1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2009-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include "hw/boards.h" 32 #include "hw/hw.h" 33 #include "hw/qdev.h" 34 #include "hw/xen/xen.h" 35 #include "net/net.h" 36 #include "monitor/monitor.h" 37 #include "sysemu/sysemu.h" 38 #include "qemu/timer.h" 39 #include "audio/audio.h" 40 #include "migration/migration.h" 41 #include "migration/postcopy-ram.h" 42 #include "qapi/qmp/qerror.h" 43 #include "qemu/error-report.h" 44 #include "qemu/sockets.h" 45 #include "qemu/queue.h" 46 #include "sysemu/cpus.h" 47 #include "exec/memory.h" 48 #include "qmp-commands.h" 49 #include "trace.h" 50 #include "qemu/bitops.h" 51 #include "qemu/iov.h" 52 #include "block/snapshot.h" 53 #include "block/qapi.h" 54 #include "qemu/cutils.h" 55 #include "io/channel-buffer.h" 56 #include "io/channel-file.h" 57 58 #ifndef ETH_P_RARP 59 #define ETH_P_RARP 0x8035 60 #endif 61 #define ARP_HTYPE_ETH 0x0001 62 #define ARP_PTYPE_IP 0x0800 63 #define ARP_OP_REQUEST_REV 0x3 64 65 const unsigned int postcopy_ram_discard_version = 0; 66 67 static bool skip_section_footers; 68 69 static struct mig_cmd_args { 70 ssize_t len; /* -1 = variable */ 71 const char *name; 72 } mig_cmd_args[] = { 73 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, 74 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, 75 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, 76 [MIG_CMD_POSTCOPY_ADVISE] = { .len = 16, .name = "POSTCOPY_ADVISE" }, 77 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, 78 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, 79 [MIG_CMD_POSTCOPY_RAM_DISCARD] = { 80 .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, 81 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, 82 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, 83 }; 84 85 static int announce_self_create(uint8_t *buf, 86 uint8_t *mac_addr) 87 { 88 /* Ethernet header. */ 89 memset(buf, 0xff, 6); /* destination MAC addr */ 90 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ 91 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ 92 93 /* RARP header. */ 94 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ 95 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ 96 *(buf + 18) = 6; /* hardware addr length (ethernet) */ 97 *(buf + 19) = 4; /* protocol addr length (IPv4) */ 98 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ 99 memcpy(buf + 22, mac_addr, 6); /* source hw addr */ 100 memset(buf + 28, 0x00, 4); /* source protocol addr */ 101 memcpy(buf + 32, mac_addr, 6); /* target hw addr */ 102 memset(buf + 38, 0x00, 4); /* target protocol addr */ 103 104 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ 105 memset(buf + 42, 0x00, 18); 106 107 return 60; /* len (FCS will be added by hardware) */ 108 } 109 110 static void qemu_announce_self_iter(NICState *nic, void *opaque) 111 { 112 uint8_t buf[60]; 113 int len; 114 115 trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); 116 len = announce_self_create(buf, nic->conf->macaddr.a); 117 118 qemu_send_packet_raw(qemu_get_queue(nic), buf, len); 119 } 120 121 122 static void qemu_announce_self_once(void *opaque) 123 { 124 static int count = SELF_ANNOUNCE_ROUNDS; 125 QEMUTimer *timer = *(QEMUTimer **)opaque; 126 127 qemu_foreach_nic(qemu_announce_self_iter, NULL); 128 129 if (--count) { 130 /* delay 50ms, 150ms, 250ms, ... */ 131 timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 132 self_announce_delay(count)); 133 } else { 134 timer_del(timer); 135 timer_free(timer); 136 } 137 } 138 139 void qemu_announce_self(void) 140 { 141 static QEMUTimer *timer; 142 timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); 143 qemu_announce_self_once(&timer); 144 } 145 146 /***********************************************************/ 147 /* savevm/loadvm support */ 148 149 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, 150 int64_t pos) 151 { 152 int ret; 153 QEMUIOVector qiov; 154 155 qemu_iovec_init_external(&qiov, iov, iovcnt); 156 ret = bdrv_writev_vmstate(opaque, &qiov, pos); 157 if (ret < 0) { 158 return ret; 159 } 160 161 return qiov.size; 162 } 163 164 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, 165 size_t size) 166 { 167 return bdrv_load_vmstate(opaque, buf, pos, size); 168 } 169 170 static int bdrv_fclose(void *opaque) 171 { 172 return bdrv_flush(opaque); 173 } 174 175 static const QEMUFileOps bdrv_read_ops = { 176 .get_buffer = block_get_buffer, 177 .close = bdrv_fclose 178 }; 179 180 static const QEMUFileOps bdrv_write_ops = { 181 .writev_buffer = block_writev_buffer, 182 .close = bdrv_fclose 183 }; 184 185 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) 186 { 187 if (is_writable) { 188 return qemu_fopen_ops(bs, &bdrv_write_ops); 189 } 190 return qemu_fopen_ops(bs, &bdrv_read_ops); 191 } 192 193 194 /* QEMUFile timer support. 195 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c 196 */ 197 198 void timer_put(QEMUFile *f, QEMUTimer *ts) 199 { 200 uint64_t expire_time; 201 202 expire_time = timer_expire_time_ns(ts); 203 qemu_put_be64(f, expire_time); 204 } 205 206 void timer_get(QEMUFile *f, QEMUTimer *ts) 207 { 208 uint64_t expire_time; 209 210 expire_time = qemu_get_be64(f); 211 if (expire_time != -1) { 212 timer_mod_ns(ts, expire_time); 213 } else { 214 timer_del(ts); 215 } 216 } 217 218 219 /* VMState timer support. 220 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c 221 */ 222 223 static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field) 224 { 225 QEMUTimer *v = pv; 226 timer_get(f, v); 227 return 0; 228 } 229 230 static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field, 231 QJSON *vmdesc) 232 { 233 QEMUTimer *v = pv; 234 timer_put(f, v); 235 236 return 0; 237 } 238 239 const VMStateInfo vmstate_info_timer = { 240 .name = "timer", 241 .get = get_timer, 242 .put = put_timer, 243 }; 244 245 246 typedef struct CompatEntry { 247 char idstr[256]; 248 int instance_id; 249 } CompatEntry; 250 251 typedef struct SaveStateEntry { 252 QTAILQ_ENTRY(SaveStateEntry) entry; 253 char idstr[256]; 254 int instance_id; 255 int alias_id; 256 int version_id; 257 int section_id; 258 SaveVMHandlers *ops; 259 const VMStateDescription *vmsd; 260 void *opaque; 261 CompatEntry *compat; 262 int is_ram; 263 } SaveStateEntry; 264 265 typedef struct SaveState { 266 QTAILQ_HEAD(, SaveStateEntry) handlers; 267 int global_section_id; 268 bool skip_configuration; 269 uint32_t len; 270 const char *name; 271 uint32_t target_page_bits; 272 } SaveState; 273 274 static SaveState savevm_state = { 275 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), 276 .global_section_id = 0, 277 .skip_configuration = false, 278 }; 279 280 void savevm_skip_configuration(void) 281 { 282 savevm_state.skip_configuration = true; 283 } 284 285 286 static void configuration_pre_save(void *opaque) 287 { 288 SaveState *state = opaque; 289 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 290 291 state->len = strlen(current_name); 292 state->name = current_name; 293 state->target_page_bits = TARGET_PAGE_BITS; 294 } 295 296 static int configuration_pre_load(void *opaque) 297 { 298 SaveState *state = opaque; 299 300 /* If there is no target-page-bits subsection it means the source 301 * predates the variable-target-page-bits support and is using the 302 * minimum possible value for this CPU. 303 */ 304 state->target_page_bits = TARGET_PAGE_BITS_MIN; 305 return 0; 306 } 307 308 static int configuration_post_load(void *opaque, int version_id) 309 { 310 SaveState *state = opaque; 311 const char *current_name = MACHINE_GET_CLASS(current_machine)->name; 312 313 if (strncmp(state->name, current_name, state->len) != 0) { 314 error_report("Machine type received is '%.*s' and local is '%s'", 315 (int) state->len, state->name, current_name); 316 return -EINVAL; 317 } 318 319 if (state->target_page_bits != TARGET_PAGE_BITS) { 320 error_report("Received TARGET_PAGE_BITS is %d but local is %d", 321 state->target_page_bits, TARGET_PAGE_BITS); 322 return -EINVAL; 323 } 324 325 return 0; 326 } 327 328 /* The target-page-bits subsection is present only if the 329 * target page size is not the same as the default (ie the 330 * minimum page size for a variable-page-size guest CPU). 