1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @skipped: number of skipped zero pages (since 1.5) 27# 28# @normal: number of normal pages (since 1.2) 29# 30# @normal-bytes: number of normal bytes sent (since 1.2) 31# 32# @dirty-pages-rate: number of pages dirtied by second by the guest 33# (since 1.3) 34# 35# @mbps: throughput in megabits/sec. (since 1.6) 36# 37# @dirty-sync-count: number of times that dirty ram was synchronized 38# (since 2.1) 39# 40# @postcopy-requests: The number of page requests received from the 41# destination (since 2.7) 42# 43# @page-size: The number of bytes per page for the various page-based 44# statistics (since 2.10) 45# 46# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 47# 48# @pages-per-second: the number of memory pages transferred per second 49# (Since 4.0) 50# 51# @precopy-bytes: The number of bytes sent in the pre-copy phase 52# (since 7.0). 53# 54# @downtime-bytes: The number of bytes sent while the guest is paused 55# (since 7.0). 56# 57# @postcopy-bytes: The number of bytes sent during the post-copy phase 58# (since 7.0). 59# 60# @dirty-sync-missed-zero-copy: Number of times dirty RAM 61# synchronization could not avoid copying dirty pages. This is 62# between 0 and @dirty-sync-count * @multifd-channels. (since 63# 7.1) 64# 65# Since: 0.14 66## 67{ 'struct': 'MigrationStats', 68 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 69 'duplicate': 'int', 'skipped': 'int', 'normal': 'int', 70 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 71 'mbps': 'number', 'dirty-sync-count': 'int', 72 'postcopy-requests': 'int', 'page-size': 'int', 73 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 74 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 75 'postcopy-bytes': 'uint64', 76 'dirty-sync-missed-zero-copy': 'uint64' } } 77 78## 79# @XBZRLECacheStats: 80# 81# Detailed XBZRLE migration cache statistics 82# 83# @cache-size: XBZRLE cache size 84# 85# @bytes: amount of bytes already transferred to the target VM 86# 87# @pages: amount of pages transferred to the target VM 88# 89# @cache-miss: number of cache miss 90# 91# @cache-miss-rate: rate of cache miss (since 2.1) 92# 93# @encoding-rate: rate of encoded bytes (since 5.1) 94# 95# @overflow: number of overflows 96# 97# Since: 1.2 98## 99{ 'struct': 'XBZRLECacheStats', 100 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 101 'cache-miss': 'int', 'cache-miss-rate': 'number', 102 'encoding-rate': 'number', 'overflow': 'int' } } 103 104## 105# @CompressionStats: 106# 107# Detailed migration compression statistics 108# 109# @pages: amount of pages compressed and transferred to the target VM 110# 111# @busy: count of times that no free thread was available to compress 112# data 113# 114# @busy-rate: rate of thread busy 115# 116# @compressed-size: amount of bytes after compression 117# 118# @compression-rate: rate of compressed size 119# 120# Since: 3.1 121## 122{ 'struct': 'CompressionStats', 123 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 124 'compressed-size': 'int', 'compression-rate': 'number' } } 125 126## 127# @MigrationStatus: 128# 129# An enumeration of migration status. 130# 131# @none: no migration has ever happened. 132# 133# @setup: migration process has been initiated. 134# 135# @cancelling: in the process of cancelling migration. 136# 137# @cancelled: cancelling migration is finished. 138# 139# @active: in the process of doing migration. 140# 141# @postcopy-active: like active, but now in postcopy mode. (since 142# 2.5) 143# 144# @postcopy-paused: during postcopy but paused. (since 3.0) 145# 146# @postcopy-recover: trying to recover from a paused postcopy. (since 147# 3.0) 148# 149# @completed: migration is finished. 150# 151# @failed: some error occurred during migration process. 152# 153# @colo: VM is in the process of fault tolerance, VM can not get into 154# this state unless colo capability is enabled for migration. 155# (since 2.8) 156# 157# @pre-switchover: Paused before device serialisation. (since 2.11) 158# 159# @device: During device serialisation when pause-before-switchover is 160# enabled (since 2.11) 161# 162# @wait-unplug: wait for device unplug request by guest OS to be 163# completed. (since 4.2) 164# 165# Since: 2.3 166## 167{ 'enum': 'MigrationStatus', 168 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 169 'active', 'postcopy-active', 'postcopy-paused', 170 'postcopy-recover', 'completed', 'failed', 'colo', 171 'pre-switchover', 'device', 'wait-unplug' ] } 172## 173# @VfioStats: 174# 175# Detailed VFIO devices migration statistics 176# 177# @transferred: amount of bytes transferred to the target VM by VFIO 178# devices 179# 180# Since: 5.2 181## 182{ 'struct': 'VfioStats', 183 'data': {'transferred': 'int' } } 184 185## 186# @MigrationInfo: 187# 188# Information about current migration process. 189# 190# @status: @MigrationStatus describing the current migration status. 191# If this field is not returned, no migration process has been 192# initiated 193# 194# @ram: @MigrationStats containing detailed migration status, only 195# returned if status is 'active' or 'completed'(since 1.2) 196# 197# @disk: @MigrationStats containing detailed disk migration status, 198# only returned if status is 'active' and it is a block migration 199# 200# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 201# migration statistics, only returned if XBZRLE feature is on and 202# status is 'active' or 'completed' (since 1.2) 203# 204# @total-time: total amount of milliseconds since migration started. 205# If migration has ended, it returns the total migration time. 206# (since 1.2) 207# 208# @downtime: only present when migration finishes correctly total 209# downtime in milliseconds for the guest. (since 1.3) 210# 211# @expected-downtime: only present while migration is active expected 212# downtime in milliseconds for the guest in last walk of the dirty 213# bitmap. (since 1.3) 214# 215# @setup-time: amount of setup time in milliseconds *before* the 216# iterations begin but *after* the QMP command is issued. This is 217# designed to provide an accounting of any activities (such as 218# RDMA pinning) which may be expensive, but do not actually occur 219# during the iterative migration rounds themselves. (since 1.6) 220# 221# @cpu-throttle-percentage: percentage of time guest cpus are being 222# throttled during auto-converge. This is only present when 223# auto-converge has started throttling guest cpus. (Since 2.7) 224# 225# @error-desc: the human readable error description string, when 226# @status is 'failed'. Clients should not attempt to parse the 227# error strings. (Since 2.7) 228# 229# @postcopy-blocktime: total time when all vCPU were blocked during 230# postcopy live migration. This is only present when the 231# postcopy-blocktime migration capability is enabled. (Since 3.0) 232# 233# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 234# This is only present when the postcopy-blocktime migration 235# capability is enabled. (Since 3.0) 236# 237# @compression: migration compression statistics, only returned if 238# compression feature is on and status is 'active' or 'completed' 239# (Since 3.1) 240# 241# @socket-address: Only used for tcp, to know what the real port is 242# (Since 4.0) 243# 244# @vfio: @VfioStats containing detailed VFIO devices migration 245# statistics, only returned if VFIO device is present, migration 246# is supported by all VFIO devices and status is 'active' or 247# 'completed' (since 5.2) 248# 249# @blocked-reasons: A list of reasons an outgoing migration is 250# blocked. Present and non-empty when migration is blocked. 251# (since 6.0) 252# 253# Since: 0.14 254## 255{ 'struct': 'MigrationInfo', 256 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 257 '*disk': 'MigrationStats', 258 '*vfio': 'VfioStats', 259 '*xbzrle-cache': 'XBZRLECacheStats', 260 '*total-time': 'int', 261 '*expected-downtime': 'int', 262 '*downtime': 'int', 263 '*setup-time': 'int', 264 '*cpu-throttle-percentage': 'int', 265 '*error-desc': 'str', 266 '*blocked-reasons': ['str'], 267 '*postcopy-blocktime': 'uint32', 268 '*postcopy-vcpu-blocktime': ['uint32'], 269 '*compression': 'CompressionStats', 270 '*socket-address': ['SocketAddress'] } } 271 272## 273# @query-migrate: 274# 275# Returns information about current migration process. If migration 276# is active there will be another json-object with RAM migration 277# status and if block migration is active another one with block 278# migration status. 