xref: /openbmc/qemu/migration/ram.c (revision bb6cf6f0168efadb95cf3e41963ec295ad28a941)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
66 
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
68 
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
72 
73 /***********************************************************/
74 /* ram save/restore */
75 
76 /*
77  * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78  * worked for pages that were filled with the same char.  We switched
79  * it to only search for the zero value.  And to avoid confusion with
80  * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
81  */
82 /*
83  * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84  */
85 #define RAM_SAVE_FLAG_FULL     0x01
86 #define RAM_SAVE_FLAG_ZERO     0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE     0x08
89 #define RAM_SAVE_FLAG_EOS      0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE   0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH    0x200
95 /* We can't use any flag that is bigger than 0x200 */
96 
97 XBZRLECacheStats xbzrle_counters;
98 
99 /* used by the search for pages to send */
100 struct PageSearchStatus {
101     /* The migration channel used for a specific host page */
102     QEMUFile    *pss_channel;
103     /* Last block from where we have sent data */
104     RAMBlock *last_sent_block;
105     /* Current block being searched */
106     RAMBlock    *block;
107     /* Current page to search from */
108     unsigned long page;
109     /* Set once we wrap around */
110     bool         complete_round;
111     /* Whether we're sending a host page */
112     bool          host_page_sending;
113     /* The start/end of current host page.  Invalid if host_page_sending==false */
114     unsigned long host_page_start;
115     unsigned long host_page_end;
116 };
117 typedef struct PageSearchStatus PageSearchStatus;
118 
119 /* struct contains XBZRLE cache and a static page
120    used by the compression */
121 static struct {
122     /* buffer used for XBZRLE encoding */
123     uint8_t *encoded_buf;
124     /* buffer for storing page content */
125     uint8_t *current_buf;
126     /* Cache for XBZRLE, Protected by lock. */
127     PageCache *cache;
128     QemuMutex lock;
129     /* it will store a page full of zeros */
130     uint8_t *zero_target_page;
131     /* buffer used for XBZRLE decoding */
132     uint8_t *decoded_buf;
133 } XBZRLE;
134 
135 static void XBZRLE_cache_lock(void)
136 {
137     if (migrate_xbzrle()) {
138         qemu_mutex_lock(&XBZRLE.lock);
139     }
140 }
141 
142 static void XBZRLE_cache_unlock(void)
143 {
144     if (migrate_xbzrle()) {
145         qemu_mutex_unlock(&XBZRLE.lock);
146     }
147 }
148 
149 /**
150  * xbzrle_cache_resize: resize the xbzrle cache
151  *
152  * This function is called from migrate_params_apply in main
153  * thread, possibly while a migration is in progress.  A running
154  * migration may be using the cache and might finish during this call,
155  * hence changes to the cache are protected by XBZRLE.lock().
156  *
157  * Returns 0 for success or -1 for error
158  *
159  * @new_size: new cache size
160  * @errp: set *errp if the check failed, with reason
161  */
162 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
163 {
164     PageCache *new_cache;
165     int64_t ret = 0;
166 
167     /* Check for truncation */
168     if (new_size != (size_t)new_size) {
169         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
170                    "exceeding address space");
171         return -1;
172     }
173 
174     if (new_size == migrate_xbzrle_cache_size()) {
175         /* nothing to do */
176         return 0;
177     }
178 
179     XBZRLE_cache_lock();
180 
181     if (XBZRLE.cache != NULL) {
182         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
183         if (!new_cache) {
184             ret = -1;
185             goto out;
186         }
187 
188         cache_fini(XBZRLE.cache);
189         XBZRLE.cache = new_cache;
190     }
191 out:
192     XBZRLE_cache_unlock();
193     return ret;
194 }
195 
196 static bool postcopy_preempt_active(void)
197 {
198     return migrate_postcopy_preempt() && migration_in_postcopy();
199 }
200 
201 bool migrate_ram_is_ignored(RAMBlock *block)
202 {
203     return !qemu_ram_is_migratable(block) ||
204            (migrate_ignore_shared() && qemu_ram_is_shared(block)
205                                     && qemu_ram_is_named_file(block));
206 }
207 
208 #undef RAMBLOCK_FOREACH
209 
210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
211 {
212     RAMBlock *block;
213     int ret = 0;
214 
215     RCU_READ_LOCK_GUARD();
216 
217     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
218         ret = func(block, opaque);
219         if (ret) {
220             break;
221         }
222     }
223     return ret;
224 }
225 
226 static void ramblock_recv_map_init(void)
227 {
228     RAMBlock *rb;
229 
230     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
231         assert(!rb->receivedmap);
232         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
233     }
234 }
235 
236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
237 {
238     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
239                     rb->receivedmap);
240 }
241 
242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
243 {
244     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
245 }
246 
247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
248 {
249     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
250 }
251 
252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
253                                     size_t nr)
254 {
255     bitmap_set_atomic(rb->receivedmap,
256                       ramblock_recv_bitmap_offset(host_addr, rb),
257                       nr);
258 }
259 
260 #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
261 
262 /*
263  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
264  *
265  * Returns >0 if success with sent bytes, or <0 if error.
266  */
267 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
268                                   const char *block_name)
269 {
270     RAMBlock *block = qemu_ram_block_by_name(block_name);
271     unsigned long *le_bitmap, nbits;
272     uint64_t size;
273 
274     if (!block) {
275         error_report("%s: invalid block name: %s", __func__, block_name);
276         return -1;
277     }
278 
279     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
280 
281     /*
282      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
283      * machines we may need 4 more bytes for padding (see below
284      * comment). So extend it a bit before hand.
285      */
286     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
287 
288     /*
289      * Always use little endian when sending the bitmap. This is
290      * required that when source and destination VMs are not using the
291      * same endianness. (Note: big endian won't work.)
292      */
293     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
294 
295     /* Size of the bitmap, in bytes */
296     size = DIV_ROUND_UP(nbits, 8);
297 
298     /*
299      * size is always aligned to 8 bytes for 64bit machines, but it
300      * may not be true for 32bit machines. We need this padding to
301      * make sure the migration can survive even between 32bit and
302      * 64bit machines.
303      */
304     size = ROUND_UP(size, 8);
305 
306     qemu_put_be64(file, size);
307     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
308     g_free(le_bitmap);
309     /*
310      * Mark as an end, in case the middle part is screwed up due to
311      * some "mysterious" reason.
312      */
313     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
314     int ret = qemu_fflush(file);
315     if (ret) {
316         return ret;
317     }
318 
319     return size + sizeof(size);
320 }
321 
322 /*
323  * An outstanding page request, on the source, having been received
324  * and queued
325  */
326 struct RAMSrcPageRequest {
327     RAMBlock *rb;
328     hwaddr    offset;
329     hwaddr    len;
330 
331     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
332 };
333 
334 /* State of RAM for migration */
335 struct RAMState {
336     /*
337      * PageSearchStatus structures for the channels when send pages.
