xref: /openbmc/qemu/qapi/migration.json (revision f28b958cbf08c4019f99091208e5c877b857b030)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the
20#     target VM
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
26# @skipped: number of skipped zero pages. Always zero, only provided for
27#     compatibility (since 1.5)
28#
29# @normal: number of normal pages (since 1.2)
30#
31# @normal-bytes: number of normal bytes sent (since 1.2)
32#
33# @dirty-pages-rate: number of pages dirtied by second by the guest
34#     (since 1.3)
35#
36# @mbps: throughput in megabits/sec.  (since 1.6)
37#
38# @dirty-sync-count: number of times that dirty ram was synchronized
39#     (since 2.1)
40#
41# @postcopy-requests: The number of page requests received from the
42#     destination (since 2.7)
43#
44# @page-size: The number of bytes per page for the various page-based
45#     statistics (since 2.10)
46#
47# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48#
49# @pages-per-second: the number of memory pages transferred per second
50#     (Since 4.0)
51#
52# @precopy-bytes: The number of bytes sent in the pre-copy phase
53#     (since 7.0).
54#
55# @downtime-bytes: The number of bytes sent while the guest is paused
56#     (since 7.0).
57#
58# @postcopy-bytes: The number of bytes sent during the post-copy phase
59#     (since 7.0).
60#
61# @dirty-sync-missed-zero-copy: Number of times dirty RAM
62#     synchronization could not avoid copying dirty pages.  This is
63#     between 0 and @dirty-sync-count * @multifd-channels.  (since
64#     7.1)
65#
66# Features:
67#
68# @deprecated: Member @skipped is always zero since 1.5.3
69#
70# Since: 0.14
71#
72##
73{ 'struct': 'MigrationStats',
74  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
75           'duplicate': 'int',
76           'skipped': { 'type': 'int', 'features': [ 'deprecated' ] },
77           'normal': 'int',
78           'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79           'mbps': 'number', 'dirty-sync-count': 'int',
80           'postcopy-requests': 'int', 'page-size': 'int',
81           'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82           'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83           'postcopy-bytes': 'uint64',
84           'dirty-sync-missed-zero-copy': 'uint64' } }
85
86##
87# @XBZRLECacheStats:
88#
89# Detailed XBZRLE migration cache statistics
90#
91# @cache-size: XBZRLE cache size
92#
93# @bytes: amount of bytes already transferred to the target VM
94#
95# @pages: amount of pages transferred to the target VM
96#
97# @cache-miss: number of cache miss
98#
99# @cache-miss-rate: rate of cache miss (since 2.1)
100#
101# @encoding-rate: rate of encoded bytes (since 5.1)
102#
103# @overflow: number of overflows
104#
105# Since: 1.2
106##
107{ 'struct': 'XBZRLECacheStats',
108  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
109           'cache-miss': 'int', 'cache-miss-rate': 'number',
110           'encoding-rate': 'number', 'overflow': 'int' } }
111
112##
113# @CompressionStats:
114#
115# Detailed migration compression statistics
116#
117# @pages: amount of pages compressed and transferred to the target VM
118#
119# @busy: count of times that no free thread was available to compress
120#     data
121#
122# @busy-rate: rate of thread busy
123#
124# @compressed-size: amount of bytes after compression
125#
126# @compression-rate: rate of compressed size
127#
128# Since: 3.1
129##
130{ 'struct': 'CompressionStats',
131  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
132           'compressed-size': 'int', 'compression-rate': 'number' } }
133
134##
135# @MigrationStatus:
136#
137# An enumeration of migration status.
138#
139# @none: no migration has ever happened.
140#
141# @setup: migration process has been initiated.
142#
143# @cancelling: in the process of cancelling migration.
144#
145# @cancelled: cancelling migration is finished.
146#
147# @active: in the process of doing migration.
148#
149# @postcopy-active: like active, but now in postcopy mode.  (since
150#     2.5)
151#
152# @postcopy-paused: during postcopy but paused.  (since 3.0)
153#
154# @postcopy-recover: trying to recover from a paused postcopy.  (since
155#     3.0)
156#
157# @completed: migration is finished.
158#
159# @failed: some error occurred during migration process.
160#
161# @colo: VM is in the process of fault tolerance, VM can not get into
162#     this state unless colo capability is enabled for migration.
163#     (since 2.8)
164#
165# @pre-switchover: Paused before device serialisation.  (since 2.11)
166#
167# @device: During device serialisation when pause-before-switchover is
168#     enabled (since 2.11)
169#
170# @wait-unplug: wait for device unplug request by guest OS to be
171#     completed.  (since 4.2)
172#
173# Since: 2.3
174##
175{ 'enum': 'MigrationStatus',
176  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
177            'active', 'postcopy-active', 'postcopy-paused',
178            'postcopy-recover', 'completed', 'failed', 'colo',
179            'pre-switchover', 'device', 'wait-unplug' ] }
180##
181# @VfioStats:
182#
183# Detailed VFIO devices migration statistics
184#
185# @transferred: amount of bytes transferred to the target VM by VFIO
186#     devices
187#
188# Since: 5.2
189##
190{ 'struct': 'VfioStats',
191  'data': {'transferred': 'int' } }
192
193##
194# @MigrationInfo:
195#
196# Information about current migration process.
197#
198# @status: @MigrationStatus describing the current migration status.
199#     If this field is not returned, no migration process has been
200#     initiated
201#
202# @ram: @MigrationStats containing detailed migration status, only
203#     returned if status is 'active' or 'completed'(since 1.2)
204#
205# @disk: @MigrationStats containing detailed disk migration status,
206#     only returned if status is 'active' and it is a block migration
207#
208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
209#     migration statistics, only returned if XBZRLE feature is on and
210#     status is 'active' or 'completed' (since 1.2)
211#
212# @total-time: total amount of milliseconds since migration started.
213#     If migration has ended, it returns the total migration time.
214#     (since 1.2)
215#
216# @downtime: only present when migration finishes correctly total
217#     downtime in milliseconds for the guest.  (since 1.3)
218#
219# @expected-downtime: only present while migration is active expected
220#     downtime in milliseconds for the guest in last walk of the dirty
221#     bitmap.  (since 1.3)
222#
223# @setup-time: amount of setup time in milliseconds *before* the
224#     iterations begin but *after* the QMP command is issued.  This is
225#     designed to provide an accounting of any activities (such as
226#     RDMA pinning) which may be expensive, but do not actually occur
227#     during the iterative migration rounds themselves.  (since 1.6)
228#
229# @cpu-throttle-percentage: percentage of time guest cpus are being
230#     throttled during auto-converge.  This is only present when
231#     auto-converge has started throttling guest cpus.  (Since 2.7)
232#
233# @error-desc: the human readable error description string. Clients
234#     should not attempt to parse the error strings.  (Since 2.7)
235#
236# @postcopy-blocktime: total time when all vCPU were blocked during
237#     postcopy live migration.  This is only present when the
238#     postcopy-blocktime migration capability is enabled.  (Since 3.0)
239#
240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
241#     This is only present when the postcopy-blocktime migration
242#     capability is enabled.  (Since 3.0)
243#
244# @compression: migration compression statistics, only returned if
245#     compression feature is on and status is 'active' or 'completed'
246#     (Since 3.1)
247#
248# @socket-address: Only used for tcp, to know what the real port is
249#     (Since 4.0)
250#
251# @vfio: @VfioStats containing detailed VFIO devices migration
252#     statistics, only returned if VFIO device is present, migration
253#     is supported by all VFIO devices and status is 'active' or
254#     'completed' (since 5.2)
255#
256# @blocked-reasons: A list of reasons an outgoing migration is
257#     blocked.  Present and non-empty when migration is blocked.
258#     (since 6.0)
259#
260# @dirty-limit-throttle-time-per-round: Maximum throttle time
261#     (in microseconds) of virtual CPUs each dirty ring full round,
262#     which shows how MigrationCapability dirty-limit affects the
263#     guest during live migration.  (Since 8.1)
264#
265# @dirty-limit-ring-full-time: Estimated average dirty ring full time
266#     (in microseconds) for each dirty ring full round.  The value
267#     equals the dirty ring memory size divided by the average dirty
268#     page rate of the virtual CPU, which can be used to observe the
269#     average memory load of the virtual CPU indirectly.  Note that
270#     zero means guest doesn't dirty memory.  (Since 8.1)
271#
272# Features:
273#
274# @deprecated: Member @disk is deprecated because block migration is.
275#     Member @compression is deprecated because it is unreliable and
276#     untested.  It is recommended to use multifd migration, which
277#     offers an alternative compression implementation that is
278#     reliable and tested.
279#
280# Since: 0.14
281##
282{ 'struct': 'MigrationInfo',
283  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
284           '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] },
285           '*vfio': 'VfioStats',
286           '*xbzrle-cache': 'XBZRLECacheStats',
287           '*total-time': 'int',
288           '*expected-downtime': 'int',
289           '*downtime': 'int',
290           '*setup-time': 'int',
291           '*cpu-throttle-percentage': 'int',
292           '*error-desc': 'str',
293           '*blocked-reasons': ['str'],
294           '*postcopy-blocktime': 'uint32',
295           '*postcopy-vcpu-blocktime': ['uint32'],
296           '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] },
297           '*socket-address': ['SocketAddress'],
298           '*dirty-limit-throttle-time-per-round': 'uint64',
299           '*dirty-limit-ring-full-time': 'uint64'} }
300
301##
302# @query-migrate:
303#
304# Returns information about current migration process.  If migration
305# is active there will be another json-object with RAM migration
306# status and if block migration is active another one with block
307# migration status.