279# 280# Returns: @MigrationInfo 281# 282# Since: 0.14 283# 284# Examples: 285# 286# 1. Before the first migration 287# 288# -> { "execute": "query-migrate" } 289# <- { "return": {} } 290# 291# 2. Migration is done and has succeeded 292# 293# -> { "execute": "query-migrate" } 294# <- { "return": { 295# "status": "completed", 296# "total-time":12345, 297# "setup-time":12345, 298# "downtime":12345, 299# "ram":{ 300# "transferred":123, 301# "remaining":123, 302# "total":246, 303# "duplicate":123, 304# "normal":123, 305# "normal-bytes":123456, 306# "dirty-sync-count":15 307# } 308# } 309# } 310# 311# 3. Migration is done and has failed 312# 313# -> { "execute": "query-migrate" } 314# <- { "return": { "status": "failed" } } 315# 316# 4. Migration is being performed and is not a block migration: 317# 318# -> { "execute": "query-migrate" } 319# <- { 320# "return":{ 321# "status":"active", 322# "total-time":12345, 323# "setup-time":12345, 324# "expected-downtime":12345, 325# "ram":{ 326# "transferred":123, 327# "remaining":123, 328# "total":246, 329# "duplicate":123, 330# "normal":123, 331# "normal-bytes":123456, 332# "dirty-sync-count":15 333# } 334# } 335# } 336# 337# 5. Migration is being performed and is a block migration: 338# 339# -> { "execute": "query-migrate" } 340# <- { 341# "return":{ 342# "status":"active", 343# "total-time":12345, 344# "setup-time":12345, 345# "expected-downtime":12345, 346# "ram":{ 347# "total":1057024, 348# "remaining":1053304, 349# "transferred":3720, 350# "duplicate":123, 351# "normal":123, 352# "normal-bytes":123456, 353# "dirty-sync-count":15 354# }, 355# "disk":{ 356# "total":20971520, 357# "remaining":20880384, 358# "transferred":91136 359# } 360# } 361# } 362# 363# 6. Migration is being performed and XBZRLE is active: 364# 365# -> { "execute": "query-migrate" } 366# <- { 367# "return":{ 368# "status":"active", 369# "total-time":12345, 370# "setup-time":12345, 371# "expected-downtime":12345, 372# "ram":{ 373# "total":1057024, 374# "remaining":1053304, 375# "transferred":3720, 376# "duplicate":10, 377# "normal":3333, 378# "normal-bytes":3412992, 379# "dirty-sync-count":15 380# }, 381# "xbzrle-cache":{ 382# "cache-size":67108864, 383# "bytes":20971520, 384# "pages":2444343, 385# "cache-miss":2244, 386# "cache-miss-rate":0.123, 387# "encoding-rate":80.1, 388# "overflow":34434 389# } 390# } 391# } 392## 393{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 394 395## 396# @MigrationCapability: 397# 398# Migration capabilities enumeration 399# 400# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 401# Encoding). This feature allows us to minimize migration traffic 402# for certain work loads, by sending compressed difference of the 403# pages 404# 405# @rdma-pin-all: Controls whether or not the entire VM memory 406# footprint is mlock()'d on demand or all at once. Refer to 407# docs/rdma.txt for usage. Disabled by default. (since 2.0) 408# 409# @zero-blocks: During storage migration encode blocks of zeroes 410# efficiently. This essentially saves 1MB of zeroes per block on 411# the wire. Enabling requires source and target VM to support 412# this feature. To enable it is sufficient to enable the 413# capability on the source VM. The feature is disabled by default. 414# (since 1.6) 415# 416# @compress: Use multiple compression threads to accelerate live 417# migration. This feature can help to reduce the migration 418# traffic, by sending compressed pages. Please note that if 419# compress and xbzrle are both on, compress only takes effect in 420# the ram bulk stage, after that, it will be disabled and only 421# xbzrle takes effect, this can help to minimize migration 422# traffic. The feature is disabled by default. (since 2.4 ) 423# 424# @events: generate events for each migration state change (since 2.4 425# ) 426# 427# @auto-converge: If enabled, QEMU will automatically throttle down 428# the guest to speed up convergence of RAM migration. (since 1.6) 429# 430# @postcopy-ram: Start executing on the migration target before all of 431# RAM has been migrated, pulling the remaining pages along as 432# needed. The capacity must have the same setting on both source 433# and target or migration will not even start. NOTE: If the 434# migration fails during postcopy the VM will fail. (since 2.6) 435# 436# @x-colo: If enabled, migration will never end, and the state of the 437# VM on the primary side will be migrated continuously to the VM 438# on secondary side, this process is called COarse-Grain LOck 439# Stepping (COLO) for Non-stop Service. (since 2.8) 440# 441# @release-ram: if enabled, qemu will free the migrated ram pages on 442# the source during postcopy-ram migration. (since 2.9) 443# 444# @block: If enabled, QEMU will also migrate the contents of all block 445# devices. Default is disabled. A possible alternative uses 446# mirror jobs to a builtin NBD server on the destination, which 447# offers more flexibility. (Since 2.10) 448# 449# @return-path: If enabled, migration will use the return path even 450# for precopy. (since 2.10) 451# 452# @pause-before-switchover: Pause outgoing migration before 453# serialising device state and before disabling block IO (since 454# 2.11) 455# 456# @multifd: Use more than one fd for migration (since 4.0) 457# 458# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 459# (since 2.12) 460# 461# @postcopy-blocktime: Calculate downtime for postcopy live migration 462# (since 3.0) 463# 464# @late-block-activate: If enabled, the destination will not activate 465# block devices (and thus take locks) immediately at the end of 466# migration. (since 3.0) 467# 468# @x-ignore-shared: If enabled, QEMU will not migrate shared memory that is 469# accessible on the destination machine. (since 4.0) 470# 471# @validate-uuid: Send the UUID of the source to allow the destination 472# to ensure it is the same. (since 4.2) 473# 474# @background-snapshot: If enabled, the migration stream will be a 475# snapshot of the VM exactly at the point when the migration 476# procedure starts. The VM RAM is saved with running VM. (since 477# 6.0) 478# 479# @zero-copy-send: Controls behavior on sending memory pages on 480# migration. When true, enables a zero-copy mechanism for sending 481# memory pages, if host supports it. Requires that QEMU be 482# permitted to use locked memory for guest RAM pages. (since 7.1) 483# 484# @postcopy-preempt: If enabled, the migration process will allow 485# postcopy requests to preempt precopy stream, so postcopy 486# requests will be handled faster. This is a performance feature 487# and should not affect the correctness of postcopy migration. 488# (since 7.1) 489# 490# @switchover-ack: If enabled, migration will not stop the source VM 491# and complete the migration until an ACK is received from the 492# destination that it's OK to do so. Exactly when this ACK is 493# sent depends on the migrated devices that use this feature. 494# For example, a device can use it to make sure some of its data 495# is sent and loaded in the destination before doing switchover. 496# This can reduce downtime if devices that support this capability 497# are present. 'return-path' capability must be enabled to use 498# it. (since 8.1) 499# 500# Features: 501# 502# @unstable: Members @x-colo and @x-ignore-shared are experimental. 503# 504# Since: 1.2 505## 506{ 'enum': 'MigrationCapability', 507 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 508 'compress', 'events', 'postcopy-ram', 509 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 510 'release-ram', 511 'block', 'return-path', 'pause-before-switchover', 'multifd', 512 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 513 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 514 'validate-uuid', 'background-snapshot', 515 'zero-copy-send', 'postcopy-preempt', 'switchover-ack'] } 516 517## 518# @MigrationCapabilityStatus: 519# 520# Migration capability information 521# 522# @capability: capability enum 523# 524# @state: capability state bool 525# 526# Since: 1.2 527## 528{ 'struct': 'MigrationCapabilityStatus', 529 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 530 531## 532# @migrate-set-capabilities: 533# 534# Enable/Disable the following migration capabilities (like xbzrle) 535# 536# @capabilities: json array of capability modifications to make 537# 538# Since: 1.2 539# 540# Example: 541# 542# -> { "execute": "migrate-set-capabilities" , "arguments": 543# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 544# <- { "return": {} } 545## 546{ 'command': 'migrate-set-capabilities', 547 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 548 549## 550# @query-migrate-capabilities: 551# 552# Returns information about the current migration capabilities status 553# 554# Returns: @MigrationCapabilityStatus 555# 556# Since: 1.2 557# 558# Example: 559# 560# -> { "execute": "query-migrate-capabilities" } 561# <- { "return": [ 562# {"state": false, "capability": "xbzrle"}, 563# {"state": false, "capability": "rdma-pin-all"}, 564# {"state": false, "capability": "auto-converge"}, 565# {"state": false, "capability": "zero-blocks"}, 566# {"state": false, "capability": "compress"}, 567# {"state": true, "capability": "events"}, 568# {"state": false, "capability": "postcopy-ram"}, 569# {"state": false, "capability": "x-colo"} 570# ]} 571## 572{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 573 574## 575# @MultiFDCompression: 576# 577# An enumeration of multifd compression methods. 578# 579# @none: no compression. 580# 581# @zlib: use zlib compression method. 582# 583# @zstd: use zstd compression method. 