xref: /openbmc/qemu/qapi/migration.json (revision 095859e5d97284dd3ea666c337845dc63f6ba5e7)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the
20#     target VM
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
26# @skipped: number of skipped zero pages. Always zero, only provided for
27#     compatibility (since 1.5)
28#
29# @normal: number of normal pages (since 1.2)
30#
31# @normal-bytes: number of normal bytes sent (since 1.2)
32#
33# @dirty-pages-rate: number of pages dirtied by second by the guest
34#     (since 1.3)
35#
36# @mbps: throughput in megabits/sec.  (since 1.6)
37#
38# @dirty-sync-count: number of times that dirty ram was synchronized
39#     (since 2.1)
40#
41# @postcopy-requests: The number of page requests received from the
42#     destination (since 2.7)
43#
44# @page-size: The number of bytes per page for the various page-based
45#     statistics (since 2.10)
46#
47# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48#
49# @pages-per-second: the number of memory pages transferred per second
50#     (Since 4.0)
51#
52# @precopy-bytes: The number of bytes sent in the pre-copy phase
53#     (since 7.0).
54#
55# @downtime-bytes: The number of bytes sent while the guest is paused
56#     (since 7.0).
57#
58# @postcopy-bytes: The number of bytes sent during the post-copy phase
59#     (since 7.0).
60#
61# @dirty-sync-missed-zero-copy: Number of times dirty RAM
62#     synchronization could not avoid copying dirty pages.  This is
63#     between 0 and @dirty-sync-count * @multifd-channels.  (since
64#     7.1)
65#
66# Features:
67#
68# @deprecated: Member @skipped is always zero since 1.5.3
69#
70# Since: 0.14
71#
72##
73{ 'struct': 'MigrationStats',
74  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
75           'duplicate': 'int',
76           'skipped': { 'type': 'int', 'features': ['deprecated'] },
77           'normal': 'int',
78           'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79           'mbps': 'number', 'dirty-sync-count': 'int',
80           'postcopy-requests': 'int', 'page-size': 'int',
81           'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82           'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83           'postcopy-bytes': 'uint64',
84           'dirty-sync-missed-zero-copy': 'uint64' } }
85
86##
87# @XBZRLECacheStats:
88#
89# Detailed XBZRLE migration cache statistics
90#
91# @cache-size: XBZRLE cache size
92#
93# @bytes: amount of bytes already transferred to the target VM
94#
95# @pages: amount of pages transferred to the target VM
96#
97# @cache-miss: number of cache miss
98#
99# @cache-miss-rate: rate of cache miss (since 2.1)
100#
101# @encoding-rate: rate of encoded bytes (since 5.1)
102#
103# @overflow: number of overflows
104#
105# Since: 1.2
106##
107{ 'struct': 'XBZRLECacheStats',
108  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
109           'cache-miss': 'int', 'cache-miss-rate': 'number',
110           'encoding-rate': 'number', 'overflow': 'int' } }
111
112##
113# @CompressionStats:
114#
115# Detailed migration compression statistics
116#
117# @pages: amount of pages compressed and transferred to the target VM
118#
119# @busy: count of times that no free thread was available to compress
120#     data
121#
122# @busy-rate: rate of thread busy
123#
124# @compressed-size: amount of bytes after compression
125#
126# @compression-rate: rate of compressed size
127#
128# Since: 3.1
129##
130{ 'struct': 'CompressionStats',
131  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
132           'compressed-size': 'int', 'compression-rate': 'number' } }
133
134##
135# @MigrationStatus:
136#
137# An enumeration of migration status.
138#
139# @none: no migration has ever happened.
140#
141# @setup: migration process has been initiated.
142#
143# @cancelling: in the process of cancelling migration.
144#
145# @cancelled: cancelling migration is finished.
146#
147# @active: in the process of doing migration.
148#
149# @postcopy-active: like active, but now in postcopy mode.  (since
150#     2.5)
151#
152# @postcopy-paused: during postcopy but paused.  (since 3.0)
153#
154# @postcopy-recover: trying to recover from a paused postcopy.  (since
155#     3.0)
156#
157# @completed: migration is finished.
158#
159# @failed: some error occurred during migration process.
160#
161# @colo: VM is in the process of fault tolerance, VM can not get into
162#     this state unless colo capability is enabled for migration.
163#     (since 2.8)
164#
165# @pre-switchover: Paused before device serialisation.  (since 2.11)
166#
167# @device: During device serialisation when pause-before-switchover is
168#     enabled (since 2.11)
169#
170# @wait-unplug: wait for device unplug request by guest OS to be
171#     completed.  (since 4.2)
172#
173# Since: 2.3
174##
175{ 'enum': 'MigrationStatus',
176  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
177            'active', 'postcopy-active', 'postcopy-paused',
178            'postcopy-recover', 'completed', 'failed', 'colo',
179            'pre-switchover', 'device', 'wait-unplug' ] }
180##
181# @VfioStats:
182#
183# Detailed VFIO devices migration statistics
184#
185# @transferred: amount of bytes transferred to the target VM by VFIO
186#     devices
187#
188# Since: 5.2
189##
190{ 'struct': 'VfioStats',
191  'data': {'transferred': 'int' } }
192
193##
194# @MigrationInfo:
195#
196# Information about current migration process.
197#
198# @status: @MigrationStatus describing the current migration status.
199#     If this field is not returned, no migration process has been
200#     initiated
201#
202# @ram: @MigrationStats containing detailed migration status, only
203#     returned if status is 'active' or 'completed'(since 1.2)
204#
205# @disk: @MigrationStats containing detailed disk migration status,
206#     only returned if status is 'active' and it is a block migration
207#
208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
209#     migration statistics, only returned if XBZRLE feature is on and
210#     status is 'active' or 'completed' (since 1.2)
211#
212# @total-time: total amount of milliseconds since migration started.
213#     If migration has ended, it returns the total migration time.
214#     (since 1.2)
215#
216# @downtime: only present when migration finishes correctly total
217#     downtime in milliseconds for the guest.  (since 1.3)
218#
219# @expected-downtime: only present while migration is active expected
220#     downtime in milliseconds for the guest in last walk of the dirty
221#     bitmap.  (since 1.3)
222#
223# @setup-time: amount of setup time in milliseconds *before* the
224#     iterations begin but *after* the QMP command is issued.  This is
225#     designed to provide an accounting of any activities (such as
226#     RDMA pinning) which may be expensive, but do not actually occur
227#     during the iterative migration rounds themselves.  (since 1.6)
228#
229# @cpu-throttle-percentage: percentage of time guest cpus are being
230#     throttled during auto-converge.  This is only present when
231#     auto-converge has started throttling guest cpus.  (Since 2.7)
232#
233# @error-desc: the human readable error description string, when
234#     @status is 'failed'. Clients should not attempt to parse the
235#     error strings.  (Since 2.7)
236#
237# @postcopy-blocktime: total time when all vCPU were blocked during
238#     postcopy live migration.  This is only present when the
239#     postcopy-blocktime migration capability is enabled.  (Since 3.0)
240#
241# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
242#     This is only present when the postcopy-blocktime migration
243#     capability is enabled.  (Since 3.0)
244#
245# @compression: migration compression statistics, only returned if
246#     compression feature is on and status is 'active' or 'completed'
247#     (Since 3.1)
248#
249# @socket-address: Only used for tcp, to know what the real port is
250#     (Since 4.0)
251#
252# @vfio: @VfioStats containing detailed VFIO devices migration
253#     statistics, only returned if VFIO device is present, migration
254#     is supported by all VFIO devices and status is 'active' or
255#     'completed' (since 5.2)
256#
257# @blocked-reasons: A list of reasons an outgoing migration is
258#     blocked.  Present and non-empty when migration is blocked.
259#     (since 6.0)
260#
261# @dirty-limit-throttle-time-per-round: Maximum throttle time
262#     (in microseconds) of virtual CPUs each dirty ring full round,
263#     which shows how MigrationCapability dirty-limit affects the
264#     guest during live migration.  (Since 8.1)
265#
266# @dirty-limit-ring-full-time: Estimated average dirty ring full time
267#     (in microseconds) for each dirty ring full round.  The value
268#     equals the dirty ring memory size divided by the average dirty
269#     page rate of the virtual CPU, which can be used to observe the
270#     average memory load of the virtual CPU indirectly.  Note that
271#     zero means guest doesn't dirty memory.  (Since 8.1)
272#
273# Since: 0.14
274##
275{ 'struct': 'MigrationInfo',
276  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
277           '*disk': 'MigrationStats',
278           '*vfio': 'VfioStats',
279           '*xbzrle-cache': 'XBZRLECacheStats',
280           '*total-time': 'int',
281           '*expected-downtime': 'int',
282           '*downtime': 'int',
283           '*setup-time': 'int',
284           '*cpu-throttle-percentage': 'int',
285           '*error-desc': 'str',
286           '*blocked-reasons': ['str'],
287           '*postcopy-blocktime': 'uint32',
288           '*postcopy-vcpu-blocktime': ['uint32'],
289           '*compression': 'CompressionStats',
290           '*socket-address': ['SocketAddress'],
291           '*dirty-limit-throttle-time-per-round': 'uint64',
292           '*dirty-limit-ring-full-time': 'uint64'} }
293
294##
295# @query-migrate:
296#
297# Returns information about current migration process.  If migration
298# is active there will be another json-object with RAM migration
299# status and if block migration is active another one with block
300# migration status.
