", HAS_ARG, QEMU_OPTION_echr, \ 3607 "-echr chr set terminal escape character instead of ctrl-a\n", 3608 QEMU_ARCH_ALL) 3609STEXI 3610 3611@item -echr @var{numeric_ascii_value} 3612@findex -echr 3613Change the escape character used for switching to the monitor when using 3614monitor and serial sharing. The default is @code{0x01} when using the 3615@code{-nographic} option. @code{0x01} is equal to pressing 3616@code{Control-a}. You can select a different character from the ascii 3617control keys where 1 through 26 map to Control-a through Control-z. For 3618instance you could use the either of the following to change the escape 3619character to Control-t. 3620@table @code 3621@item -echr 0x14 3622@itemx -echr 20 3623@end table 3624ETEXI 3625 3626DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \ 3627 "-virtioconsole c\n" \ 3628 " set virtio console\n", QEMU_ARCH_ALL) 3629STEXI 3630@item -virtioconsole @var{c} 3631@findex -virtioconsole 3632Set virtio console. 3633 3634This option is maintained for backward compatibility. 3635 3636Please use @code{-device virtconsole} for the new way of invocation. 3637ETEXI 3638 3639DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \ 3640 "-show-cursor show cursor\n", QEMU_ARCH_ALL) 3641STEXI 3642@item -show-cursor 3643@findex -show-cursor 3644Show cursor. 3645ETEXI 3646 3647DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \ 3648 "-tb-size n set TB size\n", QEMU_ARCH_ALL) 3649STEXI 3650@item -tb-size @var{n} 3651@findex -tb-size 3652Set TB size. 3653ETEXI 3654 3655DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \ 3656 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \ 3657 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \ 3658 "-incoming unix:socketpath\n" \ 3659 " prepare for incoming migration, listen on\n" \ 3660 " specified protocol and socket address\n" \ 3661 "-incoming fd:fd\n" \ 3662 "-incoming exec:cmdline\n" \ 3663 " accept incoming migration on given file descriptor\n" \ 3664 " or from given external command\n" \ 3665 "-incoming defer\n" \ 3666 " wait for the URI to be specified via migrate_incoming\n", 3667 QEMU_ARCH_ALL) 3668STEXI 3669@item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6] 3670@itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6] 3671@findex -incoming 3672Prepare for incoming migration, listen on a given tcp port. 3673 3674@item -incoming unix:@var{socketpath} 3675Prepare for incoming migration, listen on a given unix socket. 3676 3677@item -incoming fd:@var{fd} 3678Accept incoming migration from a given filedescriptor. 3679 3680@item -incoming exec:@var{cmdline} 3681Accept incoming migration as an output from specified external command. 3682 3683@item -incoming defer 3684Wait for the URI to be specified via migrate_incoming. The monitor can 3685be used to change settings (such as migration parameters) prior to issuing 3686the migrate_incoming to allow the migration to begin. 3687ETEXI 3688 3689DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \ 3690 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL) 3691STEXI 3692@item -only-migratable 3693@findex -only-migratable 3694Only allow migratable devices. Devices will not be allowed to enter an 3695unmigratable state. 3696ETEXI 3697 3698DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \ 3699 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL) 3700STEXI 3701@item -nodefaults 3702@findex -nodefaults 3703Don't create default devices. Normally, QEMU sets the default devices like serial 3704port, parallel port, virtual console, monitor device, VGA adapter, floppy and 3705CD-ROM drive and others. The @code{-nodefaults} option will disable all those 3706default devices. 3707ETEXI 3708 3709#ifndef _WIN32 3710DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \ 3711 "-chroot dir chroot to dir just before starting the VM\n", 3712 QEMU_ARCH_ALL) 3713#endif 3714STEXI 3715@item -chroot @var{dir} 3716@findex -chroot 3717Immediately before starting guest execution, chroot to the specified 3718directory. Especially useful in combination with -runas. 3719ETEXI 3720 3721#ifndef _WIN32 3722DEF("runas", HAS_ARG, QEMU_OPTION_runas, \ 3723 "-runas user change to user id user just before starting the VM\n", 3724 QEMU_ARCH_ALL) 3725#endif 3726STEXI 3727@item -runas @var{user} 3728@findex -runas 3729Immediately before starting guest execution, drop root privileges, switching 3730to the specified user. 3731ETEXI 3732 3733DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env, 3734 "-prom-env variable=value\n" 3735 " set OpenBIOS nvram variables\n", 3736 QEMU_ARCH_PPC | QEMU_ARCH_SPARC) 3737STEXI 3738@item -prom-env @var{variable}=@var{value} 3739@findex -prom-env 3740Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only). 3741ETEXI 3742DEF("semihosting", 0, QEMU_OPTION_semihosting, 3743 "-semihosting semihosting mode\n", 3744 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 | 3745 QEMU_ARCH_MIPS) 3746STEXI 3747@item -semihosting 3748@findex -semihosting 3749Enable semihosting mode (ARM, M68K, Xtensa, MIPS only). 