308#
309# Returns: @MigrationInfo
310#
311# Since: 0.14
312#
313# Examples:
314#
315#     1. Before the first migration
316#
317#     -> { "execute": "query-migrate" }
318#     <- { "return": {} }
319#
320#     2. Migration is done and has succeeded
321#
322#     -> { "execute": "query-migrate" }
323#     <- { "return": {
324#             "status": "completed",
325#             "total-time":12345,
326#             "setup-time":12345,
327#             "downtime":12345,
328#             "ram":{
329#               "transferred":123,
330#               "remaining":123,
331#               "total":246,
332#               "duplicate":123,
333#               "normal":123,
334#               "normal-bytes":123456,
335#               "dirty-sync-count":15
336#             }
337#          }
338#        }
339#
340#     3. Migration is done and has failed
341#
342#     -> { "execute": "query-migrate" }
343#     <- { "return": { "status": "failed" } }
344#
345#     4. Migration is being performed and is not a block migration:
346#
347#     -> { "execute": "query-migrate" }
348#     <- {
349#           "return":{
350#              "status":"active",
351#              "total-time":12345,
352#              "setup-time":12345,
353#              "expected-downtime":12345,
354#              "ram":{
355#                 "transferred":123,
356#                 "remaining":123,
357#                 "total":246,
358#                 "duplicate":123,
359#                 "normal":123,
360#                 "normal-bytes":123456,
361#                 "dirty-sync-count":15
362#              }
363#           }
364#        }
365#
366#     5. Migration is being performed and is a block migration:
367#
368#     -> { "execute": "query-migrate" }
369#     <- {
370#           "return":{
371#              "status":"active",
372#              "total-time":12345,
373#              "setup-time":12345,
374#              "expected-downtime":12345,
375#              "ram":{
376#                 "total":1057024,
377#                 "remaining":1053304,
378#                 "transferred":3720,
379#                 "duplicate":123,
380#                 "normal":123,
381#                 "normal-bytes":123456,
382#                 "dirty-sync-count":15
383#              },
384#              "disk":{
385#                 "total":20971520,
386#                 "remaining":20880384,
387#                 "transferred":91136
388#              }
389#           }
390#        }
391#
392#     6. Migration is being performed and XBZRLE is active:
393#
394#     -> { "execute": "query-migrate" }
395#     <- {
396#           "return":{
397#              "status":"active",
398#              "total-time":12345,
399#              "setup-time":12345,
400#              "expected-downtime":12345,
401#              "ram":{
402#                 "total":1057024,
403#                 "remaining":1053304,
404#                 "transferred":3720,
405#                 "duplicate":10,
406#                 "normal":3333,
407#                 "normal-bytes":3412992,
408#                 "dirty-sync-count":15
409#              },
410#              "xbzrle-cache":{
411#                 "cache-size":67108864,
412#                 "bytes":20971520,
413#                 "pages":2444343,
414#                 "cache-miss":2244,
415#                 "cache-miss-rate":0.123,
416#                 "encoding-rate":80.1,
417#                 "overflow":34434
418#              }
419#           }
420#        }
421##
422{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
423
424##
425# @MigrationCapability:
426#
427# Migration capabilities enumeration
428#
429# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
430#     Encoding). This feature allows us to minimize migration traffic
431#     for certain work loads, by sending compressed difference of the
432#     pages
433#
434# @rdma-pin-all: Controls whether or not the entire VM memory
435#     footprint is mlock()'d on demand or all at once.  Refer to
436#     docs/rdma.txt for usage.  Disabled by default.  (since 2.0)
437#
438# @zero-blocks: During storage migration encode blocks of zeroes
439#     efficiently.  This essentially saves 1MB of zeroes per block on
440#     the wire.  Enabling requires source and target VM to support
441#     this feature.  To enable it is sufficient to enable the
442#     capability on the source VM. The feature is disabled by default.
443#     (since 1.6)
444#
445# @compress: Use multiple compression threads to accelerate live
446#     migration.  This feature can help to reduce the migration
447#     traffic, by sending compressed pages.  Please note that if
448#     compress and xbzrle are both on, compress only takes effect in
449#     the ram bulk stage, after that, it will be disabled and only
450#     xbzrle takes effect, this can help to minimize migration
451#     traffic.  The feature is disabled by default.  (since 2.4)
452#
453# @events: generate events for each migration state change (since 2.4)
454#
455# @auto-converge: If enabled, QEMU will automatically throttle down
456#     the guest to speed up convergence of RAM migration.  (since 1.6)
457#
458# @postcopy-ram: Start executing on the migration target before all of
459#     RAM has been migrated, pulling the remaining pages along as
460#     needed.  The capacity must have the same setting on both source
461#     and target or migration will not even start.  NOTE: If the
462#     migration fails during postcopy the VM will fail.  (since 2.6)
463#
464# @x-colo: If enabled, migration will never end, and the state of the
465#     VM on the primary side will be migrated continuously to the VM
466#     on secondary side, this process is called COarse-Grain LOck
467#     Stepping (COLO) for Non-stop Service.  (since 2.8)
468#
469# @release-ram: if enabled, qemu will free the migrated ram pages on
470#     the source during postcopy-ram migration.  (since 2.9)
471#
472# @block: If enabled, QEMU will also migrate the contents of all block
473#     devices.  Default is disabled.  A possible alternative uses
474#     mirror jobs to a builtin NBD server on the destination, which
475#     offers more flexibility.  (Since 2.10)
476#
477# @return-path: If enabled, migration will use the return path even
478#     for precopy.  (since 2.10)
479#
480# @pause-before-switchover: Pause outgoing migration before
481#     serialising device state and before disabling block IO (since
482#     2.11)
483#
484# @multifd: Use more than one fd for migration (since 4.0)
485#
486# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
487#     (since 2.12)
488#
489# @postcopy-blocktime: Calculate downtime for postcopy live migration
490#     (since 3.0)
491#
492# @late-block-activate: If enabled, the destination will not activate
493#     block devices (and thus take locks) immediately at the end of
494#     migration.  (since 3.0)
495#
496# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
497#     that is accessible on the destination machine.  (since 4.0)
498#
499# @validate-uuid: Send the UUID of the source to allow the destination
500#     to ensure it is the same.  (since 4.2)
501#
502# @background-snapshot: If enabled, the migration stream will be a
503#     snapshot of the VM exactly at the point when the migration
504#     procedure starts.  The VM RAM is saved with running VM. (since
505#     6.0)
506#
507# @zero-copy-send: Controls behavior on sending memory pages on
508#     migration.  When true, enables a zero-copy mechanism for sending
509#     memory pages, if host supports it.  Requires that QEMU be
510#     permitted to use locked memory for guest RAM pages.  (since 7.1)
511#
512# @postcopy-preempt: If enabled, the migration process will allow
513#     postcopy requests to preempt precopy stream, so postcopy
514#     requests will be handled faster.  This is a performance feature
515#     and should not affect the correctness of postcopy migration.
516#     (since 7.1)
517#
518# @switchover-ack: If enabled, migration will not stop the source VM
519#     and complete the migration until an ACK is received from the
520#     destination that it's OK to do so.  Exactly when this ACK is
521#     sent depends on the migrated devices that use this feature.  For
522#     example, a device can use it to make sure some of its data is
523#     sent and loaded in the destination before doing switchover.
524#     This can reduce downtime if devices that support this capability
525#     are present.  'return-path' capability must be enabled to use
526#     it.  (since 8.1)
527#
528# @dirty-limit: If enabled, migration will throttle vCPUs as needed to
529#     keep their dirty page rate within @vcpu-dirty-limit.  This can
530#     improve responsiveness of large guests during live migration,
531#     and can result in more stable read performance.  Requires KVM
532#     with accelerator property "dirty-ring-size" set.  (Since 8.1)
533#
534# @mapped-ram: Migrate using fixed offsets in the migration file for
535#     each RAM page.  Requires a migration URI that supports seeking,
536#     such as a file.  (since 9.0)
537#
538# Features:
539#
540# @deprecated: Member @block is deprecated.  Use blockdev-mirror with
541#     NBD instead.  Member @compress is deprecated because it is
542#     unreliable and untested.  It is recommended to use multifd
543#     migration, which offers an alternative compression
544#     implementation that is reliable and tested.
545#
546# @unstable: Members @x-colo and @x-ignore-shared are experimental.
547#
548# Since: 1.2
549##
550{ 'enum': 'MigrationCapability',
551  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
552           { 'name': 'compress', 'features': [ 'deprecated' ] },
553           'events', 'postcopy-ram',
554           { 'name': 'x-colo', 'features': [ 'unstable' ] },
555           'release-ram',
556           { 'name': 'block', 'features': [ 'deprecated' ] },
557           'return-path', 'pause-before-switchover', 'multifd',
558           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
559           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
560           'validate-uuid', 'background-snapshot',
561           'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
562           'dirty-limit', 'mapped-ram'] }
563
564##
565# @MigrationCapabilityStatus:
566#
567# Migration capability information
568#
569# @capability: capability enum
570#
571# @state: capability state bool
572#
573# Since: 1.2
574##
575{ 'struct': 'MigrationCapabilityStatus',
576  'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
577
578##
579# @migrate-set-capabilities:
580#
581# Enable/Disable the following migration capabilities (like xbzrle)
582#
583# @capabilities: json array of capability modifications to make
584#
585# Since: 1.2
586#
587# Example:
588#
589#     -> { "execute": "migrate-set-capabilities" , "arguments":
590#          { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
591#     <- { "return": {} }
592##
593{ 'command': 'migrate-set-capabilities',
594  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
595
596##
597# @query-migrate-capabilities:
598#
599# Returns information about the current migration capabilities status
600#
601# Returns: @MigrationCapabilityStatus
602#
603# Since: 1.2
604#
605# Example:
606#
607#     -> { "execute": "query-migrate-capabilities" }
608#     <- { "return": [
609#           {"state": false, "capability": "xbzrle"},
610#           {"state": false, "capability": "rdma-pin-all"},
611#           {"state": false, "capability": "auto-converge"},
612#           {"state": false, "capability": "zero-blocks"},
613#           {"state": false, "capability": "compress"},
614#           {"state": true, "capability": "events"},
615#           {"state": false, "capability": "postcopy-ram"},
616#           {"state": false, "capability": "x-colo"}
617#        ]}
618##
619{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
620
621##
622# @MultiFDCompression:
623#
624# An enumeration of multifd compression methods.
625#
626# @none: no compression.
627#
628# @zlib: use zlib compression method.
629#
630# @zstd: use zstd compression method.
631#
632# Since: 5.0
633##
634{ 'enum': 'MultiFDCompression',
635  'data': [ 'none', 'zlib',
636            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
637
638##
639# @MigMode:
640#
641# @normal: the original form of migration. (since 8.2)
642#
643# @cpr-reboot: The migrate command stops the VM and saves state to
644#     the URI.  After quitting QEMU, the user resumes by running
645#     QEMU -incoming.
646#
647#     This mode allows the user to quit QEMU, optionally update and
648#     reboot the OS, and restart QEMU.  If the user reboots, the URI
649#     must persist across the reboot, such as by using a file.
650#
651#     Unlike normal mode, the use of certain local storage options
652#     does not block the migration, but the user must not modify the
653#     contents of guest block devices between the quit and restart.
654#
655#     This mode supports VFIO devices provided the user first puts
656#     the guest in the suspended runstate, such as by issuing
657#     guest-suspend-ram to the QEMU guest agent.
658#
659#     Best performance is achieved when the memory backend is shared
660#     and the @x-ignore-shared migration capability is set, but this
661#     is not required.  Further, if the user reboots before restarting
662#     such a configuration, the shared memory must persist across the
663#     reboot, such as by backing it with a dax device.
664#
665#     @cpr-reboot may not be used with postcopy, background-snapshot,
666#     or COLO.
667#
668#     (since 8.2)
669##
670{ 'enum': 'MigMode',
671  'data': [ 'normal', 'cpr-reboot' ] }
672
673##
674# @BitmapMigrationBitmapAliasTransform:
675#
676# @persistent: If present, the bitmap will be made persistent or
677#     transient depending on this parameter.
678#
679# Since: 6.0
680##
681{ 'struct': 'BitmapMigrationBitmapAliasTransform',
682  'data': {
683      '*persistent': 'bool'
684  } }
685
686##
687# @BitmapMigrationBitmapAlias:
688#
689# @name: The name of the bitmap.