301#
302# Returns: @MigrationInfo
303#
304# Since: 0.14
305#
306# Examples:
307#
308# 1. Before the first migration
309#
310# -> { "execute": "query-migrate" }
311# <- { "return": {} }
312#
313# 2. Migration is done and has succeeded
314#
315# -> { "execute": "query-migrate" }
316# <- { "return": {
317#         "status": "completed",
318#         "total-time":12345,
319#         "setup-time":12345,
320#         "downtime":12345,
321#         "ram":{
322#           "transferred":123,
323#           "remaining":123,
324#           "total":246,
325#           "duplicate":123,
326#           "normal":123,
327#           "normal-bytes":123456,
328#           "dirty-sync-count":15
329#         }
330#      }
331#    }
332#
333# 3. Migration is done and has failed
334#
335# -> { "execute": "query-migrate" }
336# <- { "return": { "status": "failed" } }
337#
338# 4. Migration is being performed and is not a block migration:
339#
340# -> { "execute": "query-migrate" }
341# <- {
342#       "return":{
343#          "status":"active",
344#          "total-time":12345,
345#          "setup-time":12345,
346#          "expected-downtime":12345,
347#          "ram":{
348#             "transferred":123,
349#             "remaining":123,
350#             "total":246,
351#             "duplicate":123,
352#             "normal":123,
353#             "normal-bytes":123456,
354#             "dirty-sync-count":15
355#          }
356#       }
357#    }
358#
359# 5. Migration is being performed and is a block migration:
360#
361# -> { "execute": "query-migrate" }
362# <- {
363#       "return":{
364#          "status":"active",
365#          "total-time":12345,
366#          "setup-time":12345,
367#          "expected-downtime":12345,
368#          "ram":{
369#             "total":1057024,
370#             "remaining":1053304,
371#             "transferred":3720,
372#             "duplicate":123,
373#             "normal":123,
374#             "normal-bytes":123456,
375#             "dirty-sync-count":15
376#          },
377#          "disk":{
378#             "total":20971520,
379#             "remaining":20880384,
380#             "transferred":91136
381#          }
382#       }
383#    }
384#
385# 6. Migration is being performed and XBZRLE is active:
386#
387# -> { "execute": "query-migrate" }
388# <- {
389#       "return":{
390#          "status":"active",
391#          "total-time":12345,
392#          "setup-time":12345,
393#          "expected-downtime":12345,
394#          "ram":{
395#             "total":1057024,
396#             "remaining":1053304,
397#             "transferred":3720,
398#             "duplicate":10,
399#             "normal":3333,
400#             "normal-bytes":3412992,
401#             "dirty-sync-count":15
402#          },
403#          "xbzrle-cache":{
404#             "cache-size":67108864,
405#             "bytes":20971520,
406#             "pages":2444343,
407#             "cache-miss":2244,
408#             "cache-miss-rate":0.123,
409#             "encoding-rate":80.1,
410#             "overflow":34434
411#          }
412#       }
413#    }
414##
415{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
416
417##
418# @MigrationCapability:
419#
420# Migration capabilities enumeration
421#
422# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
423#     Encoding). This feature allows us to minimize migration traffic
424#     for certain work loads, by sending compressed difference of the
425#     pages
426#
427# @rdma-pin-all: Controls whether or not the entire VM memory
428#     footprint is mlock()'d on demand or all at once.  Refer to
429#     docs/rdma.txt for usage.  Disabled by default.  (since 2.0)
430#
431# @zero-blocks: During storage migration encode blocks of zeroes
432#     efficiently.  This essentially saves 1MB of zeroes per block on
433#     the wire.  Enabling requires source and target VM to support
434#     this feature.  To enable it is sufficient to enable the
435#     capability on the source VM. The feature is disabled by default.
436#     (since 1.6)
437#
438# @compress: Use multiple compression threads to accelerate live
439#     migration.  This feature can help to reduce the migration
440#     traffic, by sending compressed pages.  Please note that if
441#     compress and xbzrle are both on, compress only takes effect in
442#     the ram bulk stage, after that, it will be disabled and only
443#     xbzrle takes effect, this can help to minimize migration
444#     traffic.  The feature is disabled by default.  (since 2.4 )
445#
446# @events: generate events for each migration state change (since 2.4
447#     )
448#
449# @auto-converge: If enabled, QEMU will automatically throttle down
450#     the guest to speed up convergence of RAM migration.  (since 1.6)
451#
452# @postcopy-ram: Start executing on the migration target before all of
453#     RAM has been migrated, pulling the remaining pages along as
454#     needed.  The capacity must have the same setting on both source
455#     and target or migration will not even start.  NOTE: If the
456#     migration fails during postcopy the VM will fail.  (since 2.6)
457#
458# @x-colo: If enabled, migration will never end, and the state of the
459#     VM on the primary side will be migrated continuously to the VM
460#     on secondary side, this process is called COarse-Grain LOck
461#     Stepping (COLO) for Non-stop Service.  (since 2.8)
462#
463# @release-ram: if enabled, qemu will free the migrated ram pages on
464#     the source during postcopy-ram migration.  (since 2.9)
465#
466# @block: If enabled, QEMU will also migrate the contents of all block
467#     devices.  Default is disabled.  A possible alternative uses
468#     mirror jobs to a builtin NBD server on the destination, which
469#     offers more flexibility.  (Since 2.10)
470#
471# @return-path: If enabled, migration will use the return path even
472#     for precopy.  (since 2.10)
473#
474# @pause-before-switchover: Pause outgoing migration before
475#     serialising device state and before disabling block IO (since
476#     2.11)
477#
478# @multifd: Use more than one fd for migration (since 4.0)
479#
480# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
481#     (since 2.12)
482#
483# @postcopy-blocktime: Calculate downtime for postcopy live migration
484#     (since 3.0)
485#
486# @late-block-activate: If enabled, the destination will not activate
487#     block devices (and thus take locks) immediately at the end of
488#     migration.  (since 3.0)
489#
490# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
491#     that is accessible on the destination machine.  (since 4.0)
492#
493# @validate-uuid: Send the UUID of the source to allow the destination
494#     to ensure it is the same.  (since 4.2)
495#
496# @background-snapshot: If enabled, the migration stream will be a
497#     snapshot of the VM exactly at the point when the migration
498#     procedure starts.  The VM RAM is saved with running VM. (since
499#     6.0)
500#
501# @zero-copy-send: Controls behavior on sending memory pages on
502#     migration.  When true, enables a zero-copy mechanism for sending
503#     memory pages, if host supports it.  Requires that QEMU be
504#     permitted to use locked memory for guest RAM pages.  (since 7.1)
505#
506# @postcopy-preempt: If enabled, the migration process will allow
507#     postcopy requests to preempt precopy stream, so postcopy
508#     requests will be handled faster.  This is a performance feature
509#     and should not affect the correctness of postcopy migration.
510#     (since 7.1)
511#
512# @switchover-ack: If enabled, migration will not stop the source VM
513#     and complete the migration until an ACK is received from the
514#     destination that it's OK to do so.  Exactly when this ACK is
515#     sent depends on the migrated devices that use this feature.  For
516#     example, a device can use it to make sure some of its data is
517#     sent and loaded in the destination before doing switchover.
518#     This can reduce downtime if devices that support this capability
519#     are present.  'return-path' capability must be enabled to use
520#     it.  (since 8.1)
521#
522# @dirty-limit: If enabled, migration will throttle vCPUs as needed to
523#     keep their dirty page rate within @vcpu-dirty-limit.  This can
524#     improve responsiveness of large guests during live migration,
525#     and can result in more stable read performance.  Requires KVM
526#     with accelerator property "dirty-ring-size" set.  (Since 8.1)
527#
528# Features:
529#
530# @unstable: Members @x-colo and @x-ignore-shared are experimental.
531#
532# Since: 1.2
533##
534{ 'enum': 'MigrationCapability',
535  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
536           'compress', 'events', 'postcopy-ram',
537           { 'name': 'x-colo', 'features': [ 'unstable' ] },
538           'release-ram',
539           'block', 'return-path', 'pause-before-switchover', 'multifd',
540           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
541           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
542           'validate-uuid', 'background-snapshot',
543           'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
544           'dirty-limit'] }
545
546##
547# @MigrationCapabilityStatus:
548#
549# Migration capability information
550#
551# @capability: capability enum
552#
553# @state: capability state bool
554#
555# Since: 1.2
556##
557{ 'struct': 'MigrationCapabilityStatus',
558  'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
559
560##
561# @migrate-set-capabilities:
562#
563# Enable/Disable the following migration capabilities (like xbzrle)
564#
565# @capabilities: json array of capability modifications to make
566#
567# Since: 1.2
568#
569# Example:
570#
571# -> { "execute": "migrate-set-capabilities" , "arguments":
572#      { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
573# <- { "return": {} }
574##
575{ 'command': 'migrate-set-capabilities',
576  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
577
578##
579# @query-migrate-capabilities:
580#
581# Returns information about the current migration capabilities status
582#
583# Returns: @MigrationCapabilityStatus
584#
585# Since: 1.2
586#
587# Example:
588#
589# -> { "execute": "query-migrate-capabilities" }
590# <- { "return": [
591#       {"state": false, "capability": "xbzrle"},
592#       {"state": false, "capability": "rdma-pin-all"},
593#       {"state": false, "capability": "auto-converge"},
594#       {"state": false, "capability": "zero-blocks"},
595#       {"state": false, "capability": "compress"},
596#       {"state": true, "capability": "events"},
597#       {"state": false, "capability": "postcopy-ram"},
598#       {"state": false, "capability": "x-colo"}
599#    ]}
600##
601{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
602
603##
604# @MultiFDCompression:
605#
606# An enumeration of multifd compression methods.