331 * If it is present then it contains the actual target page 332 * bits for the machine, and migration will fail if the 333 * two ends don't agree about it. 334 */ 335 static bool vmstate_target_page_bits_needed(void *opaque) 336 { 337 return TARGET_PAGE_BITS > TARGET_PAGE_BITS_MIN; 338 } 339 340 static const VMStateDescription vmstate_target_page_bits = { 341 .name = "configuration/target-page-bits", 342 .version_id = 1, 343 .minimum_version_id = 1, 344 .needed = vmstate_target_page_bits_needed, 345 .fields = (VMStateField[]) { 346 VMSTATE_UINT32(target_page_bits, SaveState), 347 VMSTATE_END_OF_LIST() 348 } 349 }; 350 351 static const VMStateDescription vmstate_configuration = { 352 .name = "configuration", 353 .version_id = 1, 354 .pre_load = configuration_pre_load, 355 .post_load = configuration_post_load, 356 .pre_save = configuration_pre_save, 357 .fields = (VMStateField[]) { 358 VMSTATE_UINT32(len, SaveState), 359 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len), 360 VMSTATE_END_OF_LIST() 361 }, 362 .subsections = (const VMStateDescription*[]) { 363 &vmstate_target_page_bits, 364 NULL 365 } 366 }; 367 368 static void dump_vmstate_vmsd(FILE *out_file, 369 const VMStateDescription *vmsd, int indent, 370 bool is_subsection); 371 372 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, 373 int indent) 374 { 375 fprintf(out_file, "%*s{\n", indent, ""); 376 indent += 2; 377 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); 378 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 379 field->version_id); 380 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", 381 field->field_exists ? "true" : "false"); 382 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); 383 if (field->vmsd != NULL) { 384 fprintf(out_file, ",\n"); 385 dump_vmstate_vmsd(out_file, field->vmsd, indent, false); 386 } 387 fprintf(out_file, "\n%*s}", indent - 2, ""); 388 } 389 390 static void dump_vmstate_vmss(FILE *out_file, 391 const VMStateDescription **subsection, 392 int indent) 393 { 394 if (*subsection != NULL) { 395 dump_vmstate_vmsd(out_file, *subsection, indent, true); 396 } 397 } 398 399 static void dump_vmstate_vmsd(FILE *out_file, 400 const VMStateDescription *vmsd, int indent, 401 bool is_subsection) 402 { 403 if (is_subsection) { 404 fprintf(out_file, "%*s{\n", indent, ""); 405 } else { 406 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); 407 } 408 indent += 2; 409 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); 410 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 411 vmsd->version_id); 412 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", 413 vmsd->minimum_version_id); 414 if (vmsd->fields != NULL) { 415 const VMStateField *field = vmsd->fields; 416 bool first; 417 418 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); 419 first = true; 420 while (field->name != NULL) { 421 if (field->flags & VMS_MUST_EXIST) { 422 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ 423 field++; 424 continue; 425 } 426 if (!first) { 427 fprintf(out_file, ",\n"); 428 } 429 dump_vmstate_vmsf(out_file, field, indent + 2); 430 field++; 431 first = false; 432 } 433 fprintf(out_file, "\n%*s]", indent, ""); 434 } 435 if (vmsd->subsections != NULL) { 436 const VMStateDescription **subsection = vmsd->subsections; 437 bool first; 438 439 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); 440 first = true; 441 while (*subsection != NULL) { 442 if (!first) { 443 fprintf(out_file, ",\n"); 444 } 445 dump_vmstate_vmss(out_file, subsection, indent + 2); 446 subsection++; 447 first = false; 448 } 449 fprintf(out_file, "\n%*s]", indent, ""); 450 } 451 fprintf(out_file, "\n%*s}", indent - 2, ""); 452 } 453 454 static void dump_machine_type(FILE *out_file) 455 { 456 MachineClass *mc; 457 458 mc = MACHINE_GET_CLASS(current_machine); 459 460 fprintf(out_file, " \"vmschkmachine\": {\n"); 461 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); 462 fprintf(out_file, " },\n"); 463 } 464 465 void dump_vmstate_json_to_file(FILE *out_file) 466 { 467 GSList *list, *elt; 468 bool first; 469 470 fprintf(out_file, "{\n"); 471 dump_machine_type(out_file); 472 473 first = true; 474 list = object_class_get_list(TYPE_DEVICE, true); 475 for (elt = list; elt; elt = elt->next) { 476 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, 477 TYPE_DEVICE); 478 const char *name; 479 int indent = 2; 480 481 if (!dc->vmsd) { 482 continue; 483 } 484 485 if (!first) { 486 fprintf(out_file, ",\n"); 487 } 488 name = object_class_get_name(OBJECT_CLASS(dc)); 489 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); 490 indent += 2; 491 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); 492 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", 493 dc->vmsd->version_id); 494 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", 495 dc->vmsd->minimum_version_id); 496 497 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); 498 499 fprintf(out_file, "\n%*s}", indent - 2, ""); 500 first = false; 501 } 502 fprintf(out_file, "\n}\n"); 503 fclose(out_file); 504 } 505 506 static int calculate_new_instance_id(const char *idstr) 507 { 508 SaveStateEntry *se; 509 int instance_id = 0; 510 511 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 512 if (strcmp(idstr, se->idstr) == 0 513 && instance_id <= se->instance_id) { 514 instance_id = se->instance_id + 1; 515 } 516 } 517 return instance_id; 518 } 519 520 static int calculate_compat_instance_id(const char *idstr) 521 { 522 SaveStateEntry *se; 523 int instance_id = 0; 524 525 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 526 if (!se->compat) { 527 continue; 528 } 529 530 if (strcmp(idstr, se->compat->idstr) == 0 531 && instance_id <= se->compat->instance_id) { 532 instance_id = se->compat->instance_id + 1; 533 } 534 } 535 return instance_id; 536 } 537 538 static inline MigrationPriority save_state_priority(SaveStateEntry *se) 539 { 540 if (se->vmsd) { 541 return se->vmsd->priority; 542 } 543 return MIG_PRI_DEFAULT; 544 } 545 546 static void savevm_state_handler_insert(SaveStateEntry *nse) 547 { 548 MigrationPriority priority = save_state_priority(nse); 549 SaveStateEntry *se; 550 551 assert(priority <= MIG_PRI_MAX); 552 553 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 554 if (save_state_priority(se) < priority) { 555 break; 556 } 557 } 558 559 if (se) { 560 QTAILQ_INSERT_BEFORE(se, nse, entry); 561 } else { 562 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); 563 } 564 } 565 566 /* TODO: Individual devices generally have very little idea about the rest 567 of the system, so instance_id should be removed/replaced. 568 Meanwhile pass -1 as instance_id if you do not already have a clearly 569 distinguishing id for all instances of your device class. */ 570 int register_savevm_live(DeviceState *dev, 571 const char *idstr, 572 int instance_id, 573 int version_id, 574 SaveVMHandlers *ops, 575 void *opaque) 576 { 577 SaveStateEntry *se; 578 579 se = g_new0(SaveStateEntry, 1); 580 se->version_id = version_id; 581 se->section_id = savevm_state.global_section_id++; 582 se->ops = ops; 583 se->opaque = opaque; 584 se->vmsd = NULL; 585 /* if this is a live_savem then set is_ram */ 586 if (ops->save_live_setup != NULL) { 587 se->is_ram = 1; 588 } 589 590 if (dev) { 591 char *id = qdev_get_dev_path(dev); 592 if (id) { 593 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 594 sizeof(se->idstr)) { 595 error_report("Path too long for VMState (%s)", id); 596 g_free(id); 597 g_free(se); 598 599 return -1; 600 } 601 g_free(id); 602 603 se->compat = g_new0(CompatEntry, 1); 604 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); 605 se->compat->instance_id = instance_id == -1 ? 606 calculate_compat_instance_id(idstr) : instance_id; 607 instance_id = -1; 608 } 609 } 610 pstrcat(se->idstr, sizeof(se->idstr), idstr); 611 612 if (instance_id == -1) { 613 se->instance_id = calculate_new_instance_id(se->idstr); 614 } else { 615 se->instance_id = instance_id; 616 } 617 assert(!se->compat || se->instance_id == 0); 618 savevm_state_handler_insert(se); 619 return 0; 620 } 621 622 int register_savevm(DeviceState *dev, 623 const char *idstr, 624 int instance_id, 625 int version_id, 626 SaveStateHandler *save_state, 627 LoadStateHandler *load_state, 628 void *opaque) 629 { 630 SaveVMHandlers *ops = g_new0(SaveVMHandlers, 1); 631 ops->save_state = save_state; 632 ops->load_state = load_state; 633 return register_savevm_live(dev, idstr, instance_id, version_id, 634 ops, opaque); 635 } 636 637 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) 638 { 639 SaveStateEntry *se, *new_se; 640 char id[256] = ""; 641 642 if (dev) { 643 char *path = qdev_get_dev_path(dev); 644 if (path) { 645 pstrcpy(id, sizeof(id), path); 646 pstrcat(id, sizeof(id), "/"); 647 g_free(path); 648 } 649 } 650 pstrcat(id, sizeof(id), idstr); 651 652 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 653 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { 654 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 655 g_free(se->compat); 656 g_free(se->ops); 657 g_free(se); 658 } 659 } 660 } 661 662 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, 663 const VMStateDescription *vmsd, 664 void *opaque, int alias_id, 665 int required_for_version, 666 Error **errp) 667 { 668 SaveStateEntry *se; 669 670 /* If this triggers, alias support can be dropped for the vmsd. */ 671 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); 672 673 se = g_new0(SaveStateEntry, 1); 674 se->version_id = vmsd->version_id; 675 se->section_id = savevm_state.global_section_id++; 676 se->opaque = opaque; 677 se->vmsd = vmsd; 678 se->alias_id = alias_id; 679 680 if (dev) { 681 char *id = qdev_get_dev_path(dev); 682 if (id) { 683 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= 684 sizeof(se->idstr)) { 685 error_setg(errp, "Path too long for VMState (%s)", id); 686 g_free(id); 687 g_free(se); 688 689 return -1; 690 } 691 g_free(id); 692 693 se->compat = g_new0(CompatEntry, 1); 694 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); 695 se->compat->instance_id = instance_id == -1 ? 