584# 585# Since: 5.0 586## 587{ 'enum': 'MultiFDCompression', 588 'data': [ 'none', 'zlib', 589 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] } 590 591## 592# @BitmapMigrationBitmapAliasTransform: 593# 594# @persistent: If present, the bitmap will be made persistent or 595# transient depending on this parameter. 596# 597# Since: 6.0 598## 599{ 'struct': 'BitmapMigrationBitmapAliasTransform', 600 'data': { 601 '*persistent': 'bool' 602 } } 603 604## 605# @BitmapMigrationBitmapAlias: 606# 607# @name: The name of the bitmap. 608# 609# @alias: An alias name for migration (for example the bitmap name on 610# the opposite site). 611# 612# @transform: Allows the modification of the migrated bitmap. (since 613# 6.0) 614# 615# Since: 5.2 616## 617{ 'struct': 'BitmapMigrationBitmapAlias', 618 'data': { 619 'name': 'str', 620 'alias': 'str', 621 '*transform': 'BitmapMigrationBitmapAliasTransform' 622 } } 623 624## 625# @BitmapMigrationNodeAlias: 626# 627# Maps a block node name and the bitmaps it has to aliases for dirty 628# bitmap migration. 629# 630# @node-name: A block node name. 631# 632# @alias: An alias block node name for migration (for example the node 633# name on the opposite site). 634# 635# @bitmaps: Mappings for the bitmaps on this node. 636# 637# Since: 5.2 638## 639{ 'struct': 'BitmapMigrationNodeAlias', 640 'data': { 641 'node-name': 'str', 642 'alias': 'str', 643 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 644 } } 645 646## 647# @MigrationParameter: 648# 649# Migration parameters enumeration 650# 651# @announce-initial: Initial delay (in milliseconds) before sending 652# the first announce (Since 4.0) 653# 654# @announce-max: Maximum delay (in milliseconds) between packets in 655# the announcement (Since 4.0) 656# 657# @announce-rounds: Number of self-announce packets sent after 658# migration (Since 4.0) 659# 660# @announce-step: Increase in delay (in milliseconds) between 661# subsequent packets in the announcement (Since 4.0) 662# 663# @compress-level: Set the compression level to be used in live 664# migration, the compression level is an integer between 0 and 9, 665# where 0 means no compression, 1 means the best compression 666# speed, and 9 means best compression ratio which will consume 667# more CPU. 668# 669# @compress-threads: Set compression thread count to be used in live 670# migration, the compression thread count is an integer between 1 671# and 255. 672# 673# @compress-wait-thread: Controls behavior when all compression 674# threads are currently busy. If true (default), wait for a free 675# compression thread to become available; otherwise, send the page 676# uncompressed. (Since 3.1) 677# 678# @decompress-threads: Set decompression thread count to be used in 679# live migration, the decompression thread count is an integer 680# between 1 and 255. Usually, decompression is at least 4 times as 681# fast as compression, so set the decompress-threads to the number 682# about 1/4 of compress-threads is adequate. 683# 684# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 685# bytes_xfer_period to trigger throttling. It is expressed as 686# percentage. The default value is 50. (Since 5.0) 687# 688# @cpu-throttle-initial: Initial percentage of time guest cpus are 689# throttled when migration auto-converge is activated. The 690# default value is 20. (Since 2.7) 691# 692# @cpu-throttle-increment: throttle percentage increase each time 693# auto-converge detects that migration is not making progress. 694# The default value is 10. (Since 2.7) 695# 696# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 697# the tail stage of throttling, the Guest is very sensitive to CPU 698# percentage while the @cpu-throttle -increment is excessive 699# usually at tail stage. If this parameter is true, we will 700# compute the ideal CPU percentage used by the Guest, which may 701# exactly make the dirty rate match the dirty rate threshold. 702# Then we will choose a smaller throttle increment between the one 703# specified by @cpu-throttle-increment and the one generated by 704# ideal CPU percentage. Therefore, it is compatible to 705# traditional throttling, meanwhile the throttle increment won't 706# be excessive at tail stage. The default value is false. (Since 707# 5.1) 708# 709# @tls-creds: ID of the 'tls-creds' object that provides credentials 710# for establishing a TLS connection over the migration data 711# channel. On the outgoing side of the migration, the credentials 712# must be for a 'client' endpoint, while for the incoming side the 713# credentials must be for a 'server' endpoint. Setting this will 714# enable TLS for all migrations. The default is unset, resulting 715# in unsecured migration at the QEMU level. (Since 2.7) 716# 717# @tls-hostname: hostname of the target host for the migration. This 718# is required when using x509 based TLS credentials and the 719# migration URI does not already include a hostname. For example 720# if using fd: or exec: based migration, the hostname must be 721# provided so that the server's x509 certificate identity can be 722# validated. (Since 2.7) 723# 724# @tls-authz: ID of the 'authz' object subclass that provides access 725# control checking of the TLS x509 certificate distinguished name. 726# This object is only resolved at time of use, so can be deleted 727# and recreated on the fly while the migration server is active. 728# If missing, it will default to denying access (Since 4.0) 729# 730# @max-bandwidth: to set maximum speed for migration. maximum speed 731# in bytes per second. (Since 2.8) 732# 733# @downtime-limit: set maximum tolerated downtime for migration. 734# maximum downtime in milliseconds (Since 2.8) 735# 736# @x-checkpoint-delay: The delay time (in ms) between two COLO 737# checkpoints in periodic mode. (Since 2.8) 738# 739# @block-incremental: Affects how much storage is migrated when the 740# block migration capability is enabled. When false, the entire 741# storage backing chain is migrated into a flattened image at the 742# destination; when true, only the active qcow2 layer is migrated 743# and the destination must already have access to the same backing 744# chain as was used on the source. (since 2.10) 745# 746# @multifd-channels: Number of channels used to migrate data in 747# parallel. This is the same number that the number of sockets 748# used for migration. The default value is 2 (since 4.0) 749# 750# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 751# needs to be a multiple of the target page size and a power of 2 752# (Since 2.11) 753# 754# @max-postcopy-bandwidth: Background transfer bandwidth during 755# postcopy. Defaults to 0 (unlimited). In bytes per second. 756# (Since 3.0) 757# 758# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 759# (Since 3.1) 760# 761# @multifd-compression: Which compression method to use. Defaults to 762# none. (Since 5.0) 763# 764# @multifd-zlib-level: Set the compression level to be used in live 765# migration, the compression level is an integer between 0 and 9, 766# where 0 means no compression, 1 means the best compression 767# speed, and 9 means best compression ratio which will consume 768# more CPU. Defaults to 1. (Since 5.0) 769# 770# @multifd-zstd-level: Set the compression level to be used in live 771# migration, the compression level is an integer between 0 and 20, 772# where 0 means no compression, 1 means the best compression 773# speed, and 20 means best compression ratio which will consume 774# more CPU. Defaults to 1. (Since 5.0) 775# 776# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 777# aliases for the purpose of dirty bitmap migration. Such aliases 778# may for example be the corresponding names on the opposite site. 779# The mapping must be one-to-one, but not necessarily complete: On 780# the source, unmapped bitmaps and all bitmaps on unmapped nodes 781# will be ignored. On the destination, encountering an unmapped 782# alias in the incoming migration stream will result in a report, 783# and all further bitmap migration data will then be discarded. 784# Note that the destination does not know about bitmaps it does 785# not receive, so there is no limitation or requirement regarding 786# the number of bitmaps received, or how they are named, or on 787# which nodes they are placed. By default (when this parameter 788# has never been set), bitmap names are mapped to themselves. 789# Nodes are mapped to their block device name if there is one, and 790# to their node name otherwise. (Since 5.2) 791# 792# Features: 793# 794# @unstable: Member @x-checkpoint-delay is experimental. 