607#
608# @none: no compression.
609#
610# @zlib: use zlib compression method.
611#
612# @zstd: use zstd compression method.
613#
614# Since: 5.0
615##
616{ 'enum': 'MultiFDCompression',
617  'data': [ 'none', 'zlib',
618            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
619
620##
621# @BitmapMigrationBitmapAliasTransform:
622#
623# @persistent: If present, the bitmap will be made persistent or
624#     transient depending on this parameter.
625#
626# Since: 6.0
627##
628{ 'struct': 'BitmapMigrationBitmapAliasTransform',
629  'data': {
630      '*persistent': 'bool'
631  } }
632
633##
634# @BitmapMigrationBitmapAlias:
635#
636# @name: The name of the bitmap.
637#
638# @alias: An alias name for migration (for example the bitmap name on
639#     the opposite site).
640#
641# @transform: Allows the modification of the migrated bitmap.  (since
642#     6.0)
643#
644# Since: 5.2
645##
646{ 'struct': 'BitmapMigrationBitmapAlias',
647  'data': {
648      'name': 'str',
649      'alias': 'str',
650      '*transform': 'BitmapMigrationBitmapAliasTransform'
651  } }
652
653##
654# @BitmapMigrationNodeAlias:
655#
656# Maps a block node name and the bitmaps it has to aliases for dirty
657# bitmap migration.
658#
659# @node-name: A block node name.
660#
661# @alias: An alias block node name for migration (for example the node
662#     name on the opposite site).
663#
664# @bitmaps: Mappings for the bitmaps on this node.
665#
666# Since: 5.2
667##
668{ 'struct': 'BitmapMigrationNodeAlias',
669  'data': {
670      'node-name': 'str',
671      'alias': 'str',
672      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
673  } }
674
675##
676# @MigrationParameter:
677#
678# Migration parameters enumeration
679#
680# @announce-initial: Initial delay (in milliseconds) before sending
681#     the first announce (Since 4.0)
682#
683# @announce-max: Maximum delay (in milliseconds) between packets in
684#     the announcement (Since 4.0)
685#
686# @announce-rounds: Number of self-announce packets sent after
687#     migration (Since 4.0)
688#
689# @announce-step: Increase in delay (in milliseconds) between
690#     subsequent packets in the announcement (Since 4.0)
691#
692# @compress-level: Set the compression level to be used in live
693#     migration, the compression level is an integer between 0 and 9,
694#     where 0 means no compression, 1 means the best compression
695#     speed, and 9 means best compression ratio which will consume
696#     more CPU.
697#
698# @compress-threads: Set compression thread count to be used in live
699#     migration, the compression thread count is an integer between 1
700#     and 255.
701#
702# @compress-wait-thread: Controls behavior when all compression
703#     threads are currently busy.  If true (default), wait for a free
704#     compression thread to become available; otherwise, send the page
705#     uncompressed.  (Since 3.1)
706#
707# @decompress-threads: Set decompression thread count to be used in
708#     live migration, the decompression thread count is an integer
709#     between 1 and 255. Usually, decompression is at least 4 times as
710#     fast as compression, so set the decompress-threads to the number
711#     about 1/4 of compress-threads is adequate.
712#
713# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
714#     bytes_xfer_period to trigger throttling.  It is expressed as
715#     percentage.  The default value is 50. (Since 5.0)
716#
717# @cpu-throttle-initial: Initial percentage of time guest cpus are
718#     throttled when migration auto-converge is activated.  The
719#     default value is 20. (Since 2.7)
720#
721# @cpu-throttle-increment: throttle percentage increase each time
722#     auto-converge detects that migration is not making progress.
723#     The default value is 10. (Since 2.7)
724#
725# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
726#     the tail stage of throttling, the Guest is very sensitive to CPU
727#     percentage while the @cpu-throttle -increment is excessive
728#     usually at tail stage.  If this parameter is true, we will
729#     compute the ideal CPU percentage used by the Guest, which may
730#     exactly make the dirty rate match the dirty rate threshold.
731#     Then we will choose a smaller throttle increment between the one
732#     specified by @cpu-throttle-increment and the one generated by
733#     ideal CPU percentage.  Therefore, it is compatible to
734#     traditional throttling, meanwhile the throttle increment won't
735#     be excessive at tail stage.  The default value is false.  (Since
736#     5.1)
737#
738# @tls-creds: ID of the 'tls-creds' object that provides credentials
739#     for establishing a TLS connection over the migration data
740#     channel.  On the outgoing side of the migration, the credentials
741#     must be for a 'client' endpoint, while for the incoming side the
742#     credentials must be for a 'server' endpoint.  Setting this will
743#     enable TLS for all migrations.  The default is unset, resulting
744#     in unsecured migration at the QEMU level.  (Since 2.7)
745#
746# @tls-hostname: hostname of the target host for the migration.  This
747#     is required when using x509 based TLS credentials and the
748#     migration URI does not already include a hostname.  For example
749#     if using fd: or exec: based migration, the hostname must be
750#     provided so that the server's x509 certificate identity can be
751#     validated.  (Since 2.7)
752#
753# @tls-authz: ID of the 'authz' object subclass that provides access
754#     control checking of the TLS x509 certificate distinguished name.
755#     This object is only resolved at time of use, so can be deleted
756#     and recreated on the fly while the migration server is active.
757#     If missing, it will default to denying access (Since 4.0)
758#
759# @max-bandwidth: to set maximum speed for migration.  maximum speed
760#     in bytes per second.  (Since 2.8)
761#
762# @downtime-limit: set maximum tolerated downtime for migration.
763#     maximum downtime in milliseconds (Since 2.8)
764#
765# @x-checkpoint-delay: The delay time (in ms) between two COLO
766#     checkpoints in periodic mode.  (Since 2.8)
767#
768# @block-incremental: Affects how much storage is migrated when the
769#     block migration capability is enabled.  When false, the entire
770#     storage backing chain is migrated into a flattened image at the
771#     destination; when true, only the active qcow2 layer is migrated
772#     and the destination must already have access to the same backing
773#     chain as was used on the source.  (since 2.10)
774#
775# @multifd-channels: Number of channels used to migrate data in
776#     parallel.  This is the same number that the number of sockets
777#     used for migration.  The default value is 2 (since 4.0)
778#
779# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
780#     needs to be a multiple of the target page size and a power of 2
781#     (Since 2.11)
782#
783# @max-postcopy-bandwidth: Background transfer bandwidth during
784#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
785#     (Since 3.0)
786#
787# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
788#     (Since 3.1)
789#
790# @multifd-compression: Which compression method to use.  Defaults to
791#     none.  (Since 5.0)
792#
793# @multifd-zlib-level: Set the compression level to be used in live
794#     migration, the compression level is an integer between 0 and 9,
795#     where 0 means no compression, 1 means the best compression
796#     speed, and 9 means best compression ratio which will consume
797#     more CPU. Defaults to 1. (Since 5.0)
798#
799# @multifd-zstd-level: Set the compression level to be used in live
800#     migration, the compression level is an integer between 0 and 20,
801#     where 0 means no compression, 1 means the best compression
802#     speed, and 20 means best compression ratio which will consume
803#     more CPU. Defaults to 1. (Since 5.0)
804#
805# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
806#     aliases for the purpose of dirty bitmap migration.  Such aliases
807#     may for example be the corresponding names on the opposite site.
808#     The mapping must be one-to-one, but not necessarily complete: On
809#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
810#     will be ignored.  On the destination, encountering an unmapped
811#     alias in the incoming migration stream will result in a report,
812#     and all further bitmap migration data will then be discarded.
813#     Note that the destination does not know about bitmaps it does
814#     not receive, so there is no limitation or requirement regarding
815#     the number of bitmaps received, or how they are named, or on
816#     which nodes they are placed.  By default (when this parameter
817#     has never been set), bitmap names are mapped to themselves.
818#     Nodes are mapped to their block device name if there is one, and
819#     to their node name otherwise.  (Since 5.2)
820#
821# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
822#     limit during live migration.  Should be in the range 1 to 1000ms.
823#     Defaults to 1000ms.  (Since 8.1)
824#
825# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
826#     Defaults to 1.  (Since 8.1)
827#
828# Features:
829#
830# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
831#     are experimental.