696 calculate_compat_instance_id(vmsd->name) : instance_id; 697 instance_id = -1; 698 } 699 } 700 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); 701 702 if (instance_id == -1) { 703 se->instance_id = calculate_new_instance_id(se->idstr); 704 } else { 705 se->instance_id = instance_id; 706 } 707 assert(!se->compat || se->instance_id == 0); 708 savevm_state_handler_insert(se); 709 return 0; 710 } 711 712 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, 713 void *opaque) 714 { 715 SaveStateEntry *se, *new_se; 716 717 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { 718 if (se->vmsd == vmsd && se->opaque == opaque) { 719 QTAILQ_REMOVE(&savevm_state.handlers, se, entry); 720 g_free(se->compat); 721 g_free(se); 722 } 723 } 724 } 725 726 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id) 727 { 728 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 729 if (!se->vmsd) { /* Old style */ 730 return se->ops->load_state(f, se->opaque, version_id); 731 } 732 return vmstate_load_state(f, se->vmsd, se->opaque, version_id); 733 } 734 735 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 736 { 737 int64_t old_offset, size; 738 739 old_offset = qemu_ftell_fast(f); 740 se->ops->save_state(f, se->opaque); 741 size = qemu_ftell_fast(f) - old_offset; 742 743 if (vmdesc) { 744 json_prop_int(vmdesc, "size", size); 745 json_start_array(vmdesc, "fields"); 746 json_start_object(vmdesc, NULL); 747 json_prop_str(vmdesc, "name", "data"); 748 json_prop_int(vmdesc, "size", size); 749 json_prop_str(vmdesc, "type", "buffer"); 750 json_end_object(vmdesc); 751 json_end_array(vmdesc); 752 } 753 } 754 755 static void vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) 756 { 757 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); 758 if (!se->vmsd) { 759 vmstate_save_old_style(f, se, vmdesc); 760 return; 761 } 762 vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); 763 } 764 765 void savevm_skip_section_footers(void) 766 { 767 skip_section_footers = true; 768 } 769 770 /* 771 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) 772 */ 773 static void save_section_header(QEMUFile *f, SaveStateEntry *se, 774 uint8_t section_type) 775 { 776 qemu_put_byte(f, section_type); 777 qemu_put_be32(f, se->section_id); 778 779 if (section_type == QEMU_VM_SECTION_FULL || 780 section_type == QEMU_VM_SECTION_START) { 781 /* ID string */ 782 size_t len = strlen(se->idstr); 783 qemu_put_byte(f, len); 784 qemu_put_buffer(f, (uint8_t *)se->idstr, len); 785 786 qemu_put_be32(f, se->instance_id); 787 qemu_put_be32(f, se->version_id); 788 } 789 } 790 791 /* 792 * Write a footer onto device sections that catches cases misformatted device 793 * sections. 794 */ 795 static void save_section_footer(QEMUFile *f, SaveStateEntry *se) 796 { 797 if (!skip_section_footers) { 798 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); 799 qemu_put_be32(f, se->section_id); 800 } 801 } 802 803 /** 804 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the 805 * command and associated data. 806 * 807 * @f: File to send command on 808 * @command: Command type to send 809 * @len: Length of associated data 810 * @data: Data associated with command. 811 */ 812 void qemu_savevm_command_send(QEMUFile *f, 813 enum qemu_vm_cmd command, 814 uint16_t len, 815 uint8_t *data) 816 { 817 trace_savevm_command_send(command, len); 818 qemu_put_byte(f, QEMU_VM_COMMAND); 819 qemu_put_be16(f, (uint16_t)command); 820 qemu_put_be16(f, len); 821 qemu_put_buffer(f, data, len); 822 qemu_fflush(f); 823 } 824 825 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) 826 { 827 uint32_t buf; 828 829 trace_savevm_send_ping(value); 830 buf = cpu_to_be32(value); 831 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); 832 } 833 834 void qemu_savevm_send_open_return_path(QEMUFile *f) 835 { 836 trace_savevm_send_open_return_path(); 837 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); 838 } 839 840 /* We have a buffer of data to send; we don't want that all to be loaded 841 * by the command itself, so the command contains just the length of the 842 * extra buffer that we then send straight after it. 843 * TODO: Must be a better way to organise that 844 * 845 * Returns: 846 * 0 on success 847 * -ve on error 848 */ 849 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) 850 { 851 uint32_t tmp; 852 853 if (len > MAX_VM_CMD_PACKAGED_SIZE) { 854 error_report("%s: Unreasonably large packaged state: %zu", 855 __func__, len); 856 return -1; 857 } 858 859 tmp = cpu_to_be32(len); 860 861 trace_qemu_savevm_send_packaged(); 862 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); 863 864 qemu_put_buffer(f, buf, len); 865 866 return 0; 867 } 868 869 /* Send prior to any postcopy transfer */ 870 void qemu_savevm_send_postcopy_advise(QEMUFile *f) 871 { 872 uint64_t tmp[2]; 873 tmp[0] = cpu_to_be64(ram_pagesize_summary()); 874 tmp[1] = cpu_to_be64(1ul << qemu_target_page_bits()); 875 876 trace_qemu_savevm_send_postcopy_advise(); 877 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 16, (uint8_t *)tmp); 878 } 879 880 /* Sent prior to starting the destination running in postcopy, discard pages 881 * that have already been sent but redirtied on the source. 882 * CMD_POSTCOPY_RAM_DISCARD consist of: 883 * byte version (0) 884 * byte Length of name field (not including 0) 885 * n x byte RAM block name 886 * byte 0 terminator (just for safety) 887 * n x Byte ranges within the named RAMBlock 888 * be64 Start of the range 889 * be64 Length 890 * 891 * name: RAMBlock name that these entries are part of 892 * len: Number of page entries 893 * start_list: 'len' addresses 894 * length_list: 'len' addresses 895 * 896 */ 897 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, 898 uint16_t len, 899 uint64_t *start_list, 900 uint64_t *length_list) 901 { 902 uint8_t *buf; 903 uint16_t tmplen; 904 uint16_t t; 905 size_t name_len = strlen(name); 906 907 trace_qemu_savevm_send_postcopy_ram_discard(name, len); 908 assert(name_len < 256); 909 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); 910 buf[0] = postcopy_ram_discard_version; 911 buf[1] = name_len; 912 memcpy(buf + 2, name, name_len); 913 tmplen = 2 + name_len; 914 buf[tmplen++] = '\0'; 915 916 for (t = 0; t < len; t++) { 917 stq_be_p(buf + tmplen, start_list[t]); 918 tmplen += 8; 919 stq_be_p(buf + tmplen, length_list[t]); 920 tmplen += 8; 921 } 922 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); 923 g_free(buf); 924 } 925 926 /* Get the destination into a state where it can receive postcopy data. */ 927 void qemu_savevm_send_postcopy_listen(QEMUFile *f) 928 { 929 trace_savevm_send_postcopy_listen(); 930 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); 931 } 932 933 /* Kick the destination into running */ 934 void qemu_savevm_send_postcopy_run(QEMUFile *f) 935 { 936 trace_savevm_send_postcopy_run(); 937 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); 938 } 939 940 bool qemu_savevm_state_blocked(Error **errp) 941 { 942 SaveStateEntry *se; 943 944 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 945 if (se->vmsd && se->vmsd->unmigratable) { 946 error_setg(errp, "State blocked by non-migratable device '%s'", 947 se->idstr); 948 return true; 949 } 950 } 951 return false; 952 } 953 954 static bool enforce_config_section(void) 955 { 956 MachineState *machine = MACHINE(qdev_get_machine()); 957 return machine->enforce_config_section; 958 } 959 960 void qemu_savevm_state_header(QEMUFile *f) 961 { 962 trace_savevm_state_header(); 963 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 964 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 965 966 if (!savevm_state.skip_configuration || enforce_config_section()) { 967 qemu_put_byte(f, QEMU_VM_CONFIGURATION); 968 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); 969 } 970 971 } 972 973 void qemu_savevm_state_begin(QEMUFile *f, 974 const MigrationParams *params) 975 { 976 SaveStateEntry *se; 977 int ret; 978 979 trace_savevm_state_begin(); 980 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 981 if (!se->ops || !se->ops->set_params) { 982 continue; 983 } 984 se->ops->set_params(params, se->opaque); 985 } 986 987 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 988 if (!se->ops || !se->ops->save_live_setup) { 989 continue; 990 } 991 if (se->ops && se->ops->is_active) { 992 if (!se->ops->is_active(se->opaque)) { 993 continue; 994 } 995 } 996 save_section_header(f, se, QEMU_VM_SECTION_START); 997 998 ret = se->ops->save_live_setup(f, se->opaque); 999 save_section_footer(f, se); 1000 if (ret < 0) { 1001 qemu_file_set_error(f, ret); 1002 break; 1003 } 1004 } 1005 } 1006 1007 /* 1008 * this function has three return values: 1009 * negative: there was one error, and we have -errno. 