3750ETEXI 3751DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config, 3752 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \ 3753 " semihosting configuration\n", 3754QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 | 3755QEMU_ARCH_MIPS) 3756STEXI 3757@item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]] 3758@findex -semihosting-config 3759Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only). 3760@table @option 3761@item target=@code{native|gdb|auto} 3762Defines where the semihosting calls will be addressed, to QEMU (@code{native}) 3763or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb} 3764during debug sessions and @code{native} otherwise. 3765@item arg=@var{str1},arg=@var{str2},... 3766Allows the user to pass input arguments, and can be used multiple times to build 3767up a list. The old-style @code{-kernel}/@code{-append} method of passing a 3768command line is still supported for backward compatibility. If both the 3769@code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are 3770specified, the former is passed to semihosting as it always takes precedence. 3771@end table 3772ETEXI 3773DEF("old-param", 0, QEMU_OPTION_old_param, 3774 "-old-param old param mode\n", QEMU_ARCH_ARM) 3775STEXI 3776@item -old-param 3777@findex -old-param (ARM) 3778Old param mode (ARM only). 3779ETEXI 3780 3781DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \ 3782 "-sandbox <arg> Enable seccomp mode 2 system call filter (default 'off').\n", 3783 QEMU_ARCH_ALL) 3784STEXI 3785@item -sandbox @var{arg} 3786@findex -sandbox 3787Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will 3788disable it. The default is 'off'. 3789ETEXI 3790 3791DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig, 3792 "-readconfig <file>\n", QEMU_ARCH_ALL) 3793STEXI 3794@item -readconfig @var{file} 3795@findex -readconfig 3796Read device configuration from @var{file}. This approach is useful when you want to spawn 3797QEMU process with many command line options but you don't want to exceed the command line 3798character limit. 3799ETEXI 3800DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig, 3801 "-writeconfig <file>\n" 3802 " read/write config file\n", QEMU_ARCH_ALL) 3803STEXI 3804@item -writeconfig @var{file} 3805@findex -writeconfig 3806Write device configuration to @var{file}. The @var{file} can be either filename to save 3807command line and device configuration into file or dash @code{-}) character to print the 3808output to stdout. This can be later used as input file for @code{-readconfig} option. 3809ETEXI 3810DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig, 3811 "-nodefconfig\n" 3812 " do not load default config files at startup\n", 3813 QEMU_ARCH_ALL) 3814STEXI 3815@item -nodefconfig 3816@findex -nodefconfig 3817Normally QEMU loads configuration files from @var{sysconfdir} and @var{datadir} at startup. 3818The @code{-nodefconfig} option will prevent QEMU from loading any of those config files. 3819ETEXI 3820DEF("no-user-config", 0, QEMU_OPTION_nouserconfig, 3821 "-no-user-config\n" 3822 " do not load user-provided config files at startup\n", 3823 QEMU_ARCH_ALL) 3824STEXI 3825@item -no-user-config 3826@findex -no-user-config 3827The @code{-no-user-config} option makes QEMU not load any of the user-provided 3828config files on @var{sysconfdir}, but won't make it skip the QEMU-provided config 3829files from @var{datadir}. 3830ETEXI 3831DEF("trace", HAS_ARG, QEMU_OPTION_trace, 3832 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n" 3833 " specify tracing options\n", 3834 QEMU_ARCH_ALL) 3835STEXI 3836HXCOMM This line is not accurate, as some sub-options are backend-specific but 3837HXCOMM HX does not support conditional compilation of text. 3838@item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}] 3839@findex -trace 3840@include qemu-option-trace.texi 3841ETEXI 3842 3843HXCOMM Internal use 3844DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL) 3845DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL) 3846 3847#ifdef __linux__ 3848DEF("enable-fips", 0, QEMU_OPTION_enablefips, 3849 "-enable-fips enable FIPS 140-2 compliance\n", 3850 QEMU_ARCH_ALL) 3851#endif 3852STEXI 3853@item -enable-fips 3854@findex -enable-fips 3855Enable FIPS 140-2 compliance mode. 3856ETEXI 3857 3858HXCOMM Deprecated by -machine accel=tcg property 3859DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386) 3860 3861HXCOMM Deprecated by kvm-pit driver properties 3862DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection, 3863 "", QEMU_ARCH_I386) 3864 3865HXCOMM Deprecated (ignored) 3866DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386) 3867 3868HXCOMM Deprecated by -machine kernel_irqchip=on|off property 3869DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386) 3870 3871HXCOMM Deprecated (ignored) 3872DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL) 3873 3874DEF("msg", HAS_ARG, QEMU_OPTION_msg, 3875 "-msg timestamp[=on|off]\n" 3876 " change the format of messages\n" 3877 " on|off controls leading timestamps (default:on)\n", 3878 QEMU_ARCH_ALL) 3879STEXI 3880@item -msg timestamp[=on|off] 3881@findex -msg 3882prepend a timestamp to each log message.