832#
833# Since: 2.4
834##
835{ 'enum': 'MigrationParameter',
836  'data': ['announce-initial', 'announce-max',
837           'announce-rounds', 'announce-step',
838           'compress-level', 'compress-threads', 'decompress-threads',
839           'compress-wait-thread', 'throttle-trigger-threshold',
840           'cpu-throttle-initial', 'cpu-throttle-increment',
841           'cpu-throttle-tailslow',
842           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
843           'downtime-limit',
844           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
845           'block-incremental',
846           'multifd-channels',
847           'xbzrle-cache-size', 'max-postcopy-bandwidth',
848           'max-cpu-throttle', 'multifd-compression',
849           'multifd-zlib-level', 'multifd-zstd-level',
850           'block-bitmap-mapping',
851           { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
852           'vcpu-dirty-limit'] }
853
854##
855# @MigrateSetParameters:
856#
857# @announce-initial: Initial delay (in milliseconds) before sending
858#     the first announce (Since 4.0)
859#
860# @announce-max: Maximum delay (in milliseconds) between packets in
861#     the announcement (Since 4.0)
862#
863# @announce-rounds: Number of self-announce packets sent after
864#     migration (Since 4.0)
865#
866# @announce-step: Increase in delay (in milliseconds) between
867#     subsequent packets in the announcement (Since 4.0)
868#
869# @compress-level: compression level
870#
871# @compress-threads: compression thread count
872#
873# @compress-wait-thread: Controls behavior when all compression
874#     threads are currently busy.  If true (default), wait for a free
875#     compression thread to become available; otherwise, send the page
876#     uncompressed.  (Since 3.1)
877#
878# @decompress-threads: decompression thread count
879#
880# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
881#     bytes_xfer_period to trigger throttling.  It is expressed as
882#     percentage.  The default value is 50. (Since 5.0)
883#
884# @cpu-throttle-initial: Initial percentage of time guest cpus are
885#     throttled when migration auto-converge is activated.  The
886#     default value is 20. (Since 2.7)
887#
888# @cpu-throttle-increment: throttle percentage increase each time
889#     auto-converge detects that migration is not making progress.
890#     The default value is 10. (Since 2.7)
891#
892# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
893#     the tail stage of throttling, the Guest is very sensitive to CPU
894#     percentage while the @cpu-throttle -increment is excessive
895#     usually at tail stage.  If this parameter is true, we will
896#     compute the ideal CPU percentage used by the Guest, which may
897#     exactly make the dirty rate match the dirty rate threshold.
898#     Then we will choose a smaller throttle increment between the one
899#     specified by @cpu-throttle-increment and the one generated by
900#     ideal CPU percentage.  Therefore, it is compatible to
901#     traditional throttling, meanwhile the throttle increment won't
902#     be excessive at tail stage.  The default value is false.  (Since
903#     5.1)
904#
905# @tls-creds: ID of the 'tls-creds' object that provides credentials
906#     for establishing a TLS connection over the migration data
907#     channel.  On the outgoing side of the migration, the credentials
908#     must be for a 'client' endpoint, while for the incoming side the
909#     credentials must be for a 'server' endpoint.  Setting this to a
910#     non-empty string enables TLS for all migrations.  An empty
911#     string means that QEMU will use plain text mode for migration,
912#     rather than TLS (Since 2.9) Previously (since 2.7), this was
913#     reported by omitting tls-creds instead.
914#
915# @tls-hostname: hostname of the target host for the migration.  This
916#     is required when using x509 based TLS credentials and the
917#     migration URI does not already include a hostname.  For example
918#     if using fd: or exec: based migration, the hostname must be
919#     provided so that the server's x509 certificate identity can be
920#     validated.  (Since 2.7) An empty string means that QEMU will use
921#     the hostname associated with the migration URI, if any.  (Since
922#     2.9) Previously (since 2.7), this was reported by omitting
923#     tls-hostname instead.
924#
925# @max-bandwidth: to set maximum speed for migration.  maximum speed
926#     in bytes per second.  (Since 2.8)
927#
928# @downtime-limit: set maximum tolerated downtime for migration.
929#     maximum downtime in milliseconds (Since 2.8)
930#
931# @x-checkpoint-delay: the delay time between two COLO checkpoints.
932#     (Since 2.8)
933#
934# @block-incremental: Affects how much storage is migrated when the
935#     block migration capability is enabled.  When false, the entire
936#     storage backing chain is migrated into a flattened image at the
937#     destination; when true, only the active qcow2 layer is migrated
938#     and the destination must already have access to the same backing
939#     chain as was used on the source.  (since 2.10)
940#
941# @multifd-channels: Number of channels used to migrate data in
942#     parallel.  This is the same number that the number of sockets
943#     used for migration.  The default value is 2 (since 4.0)
944#
945# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
946#     needs to be a multiple of the target page size and a power of 2
947#     (Since 2.11)
948#
949# @max-postcopy-bandwidth: Background transfer bandwidth during
950#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
951#     (Since 3.0)
952#
953# @max-cpu-throttle: maximum cpu throttle percentage.  The default
954#     value is 99. (Since 3.1)
955#
956# @multifd-compression: Which compression method to use.  Defaults to
957#     none.  (Since 5.0)
958#
959# @multifd-zlib-level: Set the compression level to be used in live
960#     migration, the compression level is an integer between 0 and 9,
961#     where 0 means no compression, 1 means the best compression
962#     speed, and 9 means best compression ratio which will consume
963#     more CPU. Defaults to 1. (Since 5.0)
964#
965# @multifd-zstd-level: Set the compression level to be used in live
966#     migration, the compression level is an integer between 0 and 20,
967#     where 0 means no compression, 1 means the best compression
968#     speed, and 20 means best compression ratio which will consume
969#     more CPU. Defaults to 1. (Since 5.0)
970#
971# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
972#     aliases for the purpose of dirty bitmap migration.  Such aliases
973#     may for example be the corresponding names on the opposite site.
974#     The mapping must be one-to-one, but not necessarily complete: On
975#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
976#     will be ignored.  On the destination, encountering an unmapped
977#     alias in the incoming migration stream will result in a report,
978#     and all further bitmap migration data will then be discarded.
979#     Note that the destination does not know about bitmaps it does
980#     not receive, so there is no limitation or requirement regarding
981#     the number of bitmaps received, or how they are named, or on
982#     which nodes they are placed.  By default (when this parameter
983#     has never been set), bitmap names are mapped to themselves.
984#     Nodes are mapped to their block device name if there is one, and
985#     to their node name otherwise.  (Since 5.2)
986#
987# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
988#     limit during live migration.  Should be in the range 1 to 1000ms.
989#     Defaults to 1000ms.  (Since 8.1)
990#
991# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
992#     Defaults to 1.  (Since 8.1)
993#
994# Features:
995#
996# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
997#     are experimental.
998#
999# TODO: either fuse back into MigrationParameters, or make
1000#     MigrationParameters members mandatory
1001#
1002# Since: 2.4
1003##
1004{ 'struct': 'MigrateSetParameters',
1005  'data': { '*announce-initial': 'size',
1006            '*announce-max': 'size',
1007            '*announce-rounds': 'size',
1008            '*announce-step': 'size',
1009            '*compress-level': 'uint8',
1010            '*compress-threads': 'uint8',
1011            '*compress-wait-thread': 'bool',
1012            '*decompress-threads': 'uint8',
1013            '*throttle-trigger-threshold': 'uint8',
1014            '*cpu-throttle-initial': 'uint8',
1015            '*cpu-throttle-increment': 'uint8',
1016            '*cpu-throttle-tailslow': 'bool',
1017            '*tls-creds': 'StrOrNull',
1018            '*tls-hostname': 'StrOrNull',
1019            '*tls-authz': 'StrOrNull',
1020            '*max-bandwidth': 'size',
1021            '*downtime-limit': 'uint64',
1022            '*x-checkpoint-delay': { 'type': 'uint32',
1023                                     'features': [ 'unstable' ] },
1024            '*block-incremental': 'bool',
1025            '*multifd-channels': 'uint8',
1026            '*xbzrle-cache-size': 'size',
1027            '*max-postcopy-bandwidth': 'size',
1028            '*max-cpu-throttle': 'uint8',
1029            '*multifd-compression': 'MultiFDCompression',
1030            '*multifd-zlib-level': 'uint8',
1031            '*multifd-zstd-level': 'uint8',
1032            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1033            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1034                                            'features': [ 'unstable' ] },
1035            '*vcpu-dirty-limit': 'uint64'} }
1036
1037##
1038# @migrate-set-parameters:
1039#
1040# Set various migration parameters.
1041#
1042# Since: 2.4
1043#
1044# Example:
1045#
1046# -> { "execute": "migrate-set-parameters" ,
1047#      "arguments": { "compress-level": 1 } }
1048# <- { "return": {} }
1049##
1050{ 'command': 'migrate-set-parameters', 'boxed': true,
1051  'data': 'MigrateSetParameters' }
1052
1053##
1054# @MigrationParameters:
1055#
1056# The optional members aren't actually optional.
1057#
1058# @announce-initial: Initial delay (in milliseconds) before sending
1059#     the first announce (Since 4.0)
1060#
1061# @announce-max: Maximum delay (in milliseconds) between packets in
1062#     the announcement (Since 4.0)
1063#
1064# @announce-rounds: Number of self-announce packets sent after
1065#     migration (Since 4.0)
1066#
1067# @announce-step: Increase in delay (in milliseconds) between
1068#     subsequent packets in the announcement (Since 4.0)
1069#
1070# @compress-level: compression level
1071#
1072# @compress-threads: compression thread count
1073#
1074# @compress-wait-thread: Controls behavior when all compression
1075#     threads are currently busy.  If true (default), wait for a free
1076#     compression thread to become available; otherwise, send the page
1077#     uncompressed.  (Since 3.1)
1078#
1079# @decompress-threads: decompression thread count
1080#
1081# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1082#     bytes_xfer_period to trigger throttling.  It is expressed as
1083#     percentage.  The default value is 50. (Since 5.0)
1084#
1085# @cpu-throttle-initial: Initial percentage of time guest cpus are
1086#     throttled when migration auto-converge is activated.  (Since
1087#     2.7)
1088#
1089# @cpu-throttle-increment: throttle percentage increase each time
1090#     auto-converge detects that migration is not making progress.