1010 * 0 : We haven't finished, caller have to go again 1011 * 1 : We have finished, we can go to complete phase 1012 */ 1013 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) 1014 { 1015 SaveStateEntry *se; 1016 int ret = 1; 1017 1018 trace_savevm_state_iterate(); 1019 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1020 if (!se->ops || !se->ops->save_live_iterate) { 1021 continue; 1022 } 1023 if (se->ops && se->ops->is_active) { 1024 if (!se->ops->is_active(se->opaque)) { 1025 continue; 1026 } 1027 } 1028 /* 1029 * In the postcopy phase, any device that doesn't know how to 1030 * do postcopy should have saved it's state in the _complete 1031 * call that's already run, it might get confused if we call 1032 * iterate afterwards. 1033 */ 1034 if (postcopy && !se->ops->save_live_complete_postcopy) { 1035 continue; 1036 } 1037 if (qemu_file_rate_limit(f)) { 1038 return 0; 1039 } 1040 trace_savevm_section_start(se->idstr, se->section_id); 1041 1042 save_section_header(f, se, QEMU_VM_SECTION_PART); 1043 1044 ret = se->ops->save_live_iterate(f, se->opaque); 1045 trace_savevm_section_end(se->idstr, se->section_id, ret); 1046 save_section_footer(f, se); 1047 1048 if (ret < 0) { 1049 qemu_file_set_error(f, ret); 1050 } 1051 if (ret <= 0) { 1052 /* Do not proceed to the next vmstate before this one reported 1053 completion of the current stage. This serializes the migration 1054 and reduces the probability that a faster changing state is 1055 synchronized over and over again. */ 1056 break; 1057 } 1058 } 1059 return ret; 1060 } 1061 1062 static bool should_send_vmdesc(void) 1063 { 1064 MachineState *machine = MACHINE(qdev_get_machine()); 1065 bool in_postcopy = migration_in_postcopy(migrate_get_current()); 1066 return !machine->suppress_vmdesc && !in_postcopy; 1067 } 1068 1069 /* 1070 * Calls the save_live_complete_postcopy methods 1071 * causing the last few pages to be sent immediately and doing any associated 1072 * cleanup. 1073 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete 1074 * all the other devices, but that happens at the point we switch to postcopy. 1075 */ 1076 void qemu_savevm_state_complete_postcopy(QEMUFile *f) 1077 { 1078 SaveStateEntry *se; 1079 int ret; 1080 1081 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1082 if (!se->ops || !se->ops->save_live_complete_postcopy) { 1083 continue; 1084 } 1085 if (se->ops && se->ops->is_active) { 1086 if (!se->ops->is_active(se->opaque)) { 1087 continue; 1088 } 1089 } 1090 trace_savevm_section_start(se->idstr, se->section_id); 1091 /* Section type */ 1092 qemu_put_byte(f, QEMU_VM_SECTION_END); 1093 qemu_put_be32(f, se->section_id); 1094 1095 ret = se->ops->save_live_complete_postcopy(f, se->opaque); 1096 trace_savevm_section_end(se->idstr, se->section_id, ret); 1097 save_section_footer(f, se); 1098 if (ret < 0) { 1099 qemu_file_set_error(f, ret); 1100 return; 1101 } 1102 } 1103 1104 qemu_put_byte(f, QEMU_VM_EOF); 1105 qemu_fflush(f); 1106 } 1107 1108 void qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only) 1109 { 1110 QJSON *vmdesc; 1111 int vmdesc_len; 1112 SaveStateEntry *se; 1113 int ret; 1114 bool in_postcopy = migration_in_postcopy(migrate_get_current()); 1115 1116 trace_savevm_state_complete_precopy(); 1117 1118 cpu_synchronize_all_states(); 1119 1120 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1121 if (!se->ops || 1122 (in_postcopy && se->ops->save_live_complete_postcopy) || 1123 (in_postcopy && !iterable_only) || 1124 !se->ops->save_live_complete_precopy) { 1125 continue; 1126 } 1127 1128 if (se->ops && se->ops->is_active) { 1129 if (!se->ops->is_active(se->opaque)) { 1130 continue; 1131 } 1132 } 1133 trace_savevm_section_start(se->idstr, se->section_id); 1134 1135 save_section_header(f, se, QEMU_VM_SECTION_END); 1136 1137 ret = se->ops->save_live_complete_precopy(f, se->opaque); 1138 trace_savevm_section_end(se->idstr, se->section_id, ret); 1139 save_section_footer(f, se); 1140 if (ret < 0) { 1141 qemu_file_set_error(f, ret); 1142 return; 1143 } 1144 } 1145 1146 if (iterable_only) { 1147 return; 1148 } 1149 1150 vmdesc = qjson_new(); 1151 json_prop_int(vmdesc, "page_size", TARGET_PAGE_SIZE); 1152 json_start_array(vmdesc, "devices"); 1153 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1154 1155 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1156 continue; 1157 } 1158 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1159 trace_savevm_section_skip(se->idstr, se->section_id); 1160 continue; 1161 } 1162 1163 trace_savevm_section_start(se->idstr, se->section_id); 1164 1165 json_start_object(vmdesc, NULL); 1166 json_prop_str(vmdesc, "name", se->idstr); 1167 json_prop_int(vmdesc, "instance_id", se->instance_id); 1168 1169 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1170 vmstate_save(f, se, vmdesc); 1171 trace_savevm_section_end(se->idstr, se->section_id, 0); 1172 save_section_footer(f, se); 1173 1174 json_end_object(vmdesc); 1175 } 1176 1177 if (!in_postcopy) { 1178 /* Postcopy stream will still be going */ 1179 qemu_put_byte(f, QEMU_VM_EOF); 1180 } 1181 1182 json_end_array(vmdesc); 1183 qjson_finish(vmdesc); 1184 vmdesc_len = strlen(qjson_get_str(vmdesc)); 1185 1186 if (should_send_vmdesc()) { 1187 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); 1188 qemu_put_be32(f, vmdesc_len); 1189 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); 1190 } 1191 qjson_destroy(vmdesc); 1192 1193 qemu_fflush(f); 1194 } 1195 1196 /* Give an estimate of the amount left to be transferred, 1197 * the result is split into the amount for units that can and 1198 * for units that can't do postcopy. 1199 */ 1200 void qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size, 1201 uint64_t *res_non_postcopiable, 1202 uint64_t *res_postcopiable) 1203 { 1204 SaveStateEntry *se; 1205 1206 *res_non_postcopiable = 0; 1207 *res_postcopiable = 0; 1208 1209 1210 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1211 if (!se->ops || !se->ops->save_live_pending) { 1212 continue; 1213 } 1214 if (se->ops && se->ops->is_active) { 1215 if (!se->ops->is_active(se->opaque)) { 1216 continue; 1217 } 1218 } 1219 se->ops->save_live_pending(f, se->opaque, max_size, 1220 res_non_postcopiable, res_postcopiable); 1221 } 1222 } 1223 1224 void qemu_savevm_state_cleanup(void) 1225 { 1226 SaveStateEntry *se; 1227 1228 trace_savevm_state_cleanup(); 1229 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1230 if (se->ops && se->ops->cleanup) { 1231 se->ops->cleanup(se->opaque); 1232 } 1233 } 1234 } 1235 1236 static int qemu_savevm_state(QEMUFile *f, Error **errp) 1237 { 1238 int ret; 1239 MigrationParams params = { 1240 .blk = 0, 1241 .shared = 0 1242 }; 1243 MigrationState *ms = migrate_init(¶ms); 1244 MigrationStatus status; 1245 ms->to_dst_file = f; 1246 1247 if (migration_is_blocked(errp)) { 1248 ret = -EINVAL; 1249 goto done; 1250 } 1251 1252 qemu_mutex_unlock_iothread(); 1253 qemu_savevm_state_header(f); 1254 qemu_savevm_state_begin(f, ¶ms); 1255 qemu_mutex_lock_iothread(); 1256 1257 while (qemu_file_get_error(f) == 0) { 1258 if (qemu_savevm_state_iterate(f, false) > 0) { 1259 break; 1260 } 1261 } 1262 1263 ret = qemu_file_get_error(f); 1264 if (ret == 0) { 1265 qemu_savevm_state_complete_precopy(f, false); 1266 ret = qemu_file_get_error(f); 1267 } 1268 qemu_savevm_state_cleanup(); 1269 if (ret != 0) { 1270 error_setg_errno(errp, -ret, "Error while writing VM state"); 1271 } 1272 1273 done: 1274 if (ret != 0) { 1275 status = MIGRATION_STATUS_FAILED; 