338      * Protected by the bitmap_mutex.
339      */
340     PageSearchStatus pss[RAM_CHANNEL_MAX];
341     /* UFFD file descriptor, used in 'write-tracking' migration */
342     int uffdio_fd;
343     /* total ram size in bytes */
344     uint64_t ram_bytes_total;
345     /* Last block that we have visited searching for dirty pages */
346     RAMBlock *last_seen_block;
347     /* Last dirty target page we have sent */
348     ram_addr_t last_page;
349     /* last ram version we have seen */
350     uint32_t last_version;
351     /* How many times we have dirty too many pages */
352     int dirty_rate_high_cnt;
353     /* these variables are used for bitmap sync */
354     /* last time we did a full bitmap_sync */
355     int64_t time_last_bitmap_sync;
356     /* bytes transferred at start_time */
357     uint64_t bytes_xfer_prev;
358     /* number of dirty pages since start_time */
359     uint64_t num_dirty_pages_period;
360     /* xbzrle misses since the beginning of the period */
361     uint64_t xbzrle_cache_miss_prev;
362     /* Amount of xbzrle pages since the beginning of the period */
363     uint64_t xbzrle_pages_prev;
364     /* Amount of xbzrle encoded bytes since the beginning of the period */
365     uint64_t xbzrle_bytes_prev;
366     /* Are we really using XBZRLE (e.g., after the first round). */
367     bool xbzrle_started;
368     /* Are we on the last stage of migration */
369     bool last_stage;
370 
371     /* total handled target pages at the beginning of period */
372     uint64_t target_page_count_prev;
373     /* total handled target pages since start */
374     uint64_t target_page_count;
375     /* number of dirty bits in the bitmap */
376     uint64_t migration_dirty_pages;
377     /*
378      * Protects:
379      * - dirty/clear bitmap
380      * - migration_dirty_pages
381      * - pss structures
382      */
383     QemuMutex bitmap_mutex;
384     /* The RAMBlock used in the last src_page_requests */
385     RAMBlock *last_req_rb;
386     /* Queue of outstanding page requests from the destination */
387     QemuMutex src_page_req_mutex;
388     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
389 
390     /*
391      * This is only used when postcopy is in recovery phase, to communicate
392      * between the migration thread and the return path thread on dirty
393      * bitmap synchronizations.  This field is unused in other stages of
394      * RAM migration.
395      */
396     unsigned int postcopy_bmap_sync_requested;
397 };
398 typedef struct RAMState RAMState;
399 
400 static RAMState *ram_state;
401 
402 static NotifierWithReturnList precopy_notifier_list;
403 
404 /* Whether postcopy has queued requests? */
405 static bool postcopy_has_request(RAMState *rs)
406 {
407     return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
408 }
409 
410 void precopy_infrastructure_init(void)
411 {
412     notifier_with_return_list_init(&precopy_notifier_list);
413 }
414 
415 void precopy_add_notifier(NotifierWithReturn *n)
416 {
417     notifier_with_return_list_add(&precopy_notifier_list, n);
418 }
419 
420 void precopy_remove_notifier(NotifierWithReturn *n)
421 {
422     notifier_with_return_remove(n);
423 }
424 
425 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
426 {
427     PrecopyNotifyData pnd;
428     pnd.reason = reason;
429     pnd.errp = errp;
430 
431     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
432 }
433 
434 uint64_t ram_bytes_remaining(void)
435 {
436     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
437                        0;
438 }
439 
440 void ram_transferred_add(uint64_t bytes)
441 {
442     if (runstate_is_running()) {
443         stat64_add(&mig_stats.precopy_bytes, bytes);
444     } else if (migration_in_postcopy()) {
445         stat64_add(&mig_stats.postcopy_bytes, bytes);
446     } else {
447         stat64_add(&mig_stats.downtime_bytes, bytes);
448     }
449 }
450 
451 struct MigrationOps {
452     int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
453 };
454 typedef struct MigrationOps MigrationOps;
455 
456 MigrationOps *migration_ops;
457 
458 static int ram_save_host_page_urgent(PageSearchStatus *pss);
459 
460 /* NOTE: page is the PFN not real ram_addr_t. */
461 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
462 {
463     pss->block = rb;
464     pss->page = page;
465     pss->complete_round = false;
466 }
467 
468 /*
469  * Check whether two PSSs are actively sending the same page.  Return true
470  * if it is, false otherwise.
471  */
472 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
473 {
474     return pss1->host_page_sending && pss2->host_page_sending &&
475         (pss1->host_page_start == pss2->host_page_start);
476 }
477 
478 /**
479  * save_page_header: write page header to wire
480  *
481  * If this is the 1st block, it also writes the block identification
482  *
483  * Returns the number of bytes written
484  *
485  * @pss: current PSS channel status
486  * @block: block that contains the page we want to send
487  * @offset: offset inside the block for the page
488  *          in the lower bits, it contains flags
489  */
490 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
491                                RAMBlock *block, ram_addr_t offset)
492 {
493     size_t size, len;
494     bool same_block = (block == pss->last_sent_block);
495 
496     if (same_block) {
497         offset |= RAM_SAVE_FLAG_CONTINUE;
498     }
499     qemu_put_be64(f, offset);
500     size = 8;
501 
502     if (!same_block) {
503         len = strlen(block->idstr);
504         qemu_put_byte(f, len);
505         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
506         size += 1 + len;
507         pss->last_sent_block = block;
508     }
509     return size;
510 }
511 
512 /**
513  * mig_throttle_guest_down: throttle down the guest
514  *
515  * Reduce amount of guest cpu execution to hopefully slow down memory
516  * writes. If guest dirty memory rate is reduced below the rate at
517  * which we can transfer pages to the destination then we should be
518  * able to complete migration. Some workloads dirty memory way too
519  * fast and will not effectively converge, even with auto-converge.
520  */
521 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
522                                     uint64_t bytes_dirty_threshold)
523 {
524     uint64_t pct_initial = migrate_cpu_throttle_initial();
525     uint64_t pct_increment = migrate_cpu_throttle_increment();
526     bool pct_tailslow = migrate_cpu_throttle_tailslow();
527     int pct_max = migrate_max_cpu_throttle();
528 
529     uint64_t throttle_now = cpu_throttle_get_percentage();
530     uint64_t cpu_now, cpu_ideal, throttle_inc;
531 
532     /* We have not started throttling yet. Let's start it. */
533     if (!cpu_throttle_active()) {
534         cpu_throttle_set(pct_initial);
535     } else {
536         /* Throttling already on, just increase the rate */
537         if (!pct_tailslow) {
538             throttle_inc = pct_increment;
539         } else {
540             /* Compute the ideal CPU percentage used by Guest, which may
541              * make the dirty rate match the dirty rate threshold. */
542             cpu_now = 100 - throttle_now;
543             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
544                         bytes_dirty_period);
545             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
546         }
547         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
548     }
549 }
550 
551 void mig_throttle_counter_reset(void)
552 {
553     RAMState *rs = ram_state;
554 
555     rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
556     rs->num_dirty_pages_period = 0;
557     rs->bytes_xfer_prev = migration_transferred_bytes();
558 }
559 
560 /**
561  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
562  *
563  * @current_addr: address for the zero page
564  *
565  * Update the xbzrle cache to reflect a page that's been sent as all 0.