1091#     (Since 2.7)
1092#
1093# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1094#     the tail stage of throttling, the Guest is very sensitive to CPU
1095#     percentage while the @cpu-throttle -increment is excessive
1096#     usually at tail stage.  If this parameter is true, we will
1097#     compute the ideal CPU percentage used by the Guest, which may
1098#     exactly make the dirty rate match the dirty rate threshold.
1099#     Then we will choose a smaller throttle increment between the one
1100#     specified by @cpu-throttle-increment and the one generated by
1101#     ideal CPU percentage.  Therefore, it is compatible to
1102#     traditional throttling, meanwhile the throttle increment won't
1103#     be excessive at tail stage.  The default value is false.  (Since
1104#     5.1)
1105#
1106# @tls-creds: ID of the 'tls-creds' object that provides credentials
1107#     for establishing a TLS connection over the migration data
1108#     channel.  On the outgoing side of the migration, the credentials
1109#     must be for a 'client' endpoint, while for the incoming side the
1110#     credentials must be for a 'server' endpoint.  An empty string
1111#     means that QEMU will use plain text mode for migration, rather
1112#     than TLS (Since 2.7) Note: 2.8 reports this by omitting
1113#     tls-creds instead.
1114#
1115# @tls-hostname: hostname of the target host for the migration.  This
1116#     is required when using x509 based TLS credentials and the
1117#     migration URI does not already include a hostname.  For example
1118#     if using fd: or exec: based migration, the hostname must be
1119#     provided so that the server's x509 certificate identity can be
1120#     validated.  (Since 2.7) An empty string means that QEMU will use
1121#     the hostname associated with the migration URI, if any.  (Since
1122#     2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1123#
1124# @tls-authz: ID of the 'authz' object subclass that provides access
1125#     control checking of the TLS x509 certificate distinguished name.
1126#     (Since 4.0)
1127#
1128# @max-bandwidth: to set maximum speed for migration.  maximum speed
1129#     in bytes per second.  (Since 2.8)
1130#
1131# @downtime-limit: set maximum tolerated downtime for migration.
1132#     maximum downtime in milliseconds (Since 2.8)
1133#
1134# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1135#     (Since 2.8)
1136#
1137# @block-incremental: Affects how much storage is migrated when the
1138#     block migration capability is enabled.  When false, the entire
1139#     storage backing chain is migrated into a flattened image at the
1140#     destination; when true, only the active qcow2 layer is migrated
1141#     and the destination must already have access to the same backing
1142#     chain as was used on the source.  (since 2.10)
1143#
1144# @multifd-channels: Number of channels used to migrate data in
1145#     parallel.  This is the same number that the number of sockets
1146#     used for migration.  The default value is 2 (since 4.0)
1147#
1148# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1149#     needs to be a multiple of the target page size and a power of 2
1150#     (Since 2.11)
1151#
1152# @max-postcopy-bandwidth: Background transfer bandwidth during
1153#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1154#     (Since 3.0)
1155#
1156# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1157#     (Since 3.1)
1158#
1159# @multifd-compression: Which compression method to use.  Defaults to
1160#     none.  (Since 5.0)
1161#
1162# @multifd-zlib-level: Set the compression level to be used in live
1163#     migration, the compression level is an integer between 0 and 9,
1164#     where 0 means no compression, 1 means the best compression
1165#     speed, and 9 means best compression ratio which will consume
1166#     more CPU. Defaults to 1. (Since 5.0)
1167#
1168# @multifd-zstd-level: Set the compression level to be used in live
1169#     migration, the compression level is an integer between 0 and 20,
1170#     where 0 means no compression, 1 means the best compression
1171#     speed, and 20 means best compression ratio which will consume
1172#     more CPU. Defaults to 1. (Since 5.0)
1173#
1174# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1175#     aliases for the purpose of dirty bitmap migration.  Such aliases
1176#     may for example be the corresponding names on the opposite site.
1177#     The mapping must be one-to-one, but not necessarily complete: On
1178#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1179#     will be ignored.  On the destination, encountering an unmapped
1180#     alias in the incoming migration stream will result in a report,
1181#     and all further bitmap migration data will then be discarded.
1182#     Note that the destination does not know about bitmaps it does
1183#     not receive, so there is no limitation or requirement regarding
1184#     the number of bitmaps received, or how they are named, or on
1185#     which nodes they are placed.  By default (when this parameter
1186#     has never been set), bitmap names are mapped to themselves.
1187#     Nodes are mapped to their block device name if there is one, and
1188#     to their node name otherwise.  (Since 5.2)
1189#
1190# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1191#     limit during live migration.  Should be in the range 1 to 1000ms.
1192#     Defaults to 1000ms.  (Since 8.1)
1193#
1194# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1195#     Defaults to 1.  (Since 8.1)
1196#
1197# Features:
1198#
1199# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1200#     are experimental.
1201#
1202# Since: 2.4
1203##
1204{ 'struct': 'MigrationParameters',
1205  'data': { '*announce-initial': 'size',
1206            '*announce-max': 'size',
1207            '*announce-rounds': 'size',
1208            '*announce-step': 'size',
1209            '*compress-level': 'uint8',
1210            '*compress-threads': 'uint8',
1211            '*compress-wait-thread': 'bool',
1212            '*decompress-threads': 'uint8',
1213            '*throttle-trigger-threshold': 'uint8',
1214            '*cpu-throttle-initial': 'uint8',
1215            '*cpu-throttle-increment': 'uint8',
1216            '*cpu-throttle-tailslow': 'bool',
1217            '*tls-creds': 'str',
1218            '*tls-hostname': 'str',
1219            '*tls-authz': 'str',
1220            '*max-bandwidth': 'size',
1221            '*downtime-limit': 'uint64',
1222            '*x-checkpoint-delay': { 'type': 'uint32',
1223                                     'features': [ 'unstable' ] },
1224            '*block-incremental': 'bool',
1225            '*multifd-channels': 'uint8',
1226            '*xbzrle-cache-size': 'size',
1227            '*max-postcopy-bandwidth': 'size',
1228            '*max-cpu-throttle': 'uint8',
1229            '*multifd-compression': 'MultiFDCompression',
1230            '*multifd-zlib-level': 'uint8',
1231            '*multifd-zstd-level': 'uint8',
1232            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1233            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1234                                            'features': [ 'unstable' ] },
1235            '*vcpu-dirty-limit': 'uint64'} }
1236
1237##
1238# @query-migrate-parameters:
1239#
1240# Returns information about the current migration parameters
1241#
1242# Returns: @MigrationParameters
1243#
1244# Since: 2.4
1245#
1246# Example:
1247#
1248# -> { "execute": "query-migrate-parameters" }
1249# <- { "return": {
1250#          "decompress-threads": 2,
1251#          "cpu-throttle-increment": 10,
1252#          "compress-threads": 8,
1253#          "compress-level": 1,
1254#          "cpu-throttle-initial": 20,
1255#          "max-bandwidth": 33554432,
1256#          "downtime-limit": 300
1257#       }
1258#    }
1259##
1260{ 'command': 'query-migrate-parameters',
1261  'returns': 'MigrationParameters' }
1262
1263##
1264# @migrate-start-postcopy:
1265#
1266# Followup to a migration command to switch the migration to postcopy
1267# mode.  The postcopy-ram capability must be set on both source and
1268# destination before the original migration command.
1269#
1270# Since: 2.5
1271#
1272# Example:
1273#
1274# -> { "execute": "migrate-start-postcopy" }
1275# <- { "return": {} }
1276##
1277{ 'command': 'migrate-start-postcopy' }
1278
1279##
1280# @MIGRATION:
1281#
1282# Emitted when a migration event happens
1283#
1284# @status: @MigrationStatus describing the current migration status.
1285#
1286# Since: 2.4
1287#
1288# Example:
1289#
1290# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1291#     "event": "MIGRATION",
1292#     "data": {"status": "completed"} }
1293##
1294{ 'event': 'MIGRATION',
1295  'data': {'status': 'MigrationStatus'}}
1296
1297##
1298# @MIGRATION_PASS:
1299#
1300# Emitted from the source side of a migration at the start of each
1301# pass (when it syncs the dirty bitmap)
1302#
1303# @pass: An incrementing count (starting at 1 on the first pass)
1304#
1305# Since: 2.6
1306#
1307# Example:
1308#
1309# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1310#       "event": "MIGRATION_PASS", "data": {"pass": 2} }
1311##
1312{ 'event': 'MIGRATION_PASS',
1313  'data': { 'pass': 'int' } }
1314
1315##
1316# @COLOMessage:
1317#
1318# The message transmission between Primary side and Secondary side.
1319#
1320# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1321#
1322# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1323#     checkpointing
1324#
1325# @checkpoint-reply: SVM gets PVM's checkpoint request
1326#
1327# @vmstate-send: VM's state will be sent by PVM.
1328#
1329# @vmstate-size: The total size of VMstate.
1330#
1331# @vmstate-received: VM's state has been received by SVM.
1332#
1333# @vmstate-loaded: VM's state has been loaded by SVM.
1334#
1335# Since: 2.8
1336##
1337{ 'enum': 'COLOMessage',
1338  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1339            'vmstate-send', 'vmstate-size', 'vmstate-received',
1340            'vmstate-loaded' ] }
1341
1342##
1343# @COLOMode:
1344#
1345# The COLO current mode.