795# 796# Since: 2.4 797## 798{ 'enum': 'MigrationParameter', 799 'data': ['announce-initial', 'announce-max', 800 'announce-rounds', 'announce-step', 801 'compress-level', 'compress-threads', 'decompress-threads', 802 'compress-wait-thread', 'throttle-trigger-threshold', 803 'cpu-throttle-initial', 'cpu-throttle-increment', 804 'cpu-throttle-tailslow', 805 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 806 'downtime-limit', 807 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 808 'block-incremental', 809 'multifd-channels', 810 'xbzrle-cache-size', 'max-postcopy-bandwidth', 811 'max-cpu-throttle', 'multifd-compression', 812 'multifd-zlib-level' ,'multifd-zstd-level', 813 'block-bitmap-mapping' ] } 814 815## 816# @MigrateSetParameters: 817# 818# @announce-initial: Initial delay (in milliseconds) before sending 819# the first announce (Since 4.0) 820# 821# @announce-max: Maximum delay (in milliseconds) between packets in 822# the announcement (Since 4.0) 823# 824# @announce-rounds: Number of self-announce packets sent after 825# migration (Since 4.0) 826# 827# @announce-step: Increase in delay (in milliseconds) between 828# subsequent packets in the announcement (Since 4.0) 829# 830# @compress-level: compression level 831# 832# @compress-threads: compression thread count 833# 834# @compress-wait-thread: Controls behavior when all compression 835# threads are currently busy. If true (default), wait for a free 836# compression thread to become available; otherwise, send the page 837# uncompressed. (Since 3.1) 838# 839# @decompress-threads: decompression thread count 840# 841# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 842# bytes_xfer_period to trigger throttling. It is expressed as 843# percentage. The default value is 50. (Since 5.0) 844# 845# @cpu-throttle-initial: Initial percentage of time guest cpus are 846# throttled when migration auto-converge is activated. The 847# default value is 20. (Since 2.7) 848# 849# @cpu-throttle-increment: throttle percentage increase each time 850# auto-converge detects that migration is not making progress. 851# The default value is 10. (Since 2.7) 852# 853# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 854# the tail stage of throttling, the Guest is very sensitive to CPU 855# percentage while the @cpu-throttle -increment is excessive 856# usually at tail stage. If this parameter is true, we will 857# compute the ideal CPU percentage used by the Guest, which may 858# exactly make the dirty rate match the dirty rate threshold. 859# Then we will choose a smaller throttle increment between the one 860# specified by @cpu-throttle-increment and the one generated by 861# ideal CPU percentage. Therefore, it is compatible to 862# traditional throttling, meanwhile the throttle increment won't 863# be excessive at tail stage. The default value is false. (Since 864# 5.1) 865# 866# @tls-creds: ID of the 'tls-creds' object that provides credentials 867# for establishing a TLS connection over the migration data 868# channel. On the outgoing side of the migration, the credentials 869# must be for a 'client' endpoint, while for the incoming side the 870# credentials must be for a 'server' endpoint. Setting this to a 871# non-empty string enables TLS for all migrations. An empty 872# string means that QEMU will use plain text mode for migration, 873# rather than TLS (Since 2.9) Previously (since 2.7), this was 874# reported by omitting tls-creds instead. 875# 876# @tls-hostname: hostname of the target host for the migration. This 877# is required when using x509 based TLS credentials and the 878# migration URI does not already include a hostname. For example 879# if using fd: or exec: based migration, the hostname must be 880# provided so that the server's x509 certificate identity can be 881# validated. (Since 2.7) An empty string means that QEMU will use 882# the hostname associated with the migration URI, if any. (Since 883# 2.9) Previously (since 2.7), this was reported by omitting 884# tls-hostname instead. 885# 886# @max-bandwidth: to set maximum speed for migration. maximum speed 887# in bytes per second. (Since 2.8) 888# 889# @downtime-limit: set maximum tolerated downtime for migration. 890# maximum downtime in milliseconds (Since 2.8) 891# 892# @x-checkpoint-delay: the delay time between two COLO checkpoints. 893# (Since 2.8) 894# 895# @block-incremental: Affects how much storage is migrated when the 896# block migration capability is enabled. When false, the entire 897# storage backing chain is migrated into a flattened image at the 898# destination; when true, only the active qcow2 layer is migrated 899# and the destination must already have access to the same backing 900# chain as was used on the source. (since 2.10) 901# 902# @multifd-channels: Number of channels used to migrate data in 903# parallel. This is the same number that the number of sockets 904# used for migration. The default value is 2 (since 4.0) 905# 906# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 907# needs to be a multiple of the target page size and a power of 2 908# (Since 2.11) 909# 910# @max-postcopy-bandwidth: Background transfer bandwidth during 911# postcopy. Defaults to 0 (unlimited). In bytes per second. 912# (Since 3.0) 913# 914# @max-cpu-throttle: maximum cpu throttle percentage. The default 915# value is 99. (Since 3.1) 916# 917# @multifd-compression: Which compression method to use. Defaults to 918# none. (Since 5.0) 919# 920# @multifd-zlib-level: Set the compression level to be used in live 921# migration, the compression level is an integer between 0 and 9, 922# where 0 means no compression, 1 means the best compression 923# speed, and 9 means best compression ratio which will consume 924# more CPU. Defaults to 1. (Since 5.0) 925# 926# @multifd-zstd-level: Set the compression level to be used in live 927# migration, the compression level is an integer between 0 and 20, 928# where 0 means no compression, 1 means the best compression 929# speed, and 20 means best compression ratio which will consume 930# more CPU. Defaults to 1. (Since 5.0) 931# 932# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 933# aliases for the purpose of dirty bitmap migration. Such aliases 934# may for example be the corresponding names on the opposite site. 935# The mapping must be one-to-one, but not necessarily complete: On 936# the source, unmapped bitmaps and all bitmaps on unmapped nodes 937# will be ignored. On the destination, encountering an unmapped 938# alias in the incoming migration stream will result in a report, 939# and all further bitmap migration data will then be discarded. 940# Note that the destination does not know about bitmaps it does 941# not receive, so there is no limitation or requirement regarding 942# the number of bitmaps received, or how they are named, or on 943# which nodes they are placed. By default (when this parameter 944# has never been set), bitmap names are mapped to themselves. 945# Nodes are mapped to their block device name if there is one, and 946# to their node name otherwise. (Since 5.2) 947# 948# Features: 949# 950# @unstable: Member @x-checkpoint-delay is experimental. 951# 952# TODO: either fuse back into MigrationParameters, or make 953# MigrationParameters members mandatory 954# 955# Since: 2.4 956## 957{ 'struct': 'MigrateSetParameters', 958 'data': { '*announce-initial': 'size', 959 '*announce-max': 'size', 960 '*announce-rounds': 'size', 961 '*announce-step': 'size', 962 '*compress-level': 'uint8', 963 '*compress-threads': 'uint8', 964 '*compress-wait-thread': 'bool', 965 '*decompress-threads': 'uint8', 966 '*throttle-trigger-threshold': 'uint8', 967 '*cpu-throttle-initial': 'uint8', 968 '*cpu-throttle-increment': 'uint8', 969 '*cpu-throttle-tailslow': 'bool', 970 '*tls-creds': 'StrOrNull', 971 '*tls-hostname': 'StrOrNull', 972 '*tls-authz': 'StrOrNull', 973 '*max-bandwidth': 'size', 974 '*downtime-limit': 'uint64', 975 '*x-checkpoint-delay': { 'type': 'uint32', 976 'features': [ 'unstable' ] }, 977 '*block-incremental': 'bool', 978 '*multifd-channels': 'uint8', 979 '*xbzrle-cache-size': 'size', 980 '*max-postcopy-bandwidth': 'size', 981 '*max-cpu-throttle': 'uint8', 982 '*multifd-compression': 'MultiFDCompression', 983 '*multifd-zlib-level': 'uint8', 984 '*multifd-zstd-level': 'uint8', 985 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 986 987## 988# @migrate-set-parameters: 989# 990# Set various migration parameters. 991# 992# Since: 2.4 993# 994# Example: 995# 996# -> { "execute": "migrate-set-parameters" , 997# "arguments": { "compress-level": 1 } } 998# <- { "return": {} } 999## 1000{ 'command': 'migrate-set-parameters', 'boxed': true, 1001 'data': 'MigrateSetParameters' } 1002 1003## 1004# @MigrationParameters: 1005# 1006# The optional members aren't actually optional. 1007# 1008# @announce-initial: Initial delay (in milliseconds) before sending 1009# the first announce (Since 4.0) 1010# 1011# @announce-max: Maximum delay (in milliseconds) between packets in 1012# the announcement (Since 4.0) 1013# 1014# @announce-rounds: Number of self-announce packets sent after 1015# migration (Since 4.0) 1016# 1017# @announce-step: Increase in delay (in milliseconds) between 1018# subsequent packets in the announcement (Since 4.0) 1019# 1020# @compress-level: compression level 1021# 1022# @compress-threads: compression thread count 1023# 1024# @compress-wait-thread: Controls behavior when all compression 1025# threads are currently busy. If true (default), wait for a free 1026# compression thread to become available; otherwise, send the page 1027# uncompressed. (Since 3.1) 1028# 1029# @decompress-threads: decompression thread count 1030# 1031# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1032# bytes_xfer_period to trigger throttling. It is expressed as 1033# percentage. The default value is 50. (Since 5.0) 1034# 1035# @cpu-throttle-initial: Initial percentage of time guest cpus are 1036# throttled when migration auto-converge is activated. (Since 1037# 2.7) 1038# 1039# @cpu-throttle-increment: throttle percentage increase each time 1040# auto-converge detects that migration is not making progress. 