566  * The important thing is that a stale (not-yet-0'd) page be replaced
567  * by the new data.
568  * As a bonus, if the page wasn't in the cache it gets added so that
569  * when a small write is made into the 0'd page it gets XBZRLE sent.
570  */
571 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
572 {
573     /* We don't care if this fails to allocate a new cache page
574      * as long as it updated an old one */
575     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
576                  stat64_get(&mig_stats.dirty_sync_count));
577 }
578 
579 #define ENCODING_FLAG_XBZRLE 0x1
580 
581 /**
582  * save_xbzrle_page: compress and send current page
583  *
584  * Returns: 1 means that we wrote the page
585  *          0 means that page is identical to the one already sent
586  *          -1 means that xbzrle would be longer than normal
587  *
588  * @rs: current RAM state
589  * @pss: current PSS channel
590  * @current_data: pointer to the address of the page contents
591  * @current_addr: addr of the page
592  * @block: block that contains the page we want to send
593  * @offset: offset inside the block for the page
594  */
595 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
596                             uint8_t **current_data, ram_addr_t current_addr,
597                             RAMBlock *block, ram_addr_t offset)
598 {
599     int encoded_len = 0, bytes_xbzrle;
600     uint8_t *prev_cached_page;
601     QEMUFile *file = pss->pss_channel;
602     uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
603 
604     if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
605         xbzrle_counters.cache_miss++;
606         if (!rs->last_stage) {
607             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
608                              generation) == -1) {
609                 return -1;
610             } else {
611                 /* update *current_data when the page has been
612                    inserted into cache */
613                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
614             }
615         }
616         return -1;
617     }
618 
619     /*
620      * Reaching here means the page has hit the xbzrle cache, no matter what
621      * encoding result it is (normal encoding, overflow or skipping the page),
622      * count the page as encoded. This is used to calculate the encoding rate.
623      *
624      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
625      * 2nd page turns out to be skipped (i.e. no new bytes written to the
626      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
627      * skipped page included. In this way, the encoding rate can tell if the
628      * guest page is good for xbzrle encoding.
629      */
630     xbzrle_counters.pages++;
631     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
632 
633     /* save current buffer into memory */
634     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
635 
636     /* XBZRLE encoding (if there is no overflow) */
637     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
638                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
639                                        TARGET_PAGE_SIZE);
640 
641     /*
642      * Update the cache contents, so that it corresponds to the data
643      * sent, in all cases except where we skip the page.
644      */
645     if (!rs->last_stage && encoded_len != 0) {
646         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
647         /*
648          * In the case where we couldn't compress, ensure that the caller
649          * sends the data from the cache, since the guest might have
650          * changed the RAM since we copied it.
651          */
652         *current_data = prev_cached_page;
653     }
654 
655     if (encoded_len == 0) {
656         trace_save_xbzrle_page_skipping();
657         return 0;
658     } else if (encoded_len == -1) {
659         trace_save_xbzrle_page_overflow();
660         xbzrle_counters.overflow++;
661         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
662         return -1;
663     }
664 
665     /* Send XBZRLE based compressed page */
666     bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
667                                     offset | RAM_SAVE_FLAG_XBZRLE);
668     qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
669     qemu_put_be16(file, encoded_len);
670     qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
671     bytes_xbzrle += encoded_len + 1 + 2;
672     /*
673      * Like compressed_size (please see update_compress_thread_counts),
674      * the xbzrle encoded bytes don't count the 8 byte header with
675      * RAM_SAVE_FLAG_CONTINUE.
676      */
677     xbzrle_counters.bytes += bytes_xbzrle - 8;
678     ram_transferred_add(bytes_xbzrle);
679 
680     return 1;
681 }
682 
683 /**
684  * pss_find_next_dirty: find the next dirty page of current ramblock
685  *
686  * This function updates pss->page to point to the next dirty page index
687  * within the ramblock to migrate, or the end of ramblock when nothing
688  * found.  Note that when pss->host_page_sending==true it means we're
689  * during sending a host page, so we won't look for dirty page that is
690  * outside the host page boundary.
691  *
692  * @pss: the current page search status
693  */
694 static void pss_find_next_dirty(PageSearchStatus *pss)
695 {
696     RAMBlock *rb = pss->block;
697     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
698     unsigned long *bitmap = rb->bmap;
699 
700     if (migrate_ram_is_ignored(rb)) {
701         /* Points directly to the end, so we know no dirty page */
702         pss->page = size;
703         return;
704     }
705 
706     /*
707      * If during sending a host page, only look for dirty pages within the
708      * current host page being send.
709      */
710     if (pss->host_page_sending) {
711         assert(pss->host_page_end);
712         size = MIN(size, pss->host_page_end);
713     }
714 
715     pss->page = find_next_bit(bitmap, size, pss->page);
716 }
717 
718 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
719                                                        unsigned long page)
720 {
721     uint8_t shift;
722     hwaddr size, start;
723 
724     if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
725         return;
726     }
727 
728     shift = rb->clear_bmap_shift;
729     /*
730      * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
731      * can make things easier sometimes since then start address
732      * of the small chunk will always be 64 pages aligned so the
733      * bitmap will always be aligned to unsigned long. We should
734      * even be able to remove this restriction but I'm simply
735      * keeping it.
736      */
737     assert(shift >= 6);
738 
739     size = 1ULL << (TARGET_PAGE_BITS + shift);
740     start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
741     trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
742     memory_region_clear_dirty_bitmap(rb->mr, start, size);
743 }
744 
745 static void
746 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
747                                                  unsigned long start,
748                                                  unsigned long npages)
749 {
750     unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
751     unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
752     unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
753 
754     /*
755      * Clear pages from start to start + npages - 1, so the end boundary is
756      * exclusive.
757      */
758     for (i = chunk_start; i < chunk_end; i += chunk_pages) {
759         migration_clear_memory_region_dirty_bitmap(rb, i);
760     }
761 }
762 
763 /*
764  * colo_bitmap_find_diry:find contiguous dirty pages from start
765  *
766  * Returns the page offset within memory region of the start of the contiguout
767  * dirty page
768  *
769  * @rs: current RAM state
770  * @rb: RAMBlock where to search for dirty pages
771  * @start: page where we start the search
772  * @num: the number of contiguous dirty pages
773  */
774 static inline
775 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
776                                      unsigned long start, unsigned long *num)
777 {
778     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
779     unsigned long *bitmap = rb->bmap;
780     unsigned long first, next;
781 
782     *num = 0;
783 
784     if (migrate_ram_is_ignored(rb)) {
785         return size;
786     }
787 
788     first = find_next_bit(bitmap, size, start);
789     if (first >= size) {
790         return first;
791     }
792     next = find_next_zero_bit(bitmap, size, first + 1);
793     assert(next >= first);
794     *num = next - first;
795     return first;
796 }
797 
798 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
799                                                 RAMBlock *rb,
800                                                 unsigned long page)
801 {
802     bool ret;
803 
804     /*
805      * Clear dirty bitmap if needed.  This _must_ be called before we
806      * send any of the page in the chunk because we need to make sure
807      * we can capture further page content changes when we sync dirty
808      * log the next time.  So as long as we are going to send any of
809      * the page in the chunk we clear the remote dirty bitmap for all.