1276 } else { 1277 status = MIGRATION_STATUS_COMPLETED; 1278 } 1279 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); 1280 1281 /* f is outer parameter, it should not stay in global migration state after 1282 * this function finished */ 1283 ms->to_dst_file = NULL; 1284 1285 return ret; 1286 } 1287 1288 static int qemu_save_device_state(QEMUFile *f) 1289 { 1290 SaveStateEntry *se; 1291 1292 qemu_put_be32(f, QEMU_VM_FILE_MAGIC); 1293 qemu_put_be32(f, QEMU_VM_FILE_VERSION); 1294 1295 cpu_synchronize_all_states(); 1296 1297 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1298 if (se->is_ram) { 1299 continue; 1300 } 1301 if ((!se->ops || !se->ops->save_state) && !se->vmsd) { 1302 continue; 1303 } 1304 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { 1305 continue; 1306 } 1307 1308 save_section_header(f, se, QEMU_VM_SECTION_FULL); 1309 1310 vmstate_save(f, se, NULL); 1311 1312 save_section_footer(f, se); 1313 } 1314 1315 qemu_put_byte(f, QEMU_VM_EOF); 1316 1317 return qemu_file_get_error(f); 1318 } 1319 1320 static SaveStateEntry *find_se(const char *idstr, int instance_id) 1321 { 1322 SaveStateEntry *se; 1323 1324 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { 1325 if (!strcmp(se->idstr, idstr) && 1326 (instance_id == se->instance_id || 1327 instance_id == se->alias_id)) 1328 return se; 1329 /* Migrating from an older version? */ 1330 if (strstr(se->idstr, idstr) && se->compat) { 1331 if (!strcmp(se->compat->idstr, idstr) && 1332 (instance_id == se->compat->instance_id || 1333 instance_id == se->alias_id)) 1334 return se; 1335 } 1336 } 1337 return NULL; 1338 } 1339 1340 enum LoadVMExitCodes { 1341 /* Allow a command to quit all layers of nested loadvm loops */ 1342 LOADVM_QUIT = 1, 1343 }; 1344 1345 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); 1346 1347 /* ------ incoming postcopy messages ------ */ 1348 /* 'advise' arrives before any transfers just to tell us that a postcopy 1349 * *might* happen - it might be skipped if precopy transferred everything 1350 * quickly. 1351 */ 1352 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis) 1353 { 1354 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1355 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps; 1356 1357 trace_loadvm_postcopy_handle_advise(); 1358 if (ps != POSTCOPY_INCOMING_NONE) { 1359 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); 1360 return -1; 1361 } 1362 1363 if (!postcopy_ram_supported_by_host()) { 1364 postcopy_state_set(POSTCOPY_INCOMING_NONE); 1365 return -1; 1366 } 1367 1368 remote_pagesize_summary = qemu_get_be64(mis->from_src_file); 1369 local_pagesize_summary = ram_pagesize_summary(); 1370 1371 if (remote_pagesize_summary != local_pagesize_summary) { 1372 /* 1373 * This detects two potential causes of mismatch: 1374 * a) A mismatch in host page sizes 1375 * Some combinations of mismatch are probably possible but it gets 1376 * a bit more complicated. In particular we need to place whole 1377 * host pages on the dest at once, and we need to ensure that we 1378 * handle dirtying to make sure we never end up sending part of 1379 * a hostpage on it's own. 1380 * b) The use of different huge page sizes on source/destination 1381 * a more fine grain test is performed during RAM block migration 1382 * but this test here causes a nice early clear failure, and 1383 * also fails when passed to an older qemu that doesn't 1384 * do huge pages. 1385 */ 1386 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64 1387 " d=%" PRIx64 ")", 1388 remote_pagesize_summary, local_pagesize_summary); 1389 return -1; 1390 } 1391 1392 remote_tps = qemu_get_be64(mis->from_src_file); 1393 if (remote_tps != (1ul << qemu_target_page_bits())) { 1394 /* 1395 * Again, some differences could be dealt with, but for now keep it 1396 * simple. 1397 */ 1398 error_report("Postcopy needs matching target page sizes (s=%d d=%d)", 1399 (int)remote_tps, 1 << qemu_target_page_bits()); 1400 return -1; 1401 } 1402 1403 if (ram_postcopy_incoming_init(mis)) { 1404 return -1; 1405 } 1406 1407 postcopy_state_set(POSTCOPY_INCOMING_ADVISE); 1408 1409 return 0; 1410 } 1411 1412 /* After postcopy we will be told to throw some pages away since they're 1413 * dirty and will have to be demand fetched. Must happen before CPU is 1414 * started. 1415 * There can be 0..many of these messages, each encoding multiple pages. 1416 */ 1417 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, 1418 uint16_t len) 1419 { 1420 int tmp; 1421 char ramid[256]; 1422 PostcopyState ps = postcopy_state_get(); 1423 1424 trace_loadvm_postcopy_ram_handle_discard(); 1425 1426 switch (ps) { 1427 case POSTCOPY_INCOMING_ADVISE: 1428 /* 1st discard */ 1429 tmp = postcopy_ram_prepare_discard(mis); 1430 if (tmp) { 1431 return tmp; 1432 } 1433 break; 1434 1435 case POSTCOPY_INCOMING_DISCARD: 1436 /* Expected state */ 1437 break; 1438 1439 default: 1440 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", 1441 ps); 1442 return -1; 1443 } 1444 /* We're expecting a 1445 * Version (0) 1446 * a RAM ID string (length byte, name, 0 term) 1447 * then at least 1 16 byte chunk 1448 */ 1449 if (len < (1 + 1 + 1 + 1 + 2 * 8)) { 1450 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1451 return -1; 1452 } 1453 1454 tmp = qemu_get_byte(mis->from_src_file); 1455 if (tmp != postcopy_ram_discard_version) { 1456 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); 1457 return -1; 1458 } 1459 1460 if (!qemu_get_counted_string(mis->from_src_file, ramid)) { 1461 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); 1462 return -1; 1463 } 1464 tmp = qemu_get_byte(mis->from_src_file); 1465 if (tmp != 0) { 1466 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); 1467 return -1; 1468 } 1469 1470 len -= 3 + strlen(ramid); 1471 if (len % 16) { 1472 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); 1473 return -1; 1474 } 1475 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); 1476 while (len) { 1477 uint64_t start_addr, block_length; 1478 start_addr = qemu_get_be64(mis->from_src_file); 1479 block_length = qemu_get_be64(mis->from_src_file); 1480 1481 len -= 16; 1482 int ret = ram_discard_range(mis, ramid, start_addr, 1483 block_length); 1484 if (ret) { 1485 return ret; 1486 } 1487 } 1488 trace_loadvm_postcopy_ram_handle_discard_end(); 1489 1490 return 0; 1491 } 1492 1493 /* 1494 * Triggered by a postcopy_listen command; this thread takes over reading 1495 * the input stream, leaving the main thread free to carry on loading the rest 1496 * of the device state (from RAM). 1497 * (TODO:This could do with being in a postcopy file - but there again it's 1498 * just another input loop, not that postcopy specific) 1499 */ 1500 static void *postcopy_ram_listen_thread(void *opaque) 1501 { 1502 QEMUFile *f = opaque; 1503 MigrationIncomingState *mis = migration_incoming_get_current(); 1504 int load_res; 1505 1506 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, 1507 MIGRATION_STATUS_POSTCOPY_ACTIVE); 1508 qemu_sem_post(&mis->listen_thread_sem); 1509 trace_postcopy_ram_listen_thread_start(); 1510 1511 /* 1512 * Because we're a thread and not a coroutine we can't yield 1513 * in qemu_file, and thus we must be blocking now. 1514 */ 1515 qemu_file_set_blocking(f, true); 1516 load_res = qemu_loadvm_state_main(f, mis); 1517 /* And non-blocking again so we don't block in any cleanup */ 1518 qemu_file_set_blocking(f, false); 1519 1520 trace_postcopy_ram_listen_thread_exit(); 1521 if (load_res < 0) { 1522 error_report("%s: loadvm failed: %d", __func__, load_res); 1523 qemu_file_set_error(f, load_res); 1524 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1525 MIGRATION_STATUS_FAILED); 1526 } else { 1527 /* 1528 * This looks good, but it's possible that the device loading in the 1529 * main thread hasn't finished yet, and so we might not be in 'RUN' 1530 * state yet; wait for the end of the main thread. 1531 */ 1532 qemu_event_wait(&mis->main_thread_load_event); 1533 } 1534 postcopy_ram_incoming_cleanup(mis); 1535 1536 if (load_res < 0) { 1537 /* 1538 * If something went wrong then we have a bad state so exit; 1539 * depending how far we got it might be possible at this point 1540 * to leave the guest running and fire MCEs for pages that never 1541 * arrived as a desperate recovery step. 1542 */ 1543 exit(EXIT_FAILURE); 1544 } 1545 1546 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, 1547 MIGRATION_STATUS_COMPLETED); 1548 /* 1549 * If everything has worked fine, then the main thread has waited 1550 * for us to start, and we're the last use of the mis. 1551 * (If something broke then qemu will have to exit anyway since it's 1552 * got a bad migration state). 