1346#
1347# @none: COLO is disabled.
1348#
1349# @primary: COLO node in primary side.
1350#
1351# @secondary: COLO node in slave side.
1352#
1353# Since: 2.8
1354##
1355{ 'enum': 'COLOMode',
1356  'data': [ 'none', 'primary', 'secondary'] }
1357
1358##
1359# @FailoverStatus:
1360#
1361# An enumeration of COLO failover status
1362#
1363# @none: no failover has ever happened
1364#
1365# @require: got failover requirement but not handled
1366#
1367# @active: in the process of doing failover
1368#
1369# @completed: finish the process of failover
1370#
1371# @relaunch: restart the failover process, from 'none' -> 'completed'
1372#     (Since 2.9)
1373#
1374# Since: 2.8
1375##
1376{ 'enum': 'FailoverStatus',
1377  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1378
1379##
1380# @COLO_EXIT:
1381#
1382# Emitted when VM finishes COLO mode due to some errors happening or
1383# at the request of users.
1384#
1385# @mode: report COLO mode when COLO exited.
1386#
1387# @reason: describes the reason for the COLO exit.
1388#
1389# Since: 3.1
1390#
1391# Example:
1392#
1393# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1394#      "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1395##
1396{ 'event': 'COLO_EXIT',
1397  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1398
1399##
1400# @COLOExitReason:
1401#
1402# The reason for a COLO exit.
1403#
1404# @none: failover has never happened.  This state does not occur in
1405#     the COLO_EXIT event, and is only visible in the result of
1406#     query-colo-status.
1407#
1408# @request: COLO exit is due to an external request.
1409#
1410# @error: COLO exit is due to an internal error.
1411#
1412# @processing: COLO is currently handling a failover (since 4.0).
1413#
1414# Since: 3.1
1415##
1416{ 'enum': 'COLOExitReason',
1417  'data': [ 'none', 'request', 'error' , 'processing' ] }
1418
1419##
1420# @x-colo-lost-heartbeat:
1421#
1422# Tell qemu that heartbeat is lost, request it to do takeover
1423# procedures.  If this command is sent to the PVM, the Primary side
1424# will exit COLO mode.  If sent to the Secondary, the Secondary side
1425# will run failover work, then takes over server operation to become
1426# the service VM.
1427#
1428# Features:
1429#
1430# @unstable: This command is experimental.
1431#
1432# Since: 2.8
1433#
1434# Example:
1435#
1436# -> { "execute": "x-colo-lost-heartbeat" }
1437# <- { "return": {} }
1438##
1439{ 'command': 'x-colo-lost-heartbeat',
1440  'features': [ 'unstable' ],
1441  'if': 'CONFIG_REPLICATION' }
1442
1443##
1444# @migrate_cancel:
1445#
1446# Cancel the current executing migration process.
1447#
1448# Returns: nothing on success
1449#
1450# Notes: This command succeeds even if there is no migration process
1451#     running.
1452#
1453# Since: 0.14
1454#
1455# Example:
1456#
1457# -> { "execute": "migrate_cancel" }
1458# <- { "return": {} }
1459##
1460{ 'command': 'migrate_cancel' }
1461
1462##
1463# @migrate-continue:
1464#
1465# Continue migration when it's in a paused state.
1466#
1467# @state: The state the migration is currently expected to be in
1468#
1469# Returns: nothing on success
1470#
1471# Since: 2.11
1472#
1473# Example:
1474#
1475# -> { "execute": "migrate-continue" , "arguments":
1476#      { "state": "pre-switchover" } }
1477# <- { "return": {} }
1478##
1479{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1480
1481##
1482# @migrate:
1483#
1484# Migrates the current running guest to another Virtual Machine.
1485#
1486# @uri: the Uniform Resource Identifier of the destination VM
1487#
1488# @blk: do block migration (full disk copy)
1489#
1490# @inc: incremental disk copy migration
1491#
1492# @detach: this argument exists only for compatibility reasons and is
1493#     ignored by QEMU
1494#
1495# @resume: resume one paused migration, default "off". (since 3.0)
1496#
1497# Returns: nothing on success
1498#
1499# Since: 0.14
1500#
1501# Notes:
1502#
1503# 1. The 'query-migrate' command should be used to check migration's
1504#    progress and final result (this information is provided by the
1505#    'status' member)
1506#
1507# 2. All boolean arguments default to false
1508#
1509# 3. The user Monitor's "detach" argument is invalid in QMP and should
1510#    not be used
1511#
1512# Example:
1513#
1514# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1515# <- { "return": {} }
1516##
1517{ 'command': 'migrate',
1518  'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1519           '*detach': 'bool', '*resume': 'bool' } }
1520
1521##
1522# @migrate-incoming:
1523#
1524# Start an incoming migration, the qemu must have been started with
1525# -incoming defer
1526#
1527# @uri: The Uniform Resource Identifier identifying the source or
1528#     address to listen on
1529#
1530# Returns: nothing on success
1531#
1532# Since: 2.3
1533#
1534# Notes:
1535#
1536# 1. It's a bad idea to use a string for the uri, but it needs
1537#    to stay compatible with -incoming and the format of the uri
1538#    is already exposed above libvirt.
1539#
1540# 2. QEMU must be started with -incoming defer to allow
1541#    migrate-incoming to be used.
1542#
1543# 3. The uri format is the same as for -incoming
1544#
1545# Example:
1546#
1547# -> { "execute": "migrate-incoming",
1548#      "arguments": { "uri": "tcp::4446" } }
1549# <- { "return": {} }
1550##
1551{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1552
1553##
1554# @xen-save-devices-state:
1555#
1556# Save the state of all devices to file.  The RAM and the block
1557# devices of the VM are not saved by this command.
1558#
1559# @filename: the file to save the state of the devices to as binary
1560#     data.  See xen-save-devices-state.txt for a description of the
1561#     binary format.
1562#
1563# @live: Optional argument to ask QEMU to treat this command as part
1564#     of a live migration.  Default to true.  (since 2.11)
1565#
1566# Returns: Nothing on success
1567#
1568# Since: 1.1
1569#
1570# Example:
1571#
1572# -> { "execute": "xen-save-devices-state",
1573#      "arguments": { "filename": "/tmp/save" } }
1574# <- { "return": {} }
1575##
1576{ 'command': 'xen-save-devices-state',
1577  'data': {'filename': 'str', '*live':'bool' } }
1578
1579##
1580# @xen-set-global-dirty-log:
1581#
1582# Enable or disable the global dirty log mode.
1583#
1584# @enable: true to enable, false to disable.
1585#
1586# Returns: nothing
1587#
1588# Since: 1.3
1589#
1590# Example:
1591#
1592# -> { "execute": "xen-set-global-dirty-log",
1593#      "arguments": { "enable": true } }
1594# <- { "return": {} }
1595##
1596{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1597
1598##
1599# @xen-load-devices-state:
1600#
1601# Load the state of all devices from file.  The RAM and the block
1602# devices of the VM are not loaded by this command.
1603#
1604# @filename: the file to load the state of the devices from as binary
1605#     data.  See xen-save-devices-state.txt for a description of the
1606#     binary format.
1607#
1608# Since: 2.7
1609#
1610# Example:
1611#
1612# -> { "execute": "xen-load-devices-state",
1613#      "arguments": { "filename": "/tmp/resume" } }
1614# <- { "return": {} }
1615##
1616{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1617
1618##
1619# @xen-set-replication:
1620#
1621# Enable or disable replication.
1622#
1623# @enable: true to enable, false to disable.
1624#
1625# @primary: true for primary or false for secondary.
1626#
1627# @failover: true to do failover, false to stop.  but cannot be
1628#     specified if 'enable' is true.  default value is false.
1629#
1630# Returns: nothing.
1631#
1632# Example:
1633#
1634# -> { "execute": "xen-set-replication",
1635#      "arguments": {"enable": true, "primary": false} }
1636# <- { "return": {} }
1637#
1638# Since: 2.9
1639##
1640{ 'command': 'xen-set-replication',
1641  'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1642  'if': 'CONFIG_REPLICATION' }
1643
1644##
1645# @ReplicationStatus:
1646#
1647# The result format for 'query-xen-replication-status'.
1648#
1649# @error: true if an error happened, false if replication is normal.
1650#
1651# @desc: the human readable error description string, when @error is
1652#     'true'.
1653#
1654# Since: 2.9
1655##
1656{ 'struct': 'ReplicationStatus',
1657  'data': { 'error': 'bool', '*desc': 'str' },
1658  'if': 'CONFIG_REPLICATION' }
1659
1660##
1661# @query-xen-replication-status:
1662#
1663# Query replication status while the vm is running.
1664#
1665# Returns: A @ReplicationStatus object showing the status.
1666#
1667# Example:
1668#
1669# -> { "execute": "query-xen-replication-status" }
1670# <- { "return": { "error": false } }
1671#
1672# Since: 2.9
1673##
1674{ 'command': 'query-xen-replication-status',
1675  'returns': 'ReplicationStatus',
1676  'if': 'CONFIG_REPLICATION' }
1677
1678##
1679# @xen-colo-do-checkpoint:
1680#
1681# Xen uses this command to notify replication to trigger a checkpoint.
1682#
1683# Returns: nothing.