810      * Clearing it earlier won't be a problem, but too late will.
811      */
812     migration_clear_memory_region_dirty_bitmap(rb, page);
813 
814     ret = test_and_clear_bit(page, rb->bmap);
815     if (ret) {
816         rs->migration_dirty_pages--;
817     }
818 
819     return ret;
820 }
821 
822 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
823                                        void *opaque)
824 {
825     const hwaddr offset = section->offset_within_region;
826     const hwaddr size = int128_get64(section->size);
827     const unsigned long start = offset >> TARGET_PAGE_BITS;
828     const unsigned long npages = size >> TARGET_PAGE_BITS;
829     RAMBlock *rb = section->mr->ram_block;
830     uint64_t *cleared_bits = opaque;
831 
832     /*
833      * We don't grab ram_state->bitmap_mutex because we expect to run
834      * only when starting migration or during postcopy recovery where
835      * we don't have concurrent access.
836      */
837     if (!migration_in_postcopy() && !migrate_background_snapshot()) {
838         migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
839     }
840     *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
841     bitmap_clear(rb->bmap, start, npages);
842 }
843 
844 /*
845  * Exclude all dirty pages from migration that fall into a discarded range as
846  * managed by a RamDiscardManager responsible for the mapped memory region of
847  * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
848  *
849  * Discarded pages ("logically unplugged") have undefined content and must
850  * not get migrated, because even reading these pages for migration might
851  * result in undesired behavior.
852  *
853  * Returns the number of cleared bits in the RAMBlock dirty bitmap.
854  *
855  * Note: The result is only stable while migrating (precopy/postcopy).
856  */
857 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
858 {
859     uint64_t cleared_bits = 0;
860 
861     if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
862         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
863         MemoryRegionSection section = {
864             .mr = rb->mr,
865             .offset_within_region = 0,
866             .size = int128_make64(qemu_ram_get_used_length(rb)),
867         };
868 
869         ram_discard_manager_replay_discarded(rdm, &section,
870                                              dirty_bitmap_clear_section,
871                                              &cleared_bits);
872     }
873     return cleared_bits;
874 }
875 
876 /*
877  * Check if a host-page aligned page falls into a discarded range as managed by
878  * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
879  *
880  * Note: The result is only stable while migrating (precopy/postcopy).
881  */
882 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
883 {
884     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
885         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
886         MemoryRegionSection section = {
887             .mr = rb->mr,
888             .offset_within_region = start,
889             .size = int128_make64(qemu_ram_pagesize(rb)),
890         };
891 
892         return !ram_discard_manager_is_populated(rdm, &section);
893     }
894     return false;
895 }
896 
897 /* Called with RCU critical section */
898 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
899 {
900     uint64_t new_dirty_pages =
901         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
902 
903     rs->migration_dirty_pages += new_dirty_pages;
904     rs->num_dirty_pages_period += new_dirty_pages;
905 }
906 
907 /**
908  * ram_pagesize_summary: calculate all the pagesizes of a VM
909  *
910  * Returns a summary bitmap of the page sizes of all RAMBlocks
911  *
912  * For VMs with just normal pages this is equivalent to the host page
913  * size. If it's got some huge pages then it's the OR of all the
914  * different page sizes.
915  */
916 uint64_t ram_pagesize_summary(void)
917 {
918     RAMBlock *block;
919     uint64_t summary = 0;
920 
921     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
922         summary |= block->page_size;
923     }
924 
925     return summary;
926 }
927 
928 uint64_t ram_get_total_transferred_pages(void)
929 {
930     return stat64_get(&mig_stats.normal_pages) +
931         stat64_get(&mig_stats.zero_pages) +
932         compress_ram_pages() + xbzrle_counters.pages;
933 }
934 
935 static void migration_update_rates(RAMState *rs, int64_t end_time)
936 {
937     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
938 
939     /* calculate period counters */
940     stat64_set(&mig_stats.dirty_pages_rate,
941                rs->num_dirty_pages_period * 1000 /
942                (end_time - rs->time_last_bitmap_sync));
943 
944     if (!page_count) {
945         return;
946     }
947 
948     if (migrate_xbzrle()) {
949         double encoded_size, unencoded_size;
950 
951         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
952             rs->xbzrle_cache_miss_prev) / page_count;
953         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
954         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
955                          TARGET_PAGE_SIZE;
956         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
957         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
958             xbzrle_counters.encoding_rate = 0;
959         } else {
960             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
961         }
962         rs->xbzrle_pages_prev = xbzrle_counters.pages;
963         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
964     }
965     compress_update_rates(page_count);
966 }
967 
968 /*
969  * Enable dirty-limit to throttle down the guest
970  */
971 static void migration_dirty_limit_guest(void)
972 {
973     /*
974      * dirty page rate quota for all vCPUs fetched from
975      * migration parameter 'vcpu_dirty_limit'
976      */
977     static int64_t quota_dirtyrate;
978     MigrationState *s = migrate_get_current();
979 
980     /*
981      * If dirty limit already enabled and migration parameter
982      * vcpu-dirty-limit untouched.
983      */
984     if (dirtylimit_in_service() &&
985         quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
986         return;
987     }
988 
989     quota_dirtyrate = s->parameters.vcpu_dirty_limit;
990 
991     /*
992      * Set all vCPU a quota dirtyrate, note that the second
993      * parameter will be ignored if setting all vCPU for the vm
994      */
995     qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
996     trace_migration_dirty_limit_guest(quota_dirtyrate);
997 }
998 
999 static void migration_trigger_throttle(RAMState *rs)
1000 {
1001     uint64_t threshold = migrate_throttle_trigger_threshold();
1002     uint64_t bytes_xfer_period =
1003         migration_transferred_bytes() - rs->bytes_xfer_prev;
1004     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1005     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1006 
1007     /* During block migration the auto-converge logic incorrectly detects
1008      * that ram migration makes no progress. Avoid this by disabling the
1009      * throttling logic during the bulk phase of block migration. */
1010     if (blk_mig_bulk_active()) {
1011         return;
1012     }
1013 
1014     /*
1015      * The following detection logic can be refined later. For now:
1016      * Check to see if the ratio between dirtied bytes and the approx.