1553 */ 1554 migration_incoming_state_destroy(); 1555 1556 1557 return NULL; 1558 } 1559 1560 /* After this message we must be able to immediately receive postcopy data */ 1561 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) 1562 { 1563 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); 1564 trace_loadvm_postcopy_handle_listen(); 1565 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { 1566 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); 1567 return -1; 1568 } 1569 if (ps == POSTCOPY_INCOMING_ADVISE) { 1570 /* 1571 * A rare case, we entered listen without having to do any discards, 1572 * so do the setup that's normally done at the time of the 1st discard. 1573 */ 1574 postcopy_ram_prepare_discard(mis); 1575 } 1576 1577 /* 1578 * Sensitise RAM - can now generate requests for blocks that don't exist 1579 * However, at this point the CPU shouldn't be running, and the IO 1580 * shouldn't be doing anything yet so don't actually expect requests 1581 */ 1582 if (postcopy_ram_enable_notify(mis)) { 1583 return -1; 1584 } 1585 1586 if (mis->have_listen_thread) { 1587 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); 1588 return -1; 1589 } 1590 1591 mis->have_listen_thread = true; 1592 /* Start up the listening thread and wait for it to signal ready */ 1593 qemu_sem_init(&mis->listen_thread_sem, 0); 1594 qemu_thread_create(&mis->listen_thread, "postcopy/listen", 1595 postcopy_ram_listen_thread, mis->from_src_file, 1596 QEMU_THREAD_DETACHED); 1597 qemu_sem_wait(&mis->listen_thread_sem); 1598 qemu_sem_destroy(&mis->listen_thread_sem); 1599 1600 return 0; 1601 } 1602 1603 1604 typedef struct { 1605 QEMUBH *bh; 1606 } HandleRunBhData; 1607 1608 static void loadvm_postcopy_handle_run_bh(void *opaque) 1609 { 1610 Error *local_err = NULL; 1611 HandleRunBhData *data = opaque; 1612 1613 /* TODO we should move all of this lot into postcopy_ram.c or a shared code 1614 * in migration.c 1615 */ 1616 cpu_synchronize_all_post_init(); 1617 1618 qemu_announce_self(); 1619 1620 /* Make sure all file formats flush their mutable metadata */ 1621 bdrv_invalidate_cache_all(&local_err); 1622 if (local_err) { 1623 error_report_err(local_err); 1624 } 1625 1626 trace_loadvm_postcopy_handle_run_cpu_sync(); 1627 cpu_synchronize_all_post_init(); 1628 1629 trace_loadvm_postcopy_handle_run_vmstart(); 1630 1631 if (autostart) { 1632 /* Hold onto your hats, starting the CPU */ 1633 vm_start(); 1634 } else { 1635 /* leave it paused and let management decide when to start the CPU */ 1636 runstate_set(RUN_STATE_PAUSED); 1637 } 1638 1639 qemu_bh_delete(data->bh); 1640 g_free(data); 1641 } 1642 1643 /* After all discards we can start running and asking for pages */ 1644 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) 1645 { 1646 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); 1647 HandleRunBhData *data; 1648 1649 trace_loadvm_postcopy_handle_run(); 1650 if (ps != POSTCOPY_INCOMING_LISTENING) { 1651 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); 1652 return -1; 1653 } 1654 1655 data = g_new(HandleRunBhData, 1); 1656 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); 1657 qemu_bh_schedule(data->bh); 1658 1659 /* We need to finish reading the stream from the package 1660 * and also stop reading anything more from the stream that loaded the 1661 * package (since it's now being read by the listener thread). 1662 * LOADVM_QUIT will quit all the layers of nested loadvm loops. 1663 */ 1664 return LOADVM_QUIT; 1665 } 1666 1667 /** 1668 * Immediately following this command is a blob of data containing an embedded 1669 * chunk of migration stream; read it and load it. 1670 * 1671 * @mis: Incoming state 1672 * @length: Length of packaged data to read 1673 * 1674 * Returns: Negative values on error 1675 * 1676 */ 1677 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) 1678 { 1679 int ret; 1680 size_t length; 1681 QIOChannelBuffer *bioc; 1682 1683 length = qemu_get_be32(mis->from_src_file); 1684 trace_loadvm_handle_cmd_packaged(length); 1685 1686 if (length > MAX_VM_CMD_PACKAGED_SIZE) { 1687 error_report("Unreasonably large packaged state: %zu", length); 1688 return -1; 1689 } 1690 1691 bioc = qio_channel_buffer_new(length); 1692 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); 1693 ret = qemu_get_buffer(mis->from_src_file, 1694 bioc->data, 1695 length); 1696 if (ret != length) { 1697 object_unref(OBJECT(bioc)); 1698 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", 1699 ret, length); 1700 return (ret < 0) ? ret : -EAGAIN; 1701 } 1702 bioc->usage += length; 1703 trace_loadvm_handle_cmd_packaged_received(ret); 1704 1705 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); 1706 1707 ret = qemu_loadvm_state_main(packf, mis); 1708 trace_loadvm_handle_cmd_packaged_main(ret); 1709 qemu_fclose(packf); 1710 object_unref(OBJECT(bioc)); 1711 1712 return ret; 1713 } 1714 1715 /* 1716 * Process an incoming 'QEMU_VM_COMMAND' 1717 * 0 just a normal return 1718 * LOADVM_QUIT All good, but exit the loop 1719 * <0 Error 1720 */ 1721 static int loadvm_process_command(QEMUFile *f) 1722 { 1723 MigrationIncomingState *mis = migration_incoming_get_current(); 1724 uint16_t cmd; 1725 uint16_t len; 1726 uint32_t tmp32; 1727 1728 cmd = qemu_get_be16(f); 1729 len = qemu_get_be16(f); 1730 1731 trace_loadvm_process_command(cmd, len); 1732 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { 1733 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); 1734 return -EINVAL; 1735 } 1736 1737 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { 1738 error_report("%s received with bad length - expecting %zu, got %d", 1739 mig_cmd_args[cmd].name, 1740 (size_t)mig_cmd_args[cmd].len, len); 1741 return -ERANGE; 1742 } 1743 1744 switch (cmd) { 1745 case MIG_CMD_OPEN_RETURN_PATH: 1746 if (mis->to_src_file) { 1747 error_report("CMD_OPEN_RETURN_PATH called when RP already open"); 1748 /* Not really a problem, so don't give up */ 1749 return 0; 1750 } 1751 mis->to_src_file = qemu_file_get_return_path(f); 1752 if (!mis->to_src_file) { 1753 error_report("CMD_OPEN_RETURN_PATH failed"); 1754 return -1; 1755 } 1756 break; 1757 1758 case MIG_CMD_PING: 1759 tmp32 = qemu_get_be32(f); 1760 trace_loadvm_process_command_ping(tmp32); 1761 if (!mis->to_src_file) { 1762 error_report("CMD_PING (0x%x) received with no return path", 1763 tmp32); 1764 return -1; 1765 } 1766 migrate_send_rp_pong(mis, tmp32); 1767 break; 1768 1769 case MIG_CMD_PACKAGED: 1770 return loadvm_handle_cmd_packaged(mis); 1771 1772 case MIG_CMD_POSTCOPY_ADVISE: 1773 return loadvm_postcopy_handle_advise(mis); 1774 1775 case MIG_CMD_POSTCOPY_LISTEN: 1776 return loadvm_postcopy_handle_listen(mis); 1777 1778 case MIG_CMD_POSTCOPY_RUN: 1779 return loadvm_postcopy_handle_run(mis); 1780 1781 case MIG_CMD_POSTCOPY_RAM_DISCARD: 1782 return loadvm_postcopy_ram_handle_discard(mis, len); 1783 } 1784 1785 return 0; 1786 } 1787 1788 struct LoadStateEntry { 1789 QLIST_ENTRY(LoadStateEntry) entry; 1790 SaveStateEntry *se; 1791 int section_id; 1792 int version_id; 1793 }; 1794 1795 /* 1796 * Read a footer off the wire and check that it matches the expected section 1797 * 1798 * Returns: true if the footer was good 1799 * false if there is a problem (and calls error_report to say why) 1800 */ 1801 static bool check_section_footer(QEMUFile *f, LoadStateEntry *le) 1802 { 1803 uint8_t read_mark; 1804 uint32_t read_section_id; 1805 1806 if (skip_section_footers) { 1807 /* No footer to check */ 1808 return true; 1809 } 1810 1811 read_mark = qemu_get_byte(f); 1812 1813 if (read_mark != QEMU_VM_SECTION_FOOTER) { 1814 error_report("Missing section footer for %s", le->se->idstr); 1815 return false; 1816 } 1817 1818 read_section_id = qemu_get_be32(f); 1819 if (read_section_id != le->section_id) { 1820 error_report("Mismatched section id in footer for %s -" 1821 " read 0x%x expected 0x%x", 1822 le->se->idstr, read_section_id, le->section_id); 1823 return false; 1824 } 1825 1826 /* All good */ 1827 return true; 1828 } 1829 1830 void loadvm_free_handlers(MigrationIncomingState *mis) 1831 { 1832 LoadStateEntry *le, *new_le; 1833 1834 QLIST_FOREACH_SAFE(le, &mis->loadvm_handlers, entry, new_le) { 1835 QLIST_REMOVE(le, entry); 1836 g_free(le); 1837 } 1838 } 1839 1840 static int 1841 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) 1842 { 1843 uint32_t instance_id, version_id, section_id; 1844 SaveStateEntry *se; 1845 LoadStateEntry *le; 1846 char idstr[256]; 1847 int ret; 1848 1849 /* Read section start */ 1850 section_id = qemu_get_be32(f); 1851 if (!qemu_get_counted_string(f, idstr)) { 1852 error_report("Unable