1684#
1685# Example:
1686#
1687# -> { "execute": "xen-colo-do-checkpoint" }
1688# <- { "return": {} }
1689#
1690# Since: 2.9
1691##
1692{ 'command': 'xen-colo-do-checkpoint',
1693  'if': 'CONFIG_REPLICATION' }
1694
1695##
1696# @COLOStatus:
1697#
1698# The result format for 'query-colo-status'.
1699#
1700# @mode: COLO running mode.  If COLO is running, this field will
1701#     return 'primary' or 'secondary'.
1702#
1703# @last-mode: COLO last running mode.  If COLO is running, this field
1704#     will return same like mode field, after failover we can use this
1705#     field to get last colo mode.  (since 4.0)
1706#
1707# @reason: describes the reason for the COLO exit.
1708#
1709# Since: 3.1
1710##
1711{ 'struct': 'COLOStatus',
1712  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1713            'reason': 'COLOExitReason' },
1714  'if': 'CONFIG_REPLICATION' }
1715
1716##
1717# @query-colo-status:
1718#
1719# Query COLO status while the vm is running.
1720#
1721# Returns: A @COLOStatus object showing the status.
1722#
1723# Example:
1724#
1725# -> { "execute": "query-colo-status" }
1726# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1727#
1728# Since: 3.1
1729##
1730{ 'command': 'query-colo-status',
1731  'returns': 'COLOStatus',
1732  'if': 'CONFIG_REPLICATION' }
1733
1734##
1735# @migrate-recover:
1736#
1737# Provide a recovery migration stream URI.
1738#
1739# @uri: the URI to be used for the recovery of migration stream.
1740#
1741# Returns: nothing.
1742#
1743# Example:
1744#
1745# -> { "execute": "migrate-recover",
1746#      "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1747# <- { "return": {} }
1748#
1749# Since: 3.0
1750##
1751{ 'command': 'migrate-recover',
1752  'data': { 'uri': 'str' },
1753  'allow-oob': true }
1754
1755##
1756# @migrate-pause:
1757#
1758# Pause a migration.  Currently it only supports postcopy.
1759#
1760# Returns: nothing.
1761#
1762# Example:
1763#
1764# -> { "execute": "migrate-pause" }
1765# <- { "return": {} }
1766#
1767# Since: 3.0
1768##
1769{ 'command': 'migrate-pause', 'allow-oob': true }
1770
1771##
1772# @UNPLUG_PRIMARY:
1773#
1774# Emitted from source side of a migration when migration state is
1775# WAIT_UNPLUG. Device was unplugged by guest operating system.  Device
1776# resources in QEMU are kept on standby to be able to re-plug it in
1777# case of migration failure.
1778#
1779# @device-id: QEMU device id of the unplugged device
1780#
1781# Since: 4.2
1782#
1783# Example:
1784#
1785# <- { "event": "UNPLUG_PRIMARY",
1786#      "data": { "device-id": "hostdev0" },
1787#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1788##
1789{ 'event': 'UNPLUG_PRIMARY',
1790  'data': { 'device-id': 'str' } }
1791
1792##
1793# @DirtyRateVcpu:
1794#
1795# Dirty rate of vcpu.
1796#
1797# @id: vcpu index.
1798#
1799# @dirty-rate: dirty rate.
1800#
1801# Since: 6.2
1802##
1803{ 'struct': 'DirtyRateVcpu',
1804  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1805
1806##
1807# @DirtyRateStatus:
1808#
1809# Dirty page rate measurement status.
1810#
1811# @unstarted: measuring thread has not been started yet
1812#
1813# @measuring: measuring thread is running
1814#
1815# @measured: dirty page rate is measured and the results are available
1816#
1817# Since: 5.2
1818##
1819{ 'enum': 'DirtyRateStatus',
1820  'data': [ 'unstarted', 'measuring', 'measured'] }
1821
1822##
1823# @DirtyRateMeasureMode:
1824#
1825# Method used to measure dirty page rate.  Differences between
1826# available methods are explained in @calc-dirty-rate.
1827#
1828# @page-sampling: use page sampling
1829#
1830# @dirty-ring: use dirty ring
1831#
1832# @dirty-bitmap: use dirty bitmap
1833#
1834# Since: 6.2
1835##
1836{ 'enum': 'DirtyRateMeasureMode',
1837  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
1838
1839##
1840# @DirtyRateInfo:
1841#
1842# Information about measured dirty page rate.
1843#
1844# @dirty-rate: an estimate of the dirty page rate of the VM in units
1845#     of MiB/s.  Value is present only when @status is 'measured'.
1846#
1847# @status: current status of dirty page rate measurements
1848#
1849# @start-time: start time in units of second for calculation
1850#
1851# @calc-time: time period for which dirty page rate was measured
1852#     (in seconds)
1853#
1854# @sample-pages: number of sampled pages per GiB of guest memory.
1855#     Valid only in page-sampling mode (Since 6.1)
1856#
1857# @mode: mode that was used to measure dirty page rate (Since 6.2)
1858#
1859# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
1860#     specified (Since 6.2)
1861#
1862# Since: 5.2
1863##
1864{ 'struct': 'DirtyRateInfo',
1865  'data': {'*dirty-rate': 'int64',
1866           'status': 'DirtyRateStatus',
1867           'start-time': 'int64',
1868           'calc-time': 'int64',
1869           'sample-pages': 'uint64',
1870           'mode': 'DirtyRateMeasureMode',
1871           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
1872
1873##
1874# @calc-dirty-rate:
1875#
1876# Start measuring dirty page rate of the VM.  Results can be retrieved
1877# with @query-dirty-rate after measurements are completed.
1878#
1879# Dirty page rate is the number of pages changed in a given time
1880# period expressed in MiB/s.  The following methods of calculation are
1881# available:
1882#
1883# 1. In page sampling mode, a random subset of pages are selected and
1884#    hashed twice: once at the beginning of measurement time period,
1885#    and once again at the end.  If two hashes for some page are
1886#    different, the page is counted as changed.  Since this method
1887#    relies on sampling and hashing, calculated dirty page rate is
1888#    only an estimate of its true value.  Increasing @sample-pages
1889#    improves estimation quality at the cost of higher computational
1890#    overhead.
1891#
1892# 2. Dirty bitmap mode captures writes to memory (for example by
1893#    temporarily revoking write access to all pages) and counting page
1894#    faults.  Information about modified pages is collected into a
1895#    bitmap, where each bit corresponds to one guest page.  This mode
1896#    requires that KVM accelerator property "dirty-ring-size" is *not*
1897#    set.
1898#
1899# 3. Dirty ring mode is similar to dirty bitmap mode, but the
1900#    information about modified pages is collected into ring buffer.
1901#    This mode tracks page modification per each vCPU separately.  It
1902#    requires that KVM accelerator property "dirty-ring-size" is set.
1903#
1904# @calc-time: time period in units of second for which dirty page rate
1905#     is calculated.  Note that larger @calc-time values will
1906#     typically result in smaller dirty page rates because page
1907#     dirtying is a one-time event.  Once some page is counted as
1908#     dirty during @calc-time period, further writes to this page will
1909#     not increase dirty page rate anymore.
1910#
1911# @sample-pages: number of sampled pages per each GiB of guest memory.
1912#     Default value is 512.  For 4KiB guest pages this corresponds to
1913#     sampling ratio of 0.2%.  This argument is used only in page
1914#     sampling mode.  (Since 6.1)
1915#
1916# @mode: mechanism for tracking dirty pages.  Default value is
1917#     'page-sampling'.  Others are 'dirty-bitmap' and 'dirty-ring'.
1918#     (Since 6.1)
1919#
1920# Since: 5.2
1921#
1922# Example:
1923#
1924# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1925#                                                 'sample-pages': 512} }
1926# <- { "return": {} }
1927##
1928{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
1929                                         '*sample-pages': 'int',
1930                                         '*mode': 'DirtyRateMeasureMode'} }
1931
1932##
1933# @query-dirty-rate:
1934#
1935# Query results of the most recent invocation of @calc-dirty-rate.
1936#
1937# Since: 5.2
1938#
1939# Examples:
1940#
1941# 1. Measurement is in progress:
1942#
1943# <- {"status": "measuring", "sample-pages": 512,
1944#     "mode": "page-sampling", "start-time": 3665220, "calc-time": 10}
1945#
1946# 2. Measurement has been completed:
1947#
1948# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
1949#     "mode": "page-sampling", "start-time": 3665220, "calc-time": 10}
1950##
1951{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' }
1952
1953##
1954# @DirtyLimitInfo:
1955#
1956# Dirty page rate limit information of a virtual CPU.
1957#
1958# @cpu-index: index of a virtual CPU.
1959#
1960# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
1961#     CPU, 0 means unlimited.
1962#
1963# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1964#
1965# Since: 7.1
1966##
1967{ 'struct': 'DirtyLimitInfo',
1968  'data': { 'cpu-index': 'int',
1969            'limit-rate': 'uint64',
1970            'current-rate': 'uint64' } }
1971
1972##
1973# @set-vcpu-dirty-limit:
1974#
1975# Set the upper limit of dirty page rate for virtual CPUs.
1976#
1977# Requires KVM with accelerator property "dirty-ring-size" set.  A
1978# virtual CPU's dirty page rate is a measure of its memory load.  To
1979# observe dirty page rates, use @calc-dirty-rate.
1980#
1981# @cpu-index: index of a virtual CPU, default is all.