1017      * amount of bytes that just got transferred since the last time
1018      * we were in this routine reaches the threshold. If that happens
1019      * twice, start or increase throttling.
1020      */
1021     if ((bytes_dirty_period > bytes_dirty_threshold) &&
1022         (++rs->dirty_rate_high_cnt >= 2)) {
1023         rs->dirty_rate_high_cnt = 0;
1024         if (migrate_auto_converge()) {
1025             trace_migration_throttle();
1026             mig_throttle_guest_down(bytes_dirty_period,
1027                                     bytes_dirty_threshold);
1028         } else if (migrate_dirty_limit()) {
1029             migration_dirty_limit_guest();
1030         }
1031     }
1032 }
1033 
1034 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1035 {
1036     RAMBlock *block;
1037     int64_t end_time;
1038 
1039     stat64_add(&mig_stats.dirty_sync_count, 1);
1040 
1041     if (!rs->time_last_bitmap_sync) {
1042         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1043     }
1044 
1045     trace_migration_bitmap_sync_start();
1046     memory_global_dirty_log_sync(last_stage);
1047 
1048     qemu_mutex_lock(&rs->bitmap_mutex);
1049     WITH_RCU_READ_LOCK_GUARD() {
1050         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1051             ramblock_sync_dirty_bitmap(rs, block);
1052         }
1053         stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1054     }
1055     qemu_mutex_unlock(&rs->bitmap_mutex);
1056 
1057     memory_global_after_dirty_log_sync();
1058     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1059 
1060     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1061 
1062     /* more than 1 second = 1000 millisecons */
1063     if (end_time > rs->time_last_bitmap_sync + 1000) {
1064         migration_trigger_throttle(rs);
1065 
1066         migration_update_rates(rs, end_time);
1067 
1068         rs->target_page_count_prev = rs->target_page_count;
1069 
1070         /* reset period counters */
1071         rs->time_last_bitmap_sync = end_time;
1072         rs->num_dirty_pages_period = 0;
1073         rs->bytes_xfer_prev = migration_transferred_bytes();
1074     }
1075     if (migrate_events()) {
1076         uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1077         qapi_event_send_migration_pass(generation);
1078     }
1079 }
1080 
1081 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1082 {
1083     Error *local_err = NULL;
1084 
1085     /*
1086      * The current notifier usage is just an optimization to migration, so we
1087      * don't stop the normal migration process in the error case.
1088      */
1089     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1090         error_report_err(local_err);
1091         local_err = NULL;
1092     }
1093 
1094     migration_bitmap_sync(rs, last_stage);
1095 
1096     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1097         error_report_err(local_err);
1098     }
1099 }
1100 
1101 void ram_release_page(const char *rbname, uint64_t offset)
1102 {
1103     if (!migrate_release_ram() || !migration_in_postcopy()) {
1104         return;
1105     }
1106 
1107     ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1108 }
1109 
1110 /**
1111  * save_zero_page: send the zero page to the stream
1112  *
1113  * Returns the number of pages written.
1114  *
1115  * @rs: current RAM state
1116  * @pss: current PSS channel
1117  * @offset: offset inside the block for the page
1118  */
1119 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1120                           ram_addr_t offset)
1121 {
1122     uint8_t *p = pss->block->host + offset;
1123     QEMUFile *file = pss->pss_channel;
1124     int len = 0;
1125 
1126     if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1127         return 0;
1128     }
1129 
1130     len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1131     qemu_put_byte(file, 0);
1132     len += 1;
1133     ram_release_page(pss->block->idstr, offset);
1134 
1135     stat64_add(&mig_stats.zero_pages, 1);
1136     ram_transferred_add(len);
1137 
1138     /*
1139      * Must let xbzrle know, otherwise a previous (now 0'd) cached
1140      * page would be stale.
1141      */
1142     if (rs->xbzrle_started) {
1143         XBZRLE_cache_lock();
1144         xbzrle_cache_zero_page(pss->block->offset + offset);
1145         XBZRLE_cache_unlock();
1146     }
1147 
1148     return len;
1149 }
1150 
1151 /*
1152  * @pages: the number of pages written by the control path,
1153  *        < 0 - error
1154  *        > 0 - number of pages written
1155  *
1156  * Return true if the pages has been saved, otherwise false is returned.
1157  */
1158 static bool control_save_page(PageSearchStatus *pss,
1159                               ram_addr_t offset, int *pages)
1160 {
1161     int ret;
1162 
1163     ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1164                                  TARGET_PAGE_SIZE);
1165     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1166         return false;
1167     }
1168 
1169     if (ret == RAM_SAVE_CONTROL_DELAYED) {
1170         *pages = 1;
1171         return true;
1172     }
1173     *pages = ret;
1174     return true;
1175 }
1176 
1177 /*
1178  * directly send the page to the stream
1179  *
1180  * Returns the number of pages written.
1181  *
1182  * @pss: current PSS channel
1183  * @block: block that contains the page we want to send
1184  * @offset: offset inside the block for the page
1185  * @buf: the page to be sent
1186  * @async: send to page asyncly
1187  */
1188 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1189                             ram_addr_t offset, uint8_t *buf, bool async)
1190 {
1191     QEMUFile *file = pss->pss_channel;
1192 
1193     ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1194                                          offset | RAM_SAVE_FLAG_PAGE));
1195     if (async) {
1196         qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1197                               migrate_release_ram() &&
1198                               migration_in_postcopy());
1199     } else {
1200         qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1201     }
1202     ram_transferred_add(TARGET_PAGE_SIZE);
1203     stat64_add(&mig_stats.normal_pages, 1);
1204     return 1;
1205 }
1206 
1207 /**
1208  * ram_save_page: send the given page to the stream
1209  *
1210  * Returns the number of pages written.
1211  *          < 0 - error
1212  *          >=0 - Number of pages written - this might legally be 0
1213  *                if xbzrle noticed the page was the same.