690#
691# @alias: An alias name for migration (for example the bitmap name on
692#     the opposite site).
693#
694# @transform: Allows the modification of the migrated bitmap.  (since
695#     6.0)
696#
697# Since: 5.2
698##
699{ 'struct': 'BitmapMigrationBitmapAlias',
700  'data': {
701      'name': 'str',
702      'alias': 'str',
703      '*transform': 'BitmapMigrationBitmapAliasTransform'
704  } }
705
706##
707# @BitmapMigrationNodeAlias:
708#
709# Maps a block node name and the bitmaps it has to aliases for dirty
710# bitmap migration.
711#
712# @node-name: A block node name.
713#
714# @alias: An alias block node name for migration (for example the node
715#     name on the opposite site).
716#
717# @bitmaps: Mappings for the bitmaps on this node.
718#
719# Since: 5.2
720##
721{ 'struct': 'BitmapMigrationNodeAlias',
722  'data': {
723      'node-name': 'str',
724      'alias': 'str',
725      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
726  } }
727
728##
729# @MigrationParameter:
730#
731# Migration parameters enumeration
732#
733# @announce-initial: Initial delay (in milliseconds) before sending
734#     the first announce (Since 4.0)
735#
736# @announce-max: Maximum delay (in milliseconds) between packets in
737#     the announcement (Since 4.0)
738#
739# @announce-rounds: Number of self-announce packets sent after
740#     migration (Since 4.0)
741#
742# @announce-step: Increase in delay (in milliseconds) between
743#     subsequent packets in the announcement (Since 4.0)
744#
745# @compress-level: Set the compression level to be used in live
746#     migration, the compression level is an integer between 0 and 9,
747#     where 0 means no compression, 1 means the best compression
748#     speed, and 9 means best compression ratio which will consume
749#     more CPU.
750#
751# @compress-threads: Set compression thread count to be used in live
752#     migration, the compression thread count is an integer between 1
753#     and 255.
754#
755# @compress-wait-thread: Controls behavior when all compression
756#     threads are currently busy.  If true (default), wait for a free
757#     compression thread to become available; otherwise, send the page
758#     uncompressed.  (Since 3.1)
759#
760# @decompress-threads: Set decompression thread count to be used in
761#     live migration, the decompression thread count is an integer
762#     between 1 and 255. Usually, decompression is at least 4 times as
763#     fast as compression, so set the decompress-threads to the number
764#     about 1/4 of compress-threads is adequate.
765#
766# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
767#     bytes_xfer_period to trigger throttling.  It is expressed as
768#     percentage.  The default value is 50. (Since 5.0)
769#
770# @cpu-throttle-initial: Initial percentage of time guest cpus are
771#     throttled when migration auto-converge is activated.  The
772#     default value is 20. (Since 2.7)
773#
774# @cpu-throttle-increment: throttle percentage increase each time
775#     auto-converge detects that migration is not making progress.
776#     The default value is 10. (Since 2.7)
777#
778# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
779#     the tail stage of throttling, the Guest is very sensitive to CPU
780#     percentage while the @cpu-throttle -increment is excessive
781#     usually at tail stage.  If this parameter is true, we will
782#     compute the ideal CPU percentage used by the Guest, which may
783#     exactly make the dirty rate match the dirty rate threshold.
784#     Then we will choose a smaller throttle increment between the one
785#     specified by @cpu-throttle-increment and the one generated by
786#     ideal CPU percentage.  Therefore, it is compatible to
787#     traditional throttling, meanwhile the throttle increment won't
788#     be excessive at tail stage.  The default value is false.  (Since
789#     5.1)
790#
791# @tls-creds: ID of the 'tls-creds' object that provides credentials
792#     for establishing a TLS connection over the migration data
793#     channel.  On the outgoing side of the migration, the credentials
794#     must be for a 'client' endpoint, while for the incoming side the
795#     credentials must be for a 'server' endpoint.  Setting this will
796#     enable TLS for all migrations.  The default is unset, resulting
797#     in unsecured migration at the QEMU level.  (Since 2.7)
798#
799# @tls-hostname: hostname of the target host for the migration.  This
800#     is required when using x509 based TLS credentials and the
801#     migration URI does not already include a hostname.  For example
802#     if using fd: or exec: based migration, the hostname must be
803#     provided so that the server's x509 certificate identity can be
804#     validated.  (Since 2.7)
805#
806# @tls-authz: ID of the 'authz' object subclass that provides access
807#     control checking of the TLS x509 certificate distinguished name.
808#     This object is only resolved at time of use, so can be deleted
809#     and recreated on the fly while the migration server is active.
810#     If missing, it will default to denying access (Since 4.0)
811#
812# @max-bandwidth: to set maximum speed for migration.  maximum speed
813#     in bytes per second.  (Since 2.8)
814#
815# @avail-switchover-bandwidth: to set the available bandwidth that
816#     migration can use during switchover phase.  NOTE!  This does not
817#     limit the bandwidth during switchover, but only for calculations when
818#     making decisions to switchover.  By default, this value is zero,
819#     which means QEMU will estimate the bandwidth automatically.  This can
820#     be set when the estimated value is not accurate, while the user is
821#     able to guarantee such bandwidth is available when switching over.
822#     When specified correctly, this can make the switchover decision much
823#     more accurate.  (Since 8.2)
824#
825# @downtime-limit: set maximum tolerated downtime for migration.
826#     maximum downtime in milliseconds (Since 2.8)
827#
828# @x-checkpoint-delay: The delay time (in ms) between two COLO
829#     checkpoints in periodic mode.  (Since 2.8)
830#
831# @block-incremental: Affects how much storage is migrated when the
832#     block migration capability is enabled.  When false, the entire
833#     storage backing chain is migrated into a flattened image at the
834#     destination; when true, only the active qcow2 layer is migrated
835#     and the destination must already have access to the same backing
836#     chain as was used on the source.  (since 2.10)
837#
838# @multifd-channels: Number of channels used to migrate data in
839#     parallel.  This is the same number that the number of sockets
840#     used for migration.  The default value is 2 (since 4.0)
841#
842# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
843#     needs to be a multiple of the target page size and a power of 2
844#     (Since 2.11)
845#
846# @max-postcopy-bandwidth: Background transfer bandwidth during
847#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
848#     (Since 3.0)
849#
850# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
851#     (Since 3.1)
852#
853# @multifd-compression: Which compression method to use.  Defaults to
854#     none.  (Since 5.0)
855#
856# @multifd-zlib-level: Set the compression level to be used in live
857#     migration, the compression level is an integer between 0 and 9,
858#     where 0 means no compression, 1 means the best compression
859#     speed, and 9 means best compression ratio which will consume
860#     more CPU. Defaults to 1. (Since 5.0)
861#
862# @multifd-zstd-level: Set the compression level to be used in live
863#     migration, the compression level is an integer between 0 and 20,
864#     where 0 means no compression, 1 means the best compression
865#     speed, and 20 means best compression ratio which will consume
866#     more CPU. Defaults to 1. (Since 5.0)
867#
868# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
869#     aliases for the purpose of dirty bitmap migration.  Such aliases
870#     may for example be the corresponding names on the opposite site.
871#     The mapping must be one-to-one, but not necessarily complete: On
872#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
873#     will be ignored.  On the destination, encountering an unmapped
874#     alias in the incoming migration stream will result in a report,
875#     and all further bitmap migration data will then be discarded.
876#     Note that the destination does not know about bitmaps it does
877#     not receive, so there is no limitation or requirement regarding
878#     the number of bitmaps received, or how they are named, or on
879#     which nodes they are placed.  By default (when this parameter
880#     has never been set), bitmap names are mapped to themselves.
881#     Nodes are mapped to their block device name if there is one, and
882#     to their node name otherwise.  (Since 5.2)
883#
884# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
885#     limit during live migration.  Should be in the range 1 to 1000ms.
886#     Defaults to 1000ms.  (Since 8.1)
887#
888# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
889#     Defaults to 1.  (Since 8.1)
890#
891# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
892#        (Since 8.2)
893#
894# Features:
895#
896# @deprecated: Member @block-incremental is deprecated.  Use
897#     blockdev-mirror with NBD instead.  Members @compress-level,
898#     @compress-threads, @decompress-threads and @compress-wait-thread
899#     are deprecated because @compression is deprecated.
900#
901# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
902#     are experimental.
903#
904# Since: 2.4
905##
906{ 'enum': 'MigrationParameter',
907  'data': ['announce-initial', 'announce-max',
908           'announce-rounds', 'announce-step',
909           { 'name': 'compress-level', 'features': [ 'deprecated' ] },
910           { 'name': 'compress-threads', 'features': [ 'deprecated' ] },
911           { 'name': 'decompress-threads', 'features': [ 'deprecated' ] },
912           { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] },
913           'throttle-trigger-threshold',
914           'cpu-throttle-initial', 'cpu-throttle-increment',
915           'cpu-throttle-tailslow',
916           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
917           'avail-switchover-bandwidth', 'downtime-limit',
918           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
919           { 'name': 'block-incremental', 'features': [ 'deprecated' ] },
920           'multifd-channels',
921           'xbzrle-cache-size', 'max-postcopy-bandwidth',
922           'max-cpu-throttle', 'multifd-compression',
923           'multifd-zlib-level', 'multifd-zstd-level',
924           'block-bitmap-mapping',
925           { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
926           'vcpu-dirty-limit',
927           'mode'] }
928
929##
930# @MigrateSetParameters:
931#
932# @announce-initial: Initial delay (in milliseconds) before sending
933#     the first announce (Since 4.0)
934#
935# @announce-max: Maximum delay (in milliseconds) between packets in
936#     the announcement (Since 4.0)
937#
938# @announce-rounds: Number of self-announce packets sent after
939#     migration (Since 4.0)
940#
941# @announce-step: Increase in delay (in milliseconds) between
942#     subsequent packets in the announcement (Since 4.0)
943#
944# @compress-level: compression level
945#
946# @compress-threads: compression thread count
947#
948# @compress-wait-thread: Controls behavior when all compression
949#     threads are currently busy.  If true (default), wait for a free
950#     compression thread to become available; otherwise, send the page
951#     uncompressed.  (Since 3.1)
952#
953# @decompress-threads: decompression thread count
954#
955# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
956#     bytes_xfer_period to trigger throttling.  It is expressed as
957#     percentage.  The default value is 50. (Since 5.0)
958#
959# @cpu-throttle-initial: Initial percentage of time guest cpus are
960#     throttled when migration auto-converge is activated.  The
961#     default value is 20. (Since 2.7)
962#
963# @cpu-throttle-increment: throttle percentage increase each time
964#     auto-converge detects that migration is not making progress.
965#     The default value is 10. (Since 2.7)
966#
967# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
968#     the tail stage of throttling, the Guest is very sensitive to CPU
969#     percentage while the @cpu-throttle -increment is excessive
970#     usually at tail stage.  If this parameter is true, we will
971#     compute the ideal CPU percentage used by the Guest, which may
972#     exactly make the dirty rate match the dirty rate threshold.