1041# (Since 2.7) 1042# 1043# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 1044# the tail stage of throttling, the Guest is very sensitive to CPU 1045# percentage while the @cpu-throttle -increment is excessive 1046# usually at tail stage. If this parameter is true, we will 1047# compute the ideal CPU percentage used by the Guest, which may 1048# exactly make the dirty rate match the dirty rate threshold. 1049# Then we will choose a smaller throttle increment between the one 1050# specified by @cpu-throttle-increment and the one generated by 1051# ideal CPU percentage. Therefore, it is compatible to 1052# traditional throttling, meanwhile the throttle increment won't 1053# be excessive at tail stage. The default value is false. (Since 1054# 5.1) 1055# 1056# @tls-creds: ID of the 'tls-creds' object that provides credentials 1057# for establishing a TLS connection over the migration data 1058# channel. On the outgoing side of the migration, the credentials 1059# must be for a 'client' endpoint, while for the incoming side the 1060# credentials must be for a 'server' endpoint. An empty string 1061# means that QEMU will use plain text mode for migration, rather 1062# than TLS (Since 2.7) Note: 2.8 reports this by omitting 1063# tls-creds instead. 1064# 1065# @tls-hostname: hostname of the target host for the migration. This 1066# is required when using x509 based TLS credentials and the 1067# migration URI does not already include a hostname. For example 1068# if using fd: or exec: based migration, the hostname must be 1069# provided so that the server's x509 certificate identity can be 1070# validated. (Since 2.7) An empty string means that QEMU will use 1071# the hostname associated with the migration URI, if any. (Since 1072# 2.9) Note: 2.8 reports this by omitting tls-hostname instead. 1073# 1074# @tls-authz: ID of the 'authz' object subclass that provides access 1075# control checking of the TLS x509 certificate distinguished name. 1076# (Since 4.0) 1077# 1078# @max-bandwidth: to set maximum speed for migration. maximum speed 1079# in bytes per second. (Since 2.8) 1080# 1081# @downtime-limit: set maximum tolerated downtime for migration. 1082# maximum downtime in milliseconds (Since 2.8) 1083# 1084# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1085# (Since 2.8) 1086# 1087# @block-incremental: Affects how much storage is migrated when the 1088# block migration capability is enabled. When false, the entire 1089# storage backing chain is migrated into a flattened image at the 1090# destination; when true, only the active qcow2 layer is migrated 1091# and the destination must already have access to the same backing 1092# chain as was used on the source. (since 2.10) 1093# 1094# @multifd-channels: Number of channels used to migrate data in 1095# parallel. This is the same number that the number of sockets 1096# used for migration. The default value is 2 (since 4.0) 1097# 1098# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1099# needs to be a multiple of the target page size and a power of 2 1100# (Since 2.11) 1101# 1102# @max-postcopy-bandwidth: Background transfer bandwidth during 1103# postcopy. Defaults to 0 (unlimited). In bytes per second. 1104# (Since 3.0) 1105# 1106# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1107# (Since 3.1) 1108# 1109# @multifd-compression: Which compression method to use. Defaults to 1110# none. (Since 5.0) 1111# 1112# @multifd-zlib-level: Set the compression level to be used in live 1113# migration, the compression level is an integer between 0 and 9, 1114# where 0 means no compression, 1 means the best compression 1115# speed, and 9 means best compression ratio which will consume 1116# more CPU. Defaults to 1. (Since 5.0) 1117# 1118# @multifd-zstd-level: Set the compression level to be used in live 1119# migration, the compression level is an integer between 0 and 20, 1120# where 0 means no compression, 1 means the best compression 1121# speed, and 20 means best compression ratio which will consume 1122# more CPU. Defaults to 1. (Since 5.0) 1123# 1124# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1125# aliases for the purpose of dirty bitmap migration. Such aliases 1126# may for example be the corresponding names on the opposite site. 1127# The mapping must be one-to-one, but not necessarily complete: On 1128# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1129# will be ignored. On the destination, encountering an unmapped 1130# alias in the incoming migration stream will result in a report, 1131# and all further bitmap migration data will then be discarded. 1132# Note that the destination does not know about bitmaps it does 1133# not receive, so there is no limitation or requirement regarding 1134# the number of bitmaps received, or how they are named, or on 1135# which nodes they are placed. By default (when this parameter 1136# has never been set), bitmap names are mapped to themselves. 1137# Nodes are mapped to their block device name if there is one, and 1138# to their node name otherwise. (Since 5.2) 1139# 1140# Features: 1141# 1142# @unstable: Member @x-checkpoint-delay is experimental. 1143# 1144# Since: 2.4 1145## 1146{ 'struct': 'MigrationParameters', 1147 'data': { '*announce-initial': 'size', 1148 '*announce-max': 'size', 1149 '*announce-rounds': 'size', 1150 '*announce-step': 'size', 1151 '*compress-level': 'uint8', 1152 '*compress-threads': 'uint8', 1153 '*compress-wait-thread': 'bool', 1154 '*decompress-threads': 'uint8', 1155 '*throttle-trigger-threshold': 'uint8', 1156 '*cpu-throttle-initial': 'uint8', 1157 '*cpu-throttle-increment': 'uint8', 1158 '*cpu-throttle-tailslow': 'bool', 1159 '*tls-creds': 'str', 1160 '*tls-hostname': 'str', 1161 '*tls-authz': 'str', 1162 '*max-bandwidth': 'size', 1163 '*downtime-limit': 'uint64', 1164 '*x-checkpoint-delay': { 'type': 'uint32', 1165 'features': [ 'unstable' ] }, 1166 '*block-incremental': 'bool', 1167 '*multifd-channels': 'uint8', 1168 '*xbzrle-cache-size': 'size', 1169 '*max-postcopy-bandwidth': 'size', 1170 '*max-cpu-throttle': 'uint8', 1171 '*multifd-compression': 'MultiFDCompression', 1172 '*multifd-zlib-level': 'uint8', 1173 '*multifd-zstd-level': 'uint8', 1174 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 1175 1176## 1177# @query-migrate-parameters: 1178# 1179# Returns information about the current migration parameters 1180# 1181# Returns: @MigrationParameters 1182# 1183# Since: 2.4 1184# 1185# Example: 1186# 1187# -> { "execute": "query-migrate-parameters" } 1188# <- { "return": { 1189# "decompress-threads": 2, 1190# "cpu-throttle-increment": 10, 1191# "compress-threads": 8, 1192# "compress-level": 1, 1193# "cpu-throttle-initial": 20, 1194# "max-bandwidth": 33554432, 1195# "downtime-limit": 300 1196# } 1197# } 1198## 1199{ 'command': 'query-migrate-parameters', 1200 'returns': 'MigrationParameters' } 1201 1202## 1203# @migrate-start-postcopy: 1204# 1205# Followup to a migration command to switch the migration to postcopy 1206# mode. The postcopy-ram capability must be set on both source and 1207# destination before the original migration command. 1208# 1209# Since: 2.5 1210# 1211# Example: 1212# 1213# -> { "execute": "migrate-start-postcopy" } 1214# <- { "return": {} } 1215## 1216{ 'command': 'migrate-start-postcopy' } 1217 1218## 1219# @MIGRATION: 1220# 1221# Emitted when a migration event happens 1222# 1223# @status: @MigrationStatus describing the current migration status. 1224# 1225# Since: 2.4 1226# 1227# Example: 1228# 1229# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1230# "event": "MIGRATION", 1231# "data": {"status": "completed"} } 1232## 1233{ 'event': 'MIGRATION', 1234 'data': {'status': 'MigrationStatus'}} 1235 1236## 1237# @MIGRATION_PASS: 1238# 1239# Emitted from the source side of a migration at the start of each 1240# pass (when it syncs the dirty bitmap) 1241# 1242# @pass: An incrementing count (starting at 1 on the first pass) 1243# 1244# Since: 2.6 1245# 1246# Example: 1247# 1248# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1249# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1250## 1251{ 'event': 'MIGRATION_PASS', 1252 'data': { 'pass': 'int' } } 1253 1254## 1255# @COLOMessage: 1256# 1257# The message transmission between Primary side and Secondary side. 1258# 1259# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1260# 1261# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1262# checkpointing 1263# 1264# @checkpoint-reply: SVM gets PVM's checkpoint request 1265# 1266# @vmstate-send: VM's state will be sent by PVM. 1267# 1268# @vmstate-size: The total size of VMstate. 