1214  *
1215  * @rs: current RAM state
1216  * @block: block that contains the page we want to send
1217  * @offset: offset inside the block for the page
1218  */
1219 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1220 {
1221     int pages = -1;
1222     uint8_t *p;
1223     bool send_async = true;
1224     RAMBlock *block = pss->block;
1225     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1226     ram_addr_t current_addr = block->offset + offset;
1227 
1228     p = block->host + offset;
1229     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1230 
1231     XBZRLE_cache_lock();
1232     if (rs->xbzrle_started && !migration_in_postcopy()) {
1233         pages = save_xbzrle_page(rs, pss, &p, current_addr,
1234                                  block, offset);
1235         if (!rs->last_stage) {
1236             /* Can't send this cached data async, since the cache page
1237              * might get updated before it gets to the wire
1238              */
1239             send_async = false;
1240         }
1241     }
1242 
1243     /* XBZRLE overflow or normal page */
1244     if (pages == -1) {
1245         pages = save_normal_page(pss, block, offset, p, send_async);
1246     }
1247 
1248     XBZRLE_cache_unlock();
1249 
1250     return pages;
1251 }
1252 
1253 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block,
1254                                  ram_addr_t offset)
1255 {
1256     if (multifd_queue_page(file, block, offset) < 0) {
1257         return -1;
1258     }
1259     stat64_add(&mig_stats.normal_pages, 1);
1260 
1261     return 1;
1262 }
1263 
1264 int compress_send_queued_data(CompressParam *param)
1265 {
1266     PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1267     MigrationState *ms = migrate_get_current();
1268     QEMUFile *file = ms->to_dst_file;
1269     int len = 0;
1270 
1271     RAMBlock *block = param->block;
1272     ram_addr_t offset = param->offset;
1273 
1274     if (param->result == RES_NONE) {
1275         return 0;
1276     }
1277 
1278     assert(block == pss->last_sent_block);
1279 
1280     if (param->result == RES_ZEROPAGE) {
1281         assert(qemu_file_buffer_empty(param->file));
1282         len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1283         qemu_put_byte(file, 0);
1284         len += 1;
1285         ram_release_page(block->idstr, offset);
1286     } else if (param->result == RES_COMPRESS) {
1287         assert(!qemu_file_buffer_empty(param->file));
1288         len += save_page_header(pss, file, block,
1289                                 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1290         len += qemu_put_qemu_file(file, param->file);
1291     } else {
1292         abort();
1293     }
1294 
1295     update_compress_thread_counts(param, len);
1296 
1297     return len;
1298 }
1299 
1300 #define PAGE_ALL_CLEAN 0
1301 #define PAGE_TRY_AGAIN 1
1302 #define PAGE_DIRTY_FOUND 2
1303 /**
1304  * find_dirty_block: find the next dirty page and update any state
1305  * associated with the search process.
1306  *
1307  * Returns:
1308  *         <0: An error happened
1309  *         PAGE_ALL_CLEAN: no dirty page found, give up
1310  *         PAGE_TRY_AGAIN: no dirty page found, retry for next block
1311  *         PAGE_DIRTY_FOUND: dirty page found
1312  *
1313  * @rs: current RAM state
1314  * @pss: data about the state of the current dirty page scan
1315  * @again: set to false if the search has scanned the whole of RAM
1316  */
1317 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1318 {
1319     /* Update pss->page for the next dirty bit in ramblock */
1320     pss_find_next_dirty(pss);
1321 
1322     if (pss->complete_round && pss->block == rs->last_seen_block &&
1323         pss->page >= rs->last_page) {
1324         /*
1325          * We've been once around the RAM and haven't found anything.
1326          * Give up.
1327          */
1328         return PAGE_ALL_CLEAN;
1329     }
1330     if (!offset_in_ramblock(pss->block,
1331                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1332         /* Didn't find anything in this RAM Block */
1333         pss->page = 0;
1334         pss->block = QLIST_NEXT_RCU(pss->block, next);
1335         if (!pss->block) {
1336             if (migrate_multifd() &&
1337                 !migrate_multifd_flush_after_each_section()) {
1338                 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1339                 int ret = multifd_send_sync_main(f);
1340                 if (ret < 0) {
1341                     return ret;
1342                 }
1343                 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1344                 qemu_fflush(f);
1345             }
1346             /*
1347              * If memory migration starts over, we will meet a dirtied page
1348              * which may still exists in compression threads's ring, so we
1349              * should flush the compressed data to make sure the new page
1350              * is not overwritten by the old one in the destination.
1351              *
1352              * Also If xbzrle is on, stop using the data compression at this
1353              * point. In theory, xbzrle can do better than compression.
1354              */
1355             compress_flush_data();
1356 
1357             /* Hit the end of the list */
1358             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1359             /* Flag that we've looped */
1360             pss->complete_round = true;
1361             /* After the first round, enable XBZRLE. */
1362             if (migrate_xbzrle()) {
1363                 rs->xbzrle_started = true;
1364             }
1365         }
1366         /* Didn't find anything this time, but try again on the new block */
1367         return PAGE_TRY_AGAIN;
1368     } else {
1369         /* We've found something */
1370         return PAGE_DIRTY_FOUND;
1371     }
1372 }
1373 
1374 /**
1375  * unqueue_page: gets a page of the queue
1376  *
1377  * Helper for 'get_queued_page' - gets a page off the queue
1378  *
1379  * Returns the block of the page (or NULL if none available)
1380  *
1381  * @rs: current RAM state
1382  * @offset: used to return the offset within the RAMBlock
1383  */
1384 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1385 {
1386     struct RAMSrcPageRequest *entry;
1387     RAMBlock *block = NULL;
1388 
1389     if (!postcopy_has_request(rs)) {
1390         return NULL;
1391     }
1392 
1393     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1394 
1395     /*
1396      * This should _never_ change even after we take the lock, because no one
1397      * should be taking anything off the request list other than us.
1398      */
1399     assert(postcopy_has_request(rs));
1400 
1401     entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1402     block = entry->rb;
1403     *offset = entry->offset;
1404 
1405     if (entry->len > TARGET_PAGE_SIZE) {
1406         entry->len -= TARGET_PAGE_SIZE;
1407         entry->offset += TARGET_PAGE_SIZE;
1408     } else {
1409         memory_region_unref(block->mr);
1410         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1411         g_free(entry);
1412         migration_consume_urgent_request();
1413     }
1414 
1415     return block;
1416 }
1417 
1418 #if defined(__linux__)
1419 /**
1420  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1421  *   is found, return RAM block pointer and page offset
1422  *
1423  * Returns pointer to the RAMBlock containing faulting page,
1424  *   NULL if no write faults are pending
1425  *
1426  * @rs: current RAM state
1427  * @offset: page offset from the beginning of the block
1428  */
1429 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1430 {
1431     struct uffd_msg uffd_msg;
1432     void *page_address;
1433     RAMBlock *block;
1434     int res;
1435 
1436     if (!migrate_background_snapshot()) {
1437         return NULL;
1438     }
1439 
1440     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1441     if (res <= 0) {
1442         return NULL;
1443     }
1444 
1445     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1446     block = qemu_ram_block_from_host(page_address, false, offset);
1447     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1448     return block;
1449 }
1450 
1451 /**
1452  * ram_save_release_protection: release UFFD write protection after
1453  *   a range of pages has been saved
1454  *
1455  * @rs: current RAM state
1456  * @pss: page-search-status structure
1457  * @start_page: index of the first page in the range relative to pss->block
1458  *
1459  * Returns 0 on success, negative value in case of an error
1460 */
1461 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1462         unsigned long start_page)
1463 {
1464     int res = 0;
1465 
1466     /* Check if page is from UFFD-managed region. */
1467     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1468         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1469         uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1470 
1471         /* Flush async buffers before un-protect. */
1472         qemu_fflush(pss->pss_channel);
1473         /* Un-protect memory range. */
1474         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1475                 false, false);
1476     }
1477 
1478     return res;
1479 }
1480 
1481 /* ram_write_tracking_available: check if kernel supports required UFFD features
1482  *
1483  * Returns true if supports, false otherwise
1484  */
1485 bool ram_write_tracking_available(void)
1486 {
1487     uint64_t uffd_features;
1488     int res;
1489 
1490     res = uffd_query_features(&uffd_features);
1491     return (res == 0 &&
1492             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1493 }
1494 
1495 /* ram_write_tracking_compatible: check if guest configuration is
1496  *   compatible with 'write-tracking'
1497  *
1498  * Returns true if compatible, false otherwise
1499  */
1500 bool ram_write_tracking_compatible(void)
1501 {
1502     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1503     int uffd_fd;
1504     RAMBlock *block;
1505     bool ret = false;
1506 
1507     /* Open UFFD file descriptor */
1508     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1509     if (uffd_fd < 0) {
1510         return false;
1511     }
1512 
1513     RCU_READ_LOCK_GUARD();
1514 
1515     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1516         uint64_t uffd_ioctls;
1517 
1518         /* Nothing to do with read-only and MMIO-writable regions */
1519         if (block->mr->readonly || block->mr->rom_device) {
1520             continue;
1521         }
1522         /* Try to register block memory via UFFD-IO to track writes */
1523         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1524                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1525             goto out;
1526         }
1527         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1528             goto out;
1529         }
1530     }
1531     ret = true;
1532 
1533 out:
1534     uffd_close_fd(uffd_fd);
1535     return ret;
1536 }
1537 
1538 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1539                                        ram_addr_t size)
1540 {
1541     const ram_addr_t end = offset + size;
1542 
1543     /*
1544      * We read one byte of each page; this will preallocate page tables if
1545      * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1546      * where no page was populated yet. This might require adaption when
1547      * supporting other mappings, like shmem.