973#     Then we will choose a smaller throttle increment between the one
974#     specified by @cpu-throttle-increment and the one generated by
975#     ideal CPU percentage.  Therefore, it is compatible to
976#     traditional throttling, meanwhile the throttle increment won't
977#     be excessive at tail stage.  The default value is false.  (Since
978#     5.1)
979#
980# @tls-creds: ID of the 'tls-creds' object that provides credentials
981#     for establishing a TLS connection over the migration data
982#     channel.  On the outgoing side of the migration, the credentials
983#     must be for a 'client' endpoint, while for the incoming side the
984#     credentials must be for a 'server' endpoint.  Setting this to a
985#     non-empty string enables TLS for all migrations.  An empty
986#     string means that QEMU will use plain text mode for migration,
987#     rather than TLS (Since 2.9) Previously (since 2.7), this was
988#     reported by omitting tls-creds instead.
989#
990# @tls-hostname: hostname of the target host for the migration.  This
991#     is required when using x509 based TLS credentials and the
992#     migration URI does not already include a hostname.  For example
993#     if using fd: or exec: based migration, the hostname must be
994#     provided so that the server's x509 certificate identity can be
995#     validated.  (Since 2.7) An empty string means that QEMU will use
996#     the hostname associated with the migration URI, if any.  (Since
997#     2.9) Previously (since 2.7), this was reported by omitting
998#     tls-hostname instead.
999#
1000# @tls-authz: ID of the 'authz' object subclass that provides access
1001#     control checking of the TLS x509 certificate distinguished name.
1002#     (Since 4.0)
1003#
1004# @max-bandwidth: to set maximum speed for migration.  maximum speed
1005#     in bytes per second.  (Since 2.8)
1006#
1007# @avail-switchover-bandwidth: to set the available bandwidth that
1008#     migration can use during switchover phase.  NOTE!  This does not
1009#     limit the bandwidth during switchover, but only for calculations when
1010#     making decisions to switchover.  By default, this value is zero,
1011#     which means QEMU will estimate the bandwidth automatically.  This can
1012#     be set when the estimated value is not accurate, while the user is
1013#     able to guarantee such bandwidth is available when switching over.
1014#     When specified correctly, this can make the switchover decision much
1015#     more accurate.  (Since 8.2)
1016#
1017# @downtime-limit: set maximum tolerated downtime for migration.
1018#     maximum downtime in milliseconds (Since 2.8)
1019#
1020# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1021#     (Since 2.8)
1022#
1023# @block-incremental: Affects how much storage is migrated when the
1024#     block migration capability is enabled.  When false, the entire
1025#     storage backing chain is migrated into a flattened image at the
1026#     destination; when true, only the active qcow2 layer is migrated
1027#     and the destination must already have access to the same backing
1028#     chain as was used on the source.  (since 2.10)
1029#
1030# @multifd-channels: Number of channels used to migrate data in
1031#     parallel.  This is the same number that the number of sockets
1032#     used for migration.  The default value is 2 (since 4.0)
1033#
1034# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1035#     needs to be a multiple of the target page size and a power of 2
1036#     (Since 2.11)
1037#
1038# @max-postcopy-bandwidth: Background transfer bandwidth during
1039#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1040#     (Since 3.0)
1041#
1042# @max-cpu-throttle: maximum cpu throttle percentage.  The default
1043#     value is 99. (Since 3.1)
1044#
1045# @multifd-compression: Which compression method to use.  Defaults to
1046#     none.  (Since 5.0)
1047#
1048# @multifd-zlib-level: Set the compression level to be used in live
1049#     migration, the compression level is an integer between 0 and 9,
1050#     where 0 means no compression, 1 means the best compression
1051#     speed, and 9 means best compression ratio which will consume
1052#     more CPU. Defaults to 1. (Since 5.0)
1053#
1054# @multifd-zstd-level: Set the compression level to be used in live
1055#     migration, the compression level is an integer between 0 and 20,
1056#     where 0 means no compression, 1 means the best compression
1057#     speed, and 20 means best compression ratio which will consume
1058#     more CPU. Defaults to 1. (Since 5.0)
1059#
1060# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1061#     aliases for the purpose of dirty bitmap migration.  Such aliases
1062#     may for example be the corresponding names on the opposite site.
1063#     The mapping must be one-to-one, but not necessarily complete: On
1064#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1065#     will be ignored.  On the destination, encountering an unmapped
1066#     alias in the incoming migration stream will result in a report,
1067#     and all further bitmap migration data will then be discarded.
1068#     Note that the destination does not know about bitmaps it does
1069#     not receive, so there is no limitation or requirement regarding
1070#     the number of bitmaps received, or how they are named, or on
1071#     which nodes they are placed.  By default (when this parameter
1072#     has never been set), bitmap names are mapped to themselves.
1073#     Nodes are mapped to their block device name if there is one, and
1074#     to their node name otherwise.  (Since 5.2)
1075#
1076# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1077#     limit during live migration.  Should be in the range 1 to 1000ms.
1078#     Defaults to 1000ms.  (Since 8.1)
1079#
1080# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1081#     Defaults to 1.  (Since 8.1)
1082#
1083# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
1084#        (Since 8.2)
1085#
1086# Features:
1087#
1088# @deprecated: Member @block-incremental is deprecated.  Use
1089#     blockdev-mirror with NBD instead.  Members @compress-level,
1090#     @compress-threads, @decompress-threads and @compress-wait-thread
1091#     are deprecated because @compression is deprecated.
1092#
1093# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1094#     are experimental.
1095#
1096# TODO: either fuse back into MigrationParameters, or make
1097#     MigrationParameters members mandatory
1098#
1099# Since: 2.4
1100##
1101{ 'struct': 'MigrateSetParameters',
1102  'data': { '*announce-initial': 'size',
1103            '*announce-max': 'size',
1104            '*announce-rounds': 'size',
1105            '*announce-step': 'size',
1106            '*compress-level': { 'type': 'uint8',
1107                                 'features': [ 'deprecated' ] },
1108            '*compress-threads':  { 'type': 'uint8',
1109                                    'features': [ 'deprecated' ] },
1110            '*compress-wait-thread':  { 'type': 'bool',
1111                                        'features': [ 'deprecated' ] },
1112            '*decompress-threads':  { 'type': 'uint8',
1113                                      'features': [ 'deprecated' ] },
1114            '*throttle-trigger-threshold': 'uint8',
1115            '*cpu-throttle-initial': 'uint8',
1116            '*cpu-throttle-increment': 'uint8',
1117            '*cpu-throttle-tailslow': 'bool',
1118            '*tls-creds': 'StrOrNull',
1119            '*tls-hostname': 'StrOrNull',
1120            '*tls-authz': 'StrOrNull',
1121            '*max-bandwidth': 'size',
1122            '*avail-switchover-bandwidth': 'size',
1123            '*downtime-limit': 'uint64',
1124            '*x-checkpoint-delay': { 'type': 'uint32',
1125                                     'features': [ 'unstable' ] },
1126            '*block-incremental': { 'type': 'bool',
1127                                    'features': [ 'deprecated' ] },
1128            '*multifd-channels': 'uint8',
1129            '*xbzrle-cache-size': 'size',
1130            '*max-postcopy-bandwidth': 'size',
1131            '*max-cpu-throttle': 'uint8',
1132            '*multifd-compression': 'MultiFDCompression',
1133            '*multifd-zlib-level': 'uint8',
1134            '*multifd-zstd-level': 'uint8',
1135            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1136            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1137                                            'features': [ 'unstable' ] },
1138            '*vcpu-dirty-limit': 'uint64',
1139            '*mode': 'MigMode'} }
1140
1141##
1142# @migrate-set-parameters:
1143#
1144# Set various migration parameters.
1145#
1146# Since: 2.4
1147#
1148# Example:
1149#
1150#     -> { "execute": "migrate-set-parameters" ,
1151#          "arguments": { "multifd-channels": 5 } }
1152#     <- { "return": {} }
1153##
1154{ 'command': 'migrate-set-parameters', 'boxed': true,
1155  'data': 'MigrateSetParameters' }
1156
1157##
1158# @MigrationParameters:
1159#
1160# The optional members aren't actually optional.
1161#
1162# @announce-initial: Initial delay (in milliseconds) before sending
1163#     the first announce (Since 4.0)
1164#
1165# @announce-max: Maximum delay (in milliseconds) between packets in
1166#     the announcement (Since 4.0)
1167#
1168# @announce-rounds: Number of self-announce packets sent after
1169#     migration (Since 4.0)
1170#
1171# @announce-step: Increase in delay (in milliseconds) between
1172#     subsequent packets in the announcement (Since 4.0)
1173#
1174# @compress-level: compression level
1175#
1176# @compress-threads: compression thread count
1177#
1178# @compress-wait-thread: Controls behavior when all compression
1179#     threads are currently busy.  If true (default), wait for a free
1180#     compression thread to become available; otherwise, send the page
1181#     uncompressed.  (Since 3.1)
1182#
1183# @decompress-threads: decompression thread count
1184#
1185# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1186#     bytes_xfer_period to trigger throttling.  It is expressed as
1187#     percentage.  The default value is 50. (Since 5.0)
1188#
1189# @cpu-throttle-initial: Initial percentage of time guest cpus are
1190#     throttled when migration auto-converge is activated.  (Since
1191#     2.7)
1192#
1193# @cpu-throttle-increment: throttle percentage increase each time
1194#     auto-converge detects that migration is not making progress.
1195#     (Since 2.7)
1196#
1197# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1198#     the tail stage of throttling, the Guest is very sensitive to CPU
1199#     percentage while the @cpu-throttle -increment is excessive
1200#     usually at tail stage.  If this parameter is true, we will
1201#     compute the ideal CPU percentage used by the Guest, which may
1202#     exactly make the dirty rate match the dirty rate threshold.
1203#     Then we will choose a smaller throttle increment between the one
1204#     specified by @cpu-throttle-increment and the one generated by
1205#     ideal CPU percentage.  Therefore, it is compatible to
1206#     traditional throttling, meanwhile the throttle increment won't
1207#     be excessive at tail stage.  The default value is false.  (Since
1208#     5.1)
1209#
1210# @tls-creds: ID of the 'tls-creds' object that provides credentials
1211#     for establishing a TLS connection over the migration data
1212#     channel.  On the outgoing side of the migration, the credentials
1213#     must be for a 'client' endpoint, while for the incoming side the
1214#     credentials must be for a 'server' endpoint.  An empty string
1215#     means that QEMU will use plain text mode for migration, rather
1216#     than TLS (Since 2.7) Note: 2.8 reports this by omitting
1217#     tls-creds instead.
1218#
1219# @tls-hostname: hostname of the target host for the migration.  This
1220#     is required when using x509 based TLS credentials and the
1221#     migration URI does not already include a hostname.  For example
1222#     if using fd: or exec: based migration, the hostname must be
1223#     provided so that the server's x509 certificate identity can be
1224#     validated.  (Since 2.7) An empty string means that QEMU will use
1225#     the hostname associated with the migration URI, if any.  (Since
1226#     2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1227#
1228# @tls-authz: ID of the 'authz' object subclass that provides access
1229#     control checking of the TLS x509 certificate distinguished name.