1982#
1983# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
1984#
1985# Since: 7.1
1986#
1987# Example:
1988#
1989# -> {"execute": "set-vcpu-dirty-limit"}
1990#     "arguments": { "dirty-rate": 200,
1991#                    "cpu-index": 1 } }
1992# <- { "return": {} }
1993##
1994{ 'command': 'set-vcpu-dirty-limit',
1995  'data': { '*cpu-index': 'int',
1996            'dirty-rate': 'uint64' } }
1997
1998##
1999# @cancel-vcpu-dirty-limit:
2000#
2001# Cancel the upper limit of dirty page rate for virtual CPUs.
2002#
2003# Cancel the dirty page limit for the vCPU which has been set with
2004# set-vcpu-dirty-limit command.  Note that this command requires
2005# support from dirty ring, same as the "set-vcpu-dirty-limit".
2006#
2007# @cpu-index: index of a virtual CPU, default is all.
2008#
2009# Since: 7.1
2010#
2011# Example:
2012#
2013# -> {"execute": "cancel-vcpu-dirty-limit"},
2014#     "arguments": { "cpu-index": 1 } }
2015# <- { "return": {} }
2016##
2017{ 'command': 'cancel-vcpu-dirty-limit',
2018  'data': { '*cpu-index': 'int'} }
2019
2020##
2021# @query-vcpu-dirty-limit:
2022#
2023# Returns information about virtual CPU dirty page rate limits, if
2024# any.
2025#
2026# Since: 7.1
2027#
2028# Example:
2029#
2030# -> {"execute": "query-vcpu-dirty-limit"}
2031# <- {"return": [
2032#        { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2033#        { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2034##
2035{ 'command': 'query-vcpu-dirty-limit',
2036  'returns': [ 'DirtyLimitInfo' ] }
2037
2038##
2039# @MigrationThreadInfo:
2040#
2041# Information about migrationthreads
2042#
2043# @name: the name of migration thread
2044#
2045# @thread-id: ID of the underlying host thread
2046#
2047# Since: 7.2
2048##
2049{ 'struct': 'MigrationThreadInfo',
2050  'data': {'name': 'str',
2051           'thread-id': 'int'} }
2052
2053##
2054# @query-migrationthreads:
2055#
2056# Returns information of migration threads
2057#
2058# data: migration thread name
2059#
2060# Returns: information about migration threads
2061#
2062# Since: 7.2
2063##
2064{ 'command': 'query-migrationthreads',
2065  'returns': ['MigrationThreadInfo'] }
2066
2067##
2068# @snapshot-save:
2069#
2070# Save a VM snapshot
2071#
2072# @job-id: identifier for the newly created job
2073#
2074# @tag: name of the snapshot to create
2075#
2076# @vmstate: block device node name to save vmstate to
2077#
2078# @devices: list of block device node names to save a snapshot to
2079#
2080# Applications should not assume that the snapshot save is complete
2081# when this command returns.  The job commands / events must be used
2082# to determine completion and to fetch details of any errors that
2083# arise.
2084#
2085# Note that execution of the guest CPUs may be stopped during the time
2086# it takes to save the snapshot.  A future version of QEMU may ensure
2087# CPUs are executing continuously.
2088#
2089# It is strongly recommended that @devices contain all writable block
2090# device nodes if a consistent snapshot is required.
2091#
2092# If @tag already exists, an error will be reported
2093#
2094# Returns: nothing
2095#
2096# Example:
2097#
2098# -> { "execute": "snapshot-save",
2099#      "arguments": {
2100#         "job-id": "snapsave0",
2101#         "tag": "my-snap",
2102#         "vmstate": "disk0",
2103#         "devices": ["disk0", "disk1"]
2104#      }
2105#    }
2106# <- { "return": { } }
2107# <- {"event": "JOB_STATUS_CHANGE",
2108#     "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2109#     "data": {"status": "created", "id": "snapsave0"}}
2110# <- {"event": "JOB_STATUS_CHANGE",
2111#     "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2112#     "data": {"status": "running", "id": "snapsave0"}}
2113# <- {"event": "STOP",
2114#     "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2115# <- {"event": "RESUME",
2116#     "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2117# <- {"event": "JOB_STATUS_CHANGE",
2118#     "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2119#     "data": {"status": "waiting", "id": "snapsave0"}}
2120# <- {"event": "JOB_STATUS_CHANGE",
2121#     "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2122#     "data": {"status": "pending", "id": "snapsave0"}}
2123# <- {"event": "JOB_STATUS_CHANGE",
2124#     "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2125#     "data": {"status": "concluded", "id": "snapsave0"}}
2126# -> {"execute": "query-jobs"}
2127# <- {"return": [{"current-progress": 1,
2128#                 "status": "concluded",
2129#                 "total-progress": 1,
2130#                 "type": "snapshot-save",
2131#                 "id": "snapsave0"}]}
2132#
2133# Since: 6.0
2134##
2135{ 'command': 'snapshot-save',
2136  'data': { 'job-id': 'str',
2137            'tag': 'str',
2138            'vmstate': 'str',
2139            'devices': ['str'] } }
2140
2141##
2142# @snapshot-load:
2143#
2144# Load a VM snapshot
2145#
2146# @job-id: identifier for the newly created job
2147#
2148# @tag: name of the snapshot to load.
2149#
2150# @vmstate: block device node name to load vmstate from
2151#
2152# @devices: list of block device node names to load a snapshot from
2153#
2154# Applications should not assume that the snapshot load is complete
2155# when this command returns.  The job commands / events must be used
2156# to determine completion and to fetch details of any errors that
2157# arise.
2158#
2159# Note that execution of the guest CPUs will be stopped during the
2160# time it takes to load the snapshot.
2161#
2162# It is strongly recommended that @devices contain all writable block
2163# device nodes that can have changed since the original @snapshot-save
2164# command execution.
2165#
2166# Returns: nothing
2167#
2168# Example:
2169#
2170# -> { "execute": "snapshot-load",
2171#      "arguments": {
2172#         "job-id": "snapload0",
2173#         "tag": "my-snap",
2174#         "vmstate": "disk0",
2175#         "devices": ["disk0", "disk1"]
2176#      }
2177#    }
2178# <- { "return": { } }
2179# <- {"event": "JOB_STATUS_CHANGE",
2180#     "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2181#     "data": {"status": "created", "id": "snapload0"}}
2182# <- {"event": "JOB_STATUS_CHANGE",
2183#     "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2184#     "data": {"status": "running", "id": "snapload0"}}
2185# <- {"event": "STOP",
2186#     "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2187# <- {"event": "RESUME",
2188#     "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2189# <- {"event": "JOB_STATUS_CHANGE",
2190#     "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2191#     "data": {"status": "waiting", "id": "snapload0"}}
2192# <- {"event": "JOB_STATUS_CHANGE",
2193#     "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2194#     "data": {"status": "pending", "id": "snapload0"}}
2195# <- {"event": "JOB_STATUS_CHANGE",
2196#     "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2197#     "data": {"status": "concluded", "id": "snapload0"}}
2198# -> {"execute": "query-jobs"}
2199# <- {"return": [{"current-progress": 1,
2200#                 "status": "concluded",
2201#                 "total-progress": 1,
2202#                 "type": "snapshot-load",
2203#                 "id": "snapload0"}]}
2204#
2205# Since: 6.0
2206##
2207{ 'command': 'snapshot-load',
2208  'data': { 'job-id': 'str',
2209            'tag': 'str',
2210            'vmstate': 'str',
2211            'devices': ['str'] } }
2212
2213##
2214# @snapshot-delete:
2215#
2216# Delete a VM snapshot
2217#
2218# @job-id: identifier for the newly created job
2219#
2220# @tag: name of the snapshot to delete.
2221#
2222# @devices: list of block device node names to delete a snapshot from
2223#
2224# Applications should not assume that the snapshot delete is complete
2225# when this command returns.  The job commands / events must be used
2226# to determine completion and to fetch details of any errors that
2227# arise.
2228#
2229# Returns: nothing
2230#
2231# Example:
2232#
2233# -> { "execute": "snapshot-delete",
2234#      "arguments": {
2235#         "job-id": "snapdelete0",
2236#         "tag": "my-snap",
2237#         "devices": ["disk0", "disk1"]
2238#      }
2239#    }
2240# <- { "return": { } }
2241# <- {"event": "JOB_STATUS_CHANGE",
2242#     "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2243#     "data": {"status": "created", "id": "snapdelete0"}}
2244# <- {"event": "JOB_STATUS_CHANGE",
2245#     "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2246#     "data": {"status": "running", "id": "snapdelete0"}}
2247# <- {"event": "JOB_STATUS_CHANGE",
2248#     "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2249#     "data": {"status": "waiting", "id": "snapdelete0"}}
2250# <- {"event": "JOB_STATUS_CHANGE",
2251#     "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2252#     "data": {"status": "pending", "id": "snapdelete0"}}
2253# <- {"event": "JOB_STATUS_CHANGE",
2254#     "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2255#     "data": {"status": "concluded", "id": "snapdelete0"}}
2256# -> {"execute": "query-jobs"}
2257# <- {"return": [{"current-progress": 1,
2258#                 "status": "concluded",
2259#                 "total-progress": 1,
2260#                 "type": "snapshot-delete",
2261#                 "id": "snapdelete0"}]}
2262#
2263# Since: 6.0
2264##
2265{ 'command': 'snapshot-delete',
2266  'data': { 'job-id': 'str',
2267            'tag': 'str',
2268            'devices': ['str'] } }
2269