1548      */
1549     for (; offset < end; offset += block->page_size) {
1550         char tmp = *((char *)block->host + offset);
1551 
1552         /* Don't optimize the read out */
1553         asm volatile("" : "+r" (tmp));
1554     }
1555 }
1556 
1557 static inline int populate_read_section(MemoryRegionSection *section,
1558                                         void *opaque)
1559 {
1560     const hwaddr size = int128_get64(section->size);
1561     hwaddr offset = section->offset_within_region;
1562     RAMBlock *block = section->mr->ram_block;
1563 
1564     populate_read_range(block, offset, size);
1565     return 0;
1566 }
1567 
1568 /*
1569  * ram_block_populate_read: preallocate page tables and populate pages in the
1570  *   RAM block by reading a byte of each page.
1571  *
1572  * Since it's solely used for userfault_fd WP feature, here we just
1573  *   hardcode page size to qemu_real_host_page_size.
1574  *
1575  * @block: RAM block to populate
1576  */
1577 static void ram_block_populate_read(RAMBlock *rb)
1578 {
1579     /*
1580      * Skip populating all pages that fall into a discarded range as managed by
1581      * a RamDiscardManager responsible for the mapped memory region of the
1582      * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1583      * must not get populated automatically. We don't have to track
1584      * modifications via userfaultfd WP reliably, because these pages will
1585      * not be part of the migration stream either way -- see
1586      * ramblock_dirty_bitmap_exclude_discarded_pages().
1587      *
1588      * Note: The result is only stable while migrating (precopy/postcopy).
1589      */
1590     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1591         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1592         MemoryRegionSection section = {
1593             .mr = rb->mr,
1594             .offset_within_region = 0,
1595             .size = rb->mr->size,
1596         };
1597 
1598         ram_discard_manager_replay_populated(rdm, &section,
1599                                              populate_read_section, NULL);
1600     } else {
1601         populate_read_range(rb, 0, rb->used_length);
1602     }
1603 }
1604 
1605 /*
1606  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1607  */
1608 void ram_write_tracking_prepare(void)
1609 {
1610     RAMBlock *block;
1611 
1612     RCU_READ_LOCK_GUARD();
1613 
1614     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1615         /* Nothing to do with read-only and MMIO-writable regions */
1616         if (block->mr->readonly || block->mr->rom_device) {
1617             continue;
1618         }
1619 
1620         /*
1621          * Populate pages of the RAM block before enabling userfault_fd
1622          * write protection.
1623          *
1624          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1625          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1626          * pages with pte_none() entries in page table.
1627          */
1628         ram_block_populate_read(block);
1629     }
1630 }
1631 
1632 static inline int uffd_protect_section(MemoryRegionSection *section,
1633                                        void *opaque)
1634 {
1635     const hwaddr size = int128_get64(section->size);
1636     const hwaddr offset = section->offset_within_region;
1637     RAMBlock *rb = section->mr->ram_block;
1638     int uffd_fd = (uintptr_t)opaque;
1639 
1640     return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1641                                   false);
1642 }
1643 
1644 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1645 {
1646     assert(rb->flags & RAM_UF_WRITEPROTECT);
1647 
1648     /* See ram_block_populate_read() */
1649     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1650         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1651         MemoryRegionSection section = {
1652             .mr = rb->mr,
1653             .offset_within_region = 0,
1654             .size = rb->mr->size,
1655         };
1656 
1657         return ram_discard_manager_replay_populated(rdm, &section,
1658                                                     uffd_protect_section,
1659                                                     (void *)(uintptr_t)uffd_fd);
1660     }
1661     return uffd_change_protection(uffd_fd, rb->host,
1662                                   rb->used_length, true, false);
1663 }
1664 
1665 /*
1666  * ram_write_tracking_start: start UFFD-WP memory tracking
1667  *
1668  * Returns 0 for success or negative value in case of error
1669  */
1670 int ram_write_tracking_start(void)
1671 {
1672     int uffd_fd;
1673     RAMState *rs = ram_state;
1674     RAMBlock *block;
1675 
1676     /* Open UFFD file descriptor */
1677     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1678     if (uffd_fd < 0) {
1679         return uffd_fd;
1680     }
1681     rs->uffdio_fd = uffd_fd;
1682 
1683     RCU_READ_LOCK_GUARD();
1684 
1685     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1686         /* Nothing to do with read-only and MMIO-writable regions */
1687         if (block->mr->readonly || block->mr->rom_device) {
1688             continue;
1689         }
1690 
1691         /* Register block memory with UFFD to track writes */
1692         if (uffd_register_memory(rs->uffdio_fd, block->host,
1693                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1694             goto fail;
1695         }
1696         block->flags |= RAM_UF_WRITEPROTECT;
1697         memory_region_ref(block->mr);
1698 
1699         /* Apply UFFD write protection to the block memory range */
1700         if (ram_block_uffd_protect(block, uffd_fd)) {
1701             goto fail;
1702         }
1703 
1704         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1705                 block->host, block->max_length);
1706     }
1707 
1708     return 0;
1709 
1710 fail:
1711     error_report("ram_write_tracking_start() failed: restoring initial memory state");
1712 
1713     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1714         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1715             continue;
1716         }
1717         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1718         /* Cleanup flags and remove reference */
1719         block->flags &= ~RAM_UF_WRITEPROTECT;
1720         memory_region_unref(block->mr);
1721     }
1722 
1723     uffd_close_fd(uffd_fd);
1724     rs->uffdio_fd = -1;
1725     return -1;
1726 }
1727 
1728 /**
1729  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1730  */
1731 void ram_write_tracking_stop(void)
1732 {
1733     RAMState *rs = ram_state;
1734     RAMBlock *block;
1735 
1736     RCU_READ_LOCK_GUARD();
1737 
1738     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1739         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1740             continue;
1741         }
1742         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1743 