(default:on) 3883ETEXI 3884 3885DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate, 3886 "-dump-vmstate <file>\n" 3887 " Output vmstate information in JSON format to file.\n" 3888 " Use the scripts/vmstate-static-checker.py file to\n" 3889 " check for possible regressions in migration code\n" 3890 " by comparing two such vmstate dumps.\n", 3891 QEMU_ARCH_ALL) 3892STEXI 3893@item -dump-vmstate @var{file} 3894@findex -dump-vmstate 3895Dump json-encoded vmstate information for current machine type to file 3896in @var{file} 3897ETEXI 3898 3899STEXI 3900@end table 3901ETEXI 3902DEFHEADING() 3903DEFHEADING(Generic object creation) 3904STEXI 3905@table @option 3906ETEXI 3907 3908DEF("object", HAS_ARG, QEMU_OPTION_object, 3909 "-object TYPENAME[,PROP1=VALUE1,...]\n" 3910 " create a new object of type TYPENAME setting properties\n" 3911 " in the order they are specified. Note that the 'id'\n" 3912 " property must be set. These objects are placed in the\n" 3913 " '/objects' path.\n", 3914 QEMU_ARCH_ALL) 3915STEXI 3916@item -object @var{typename}[,@var{prop1}=@var{value1},...] 3917@findex -object 3918Create a new object of type @var{typename} setting properties 3919in the order they are specified. Note that the 'id' 3920property must be set. These objects are placed in the 3921'/objects' path. 3922 3923@table @option 3924 3925@item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off} 3926 3927Creates a memory file backend object, which can be used to back 3928the guest RAM with huge pages. The @option{id} parameter is a 3929unique ID that will be used to reference this memory region 3930when configuring the @option{-numa} argument. The @option{size} 3931option provides the size of the memory region, and accepts 3932common suffixes, eg @option{500M}. The @option{mem-path} provides 3933the path to either a shared memory or huge page filesystem mount. 3934The @option{share} boolean option determines whether the memory 3935region is marked as private to QEMU, or shared. The latter allows 3936a co-operating external process to access the QEMU memory region. 3937 3938@item -object rng-random,id=@var{id},filename=@var{/dev/random} 3939 3940Creates a random number generator backend which obtains entropy from 3941a device on the host. The @option{id} parameter is a unique ID that 3942will be used to reference this entropy backend from the @option{virtio-rng} 3943device. The @option{filename} parameter specifies which file to obtain 3944entropy from and if omitted defaults to @option{/dev/random}. 3945 3946@item -object rng-egd,id=@var{id},chardev=@var{chardevid} 3947 3948Creates a random number generator backend which obtains entropy from 3949an external daemon running on the host. The @option{id} parameter is 3950a unique ID that will be used to reference this entropy backend from 3951the @option{virtio-rng} device. The @option{chardev} parameter is 3952the unique ID of a character device backend that provides the connection 3953to the RNG daemon. 3954 3955@item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off} 3956 3957Creates a TLS anonymous credentials object, which can be used to provide 3958TLS support on network backends. The @option{id} parameter is a unique 3959ID which network backends will use to access the credentials. The 3960@option{endpoint} is either @option{server} or @option{client} depending 3961on whether the QEMU network backend that uses the credentials will be 3962acting as a client or as a server. If @option{verify-peer} is enabled 3963(the default) then once the handshake is completed, the peer credentials 3964will be verified, though this is a no-op for anonymous credentials. 3965 3966The @var{dir} parameter tells QEMU where to find the credential 3967files. For server endpoints, this directory may contain a file 3968@var{dh-params.pem} providing diffie-hellman parameters to use 3969for the TLS server. If the file is missing, QEMU will generate 3970a set of DH parameters at startup. This is a computationally 3971expensive operation that consumes random pool entropy, so it is 3972recommended that a persistent set of parameters be generated 3973upfront and saved. 