1269# 1270# @vmstate-received: VM's state has been received by SVM. 1271# 1272# @vmstate-loaded: VM's state has been loaded by SVM. 1273# 1274# Since: 2.8 1275## 1276{ 'enum': 'COLOMessage', 1277 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1278 'vmstate-send', 'vmstate-size', 'vmstate-received', 1279 'vmstate-loaded' ] } 1280 1281## 1282# @COLOMode: 1283# 1284# The COLO current mode. 1285# 1286# @none: COLO is disabled. 1287# 1288# @primary: COLO node in primary side. 1289# 1290# @secondary: COLO node in slave side. 1291# 1292# Since: 2.8 1293## 1294{ 'enum': 'COLOMode', 1295 'data': [ 'none', 'primary', 'secondary'] } 1296 1297## 1298# @FailoverStatus: 1299# 1300# An enumeration of COLO failover status 1301# 1302# @none: no failover has ever happened 1303# 1304# @require: got failover requirement but not handled 1305# 1306# @active: in the process of doing failover 1307# 1308# @completed: finish the process of failover 1309# 1310# @relaunch: restart the failover process, from 'none' -> 'completed' 1311# (Since 2.9) 1312# 1313# Since: 2.8 1314## 1315{ 'enum': 'FailoverStatus', 1316 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1317 1318## 1319# @COLO_EXIT: 1320# 1321# Emitted when VM finishes COLO mode due to some errors happening or 1322# at the request of users. 1323# 1324# @mode: report COLO mode when COLO exited. 1325# 1326# @reason: describes the reason for the COLO exit. 1327# 1328# Since: 3.1 1329# 1330# Example: 1331# 1332# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1333# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1334## 1335{ 'event': 'COLO_EXIT', 1336 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1337 1338## 1339# @COLOExitReason: 1340# 1341# The reason for a COLO exit. 1342# 1343# @none: failover has never happened. This state does not occur in 1344# the COLO_EXIT event, and is only visible in the result of 1345# query-colo-status. 1346# 1347# @request: COLO exit is due to an external request. 1348# 1349# @error: COLO exit is due to an internal error. 1350# 1351# @processing: COLO is currently handling a failover (since 4.0). 1352# 1353# Since: 3.1 1354## 1355{ 'enum': 'COLOExitReason', 1356 'data': [ 'none', 'request', 'error' , 'processing' ] } 1357 1358## 1359# @x-colo-lost-heartbeat: 1360# 1361# Tell qemu that heartbeat is lost, request it to do takeover 1362# procedures. If this command is sent to the PVM, the Primary side 1363# will exit COLO mode. If sent to the Secondary, the Secondary side 1364# will run failover work, then takes over server operation to become 1365# the service VM. 1366# 1367# Features: 1368# 1369# @unstable: This command is experimental. 1370# 1371# Since: 2.8 1372# 1373# Example: 1374# 1375# -> { "execute": "x-colo-lost-heartbeat" } 1376# <- { "return": {} } 1377## 1378{ 'command': 'x-colo-lost-heartbeat', 1379 'features': [ 'unstable' ], 1380 'if': 'CONFIG_REPLICATION' } 1381 1382## 1383# @migrate_cancel: 1384# 1385# Cancel the current executing migration process. 1386# 1387# Returns: nothing on success 1388# 1389# Notes: This command succeeds even if there is no migration process 1390# running. 1391# 1392# Since: 0.14 1393# 1394# Example: 1395# 1396# -> { "execute": "migrate_cancel" } 1397# <- { "return": {} } 1398## 1399{ 'command': 'migrate_cancel' } 1400 1401## 1402# @migrate-continue: 1403# 1404# Continue migration when it's in a paused state. 1405# 1406# @state: The state the migration is currently expected to be in 1407# 1408# Returns: nothing on success 1409# 1410# Since: 2.11 1411# 1412# Example: 1413# 1414# -> { "execute": "migrate-continue" , "arguments": 1415# { "state": "pre-switchover" } } 1416# <- { "return": {} } 1417## 1418{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1419 1420## 1421# @migrate: 1422# 1423# Migrates the current running guest to another Virtual Machine. 1424# 1425# @uri: the Uniform Resource Identifier of the destination VM 1426# 1427# @blk: do block migration (full disk copy) 1428# 1429# @inc: incremental disk copy migration 1430# 1431# @detach: this argument exists only for compatibility reasons and is 1432# ignored by QEMU 1433# 1434# @resume: resume one paused migration, default "off". (since 3.0) 1435# 1436# Returns: nothing on success 1437# 1438# Since: 0.14 1439# 1440# Notes: 1441# 1442# 1. The 'query-migrate' command should be used to check migration's 1443# progress and final result (this information is provided by the 1444# 'status' member) 1445# 1446# 2. All boolean arguments default to false 1447# 1448# 3. The user Monitor's "detach" argument is invalid in QMP and should 1449# not be used 1450# 1451# Example: 1452# 1453# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1454# <- { "return": {} } 1455## 1456{ 'command': 'migrate', 1457 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', 1458 '*detach': 'bool', '*resume': 'bool' } } 1459 1460## 1461# @migrate-incoming: 1462# 1463# Start an incoming migration, the qemu must have been started with 1464# -incoming defer 1465# 1466# @uri: The Uniform Resource Identifier identifying the source or 1467# address to listen on 1468# 1469# Returns: nothing on success 1470# 1471# Since: 2.3 1472# 1473# Notes: 1474# 1475# 1. It's a bad idea to use a string for the uri, but it needs 1476# to stay compatible with -incoming and the format of the uri 1477# is already exposed above libvirt. 1478# 1479# 2. QEMU must be started with -incoming defer to allow 1480# migrate-incoming to be used. 1481# 1482# 3. The uri format is the same as for -incoming 1483# 1484# Example: 1485# 1486# -> { "execute": "migrate-incoming", 1487# "arguments": { "uri": "tcp::4446" } } 1488# <- { "return": {} } 1489## 1490{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } } 1491 1492## 1493# @xen-save-devices-state: 1494# 1495# Save the state of all devices to file. The RAM and the block 1496# devices of the VM are not saved by this command. 1497# 1498# @filename: the file to save the state of the devices to as binary 1499# data. See xen-save-devices-state.txt for a description of the 1500# binary format. 1501# 1502# @live: Optional argument to ask QEMU to treat this command as part 1503# of a live migration. Default to true. (since 2.11) 1504# 1505# Returns: Nothing on success 1506# 1507# Since: 1.1 1508# 1509# Example: 1510# 1511# -> { "execute": "xen-save-devices-state", 1512# "arguments": { "filename": "/tmp/save" } } 1513# <- { "return": {} } 1514## 1515{ 'command': 'xen-save-devices-state', 1516 'data': {'filename': 'str', '*live':'bool' } } 1517 1518## 1519# @xen-set-global-dirty-log: 1520# 1521# Enable or disable the global dirty log mode. 1522# 1523# @enable: true to enable, false to disable. 1524# 1525# Returns: nothing 1526# 1527# Since: 1.3 1528# 1529# Example: 1530# 1531# -> { "execute": "xen-set-global-dirty-log", 1532# "arguments": { "enable": true } } 1533# <- { "return": {} } 1534## 1535{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1536 1537## 1538# @xen-load-devices-state: 1539# 1540# Load the state of all devices from file. The RAM and the block 1541# devices of the VM are not loaded by this command. 1542# 1543# @filename: the file to load the state of the devices from as binary 1544# data. See xen-save-devices-state.txt for a description of the 1545# binary format. 1546# 1547# Since: 2.7 1548# 1549# Example: 1550# 1551# -> { "execute": "xen-load-devices-state", 1552# "arguments": { "filename": "/tmp/resume" } } 1553# <- { "return": {} } 1554## 1555{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1556 1557## 1558# @xen-set-replication: 1559# 1560# Enable or disable replication. 1561# 1562# @enable: true to enable, false to disable. 1563# 1564# @primary: true for primary or false for secondary. 1565# 1566# @failover: true to do failover, false to stop. but cannot be 1567# specified if 'enable' is true. default value is false. 1568# 1569# Returns: nothing. 1570# 1571# Example: 1572# 1573# -> { "execute": "xen-set-replication", 1574# "arguments": {"enable": true, "primary": false} } 1575# <- { "return": {} } 1576# 1577# Since: 2.9 1578## 1579{ 'command': 'xen-set-replication', 1580 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1581 'if': 'CONFIG_REPLICATION' } 1582 1583## 1584# @ReplicationStatus: 1585# 1586# The result format for 'query-xen-replication-status'. 1587# 1588# @error: true if an error happened, false if replication is normal. 1589# 1590# @desc: the human readable error description string, when @error is 1591# 'true'. 1592# 1593# Since: 2.9 1594## 1595{ 'struct': 'ReplicationStatus', 1596 'data': { 'error': 'bool', '*desc': 'str' }, 1597 'if': 'CONFIG_REPLICATION' } 1598 1599## 1600# @query-xen-replication-status: 1601# 1602# Query replication status while the vm is running. 1603# 1604# Returns: A @ReplicationStatus object showing the status. 