1230#     (Since 4.0)
1231#
1232# @max-bandwidth: to set maximum speed for migration.  maximum speed
1233#     in bytes per second.  (Since 2.8)
1234#
1235# @avail-switchover-bandwidth: to set the available bandwidth that
1236#     migration can use during switchover phase.  NOTE!  This does not
1237#     limit the bandwidth during switchover, but only for calculations when
1238#     making decisions to switchover.  By default, this value is zero,
1239#     which means QEMU will estimate the bandwidth automatically.  This can
1240#     be set when the estimated value is not accurate, while the user is
1241#     able to guarantee such bandwidth is available when switching over.
1242#     When specified correctly, this can make the switchover decision much
1243#     more accurate.  (Since 8.2)
1244#
1245# @downtime-limit: set maximum tolerated downtime for migration.
1246#     maximum downtime in milliseconds (Since 2.8)
1247#
1248# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1249#     (Since 2.8)
1250#
1251# @block-incremental: Affects how much storage is migrated when the
1252#     block migration capability is enabled.  When false, the entire
1253#     storage backing chain is migrated into a flattened image at the
1254#     destination; when true, only the active qcow2 layer is migrated
1255#     and the destination must already have access to the same backing
1256#     chain as was used on the source.  (since 2.10)
1257#
1258# @multifd-channels: Number of channels used to migrate data in
1259#     parallel.  This is the same number that the number of sockets
1260#     used for migration.  The default value is 2 (since 4.0)
1261#
1262# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1263#     needs to be a multiple of the target page size and a power of 2
1264#     (Since 2.11)
1265#
1266# @max-postcopy-bandwidth: Background transfer bandwidth during
1267#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1268#     (Since 3.0)
1269#
1270# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1271#     (Since 3.1)
1272#
1273# @multifd-compression: Which compression method to use.  Defaults to
1274#     none.  (Since 5.0)
1275#
1276# @multifd-zlib-level: Set the compression level to be used in live
1277#     migration, the compression level is an integer between 0 and 9,
1278#     where 0 means no compression, 1 means the best compression
1279#     speed, and 9 means best compression ratio which will consume
1280#     more CPU. Defaults to 1. (Since 5.0)
1281#
1282# @multifd-zstd-level: Set the compression level to be used in live
1283#     migration, the compression level is an integer between 0 and 20,
1284#     where 0 means no compression, 1 means the best compression
1285#     speed, and 20 means best compression ratio which will consume
1286#     more CPU. Defaults to 1. (Since 5.0)
1287#
1288# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1289#     aliases for the purpose of dirty bitmap migration.  Such aliases
1290#     may for example be the corresponding names on the opposite site.
1291#     The mapping must be one-to-one, but not necessarily complete: On
1292#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1293#     will be ignored.  On the destination, encountering an unmapped
1294#     alias in the incoming migration stream will result in a report,
1295#     and all further bitmap migration data will then be discarded.
1296#     Note that the destination does not know about bitmaps it does
1297#     not receive, so there is no limitation or requirement regarding
1298#     the number of bitmaps received, or how they are named, or on
1299#     which nodes they are placed.  By default (when this parameter
1300#     has never been set), bitmap names are mapped to themselves.
1301#     Nodes are mapped to their block device name if there is one, and
1302#     to their node name otherwise.  (Since 5.2)
1303#
1304# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1305#     limit during live migration.  Should be in the range 1 to 1000ms.
1306#     Defaults to 1000ms.  (Since 8.1)
1307#
1308# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1309#     Defaults to 1.  (Since 8.1)
1310#
1311# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
1312#        (Since 8.2)
1313#
1314# Features:
1315#
1316# @deprecated: Member @block-incremental is deprecated.  Use
1317#     blockdev-mirror with NBD instead.  Members @compress-level,
1318#     @compress-threads, @decompress-threads and @compress-wait-thread
1319#     are deprecated because @compression is deprecated.
1320#
1321# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1322#     are experimental.
1323#
1324# Since: 2.4
1325##
1326{ 'struct': 'MigrationParameters',
1327  'data': { '*announce-initial': 'size',
1328            '*announce-max': 'size',
1329            '*announce-rounds': 'size',
1330            '*announce-step': 'size',
1331            '*compress-level': { 'type': 'uint8',
1332                                 'features': [ 'deprecated' ] },
1333            '*compress-threads': { 'type': 'uint8',
1334                                   'features': [ 'deprecated' ] },
1335            '*compress-wait-thread': { 'type': 'bool',
1336                                       'features': [ 'deprecated' ] },
1337            '*decompress-threads': { 'type': 'uint8',
1338                                     'features': [ 'deprecated' ] },
1339            '*throttle-trigger-threshold': 'uint8',
1340            '*cpu-throttle-initial': 'uint8',
1341            '*cpu-throttle-increment': 'uint8',
1342            '*cpu-throttle-tailslow': 'bool',
1343            '*tls-creds': 'str',
1344            '*tls-hostname': 'str',
1345            '*tls-authz': 'str',
1346            '*max-bandwidth': 'size',
1347            '*avail-switchover-bandwidth': 'size',
1348            '*downtime-limit': 'uint64',
1349            '*x-checkpoint-delay': { 'type': 'uint32',
1350                                     'features': [ 'unstable' ] },
1351            '*block-incremental': { 'type': 'bool',
1352                                    'features': [ 'deprecated' ] },
1353            '*multifd-channels': 'uint8',
1354            '*xbzrle-cache-size': 'size',
1355            '*max-postcopy-bandwidth': 'size',
1356            '*max-cpu-throttle': 'uint8',
1357            '*multifd-compression': 'MultiFDCompression',
1358            '*multifd-zlib-level': 'uint8',
1359            '*multifd-zstd-level': 'uint8',
1360            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1361            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1362                                            'features': [ 'unstable' ] },
1363            '*vcpu-dirty-limit': 'uint64',
1364            '*mode': 'MigMode'} }
1365
1366##
1367# @query-migrate-parameters:
1368#
1369# Returns information about the current migration parameters
1370#
1371# Returns: @MigrationParameters
1372#
1373# Since: 2.4
1374#
1375# Example:
1376#
1377#     -> { "execute": "query-migrate-parameters" }
1378#     <- { "return": {
1379#              "multifd-channels": 2,
1380#              "cpu-throttle-increment": 10,
1381#              "cpu-throttle-initial": 20,
1382#              "max-bandwidth": 33554432,
1383#              "downtime-limit": 300
1384#           }
1385#        }
1386##
1387{ 'command': 'query-migrate-parameters',
1388  'returns': 'MigrationParameters' }
1389
1390##
1391# @migrate-start-postcopy:
1392#
1393# Followup to a migration command to switch the migration to postcopy
1394# mode.  The postcopy-ram capability must be set on both source and
1395# destination before the original migration command.
1396#
1397# Since: 2.5
1398#
1399# Example:
1400#
1401#     -> { "execute": "migrate-start-postcopy" }
1402#     <- { "return": {} }
1403##
1404{ 'command': 'migrate-start-postcopy' }
1405
1406##
1407# @MIGRATION:
1408#
1409# Emitted when a migration event happens
1410#
1411# @status: @MigrationStatus describing the current migration status.
1412#
1413# Since: 2.4
1414#
1415# Example:
1416#
1417#     <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1418#         "event": "MIGRATION",
1419#         "data": {"status": "completed"} }
1420##
1421{ 'event': 'MIGRATION',
1422  'data': {'status': 'MigrationStatus'}}
1423
1424##
1425# @MIGRATION_PASS:
1426#
1427# Emitted from the source side of a migration at the start of each
1428# pass (when it syncs the dirty bitmap)
1429#
1430# @pass: An incrementing count (starting at 1 on the first pass)
1431#
1432# Since: 2.6
1433#
1434# Example:
1435#
1436#     <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1437#           "event": "MIGRATION_PASS", "data": {"pass": 2} }
1438##
1439{ 'event': 'MIGRATION_PASS',
1440  'data': { 'pass': 'int' } }
1441
1442##
1443# @COLOMessage:
1444#
1445# The message transmission between Primary side and Secondary side.
1446#
1447# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1448#
1449# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1450#     checkpointing
1451#
1452# @checkpoint-reply: SVM gets PVM's checkpoint request
1453#
1454# @vmstate-send: VM's state will be sent by PVM.
1455#
1456# @vmstate-size: The total size of VMstate.
1457#
1458# @vmstate-received: VM's state has been received by SVM.
1459#
1460# @vmstate-loaded: VM's state has been loaded by SVM.
1461#
1462# Since: 2.8
1463##
1464{ 'enum': 'COLOMessage',
1465  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1466            'vmstate-send', 'vmstate-size', 'vmstate-received',
1467            'vmstate-loaded' ] }
1468
1469##
1470# @COLOMode:
1471#
1472# The COLO current mode.
1473#
1474# @none: COLO is disabled.
1475#
1476# @primary: COLO node in primary side.
1477#
1478# @secondary: COLO node in slave side.
1479#
1480# Since: 2.8
1481##
1482{ 'enum': 'COLOMode',
1483  'data': [ 'none', 'primary', 'secondary'] }
1484
1485##
1486# @FailoverStatus:
1487#
1488# An enumeration of COLO failover status
1489#
1490# @none: no failover has ever happened
1491#
1492# @require: got failover requirement but not handled
1493#
1494# @active: in the process of doing failover
1495#
1496# @completed: finish the process of failover
1497#
1498# @relaunch: restart the failover process, from 'none' -> 'completed'
1499#     (Since 2.9)
1500#
1501# Since: 2.8
1502##
1503{ 'enum': 'FailoverStatus',
1504  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1505
1506##
1507# @COLO_EXIT:
1508#
1509# Emitted when VM finishes COLO mode due to some errors happening or
1510# at the request of users.
1511#
1512# @mode: report COLO mode when COLO exited.
1513#
1514# @reason: describes the reason for the COLO exit.
1515#
1516# Since: 3.1
1517#
1518# Example:
1519#
1520#     <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1521#          "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1522##
1523{ 'event': 'COLO_EXIT',
1524  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1525
1526##
1527# @COLOExitReason:
1528#
1529# The reason for a COLO exit.
1530#
1531# @none: failover has never happened.  This state does not occur in
1532#     the COLO_EXIT event, and is only visible in the result of
1533#     query-colo-status.
1534#
1535# @request: COLO exit is due to an external request.
1536#
1537# @error: COLO exit is due to an internal error.
1538#
1539# @processing: COLO is currently handling a failover (since 4.0).
1540#
1541# Since: 3.1
1542##
1543{ 'enum': 'COLOExitReason',
1544  'data': [ 'none', 'request', 'error' , 'processing' ] }
1545
1546##
1547# @x-colo-lost-heartbeat:
1548#
1549# Tell qemu that heartbeat is lost, request it to do takeover
1550# procedures.  If this command is sent to the PVM, the Primary side
1551# will exit COLO mode.  If sent to the Secondary, the Secondary side
1552# will run failover work, then takes over server operation to become
1553# the service VM.