to read ID string for section %u", 1853 section_id); 1854 return -EINVAL; 1855 } 1856 instance_id = qemu_get_be32(f); 1857 version_id = qemu_get_be32(f); 1858 1859 trace_qemu_loadvm_state_section_startfull(section_id, idstr, 1860 instance_id, version_id); 1861 /* Find savevm section */ 1862 se = find_se(idstr, instance_id); 1863 if (se == NULL) { 1864 error_report("Unknown savevm section or instance '%s' %d", 1865 idstr, instance_id); 1866 return -EINVAL; 1867 } 1868 1869 /* Validate version */ 1870 if (version_id > se->version_id) { 1871 error_report("savevm: unsupported version %d for '%s' v%d", 1872 version_id, idstr, se->version_id); 1873 return -EINVAL; 1874 } 1875 1876 /* Validate if it is a device's state */ 1877 if (xen_enabled() && se->is_ram) { 1878 error_report("loadvm: %s RAM loading not allowed on Xen", idstr); 1879 return -EINVAL; 1880 } 1881 1882 /* Add entry */ 1883 le = g_malloc0(sizeof(*le)); 1884 1885 le->se = se; 1886 le->section_id = section_id; 1887 le->version_id = version_id; 1888 QLIST_INSERT_HEAD(&mis->loadvm_handlers, le, entry); 1889 1890 ret = vmstate_load(f, le->se, le->version_id); 1891 if (ret < 0) { 1892 error_report("error while loading state for instance 0x%x of" 1893 " device '%s'", instance_id, idstr); 1894 return ret; 1895 } 1896 if (!check_section_footer(f, le)) { 1897 return -EINVAL; 1898 } 1899 1900 return 0; 1901 } 1902 1903 static int 1904 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) 1905 { 1906 uint32_t section_id; 1907 LoadStateEntry *le; 1908 int ret; 1909 1910 section_id = qemu_get_be32(f); 1911 1912 trace_qemu_loadvm_state_section_partend(section_id); 1913 QLIST_FOREACH(le, &mis->loadvm_handlers, entry) { 1914 if (le->section_id == section_id) { 1915 break; 1916 } 1917 } 1918 if (le == NULL) { 1919 error_report("Unknown savevm section %d", section_id); 1920 return -EINVAL; 1921 } 1922 1923 ret = vmstate_load(f, le->se, le->version_id); 1924 if (ret < 0) { 1925 error_report("error while loading state section id %d(%s)", 1926 section_id, le->se->idstr); 1927 return ret; 1928 } 1929 if (!check_section_footer(f, le)) { 1930 return -EINVAL; 1931 } 1932 1933 return 0; 1934 } 1935 1936 static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) 1937 { 1938 uint8_t section_type; 1939 int ret = 0; 1940 1941 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { 1942 ret = 0; 1943 trace_qemu_loadvm_state_section(section_type); 1944 switch (section_type) { 1945 case QEMU_VM_SECTION_START: 1946 case QEMU_VM_SECTION_FULL: 1947 ret = qemu_loadvm_section_start_full(f, mis); 1948 if (ret < 0) { 1949 goto out; 1950 } 1951 break; 1952 case QEMU_VM_SECTION_PART: 1953 case QEMU_VM_SECTION_END: 1954 ret = qemu_loadvm_section_part_end(f, mis); 1955 if (ret < 0) { 1956 goto out; 1957 } 1958 break; 1959 case QEMU_VM_COMMAND: 1960 ret = loadvm_process_command(f); 1961 trace_qemu_loadvm_state_section_command(ret); 1962 if ((ret < 0) || (ret & LOADVM_QUIT)) { 1963 goto out; 1964 } 1965 break; 1966 default: 1967 error_report("Unknown savevm section type %d", section_type); 1968 ret = -EINVAL; 1969 goto out; 1970 } 1971 } 1972 1973 out: 1974 if (ret < 0) { 1975 qemu_file_set_error(f, ret); 1976 } 1977 return ret; 1978 } 1979 1980 int qemu_loadvm_state(QEMUFile *f) 1981 { 1982 MigrationIncomingState *mis = migration_incoming_get_current(); 1983 Error *local_err = NULL; 1984 unsigned int v; 1985 int ret; 1986 1987 if (qemu_savevm_state_blocked(&local_err)) { 1988 error_report_err(local_err); 1989 return -EINVAL; 1990 } 1991 1992 v = qemu_get_be32(f); 1993 if (v != QEMU_VM_FILE_MAGIC) { 1994 error_report("Not a migration stream"); 1995 return -EINVAL; 1996 } 1997 1998 v = qemu_get_be32(f); 1999 if (v == QEMU_VM_FILE_VERSION_COMPAT) { 2000 error_report("SaveVM v2 format is obsolete and don't work anymore"); 2001 return -ENOTSUP; 2002 } 2003 if (v != QEMU_VM_FILE_VERSION) { 2004 error_report("Unsupported migration stream version"); 2005 return -ENOTSUP; 2006 } 2007 2008 if (!savevm_state.skip_configuration || enforce_config_section()) { 2009 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { 2010 error_report("Configuration section missing"); 2011 return -EINVAL; 2012 } 2013 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); 2014 2015 if (ret) { 2016 return ret; 2017 } 2018 } 2019 2020 ret = qemu_loadvm_state_main(f, mis); 2021 qemu_event_set(&mis->main_thread_load_event); 2022 2023 trace_qemu_loadvm_state_post_main(ret); 2024 2025 if (mis->have_listen_thread) { 2026 /* Listen thread still going, can't clean up yet */ 2027 return ret; 2028 } 2029 2030 if (ret == 0) { 2031 ret = qemu_file_get_error(f); 2032 } 2033 2034 /* 2035 * Try to read in the VMDESC section as well, so that dumping tools that 2036 * intercept our migration stream have the chance to see it. 2037 */ 2038 2039 /* We've got to be careful; if we don't read the data and just shut the fd 2040 * then the sender can error if we close while it's still sending. 2041 * We also mustn't read data that isn't there; some transports (RDMA) 2042 * will stall waiting for that data when the source has already closed. 2043 */ 2044 if (ret == 0 && should_send_vmdesc()) { 2045 uint8_t *buf; 2046 uint32_t size; 2047 uint8_t section_type = qemu_get_byte(f); 2048 2049 if (section_type != QEMU_VM_VMDESCRIPTION) { 2050 error_report("Expected vmdescription section, but got %d", 2051 section_type); 2052 /* 2053 * It doesn't seem worth failing at this point since 2054 * we apparently have an otherwise valid VM state 2055 */ 2056 } else { 2057 buf = g_malloc(0x1000); 2058 size = qemu_get_be32(f); 2059 2060 while (size > 0) { 2061 uint32_t read_chunk = MIN(size, 0x1000); 2062 qemu_get_buffer(f, buf, read_chunk); 2063 size -= read_chunk; 2064 } 2065 g_free(buf); 2066 } 2067 } 2068 2069 cpu_synchronize_all_post_init(); 2070 2071 return ret; 2072 } 2073 2074 int save_vmstate(Monitor *mon, const char *name) 2075 { 2076 BlockDriverState *bs, *bs1; 2077 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; 2078 int ret = -1; 2079 QEMUFile *f; 2080 int saved_vm_running; 2081 uint64_t vm_state_size; 2082 qemu_timeval tv; 2083 struct tm tm; 2084 Error *local_err = NULL; 2085 AioContext *aio_context; 2086 2087 if (!bdrv_all_can_snapshot(&bs)) { 2088 monitor_printf(mon, "Device '%s' is writable but does not " 2089 "support snapshots.\n", bdrv_get_device_name(bs)); 2090 return ret; 2091 } 2092 2093 /* Delete old snapshots of the same name */ 2094 if (name) { 2095 ret = bdrv_all_delete_snapshot(name, &bs1, &local_err); 2096 if (ret < 0) { 2097 error_reportf_err(local_err, 2098 "Error while deleting snapshot on device '%s': ", 2099 bdrv_get_device_name(bs1)); 2100 return ret; 2101 } 2102 } 2103 2104 bs = bdrv_all_find_vmstate_bs(); 2105 if (bs == NULL) { 2106 monitor_printf(mon, "No block device can accept snapshots\n"); 2107 return ret; 2108 } 2109 aio_context = bdrv_get_aio_context(bs); 2110 2111 saved_vm_running = runstate_is_running(); 2112 2113 ret = global_state_store(); 2114 if (ret) { 2115 monitor_printf(mon, "Error saving global state\n"); 2116 return ret; 2117 } 2118 vm_stop(RUN_STATE_SAVE_VM); 2119 2120 aio_context_acquire(aio_context); 2121 2122 memset(sn, 0, sizeof(*sn)); 2123 2124 /* fill auxiliary fields */ 2125 qemu_gettimeofday(&tv); 2126 sn->date_sec = tv.tv_sec; 2127 sn->date_nsec = tv.tv_usec * 1000; 2128 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2129 2130 if (name) { 2131 ret = bdrv_snapshot_find(bs, old_sn, name); 2132 if (ret >= 0) { 2133 pstrcpy(sn->name, sizeof(sn->name), old_sn->name); 2134 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); 2135 } else { 2136 pstrcpy(sn->name, sizeof(sn->name), name); 2137 } 2138 } else { 2139 /* cast below needed for OpenBSD where tv_sec is still 'long' */ 2140 localtime_r((const time_t *)&tv.tv_sec, &tm); 2141 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); 2142 } 2143 2144 /* save the VM state */ 2145 f = qemu_fopen_bdrv(bs, 1); 2146 if (!f) { 2147 monitor_printf(mon, "Could not open VM state file\n"); 2148 goto the_end; 2149 } 2150 ret = qemu_savevm_state(f, &local_err); 2151 vm_state_size = qemu_ftell(f); 2152 qemu_fclose(f); 2153 if (ret < 0) { 2154 error_report_err(local_err); 2155 goto the_end; 2156 } 2157 2158 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); 2159 if (ret < 0) { 2160 monitor_printf(mon, "Error while creating snapshot on '%s'\n", 2161 bdrv_get_device_name(bs)); 2162 goto the_end; 2163 } 2164 2165 ret = 0; 2166 2167 the_end: 2168 aio_context_release(aio_context); 2169 if (saved_vm_running) { 2170 vm_start(); 2171 } 2172 return ret; 2173 } 2174 2175 void hmp_savevm(Monitor *mon, const