3974 3975@item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id} 3976 3977Creates a TLS anonymous credentials object, which can be used to provide 3978TLS support on network backends. The @option{id} parameter is a unique 3979ID which network backends will use to access the credentials. The 3980@option{endpoint} is either @option{server} or @option{client} depending 3981on whether the QEMU network backend that uses the credentials will be 3982acting as a client or as a server. If @option{verify-peer} is enabled 3983(the default) then once the handshake is completed, the peer credentials 3984will be verified. With x509 certificates, this implies that the clients 3985must be provided with valid client certificates too. 3986 3987The @var{dir} parameter tells QEMU where to find the credential 3988files. For server endpoints, this directory may contain a file 3989@var{dh-params.pem} providing diffie-hellman parameters to use 3990for the TLS server. If the file is missing, QEMU will generate 3991a set of DH parameters at startup. This is a computationally 3992expensive operation that consumes random pool entropy, so it is 3993recommended that a persistent set of parameters be generated 3994upfront and saved. 3995 3996For x509 certificate credentials the directory will contain further files 3997providing the x509 certificates. The certificates must be stored 3998in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional), 3999@var{server-cert.pem} (only servers), @var{server-key.pem} (only servers), 4000@var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients). 4001 4002For the @var{server-key.pem} and @var{client-key.pem} files which 4003contain sensitive private keys, it is possible to use an encrypted 4004version by providing the @var{passwordid} parameter. This provides 4005the ID of a previously created @code{secret} object containing the 4006password for decryption. 4007 4008@item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}] 4009 4010Interval @var{t} can't be 0, this filter batches the packet delivery: all 4011packets arriving in a given interval on netdev @var{netdevid} are delayed 4012until the end of the interval. Interval is in microseconds. 4013@option{status} is optional that indicate whether the netfilter is 4014on (enabled) or off (disabled), the default status for netfilter will be 'on'. 4015 4016queue @var{all|rx|tx} is an option that can be applied to any netfilter. 4017 4018@option{all}: the filter is attached both to the receive and the transmit 4019 queue of the netdev (default). 4020 4021@option{rx}: the filter is attached to the receive queue of the netdev, 4022 where it will receive packets sent to the netdev. 4023 4024@option{tx}: the filter is attached to the transmit queue of the netdev, 4025 where it will receive packets sent by the netdev. 4026 4027@item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid}[,queue=@var{all|rx|tx}] 4028 4029filter-mirror on netdev @var{netdevid},mirror net packet to chardev 4030@var{chardevid} 4031 4032@item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid}, 4033outdev=@var{chardevid}[,queue=@var{all|rx|tx}] 4034 4035filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev 4036@var{chardevid},and redirect indev's packet to filter. 4037Create a filter-redirector we need to differ outdev id from indev id, id can not 4038be the same. we can just use indev or outdev, but at least one of indev or outdev 4039need to be specified. 4040 4041@item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},rewriter-mode=@var{mode}[,queue=@var{all|rx|tx}] 4042 4043Filter-rewriter is a part of COLO project.It will rewrite tcp packet to 4044secondary from primary to keep secondary tcp connection,and rewrite 4045tcp packet to primary from secondary make tcp packet can be handled by 4046client. 4047 4048usage: 4049colo secondary: 4050-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 4051-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 4052-object filter-rewriter,id=rew0,netdev=hn0,queue=all 4053 4054@item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}] 4055 4056Dump the network traffic on netdev @var{dev} to the file specified by 4057@var{filename}. At most @var{len} bytes (64k by default) per packet are stored. 4058The file format is libpcap, so it can be analyzed with tools such as tcpdump 4059or Wireshark. 4060 4061@item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid}, 4062outdev=@var{chardevid} 4063 4064Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with 4065secondary packet. If the packets are same, we will output primary 4066packet to outdev@var{chardevid}, else we will notify colo-frame 4067do checkpoint and send primary packet to outdev@var{chardevid}. 4068 4069we must use it with the help of filter-mirror and filter-redirector. 