1554#
1555# Features:
1556#
1557# @unstable: This command is experimental.
1558#
1559# Since: 2.8
1560#
1561# Example:
1562#
1563#     -> { "execute": "x-colo-lost-heartbeat" }
1564#     <- { "return": {} }
1565##
1566{ 'command': 'x-colo-lost-heartbeat',
1567  'features': [ 'unstable' ],
1568  'if': 'CONFIG_REPLICATION' }
1569
1570##
1571# @migrate_cancel:
1572#
1573# Cancel the current executing migration process.
1574#
1575# Notes: This command succeeds even if there is no migration process
1576#     running.
1577#
1578# Since: 0.14
1579#
1580# Example:
1581#
1582#     -> { "execute": "migrate_cancel" }
1583#     <- { "return": {} }
1584##
1585{ 'command': 'migrate_cancel' }
1586
1587##
1588# @migrate-continue:
1589#
1590# Continue migration when it's in a paused state.
1591#
1592# @state: The state the migration is currently expected to be in
1593#
1594# Since: 2.11
1595#
1596# Example:
1597#
1598#     -> { "execute": "migrate-continue" , "arguments":
1599#          { "state": "pre-switchover" } }
1600#     <- { "return": {} }
1601##
1602{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1603
1604##
1605# @MigrationAddressType:
1606#
1607# The migration stream transport mechanisms.
1608#
1609# @socket: Migrate via socket.
1610#
1611# @exec: Direct the migration stream to another process.
1612#
1613# @rdma: Migrate via RDMA.
1614#
1615# @file: Direct the migration stream to a file.
1616#
1617# Since: 8.2
1618##
1619{ 'enum': 'MigrationAddressType',
1620  'data': [ 'socket', 'exec', 'rdma', 'file' ] }
1621
1622##
1623# @FileMigrationArgs:
1624#
1625# @filename: The file to receive the migration stream
1626#
1627# @offset: The file offset where the migration stream will start
1628#
1629# Since: 8.2
1630##
1631{ 'struct': 'FileMigrationArgs',
1632  'data': { 'filename': 'str',
1633            'offset': 'uint64' } }
1634
1635##
1636# @MigrationExecCommand:
1637#
1638# @args: command (list head) and arguments to execute.
1639#
1640# Since: 8.2
1641##
1642{ 'struct': 'MigrationExecCommand',
1643  'data': {'args': [ 'str' ] } }
1644
1645##
1646# @MigrationAddress:
1647#
1648# Migration endpoint configuration.
1649#
1650# @transport: The migration stream transport mechanism
1651#
1652# Since: 8.2
1653##
1654{ 'union': 'MigrationAddress',
1655  'base': { 'transport' : 'MigrationAddressType'},
1656  'discriminator': 'transport',
1657  'data': {
1658    'socket': 'SocketAddress',
1659    'exec': 'MigrationExecCommand',
1660    'rdma': 'InetSocketAddress',
1661    'file': 'FileMigrationArgs' } }
1662
1663##
1664# @MigrationChannelType:
1665#
1666# The migration channel-type request options.
1667#
1668# @main: Main outbound migration channel.
1669#
1670# Since: 8.1
1671##
1672{ 'enum': 'MigrationChannelType',
1673  'data': [ 'main' ] }
1674
1675##
1676# @MigrationChannel:
1677#
1678# Migration stream channel parameters.
1679#
1680# @channel-type: Channel type for transferring packet information.
1681#
1682# @addr: Migration endpoint configuration on destination interface.
1683#
1684# Since: 8.1
1685##
1686{ 'struct': 'MigrationChannel',
1687  'data': {
1688      'channel-type': 'MigrationChannelType',
1689      'addr': 'MigrationAddress' } }
1690
1691##
1692# @migrate:
1693#
1694# Migrates the current running guest to another Virtual Machine.
1695#
1696# @uri: the Uniform Resource Identifier of the destination VM
1697#
1698# @channels: list of migration stream channels with each stream in the
1699#     list connected to a destination interface endpoint.
1700#
1701# @blk: do block migration (full disk copy)
1702#
1703# @inc: incremental disk copy migration
1704#
1705# @detach: this argument exists only for compatibility reasons and is
1706#     ignored by QEMU
1707#
1708# @resume: resume one paused migration, default "off". (since 3.0)
1709#
1710# Features:
1711#
1712# @deprecated: Members @inc and @blk are deprecated.  Use
1713#     blockdev-mirror with NBD instead.
1714#
1715# Since: 0.14
1716#
1717# Notes:
1718#
1719#     1. The 'query-migrate' command should be used to check
1720#        migration's progress and final result (this information is
1721#        provided by the 'status' member)
1722#
1723#     2. All boolean arguments default to false
1724#
1725#     3. The user Monitor's "detach" argument is invalid in QMP and
1726#        should not be used
1727#
1728#     4. The uri argument should have the Uniform Resource Identifier
1729#        of default destination VM. This connection will be bound to
1730#        default network.
1731#
1732#     5. For now, number of migration streams is restricted to one,
1733#        i.e number of items in 'channels' list is just 1.
1734#
1735#     6. The 'uri' and 'channels' arguments are mutually exclusive;
1736#        exactly one of the two should be present.
1737#
1738# Example:
1739#
1740#     -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1741#     <- { "return": {} }
1742#
1743#     -> { "execute": "migrate",
1744#          "arguments": {
1745#              "channels": [ { "channel-type": "main",
1746#                              "addr": { "transport": "socket",
1747#                                        "type": "inet",
1748#                                        "host": "10.12.34.9",
1749#                                        "port": "1050" } } ] } }
1750#     <- { "return": {} }
1751#
1752#     -> { "execute": "migrate",
1753#          "arguments": {
1754#              "channels": [ { "channel-type": "main",
1755#                              "addr": { "transport": "exec",
1756#                                        "args": [ "/bin/nc", "-p", "6000",
1757#                                                  "/some/sock" ] } } ] } }
1758#     <- { "return": {} }
1759#
1760#     -> { "execute": "migrate",
1761#          "arguments": {
1762#              "channels": [ { "channel-type": "main",
1763#                              "addr": { "transport": "rdma",
1764#                                        "host": "10.12.34.9",
1765#                                        "port": "1050" } } ] } }
1766#     <- { "return": {} }
1767#
1768#     -> { "execute": "migrate",
1769#          "arguments": {
1770#              "channels": [ { "channel-type": "main",
1771#                              "addr": { "transport": "file",
1772#                                        "filename": "/tmp/migfile",
1773#                                        "offset": "0x1000" } } ] } }
1774#     <- { "return": {} }
1775#
1776##
1777{ 'command': 'migrate',
1778  'data': {'*uri': 'str',
1779           '*channels': [ 'MigrationChannel' ],
1780           '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] },
1781           '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] },
1782           '*detach': 'bool', '*resume': 'bool' } }
1783
1784##
1785# @migrate-incoming:
1786#
1787# Start an incoming migration, the qemu must have been started with
1788# -incoming defer
1789#
1790# @uri: The Uniform Resource Identifier identifying the source or
1791#     address to listen on
1792#
1793# @channels: list of migration stream channels with each stream in the
1794#     list connected to a destination interface endpoint.
1795#
1796# Since: 2.3
1797#
1798# Notes:
1799#
1800#     1. It's a bad idea to use a string for the uri, but it needs to
1801#        stay compatible with -incoming and the format of the uri is
1802#        already exposed above libvirt.
1803#
1804#     2. QEMU must be started with -incoming defer to allow
1805#        migrate-incoming to be used.
1806#
1807#     3. The uri format is the same as for -incoming
1808#
1809#     4. For now, number of migration streams is restricted to one,
1810#        i.e number of items in 'channels' list is just 1.
1811#
1812#     5. The 'uri' and 'channels' arguments are mutually exclusive;
1813#        exactly one of the two should be present.
1814#
1815# Example:
1816#
1817#     -> { "execute": "migrate-incoming",
1818#          "arguments": { "uri": "tcp:0:4446" } }
1819#     <- { "return": {} }
1820#
1821#     -> { "execute": "migrate-incoming",
1822#          "arguments": {
1823#              "channels": [ { "channel-type": "main",
1824#                              "addr": { "transport": "socket",
1825#                                        "type": "inet",
1826#                                        "host": "10.12.34.9",
1827#                                        "port": "1050" } } ] } }
1828#     <- { "return": {} }
1829#
1830#     -> { "execute": "migrate-incoming",
1831#          "arguments": {
1832#              "channels": [ { "channel-type": "main",
1833#                              "addr": { "transport": "exec",
1834#                                        "args": [ "/bin/nc", "-p", "6000",
1835#                                                  "/some/sock" ] } } ] } }
1836#     <- { "return": {} }
1837#
1838#     -> { "execute": "migrate-incoming",
1839#          "arguments": {
1840#              "channels": [ { "channel-type": "main",
1841#                              "addr": { "transport": "rdma",
1842#                                        "host": "10.12.34.9",
1843#                                        "port": "1050" } } ] } }
1844#     <- { "return": {} }
1845##
1846{ 'command': 'migrate-incoming',
1847             'data': {'*uri': 'str',
1848                      '*channels': [ 'MigrationChannel' ] } }
1849
1850##
1851# @xen-save-devices-state:
1852#
1853# Save the state of all devices to file.  The RAM and the block
1854# devices of the VM are not saved by this command.
1855#
1856# @filename: the file to save the state of the devices to as binary
1857#     data.  See xen-save-devices-state.txt for a description of the
1858#     binary format.
1859#
1860# @live: Optional argument to ask QEMU to treat this command as part
1861#     of a live migration.  Default to true.  (since 2.11)
1862#
1863# Since: 1.1
1864#
1865# Example:
1866#
1867#     -> { "execute": "xen-save-devices-state",
1868#          "arguments": { "filename": "/tmp/save" } }
1869#     <- { "return": {} }
1870##
1871{ 'command': 'xen-save-devices-state',
1872  'data': {'filename': 'str', '*live':'bool' } }
1873
1874##
1875# @xen-set-global-dirty-log:
1876#
1877# Enable or disable the global dirty log mode.
1878#
1879# @enable: true to enable, false to disable.
1880#
1881# Since: 1.3
1882#
1883# Example:
1884#
1885#     -> { "execute": "xen-set-global-dirty-log",
1886#          "arguments": { "enable": true } }
1887#     <- { "return": {} }
1888##
1889{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1890
1891##
1892# @xen-load-devices-state:
1893#
1894# Load the state of all devices from file.  The RAM and the block
1895# devices of the VM are not loaded by this command.
1896#
1897# @filename: the file to load the state of the devices from as binary
1898#     data.  See xen-save-devices-state.txt for a description of the
1899#     binary format.