1605# 1606# Example: 1607# 1608# -> { "execute": "query-xen-replication-status" } 1609# <- { "return": { "error": false } } 1610# 1611# Since: 2.9 1612## 1613{ 'command': 'query-xen-replication-status', 1614 'returns': 'ReplicationStatus', 1615 'if': 'CONFIG_REPLICATION' } 1616 1617## 1618# @xen-colo-do-checkpoint: 1619# 1620# Xen uses this command to notify replication to trigger a checkpoint. 1621# 1622# Returns: nothing. 1623# 1624# Example: 1625# 1626# -> { "execute": "xen-colo-do-checkpoint" } 1627# <- { "return": {} } 1628# 1629# Since: 2.9 1630## 1631{ 'command': 'xen-colo-do-checkpoint', 1632 'if': 'CONFIG_REPLICATION' } 1633 1634## 1635# @COLOStatus: 1636# 1637# The result format for 'query-colo-status'. 1638# 1639# @mode: COLO running mode. If COLO is running, this field will 1640# return 'primary' or 'secondary'. 1641# 1642# @last-mode: COLO last running mode. If COLO is running, this field 1643# will return same like mode field, after failover we can use this 1644# field to get last colo mode. (since 4.0) 1645# 1646# @reason: describes the reason for the COLO exit. 1647# 1648# Since: 3.1 1649## 1650{ 'struct': 'COLOStatus', 1651 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1652 'reason': 'COLOExitReason' }, 1653 'if': 'CONFIG_REPLICATION' } 1654 1655## 1656# @query-colo-status: 1657# 1658# Query COLO status while the vm is running. 1659# 1660# Returns: A @COLOStatus object showing the status. 1661# 1662# Example: 1663# 1664# -> { "execute": "query-colo-status" } 1665# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 1666# 1667# Since: 3.1 1668## 1669{ 'command': 'query-colo-status', 1670 'returns': 'COLOStatus', 1671 'if': 'CONFIG_REPLICATION' } 1672 1673## 1674# @migrate-recover: 1675# 1676# Provide a recovery migration stream URI. 1677# 1678# @uri: the URI to be used for the recovery of migration stream. 1679# 1680# Returns: nothing. 1681# 1682# Example: 1683# 1684# -> { "execute": "migrate-recover", 1685# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1686# <- { "return": {} } 1687# 1688# Since: 3.0 1689## 1690{ 'command': 'migrate-recover', 1691 'data': { 'uri': 'str' }, 1692 'allow-oob': true } 1693 1694## 1695# @migrate-pause: 1696# 1697# Pause a migration. Currently it only supports postcopy. 1698# 1699# Returns: nothing. 1700# 1701# Example: 1702# 1703# -> { "execute": "migrate-pause" } 1704# <- { "return": {} } 1705# 1706# Since: 3.0 1707## 1708{ 'command': 'migrate-pause', 'allow-oob': true } 1709 1710## 1711# @UNPLUG_PRIMARY: 1712# 1713# Emitted from source side of a migration when migration state is 1714# WAIT_UNPLUG. Device was unplugged by guest operating system. Device 1715# resources in QEMU are kept on standby to be able to re-plug it in 1716# case of migration failure. 1717# 1718# @device-id: QEMU device id of the unplugged device 1719# 1720# Since: 4.2 1721# 1722# Example: 1723# 1724# <- { "event": "UNPLUG_PRIMARY", 1725# "data": { "device-id": "hostdev0" }, 1726# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1727## 1728{ 'event': 'UNPLUG_PRIMARY', 1729 'data': { 'device-id': 'str' } } 1730 1731## 1732# @DirtyRateVcpu: 1733# 1734# Dirty rate of vcpu. 1735# 1736# @id: vcpu index. 1737# 1738# @dirty-rate: dirty rate. 1739# 1740# Since: 6.2 1741## 1742{ 'struct': 'DirtyRateVcpu', 1743 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 1744 1745## 1746# @DirtyRateStatus: 1747# 1748# Dirty page rate measurement status. 1749# 1750# @unstarted: measuring thread has not been started yet 1751# 1752# @measuring: measuring thread is running 1753# 1754# @measured: dirty page rate is measured and the results are available 1755# 1756# Since: 5.2 1757## 1758{ 'enum': 'DirtyRateStatus', 1759 'data': [ 'unstarted', 'measuring', 'measured'] } 1760 1761## 1762# @DirtyRateMeasureMode: 1763# 1764# Method used to measure dirty page rate. Differences between 1765# available methods are explained in @calc-dirty-rate. 1766# 1767# @page-sampling: use page sampling 1768# 1769# @dirty-ring: use dirty ring 1770# 1771# @dirty-bitmap: use dirty bitmap 1772# 1773# Since: 6.2 1774## 1775{ 'enum': 'DirtyRateMeasureMode', 1776 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 1777 1778## 1779# @DirtyRateInfo: 1780# 1781# Information about measured dirty page rate. 1782# 1783# @dirty-rate: an estimate of the dirty page rate of the VM in units 1784# of MiB/s. Value is present only when @status is 'measured'. 1785# 1786# @status: current status of dirty page rate measurements 1787# 1788# @start-time: start time in units of second for calculation 1789# 1790# @calc-time: time period for which dirty page rate was measured 1791# (in seconds) 1792# 1793# @sample-pages: number of sampled pages per GiB of guest memory. 1794# Valid only in page-sampling mode (Since 6.1) 1795# 1796# @mode: mode that was used to measure dirty page rate (Since 6.2) 1797# 1798# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 1799# specified (Since 6.2) 1800# 1801# Since: 5.2 1802## 1803{ 'struct': 'DirtyRateInfo', 1804 'data': {'*dirty-rate': 'int64', 1805 'status': 'DirtyRateStatus', 1806 'start-time': 'int64', 1807 'calc-time': 'int64', 1808 'sample-pages': 'uint64', 1809 'mode': 'DirtyRateMeasureMode', 1810 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 1811 1812## 1813# @calc-dirty-rate: 1814# 1815# Start measuring dirty page rate of the VM. Results can be retrieved 1816# with @query-dirty-rate after measurements are completed. 1817# 1818# Dirty page rate is the number of pages changed in a given time 1819# period expressed in MiB/s. The following methods of calculation are 1820# available: 1821# 1822# 1. In page sampling mode, a random subset of pages are selected and 1823# hashed twice: once at the beginning of measurement time period, 1824# and once again at the end. If two hashes for some page are 1825# different, the page is counted as changed. Since this method 1826# relies on sampling and hashing, calculated dirty page rate is 1827# only an estimate of its true value. Increasing @sample-pages 1828# improves estimation quality at the cost of higher computational 1829# overhead. 1830# 1831# 2. Dirty bitmap mode captures writes to memory (for example by 1832# temporarily revoking write access to all pages) and counting page 1833# faults. Information about modified pages is collected into a 1834# bitmap, where each bit corresponds to one guest page. This mode 1835# requires that KVM accelerator property "dirty-ring-size" is *not* 1836# set. 1837# 1838# 3. Dirty ring mode is similar to dirty bitmap mode, but the 1839# information about modified pages is collected into ring buffer. 1840# This mode tracks page modification per each vCPU separately. It 1841# requires that KVM accelerator property "dirty-ring-size" is set. 1842# 1843# @calc-time: time period in units of second for which dirty page rate 1844# is calculated. Note that larger @calc-time values will 1845# typically result in smaller dirty page rates because page 1846# dirtying is a one-time event. Once some page is counted as 1847# dirty during @calc-time period, further writes to this page will 1848# not increase dirty page rate anymore. 1849# 1850# @sample-pages: number of sampled pages per each GiB of guest memory. 1851# Default value is 512. For 4KiB guest pages this corresponds to 1852# sampling ratio of 0.2%. This argument is used only in page 1853# sampling mode. (Since 6.1) 1854# 1855# @mode: mechanism for tracking dirty pages. Default value is 1856# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 1857# (Since 6.1) 1858# 1859# Since: 5.2 1860# 1861# Example: 1862# 1863# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 1864# 'sample-pages': 512} } 1865# <- { "return": {} } 1866## 1867{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 1868 '*sample-pages': 'int', 1869 '*mode': 'DirtyRateMeasureMode'} } 1870 1871## 1872# @query-dirty-rate: 1873# 1874# Query results of the most recent invocation of @calc-dirty-rate. 1875# 1876# Since: 5.2 1877# 1878# Examples: 1879# 1880# 1. Measurement is in progress: 1881# 1882# <- {"status": "measuring", "sample-pages": 512, 1883# "mode": "page-sampling", "start-time": 3665220, "calc-time": 10} 1884# 1885# 2. Measurement has been completed: 1886# 1887# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 1888# "mode": "page-sampling", "start-time": 3665220, "calc-time": 10} 1889## 1890{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' } 1891 1892## 1893# @DirtyLimitInfo: 1894# 1895# Dirty page rate limit information of a virtual CPU. 1896# 1897# @cpu-index: index of a virtual CPU. 1898# 1899# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 1900# CPU, 0 means unlimited. 