4070 4071@example 4072 4073primary: 4074-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown 4075-device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66 4076-chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait 4077-chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait 4078-chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait 4079-chardev socket,id=compare0-0,host=3.3.3.3,port=9001 4080-chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait 4081-chardev socket,id=compare_out0,host=3.3.3.3,port=9005 4082-object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0 4083-object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out 4084-object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0 4085-object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0 4086 4087secondary: 4088-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown 4089-device e1000,netdev=hn0,mac=52:a4:00:12:78:66 4090-chardev socket,id=red0,host=3.3.3.3,port=9003 4091-chardev socket,id=red1,host=3.3.3.3,port=9004 4092-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 4093-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 4094 4095@end example 4096 4097If you want to know the detail of above command line, you can read 4098the colo-compare git log. 4099 4100@item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}] 4101 4102Creates a cryptodev backend which executes crypto opreation from 4103the QEMU cipher APIS. The @var{id} parameter is 4104a unique ID that will be used to reference this cryptodev backend from 4105the @option{virtio-crypto} device. The @var{queues} parameter is optional, 4106which specify the queue number of cryptodev backend, the default of 4107@var{queues} is 1. 4108 4109@example 4110 4111 # qemu-system-x86_64 \ 4112 [...] \ 4113 -object cryptodev-backend-builtin,id=cryptodev0 \ 4114 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \ 4115 [...] 4116@end example 4117 4118@item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}] 4119@item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}] 4120 4121Defines a secret to store a password, encryption key, or some other sensitive 4122data. The sensitive data can either be passed directly via the @var{data} 4123parameter, or indirectly via the @var{file} parameter. Using the @var{data} 4124parameter is insecure unless the sensitive data is encrypted. 4125 4126The sensitive data can be provided in raw format (the default), or base64. 4127When encoded as JSON, the raw format only supports valid UTF-8 characters, 4128so base64 is recommended for sending binary data. QEMU will convert from 4129which ever format is provided to the format it needs internally. eg, an 4130RBD password can be provided in raw format, even though it will be base64 4131encoded when passed onto the RBD sever. 4132 4133For added protection, it is possible to encrypt the data associated with 4134a secret using the AES-256-CBC cipher. Use of encryption is indicated 4135by providing the @var{keyid} and @var{iv} parameters. The @var{keyid} 4136parameter provides the ID of a previously defined secret that contains 4137the AES-256 decryption key. This key should be 32-bytes long and be 4138base64 encoded. The @var{iv} parameter provides the random initialization 4139vector used for encryption of this particular secret and should be a 4140base64 encrypted string of the 16-byte IV. 4141 4142The simplest (insecure) usage is to provide the secret inline 4143 4144@example 4145 4146 # $QEMU -object secret,id=sec0,data=letmein,format=raw 4147 4148@end example 4149 4150The simplest secure usage is to provide the secret via a file 4151 4152 # echo -n "letmein" > mypasswd.txt 4153 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw 4154 4155For greater security, AES-256-CBC should be used. To illustrate usage, 4156consider the openssl command line tool which can encrypt the data. Note 4157that when encrypting, the plaintext must be padded to the cipher block 4158size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm. 4159 4160First a master key needs to be created in base64 encoding: 4161 4162@example 4163 # openssl rand -base64 32 > key.b64 4164 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"') 4165@end example 4166 4167Each secret to be encrypted needs to have a random initialization vector 4168generated. These do not need to be kept secret 4169 4170@example 4171 # openssl rand -base64 16 > iv.b64 4172 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"') 4173@end example 4174 4175The secret to be defined can now be encrypted, in this case we're 4176telling openssl to base64 encode the result, but it could be left 4177as raw bytes if desired. 4178 4179@example 4180 # SECRET=$(echo -n "letmein" | 4181 openssl enc -aes-256-cbc -a -K $KEY -iv $IV) 4182@end example 4183 4184When launching QEMU, create a master secret pointing to @code{key.b64} 4185and specify that to be used to decrypt the user password. Pass the 4186contents of @code{iv.b64} to the second secret 4187 4188@example 4189 # $QEMU \ 4190 -object secret,id=secmaster0,format=base64,file=key.b64 \ 4191 -object secret,id=sec0,keyid=secmaster0,format=base64,\ 4192 data=$SECRET,iv=$(<iv.b64) 4193@end example 4194 4195@end table 4196 4197ETEXI 4198 4199 4200HXCOMM This is the last statement. Insert new options before this line! 4201STEXI 4202@end table 4203ETEXI 4204