1900#
1901# Since: 2.7
1902#
1903# Example:
1904#
1905#     -> { "execute": "xen-load-devices-state",
1906#          "arguments": { "filename": "/tmp/resume" } }
1907#     <- { "return": {} }
1908##
1909{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1910
1911##
1912# @xen-set-replication:
1913#
1914# Enable or disable replication.
1915#
1916# @enable: true to enable, false to disable.
1917#
1918# @primary: true for primary or false for secondary.
1919#
1920# @failover: true to do failover, false to stop.  but cannot be
1921#     specified if 'enable' is true.  default value is false.
1922#
1923# Example:
1924#
1925#     -> { "execute": "xen-set-replication",
1926#          "arguments": {"enable": true, "primary": false} }
1927#     <- { "return": {} }
1928#
1929# Since: 2.9
1930##
1931{ 'command': 'xen-set-replication',
1932  'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1933  'if': 'CONFIG_REPLICATION' }
1934
1935##
1936# @ReplicationStatus:
1937#
1938# The result format for 'query-xen-replication-status'.
1939#
1940# @error: true if an error happened, false if replication is normal.
1941#
1942# @desc: the human readable error description string, when @error is
1943#     'true'.
1944#
1945# Since: 2.9
1946##
1947{ 'struct': 'ReplicationStatus',
1948  'data': { 'error': 'bool', '*desc': 'str' },
1949  'if': 'CONFIG_REPLICATION' }
1950
1951##
1952# @query-xen-replication-status:
1953#
1954# Query replication status while the vm is running.
1955#
1956# Returns: A @ReplicationStatus object showing the status.
1957#
1958# Example:
1959#
1960#     -> { "execute": "query-xen-replication-status" }
1961#     <- { "return": { "error": false } }
1962#
1963# Since: 2.9
1964##
1965{ 'command': 'query-xen-replication-status',
1966  'returns': 'ReplicationStatus',
1967  'if': 'CONFIG_REPLICATION' }
1968
1969##
1970# @xen-colo-do-checkpoint:
1971#
1972# Xen uses this command to notify replication to trigger a checkpoint.
1973#
1974# Example:
1975#
1976#     -> { "execute": "xen-colo-do-checkpoint" }
1977#     <- { "return": {} }
1978#
1979# Since: 2.9
1980##
1981{ 'command': 'xen-colo-do-checkpoint',
1982  'if': 'CONFIG_REPLICATION' }
1983
1984##
1985# @COLOStatus:
1986#
1987# The result format for 'query-colo-status'.
1988#
1989# @mode: COLO running mode.  If COLO is running, this field will
1990#     return 'primary' or 'secondary'.
1991#
1992# @last-mode: COLO last running mode.  If COLO is running, this field
1993#     will return same like mode field, after failover we can use this
1994#     field to get last colo mode.  (since 4.0)
1995#
1996# @reason: describes the reason for the COLO exit.
1997#
1998# Since: 3.1
1999##
2000{ 'struct': 'COLOStatus',
2001  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
2002            'reason': 'COLOExitReason' },
2003  'if': 'CONFIG_REPLICATION' }
2004
2005##
2006# @query-colo-status:
2007#
2008# Query COLO status while the vm is running.
2009#
2010# Returns: A @COLOStatus object showing the status.
2011#
2012# Example:
2013#
2014#     -> { "execute": "query-colo-status" }
2015#     <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
2016#
2017# Since: 3.1
2018##
2019{ 'command': 'query-colo-status',
2020  'returns': 'COLOStatus',
2021  'if': 'CONFIG_REPLICATION' }
2022
2023##
2024# @migrate-recover:
2025#
2026# Provide a recovery migration stream URI.
2027#
2028# @uri: the URI to be used for the recovery of migration stream.
2029#
2030# Example:
2031#
2032#     -> { "execute": "migrate-recover",
2033#          "arguments": { "uri": "tcp:192.168.1.200:12345" } }
2034#     <- { "return": {} }
2035#
2036# Since: 3.0
2037##
2038{ 'command': 'migrate-recover',
2039  'data': { 'uri': 'str' },
2040  'allow-oob': true }
2041
2042##
2043# @migrate-pause:
2044#
2045# Pause a migration.  Currently it only supports postcopy.
2046#
2047# Example:
2048#
2049#     -> { "execute": "migrate-pause" }
2050#     <- { "return": {} }
2051#
2052# Since: 3.0
2053##
2054{ 'command': 'migrate-pause', 'allow-oob': true }
2055
2056##
2057# @UNPLUG_PRIMARY:
2058#
2059# Emitted from source side of a migration when migration state is
2060# WAIT_UNPLUG. Device was unplugged by guest operating system.  Device
2061# resources in QEMU are kept on standby to be able to re-plug it in
2062# case of migration failure.
2063#
2064# @device-id: QEMU device id of the unplugged device
2065#
2066# Since: 4.2
2067#
2068# Example:
2069#
2070#     <- { "event": "UNPLUG_PRIMARY",
2071#          "data": { "device-id": "hostdev0" },
2072#          "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2073##
2074{ 'event': 'UNPLUG_PRIMARY',
2075  'data': { 'device-id': 'str' } }
2076
2077##
2078# @DirtyRateVcpu:
2079#
2080# Dirty rate of vcpu.
2081#
2082# @id: vcpu index.
2083#
2084# @dirty-rate: dirty rate.
2085#
2086# Since: 6.2
2087##
2088{ 'struct': 'DirtyRateVcpu',
2089  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
2090
2091##
2092# @DirtyRateStatus:
2093#
2094# Dirty page rate measurement status.
2095#
2096# @unstarted: measuring thread has not been started yet
2097#
2098# @measuring: measuring thread is running
2099#
2100# @measured: dirty page rate is measured and the results are available
2101#
2102# Since: 5.2
2103##
2104{ 'enum': 'DirtyRateStatus',
2105  'data': [ 'unstarted', 'measuring', 'measured'] }
2106
2107##
2108# @DirtyRateMeasureMode:
2109#
2110# Method used to measure dirty page rate.  Differences between
2111# available methods are explained in @calc-dirty-rate.
2112#
2113# @page-sampling: use page sampling
2114#
2115# @dirty-ring: use dirty ring
2116#
2117# @dirty-bitmap: use dirty bitmap
2118#
2119# Since: 6.2
2120##
2121{ 'enum': 'DirtyRateMeasureMode',
2122  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
2123
2124##
2125# @TimeUnit:
2126#
2127# Specifies unit in which time-related value is specified.
2128#
2129# @second: value is in seconds
2130#
2131# @millisecond: value is in milliseconds
2132#
2133# Since: 8.2
2134#
2135##
2136{ 'enum': 'TimeUnit',
2137  'data': ['second', 'millisecond'] }
2138
2139##
2140# @DirtyRateInfo:
2141#
2142# Information about measured dirty page rate.
2143#
2144# @dirty-rate: an estimate of the dirty page rate of the VM in units
2145#     of MiB/s.  Value is present only when @status is 'measured'.
2146#
2147# @status: current status of dirty page rate measurements
2148#
2149# @start-time: start time in units of second for calculation
2150#
2151# @calc-time: time period for which dirty page rate was measured,
2152#     expressed and rounded down to @calc-time-unit.
2153#
2154# @calc-time-unit: time unit of @calc-time  (Since 8.2)
2155#
2156# @sample-pages: number of sampled pages per GiB of guest memory.
2157#     Valid only in page-sampling mode (Since 6.1)
2158#
2159# @mode: mode that was used to measure dirty page rate (Since 6.2)
2160#
2161# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
2162#     specified (Since 6.2)
2163#
2164# Since: 5.2
2165##
2166{ 'struct': 'DirtyRateInfo',
2167  'data': {'*dirty-rate': 'int64',
2168           'status': 'DirtyRateStatus',
2169           'start-time': 'int64',
2170           'calc-time': 'int64',
2171           'calc-time-unit': 'TimeUnit',
2172           'sample-pages': 'uint64',
2173           'mode': 'DirtyRateMeasureMode',
2174           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
2175
2176##
2177# @calc-dirty-rate:
2178#
2179# Start measuring dirty page rate of the VM.  Results can be retrieved
2180# with @query-dirty-rate after measurements are completed.
2181#
2182# Dirty page rate is the number of pages changed in a given time
2183# period expressed in MiB/s.  The following methods of calculation are
2184# available:
2185#
2186# 1. In page sampling mode, a random subset of pages are selected and
2187#    hashed twice: once at the beginning of measurement time period,
2188#    and once again at the end.  If two hashes for some page are
2189#    different, the page is counted as changed.  Since this method
2190#    relies on sampling and hashing, calculated dirty page rate is
2191#    only an estimate of its true value.  Increasing @sample-pages
2192#    improves estimation quality at the cost of higher computational
2193#    overhead.
2194#
2195# 2. Dirty bitmap mode captures writes to memory (for example by
2196#    temporarily revoking write access to all pages) and counting page
2197#    faults.  Information about modified pages is collected into a
2198#    bitmap, where each bit corresponds to one guest page.  This mode
2199#    requires that KVM accelerator property "dirty-ring-size" is *not*
2200#    set.
2201#
2202# 3. Dirty ring mode is similar to dirty bitmap mode, but the
2203#    information about modified pages is collected into ring buffer.
2204#    This mode tracks page modification per each vCPU separately.  It
2205#    requires that KVM accelerator property "dirty-ring-size" is set.
2206#
2207# @calc-time: time period for which dirty page rate is calculated.
2208#     By default it is specified in seconds, but the unit can be set
2209#     explicitly with @calc-time-unit.  Note that larger @calc-time
2210#     values will typically result in smaller dirty page rates because
2211#     page dirtying is a one-time event.  Once some page is counted
2212#     as dirty during @calc-time period, further writes to this page
2213#     will not increase dirty page rate anymore.
2214#
2215# @calc-time-unit: time unit in which @calc-time is specified.
2216#     By default it is seconds. (Since 8.2)
2217#
2218# @sample-pages: number of sampled pages per each GiB of guest memory.
2219#     Default value is 512.  For 4KiB guest pages this corresponds to
2220#     sampling ratio of 0.2%.  This argument is used only in page
2221#     sampling mode.  (Since 6.1)
2222#
2223# @mode: mechanism for tracking dirty pages.  Default value is
2224#     'page-sampling'.  Others are 'dirty-bitmap' and 'dirty-ring'.
2225#     (Since 6.1)
2226#
2227# Since: 5.2
2228#
2229# Example:
2230#
2231#     -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
2232#                                                     'sample-pages': 512} }
2233#     <- { "return": {} }
2234#
2235#     Measure dirty rate using dirty bitmap for 500 milliseconds:
2236#
2237#     -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
2238#         "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
2239#
2240#     <- { "return": {} }
2241##
2242{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
2243                                         '*calc-time-unit': 'TimeUnit',
2244                                         '*sample-pages': 'int',
2245                                         '*mode': 'DirtyRateMeasureMode'} }
2246
2247##
2248# @query-dirty-rate:
2249#
2250# Query results of the most recent invocation of @calc-dirty-rate.