1901# 1902# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 1903# 1904# Since: 7.1 1905## 1906{ 'struct': 'DirtyLimitInfo', 1907 'data': { 'cpu-index': 'int', 1908 'limit-rate': 'uint64', 1909 'current-rate': 'uint64' } } 1910 1911## 1912# @set-vcpu-dirty-limit: 1913# 1914# Set the upper limit of dirty page rate for virtual CPUs. 1915# 1916# Requires KVM with accelerator property "dirty-ring-size" set. A 1917# virtual CPU's dirty page rate is a measure of its memory load. To 1918# observe dirty page rates, use @calc-dirty-rate. 1919# 1920# @cpu-index: index of a virtual CPU, default is all. 1921# 1922# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 1923# 1924# Since: 7.1 1925# 1926# Example: 1927# 1928# -> {"execute": "set-vcpu-dirty-limit"} 1929# "arguments": { "dirty-rate": 200, 1930# "cpu-index": 1 } } 1931# <- { "return": {} } 1932## 1933{ 'command': 'set-vcpu-dirty-limit', 1934 'data': { '*cpu-index': 'int', 1935 'dirty-rate': 'uint64' } } 1936 1937## 1938# @cancel-vcpu-dirty-limit: 1939# 1940# Cancel the upper limit of dirty page rate for virtual CPUs. 1941# 1942# Cancel the dirty page limit for the vCPU which has been set with 1943# set-vcpu-dirty-limit command. Note that this command requires 1944# support from dirty ring, same as the "set-vcpu-dirty-limit". 1945# 1946# @cpu-index: index of a virtual CPU, default is all. 1947# 1948# Since: 7.1 1949# 1950# Example: 1951# 1952# -> {"execute": "cancel-vcpu-dirty-limit"}, 1953# "arguments": { "cpu-index": 1 } } 1954# <- { "return": {} } 1955## 1956{ 'command': 'cancel-vcpu-dirty-limit', 1957 'data': { '*cpu-index': 'int'} } 1958 1959## 1960# @query-vcpu-dirty-limit: 1961# 1962# Returns information about virtual CPU dirty page rate limits, if 1963# any. 1964# 1965# Since: 7.1 1966# 1967# Example: 1968# 1969# -> {"execute": "query-vcpu-dirty-limit"} 1970# <- {"return": [ 1971# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 1972# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 1973## 1974{ 'command': 'query-vcpu-dirty-limit', 1975 'returns': [ 'DirtyLimitInfo' ] } 1976 1977## 1978# @MigrationThreadInfo: 1979# 1980# Information about migrationthreads 1981# 1982# @name: the name of migration thread 1983# 1984# @thread-id: ID of the underlying host thread 1985# 1986# Since: 7.2 1987## 1988{ 'struct': 'MigrationThreadInfo', 1989 'data': {'name': 'str', 1990 'thread-id': 'int'} } 1991 1992## 1993# @query-migrationthreads: 1994# 1995# Returns information of migration threads 1996# 1997# data: migration thread name 1998# 1999# Returns: information about migration threads 2000# 2001# Since: 7.2 2002## 2003{ 'command': 'query-migrationthreads', 2004 'returns': ['MigrationThreadInfo'] } 2005 2006## 2007# @snapshot-save: 2008# 2009# Save a VM snapshot 2010# 2011# @job-id: identifier for the newly created job 2012# 2013# @tag: name of the snapshot to create 2014# 2015# @vmstate: block device node name to save vmstate to 2016# 2017# @devices: list of block device node names to save a snapshot to 2018# 2019# Applications should not assume that the snapshot save is complete 2020# when this command returns. The job commands / events must be used 2021# to determine completion and to fetch details of any errors that 2022# arise. 2023# 2024# Note that execution of the guest CPUs may be stopped during the time 2025# it takes to save the snapshot. A future version of QEMU may ensure 2026# CPUs are executing continuously. 2027# 2028# It is strongly recommended that @devices contain all writable block 2029# device nodes if a consistent snapshot is required. 2030# 2031# If @tag already exists, an error will be reported 2032# 2033# Returns: nothing 2034# 2035# Example: 2036# 2037# -> { "execute": "snapshot-save", 2038# "arguments": { 2039# "job-id": "snapsave0", 2040# "tag": "my-snap", 2041# "vmstate": "disk0", 2042# "devices": ["disk0", "disk1"] 2043# } 2044# } 2045# <- { "return": { } } 2046# <- {"event": "JOB_STATUS_CHANGE", 2047# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2048# "data": {"status": "created", "id": "snapsave0"}} 2049# <- {"event": "JOB_STATUS_CHANGE", 2050# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2051# "data": {"status": "running", "id": "snapsave0"}} 2052# <- {"event": "STOP", 2053# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2054# <- {"event": "RESUME", 2055# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2056# <- {"event": "JOB_STATUS_CHANGE", 2057# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2058# "data": {"status": "waiting", "id": "snapsave0"}} 2059# <- {"event": "JOB_STATUS_CHANGE", 2060# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2061# "data": {"status": "pending", "id": "snapsave0"}} 2062# <- {"event": "JOB_STATUS_CHANGE", 2063# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2064# "data": {"status": "concluded", "id": "snapsave0"}} 2065# -> {"execute": "query-jobs"} 2066# <- {"return": [{"current-progress": 1, 2067# "status": "concluded", 2068# "total-progress": 1, 2069# "type": "snapshot-save", 2070# "id": "snapsave0"}]} 2071# 2072# Since: 6.0 2073## 2074{ 'command': 'snapshot-save', 2075 'data': { 'job-id': 'str', 2076 'tag': 'str', 2077 'vmstate': 'str', 2078 'devices': ['str'] } } 2079 2080## 2081# @snapshot-load: 2082# 2083# Load a VM snapshot 2084# 2085# @job-id: identifier for the newly created job 2086# 2087# @tag: name of the snapshot to load. 2088# 2089# @vmstate: block device node name to load vmstate from 2090# 2091# @devices: list of block device node names to load a snapshot from 2092# 2093# Applications should not assume that the snapshot load is complete 2094# when this command returns. The job commands / events must be used 2095# to determine completion and to fetch details of any errors that 2096# arise. 2097# 2098# Note that execution of the guest CPUs will be stopped during the 2099# time it takes to load the snapshot. 2100# 2101# It is strongly recommended that @devices contain all writable block 2102# device nodes that can have changed since the original @snapshot-save 2103# command execution. 2104# 2105# Returns: nothing 2106# 2107# Example: 2108# 2109# -> { "execute": "snapshot-load", 2110# "arguments": { 2111# "job-id": "snapload0", 2112# "tag": "my-snap", 2113# "vmstate": "disk0", 2114# "devices": ["disk0", "disk1"] 2115# } 2116# } 2117# <- { "return": { } } 2118# <- {"event": "JOB_STATUS_CHANGE", 2119# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2120# "data": {"status": "created", "id": "snapload0"}} 2121# <- {"event": "JOB_STATUS_CHANGE", 2122# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2123# "data": {"status": "running", "id": "snapload0"}} 2124# <- {"event": "STOP", 2125# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2126# <- {"event": "RESUME", 2127# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2128# <- {"event": "JOB_STATUS_CHANGE", 2129# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2130# "data": {"status": "waiting", "id": "snapload0"}} 2131# <- {"event": "JOB_STATUS_CHANGE", 2132# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2133# "data": {"status": "pending", "id": "snapload0"}} 2134# <- {"event": "JOB_STATUS_CHANGE", 2135# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2136# "data": {"status": "concluded", "id": "snapload0"}} 2137# -> {"execute": "query-jobs"} 2138# <- {"return": [{"current-progress": 1, 2139# "status": "concluded", 2140# "total-progress": 1, 2141# "type": "snapshot-load", 2142# "id": "snapload0"}]} 2143# 2144# Since: 6.0 2145## 2146{ 'command': 'snapshot-load', 2147 'data': { 'job-id': 'str', 2148 'tag': 'str', 2149 'vmstate': 'str', 2150 'devices': ['str'] } } 2151 2152## 2153# @snapshot-delete: 2154# 2155# Delete a VM snapshot 2156# 2157# @job-id: identifier for the newly created job 2158# 2159# @tag: name of the snapshot to delete. 2160# 2161# @devices: list of block device node names to delete a snapshot from 2162# 2163# Applications should not assume that the snapshot delete is complete 2164# when this command returns. The job commands / events must be used 2165# to determine completion and to fetch details of any errors that 2166# arise. 2167# 2168# Returns: nothing 2169# 2170# Example: 2171# 2172# -> { "execute": "snapshot-delete", 2173# "arguments": { 2174# "job-id": "snapdelete0", 2175# "tag": "my-snap", 2176# "devices": ["disk0", "disk1"] 2177# } 2178# } 2179# <- { "return": { } } 2180# <- {"event": "JOB_STATUS_CHANGE", 2181# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2182# "data": {"status": "created", "id": "snapdelete0"}} 2183# <- {"event": "JOB_STATUS_CHANGE", 2184# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2185# "data": {"status": "running", "id": "snapdelete0"}} 2186# <- {"event": "JOB_STATUS_CHANGE", 2187# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2188# "data": {"status": "waiting", "id": "snapdelete0"}} 2189# <- {"event": "JOB_STATUS_CHANGE", 2190# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2191# "data": {"status": "pending", "id": "snapdelete0"}} 2192# <- {"event": "JOB_STATUS_CHANGE", 2193# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2194# "data": {"status": "concluded", "id": "snapdelete0"}} 2195# -> {"execute": "query-jobs"} 2196# <- {"return": [{"current-progress": 1, 2197# "status": "concluded", 2198# "total-progress": 1, 2199# "type": "snapshot-delete", 2200# "id": "snapdelete0"}]} 2201# 2202# Since: 6.0 2203## 2204{ 'command': 'snapshot-delete', 2205 'data': { 'job-id': 'str', 2206 'tag': 'str', 2207 'devices': ['str'] } } 2208