QDict *qdict) 2176 { 2177 save_vmstate(mon, qdict_get_try_str(qdict, "name")); 2178 } 2179 2180 void qmp_xen_save_devices_state(const char *filename, Error **errp) 2181 { 2182 QEMUFile *f; 2183 QIOChannelFile *ioc; 2184 int saved_vm_running; 2185 int ret; 2186 2187 saved_vm_running = runstate_is_running(); 2188 vm_stop(RUN_STATE_SAVE_VM); 2189 global_state_store_running(); 2190 2191 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); 2192 if (!ioc) { 2193 goto the_end; 2194 } 2195 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); 2196 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); 2197 ret = qemu_save_device_state(f); 2198 qemu_fclose(f); 2199 if (ret < 0) { 2200 error_setg(errp, QERR_IO_ERROR); 2201 } 2202 2203 the_end: 2204 if (saved_vm_running) { 2205 vm_start(); 2206 } 2207 } 2208 2209 void qmp_xen_load_devices_state(const char *filename, Error **errp) 2210 { 2211 QEMUFile *f; 2212 QIOChannelFile *ioc; 2213 int ret; 2214 2215 /* Guest must be paused before loading the device state; the RAM state 2216 * will already have been loaded by xc 2217 */ 2218 if (runstate_is_running()) { 2219 error_setg(errp, "Cannot update device state while vm is running"); 2220 return; 2221 } 2222 vm_stop(RUN_STATE_RESTORE_VM); 2223 2224 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); 2225 if (!ioc) { 2226 return; 2227 } 2228 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); 2229 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); 2230 2231 ret = qemu_loadvm_state(f); 2232 qemu_fclose(f); 2233 if (ret < 0) { 2234 error_setg(errp, QERR_IO_ERROR); 2235 } 2236 migration_incoming_state_destroy(); 2237 } 2238 2239 int load_vmstate(const char *name) 2240 { 2241 BlockDriverState *bs, *bs_vm_state; 2242 QEMUSnapshotInfo sn; 2243 QEMUFile *f; 2244 int ret; 2245 AioContext *aio_context; 2246 MigrationIncomingState *mis = migration_incoming_get_current(); 2247 2248 if (!bdrv_all_can_snapshot(&bs)) { 2249 error_report("Device '%s' is writable but does not support snapshots.", 2250 bdrv_get_device_name(bs)); 2251 return -ENOTSUP; 2252 } 2253 ret = bdrv_all_find_snapshot(name, &bs); 2254 if (ret < 0) { 2255 error_report("Device '%s' does not have the requested snapshot '%s'", 2256 bdrv_get_device_name(bs), name); 2257 return ret; 2258 } 2259 2260 bs_vm_state = bdrv_all_find_vmstate_bs(); 2261 if (!bs_vm_state) { 2262 error_report("No block device supports snapshots"); 2263 return -ENOTSUP; 2264 } 2265 aio_context = bdrv_get_aio_context(bs_vm_state); 2266 2267 /* Don't even try to load empty VM states */ 2268 aio_context_acquire(aio_context); 2269 ret = bdrv_snapshot_find(bs_vm_state, &sn, name); 2270 aio_context_release(aio_context); 2271 if (ret < 0) { 2272 return ret; 2273 } else if (sn.vm_state_size == 0) { 2274 error_report("This is a disk-only snapshot. Revert to it offline " 2275 "using qemu-img."); 2276 return -EINVAL; 2277 } 2278 2279 /* Flush all IO requests so they don't interfere with the new state. */ 2280 bdrv_drain_all(); 2281 2282 ret = bdrv_all_goto_snapshot(name, &bs); 2283 if (ret < 0) { 2284 error_report("Error %d while activating snapshot '%s' on '%s'", 2285 ret, name, bdrv_get_device_name(bs)); 2286 return ret; 2287 } 2288 2289 /* restore the VM state */ 2290 f = qemu_fopen_bdrv(bs_vm_state, 0); 2291 if (!f) { 2292 error_report("Could not open VM state file"); 2293 return -EINVAL; 2294 } 2295 2296 qemu_system_reset(VMRESET_SILENT); 2297 mis->from_src_file = f; 2298 2299 aio_context_acquire(aio_context); 2300 ret = qemu_loadvm_state(f); 2301 qemu_fclose(f); 2302 aio_context_release(aio_context); 2303 2304 migration_incoming_state_destroy(); 2305 if (ret < 0) { 2306 error_report("Error %d while loading VM state", ret); 2307 return ret; 2308 } 2309 2310 return 0; 2311 } 2312 2313 void hmp_delvm(Monitor *mon, const QDict *qdict) 2314 { 2315 BlockDriverState *bs; 2316 Error *err; 2317 const char *name = qdict_get_str(qdict, "name"); 2318 2319 if (bdrv_all_delete_snapshot(name, &bs, &err) < 0) { 2320 error_reportf_err(err, 2321 "Error while deleting snapshot on device '%s': ", 2322 bdrv_get_device_name(bs)); 2323 } 2324 } 2325 2326 void hmp_info_snapshots(Monitor *mon, const QDict *qdict) 2327 { 2328 BlockDriverState *bs, *bs1; 2329 BdrvNextIterator it1; 2330 QEMUSnapshotInfo *sn_tab, *sn; 2331 bool no_snapshot = true; 2332 int nb_sns, i; 2333 int total; 2334 int *global_snapshots; 2335 AioContext *aio_context; 2336 2337 typedef struct SnapshotEntry { 2338 QEMUSnapshotInfo sn; 2339 QTAILQ_ENTRY(SnapshotEntry) next; 2340 } SnapshotEntry; 2341 2342 typedef struct ImageEntry { 2343 const char *imagename; 2344 QTAILQ_ENTRY(ImageEntry) next; 2345 QTAILQ_HEAD(, SnapshotEntry) snapshots; 2346 } ImageEntry; 2347 2348 QTAILQ_HEAD(, ImageEntry) image_list = 2349 QTAILQ_HEAD_INITIALIZER(image_list); 2350 2351 ImageEntry *image_entry, *next_ie; 2352 SnapshotEntry *snapshot_entry; 2353 2354 bs = bdrv_all_find_vmstate_bs(); 2355 if (!bs) { 2356 monitor_printf(mon, "No available block device supports snapshots\n"); 2357 return; 2358 } 2359 aio_context = bdrv_get_aio_context(bs); 2360 2361 aio_context_acquire(aio_context); 2362 nb_sns = bdrv_snapshot_list(bs, &sn_tab); 2363 aio_context_release(aio_context); 2364 2365 if (nb_sns < 0) { 2366 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns); 2367 return; 2368 } 2369 2370 for (bs1 = bdrv_first(&it1); bs1; bs1 = bdrv_next(&it1)) { 2371 int bs1_nb_sns = 0; 2372 ImageEntry *ie; 2373 SnapshotEntry *se; 2374 AioContext *ctx = bdrv_get_aio_context(bs1); 2375 2376 aio_context_acquire(ctx); 2377 if (bdrv_can_snapshot(bs1)) { 2378 sn = NULL; 2379 bs1_nb_sns = bdrv_snapshot_list(bs1, &sn); 2380 if (bs1_nb_sns > 0) { 2381 no_snapshot = false; 2382 ie = g_new0(ImageEntry, 1); 2383 ie->imagename = bdrv_get_device_name(bs1); 2384 QTAILQ_INIT(&ie->snapshots); 2385 QTAILQ_INSERT_TAIL(&image_list, ie, next); 2386 for (i = 0; i < bs1_nb_sns; i++) { 2387 se = g_new0(SnapshotEntry, 1); 2388 se->sn = sn[i]; 2389 QTAILQ_INSERT_TAIL(&ie->snapshots, se, next); 2390 } 2391 } 2392 g_free(sn); 2393 } 2394 aio_context_release(ctx); 2395 } 2396 2397 if (no_snapshot) { 2398 monitor_printf(mon, "There is no snapshot available.\n"); 2399 return; 2400 } 2401 2402 global_snapshots = g_new0(int, nb_sns); 2403 total = 0; 2404 for (i = 0; i < nb_sns; i++) { 2405 SnapshotEntry *next_sn; 2406 if (bdrv_all_find_snapshot(sn_tab[i].name, &bs1) == 0) { 2407 global_snapshots[total] = i; 2408 total++; 2409 QTAILQ_FOREACH(image_entry, &image_list, next) { 2410 QTAILQ_FOREACH_SAFE(snapshot_entry, &image_entry->snapshots, 2411 next, next_sn) { 2412 if (!strcmp(sn_tab[i].name, snapshot_entry->sn.name)) { 2413 QTAILQ_REMOVE(&image_entry->snapshots, snapshot_entry, 2414 next); 2415 g_free(snapshot_entry); 2416 } 2417 } 2418 } 2419 } 2420 } 2421 2422 monitor_printf(mon, "List of snapshots present on all disks:\n"); 2423 2424 if (total > 0) { 2425 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL); 2426 monitor_printf(mon, "\n"); 2427 for (i = 0; i < total; i++) { 2428 sn = &sn_tab[global_snapshots[i]]; 2429 /* The ID is not guaranteed to be the same on all images, so 2430 * overwrite it. 2431 */ 2432 pstrcpy(sn->id_str, sizeof(sn->id_str), "--"); 2433 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, sn); 2434 monitor_printf(mon, "\n"); 2435 } 2436 } else { 2437 monitor_printf(mon, "None\n"); 2438 } 2439 2440 QTAILQ_FOREACH(image_entry, &image_list, next) { 2441 if (QTAILQ_EMPTY(&image_entry->snapshots)) { 2442 continue; 2443 } 2444 monitor_printf(mon, 2445 "\nList of partial (non-loadable) snapshots on '%s':\n", 2446 image_entry->imagename); 2447 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL); 2448 monitor_printf(mon, "\n"); 2449 QTAILQ_FOREACH(snapshot_entry, &image_entry->snapshots, next) { 2450 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, 2451 &snapshot_entry->sn); 2452 monitor_printf(mon, "\n"); 2453 } 2454 } 2455 2456 QTAILQ_FOREACH_SAFE(image_entry, &image_list, next, next_ie) { 2457 SnapshotEntry *next_sn; 2458 QTAILQ_FOREACH_SAFE(snapshot_entry, &image_entry->snapshots, next, 2459 next_sn) { 2460 g_free(snapshot_entry); 2461 } 2462 g_free(image_entry); 2463 } 2464 g_free(sn_tab); 2465 g_free(global_snapshots); 2466 2467 } 2468 2469 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) 2470 { 2471 qemu_ram_set_idstr(mr->ram_block, 2472 memory_region_name(mr), dev); 2473 } 2474 2475 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) 2476 { 2477 qemu_ram_unset_idstr(mr->ram_block); 2478 } 2479 2480 void vmstate_register_ram_global(MemoryRegion *mr) 2481 { 2482 vmstate_register_ram(mr, NULL); 2483 } 2484