2251#
2252# @calc-time-unit: time unit in which to report calculation time.
2253#     By default it is reported in seconds. (Since 8.2)
2254#
2255# Since: 5.2
2256#
2257# Examples:
2258#
2259#     1. Measurement is in progress:
2260#
2261#     <- {"status": "measuring", "sample-pages": 512,
2262#         "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2263#         "calc-time-unit": "second"}
2264#
2265#     2. Measurement has been completed:
2266#
2267#     <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
2268#         "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2269#         "calc-time-unit": "second"}
2270##
2271{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
2272                                 'returns': 'DirtyRateInfo' }
2273
2274##
2275# @DirtyLimitInfo:
2276#
2277# Dirty page rate limit information of a virtual CPU.
2278#
2279# @cpu-index: index of a virtual CPU.
2280#
2281# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
2282#     CPU, 0 means unlimited.
2283#
2284# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
2285#
2286# Since: 7.1
2287##
2288{ 'struct': 'DirtyLimitInfo',
2289  'data': { 'cpu-index': 'int',
2290            'limit-rate': 'uint64',
2291            'current-rate': 'uint64' } }
2292
2293##
2294# @set-vcpu-dirty-limit:
2295#
2296# Set the upper limit of dirty page rate for virtual CPUs.
2297#
2298# Requires KVM with accelerator property "dirty-ring-size" set.  A
2299# virtual CPU's dirty page rate is a measure of its memory load.  To
2300# observe dirty page rates, use @calc-dirty-rate.
2301#
2302# @cpu-index: index of a virtual CPU, default is all.
2303#
2304# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2305#
2306# Since: 7.1
2307#
2308# Example:
2309#
2310#     -> {"execute": "set-vcpu-dirty-limit"}
2311#         "arguments": { "dirty-rate": 200,
2312#                        "cpu-index": 1 } }
2313#     <- { "return": {} }
2314##
2315{ 'command': 'set-vcpu-dirty-limit',
2316  'data': { '*cpu-index': 'int',
2317            'dirty-rate': 'uint64' } }
2318
2319##
2320# @cancel-vcpu-dirty-limit:
2321#
2322# Cancel the upper limit of dirty page rate for virtual CPUs.
2323#
2324# Cancel the dirty page limit for the vCPU which has been set with
2325# set-vcpu-dirty-limit command.  Note that this command requires
2326# support from dirty ring, same as the "set-vcpu-dirty-limit".
2327#
2328# @cpu-index: index of a virtual CPU, default is all.
2329#
2330# Since: 7.1
2331#
2332# Example:
2333#
2334#     -> {"execute": "cancel-vcpu-dirty-limit"},
2335#         "arguments": { "cpu-index": 1 } }
2336#     <- { "return": {} }
2337##
2338{ 'command': 'cancel-vcpu-dirty-limit',
2339  'data': { '*cpu-index': 'int'} }
2340
2341##
2342# @query-vcpu-dirty-limit:
2343#
2344# Returns information about virtual CPU dirty page rate limits, if
2345# any.
2346#
2347# Since: 7.1
2348#
2349# Example:
2350#
2351#     -> {"execute": "query-vcpu-dirty-limit"}
2352#     <- {"return": [
2353#            { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2354#            { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2355##
2356{ 'command': 'query-vcpu-dirty-limit',
2357  'returns': [ 'DirtyLimitInfo' ] }
2358
2359##
2360# @MigrationThreadInfo:
2361#
2362# Information about migrationthreads
2363#
2364# @name: the name of migration thread
2365#
2366# @thread-id: ID of the underlying host thread
2367#
2368# Since: 7.2
2369##
2370{ 'struct': 'MigrationThreadInfo',
2371  'data': {'name': 'str',
2372           'thread-id': 'int'} }
2373
2374##
2375# @query-migrationthreads:
2376#
2377# Returns information of migration threads
2378#
2379# data: migration thread name
2380#
2381# Returns: information about migration threads
2382#
2383# Since: 7.2
2384##
2385{ 'command': 'query-migrationthreads',
2386  'returns': ['MigrationThreadInfo'] }
2387
2388##
2389# @snapshot-save:
2390#
2391# Save a VM snapshot
2392#
2393# @job-id: identifier for the newly created job
2394#
2395# @tag: name of the snapshot to create
2396#
2397# @vmstate: block device node name to save vmstate to
2398#
2399# @devices: list of block device node names to save a snapshot to
2400#
2401# Applications should not assume that the snapshot save is complete
2402# when this command returns.  The job commands / events must be used
2403# to determine completion and to fetch details of any errors that
2404# arise.
2405#
2406# Note that execution of the guest CPUs may be stopped during the time
2407# it takes to save the snapshot.  A future version of QEMU may ensure
2408# CPUs are executing continuously.
2409#
2410# It is strongly recommended that @devices contain all writable block
2411# device nodes if a consistent snapshot is required.
2412#
2413# If @tag already exists, an error will be reported
2414#
2415# Example:
2416#
2417#     -> { "execute": "snapshot-save",
2418#          "arguments": {
2419#             "job-id": "snapsave0",
2420#             "tag": "my-snap",
2421#             "vmstate": "disk0",
2422#             "devices": ["disk0", "disk1"]
2423#          }
2424#        }
2425#     <- { "return": { } }
2426#     <- {"event": "JOB_STATUS_CHANGE",
2427#         "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2428#         "data": {"status": "created", "id": "snapsave0"}}
2429#     <- {"event": "JOB_STATUS_CHANGE",
2430#         "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2431#         "data": {"status": "running", "id": "snapsave0"}}
2432#     <- {"event": "STOP",
2433#         "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2434#     <- {"event": "RESUME",
2435#         "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2436#     <- {"event": "JOB_STATUS_CHANGE",
2437#         "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2438#         "data": {"status": "waiting", "id": "snapsave0"}}
2439#     <- {"event": "JOB_STATUS_CHANGE",
2440#         "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2441#         "data": {"status": "pending", "id": "snapsave0"}}
2442#     <- {"event": "JOB_STATUS_CHANGE",
2443#         "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2444#         "data": {"status": "concluded", "id": "snapsave0"}}
2445#     -> {"execute": "query-jobs"}
2446#     <- {"return": [{"current-progress": 1,
2447#                     "status": "concluded",
2448#                     "total-progress": 1,
2449#                     "type": "snapshot-save",
2450#                     "id": "snapsave0"}]}
2451#
2452# Since: 6.0
2453##
2454{ 'command': 'snapshot-save',
2455  'data': { 'job-id': 'str',
2456            'tag': 'str',
2457            'vmstate': 'str',
2458            'devices': ['str'] } }
2459
2460##
2461# @snapshot-load:
2462#
2463# Load a VM snapshot
2464#
2465# @job-id: identifier for the newly created job
2466#
2467# @tag: name of the snapshot to load.
2468#
2469# @vmstate: block device node name to load vmstate from
2470#
2471# @devices: list of block device node names to load a snapshot from
2472#
2473# Applications should not assume that the snapshot load is complete
2474# when this command returns.  The job commands / events must be used
2475# to determine completion and to fetch details of any errors that
2476# arise.
2477#
2478# Note that execution of the guest CPUs will be stopped during the
2479# time it takes to load the snapshot.
2480#
2481# It is strongly recommended that @devices contain all writable block
2482# device nodes that can have changed since the original @snapshot-save
2483# command execution.
2484#
2485# Example:
2486#
2487#     -> { "execute": "snapshot-load",
2488#          "arguments": {
2489#             "job-id": "snapload0",
2490#             "tag": "my-snap",
2491#             "vmstate": "disk0",
2492#             "devices": ["disk0", "disk1"]
2493#          }
2494#        }
2495#     <- { "return": { } }
2496#     <- {"event": "JOB_STATUS_CHANGE",
2497#         "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2498#         "data": {"status": "created", "id": "snapload0"}}
2499#     <- {"event": "JOB_STATUS_CHANGE",
2500#         "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2501#         "data": {"status": "running", "id": "snapload0"}}
2502#     <- {"event": "STOP",
2503#         "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2504#     <- {"event": "RESUME",
2505#         "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2506#     <- {"event": "JOB_STATUS_CHANGE",
2507#         "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2508#         "data": {"status": "waiting", "id": "snapload0"}}
2509#     <- {"event": "JOB_STATUS_CHANGE",
2510#         "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2511#         "data": {"status": "pending", "id": "snapload0"}}
2512#     <- {"event": "JOB_STATUS_CHANGE",
2513#         "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2514#         "data": {"status": "concluded", "id": "snapload0"}}
2515#     -> {"execute": "query-jobs"}
2516#     <- {"return": [{"current-progress": 1,
2517#                     "status": "concluded",
2518#                     "total-progress": 1,
2519#                     "type": "snapshot-load",
2520#                     "id": "snapload0"}]}
2521#
2522# Since: 6.0
2523##
2524{ 'command': 'snapshot-load',
2525  'data': { 'job-id': 'str',
2526            'tag': 'str',
2527            'vmstate': 'str',
2528            'devices': ['str'] } }
2529
2530##
2531# @snapshot-delete:
2532#
2533# Delete a VM snapshot
2534#
2535# @job-id: identifier for the newly created job
2536#
2537# @tag: name of the snapshot to delete.
2538#
2539# @devices: list of block device node names to delete a snapshot from
2540#
2541# Applications should not assume that the snapshot delete is complete
2542# when this command returns.  The job commands / events must be used
2543# to determine completion and to fetch details of any errors that
2544# arise.
2545#
2546# Example:
2547#
2548#     -> { "execute": "snapshot-delete",
2549#          "arguments": {
2550#             "job-id": "snapdelete0",
2551#             "tag": "my-snap",
2552#             "devices": ["disk0", "disk1"]
2553#          }
2554#        }
2555#     <- { "return": { } }
2556#     <- {"event": "JOB_STATUS_CHANGE",
2557#         "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2558#         "data": {"status": "created", "id": "snapdelete0"}}
2559#     <- {"event": "JOB_STATUS_CHANGE",
2560#         "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2561#         "data": {"status": "running", "id": "snapdelete0"}}
2562#     <- {"event": "JOB_STATUS_CHANGE",
2563#         "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2564#         "data": {"status": "waiting", "id": "snapdelete0"}}
2565#     <- {"event": "JOB_STATUS_CHANGE",
2566#         "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2567#         "data": {"status": "pending", "id": "snapdelete0"}}
2568#     <- {"event": "JOB_STATUS_CHANGE",
2569#         "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2570#         "data": {"status": "concluded", "id": "snapdelete0"}}
2571#     -> {"execute": "query-jobs"}
2572#     <- {"return": [{"current-progress": 1,
2573#                     "status": "concluded",
2574#                     "total-progress": 1,
2575#                     "type": "snapshot-delete",
2576#                     "id": "snapdelete0"}]}
2577#
2578# Since: 6.0
2579##
2580{ 'command': 'snapshot-delete',
2581  'data': { 'job-id': 'str',
2582            'tag': 'str',
2583            'devices': ['str'] } }
2584