1744         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1745                 block->host, block->max_length);
1746 
1747         /* Cleanup flags and remove reference */
1748         block->flags &= ~RAM_UF_WRITEPROTECT;
1749         memory_region_unref(block->mr);
1750     }
1751 
1752     /* Finally close UFFD file descriptor */
1753     uffd_close_fd(rs->uffdio_fd);
1754     rs->uffdio_fd = -1;
1755 }
1756 
1757 #else
1758 /* No target OS support, stubs just fail or ignore */
1759 
1760 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1761 {
1762     (void) rs;
1763     (void) offset;
1764 
1765     return NULL;
1766 }
1767 
1768 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1769         unsigned long start_page)
1770 {
1771     (void) rs;
1772     (void) pss;
1773     (void) start_page;
1774 
1775     return 0;
1776 }
1777 
1778 bool ram_write_tracking_available(void)
1779 {
1780     return false;
1781 }
1782 
1783 bool ram_write_tracking_compatible(void)
1784 {
1785     assert(0);
1786     return false;
1787 }
1788 
1789 int ram_write_tracking_start(void)
1790 {
1791     assert(0);
1792     return -1;
1793 }
1794 
1795 void ram_write_tracking_stop(void)
1796 {
1797     assert(0);
1798 }
1799 #endif /* defined(__linux__) */
1800 
1801 /**
1802  * get_queued_page: unqueue a page from the postcopy requests
1803  *
1804  * Skips pages that are already sent (!dirty)
1805  *
1806  * Returns true if a queued page is found
1807  *
1808  * @rs: current RAM state
1809  * @pss: data about the state of the current dirty page scan
1810  */
1811 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1812 {
1813     RAMBlock  *block;
1814     ram_addr_t offset;
1815     bool dirty;
1816 
1817     do {
1818         block = unqueue_page(rs, &offset);
1819         /*
1820          * We're sending this page, and since it's postcopy nothing else
1821          * will dirty it, and we must make sure it doesn't get sent again
1822          * even if this queue request was received after the background
1823          * search already sent it.
1824          */
1825         if (block) {
1826             unsigned long page;
1827 
1828             page = offset >> TARGET_PAGE_BITS;
1829             dirty = test_bit(page, block->bmap);
1830             if (!dirty) {
1831                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1832                                                 page);
1833             } else {
1834                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1835             }
1836         }
1837 
1838     } while (block && !dirty);
1839 
1840     if (!block) {
1841         /*
1842          * Poll write faults too if background snapshot is enabled; that's
1843          * when we have vcpus got blocked by the write protected pages.
1844          */
1845         block = poll_fault_page(rs, &offset);
1846     }
1847 
1848     if (block) {
1849         /*
1850          * We want the background search to continue from the queued page
1851          * since the guest is likely to want other pages near to the page
1852          * it just requested.
1853          */
1854         pss->block = block;
1855         pss->page = offset >> TARGET_PAGE_BITS;
1856 
1857         /*
1858          * This unqueued page would break the "one round" check, even is
1859          * really rare.
1860          */
1861         pss->complete_round = false;
1862     }
1863 
1864     return !!block;
1865 }
1866 
1867 /**
1868  * migration_page_queue_free: drop any remaining pages in the ram
1869  * request queue
1870  *
1871  * It should be empty at the end anyway, but in error cases there may
1872  * be some left.  in case that there is any page left, we drop it.
1873  *
1874  */
1875 static void migration_page_queue_free(RAMState *rs)
1876 {
1877     struct RAMSrcPageRequest *mspr, *next_mspr;
1878     /* This queue generally should be empty - but in the case of a failed
1879      * migration might have some droppings in.
1880      */
1881     RCU_READ_LOCK_GUARD();
1882     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1883         memory_region_unref(mspr->rb->mr);
1884         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1885         g_free(mspr);
1886     }
1887 }
1888 
1889 /**
1890  * ram_save_queue_pages: queue the page for transmission
1891  *
1892  * A request from postcopy destination for example.
1893  *
1894  * Returns zero on success or negative on error
1895  *
1896  * @rbname: Name of the RAMBLock of the request. NULL means the
1897  *          same that last one.
1898  * @start: starting address from the start of the RAMBlock
1899  * @len: length (in bytes) to send
1900  */
1901 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1902                          Error **errp)
1903 {
1904     RAMBlock *ramblock;
1905     RAMState *rs = ram_state;
1906 
1907     stat64_add(&mig_stats.postcopy_requests, 1);
1908     RCU_READ_LOCK_GUARD();
1909 
1910     if (!rbname) {
1911         /* Reuse last RAMBlock */
1912         ramblock = rs->last_req_rb;
1913 
1914         if (!ramblock) {
1915             /*
1916              * Shouldn't happen, we can't reuse the last RAMBlock if
1917              * it's the 1st request.
1918              */
1919             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1920             return -1;
1921         }
1922     } else {
1923         ramblock = qemu_ram_block_by_name(rbname);
1924 
1925         if (!ramblock) {
1926             /* We shouldn't be asked for a non-existent RAMBlock */
1927             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1928             return -1;
1929         }
1930         rs->last_req_rb = ramblock;
1931     }
1932     trace_ram_save_queue_pages(ramblock->idstr, start, len);
1933     if (!offset_in_ramblock(ramblock, start + len - 1)) {
1934         error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1935                    "start=" RAM_ADDR_FMT " len="
1936                    RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1937                    start, len, ramblock->used_length);
1938         return -1;
1939     }
1940 
1941     /*
1942      * When with postcopy preempt, we send back the page directly in the
1943      * rp-return thread.
1944      */
1945     if (postcopy_preempt_active()) {
1946         ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1947         size_t page_size = qemu_ram_pagesize(ramblock);
1948         PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1949         int ret = 0;
1950 
1951         qemu_mutex_lock(&rs->bitmap_mutex);
1952 
1953         pss_init(pss, ramblock, page_start);
1954         /*
1955          * Always use the preempt channel, and make sure it's there.  It's
1956          * safe to access without lock, because when rp-thread is running
1957          * we should be the only one who operates on the qemufile
1958          */
1959         pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1960         assert(pss->pss_channel);
1961 
1962         /*
1963          * It must be either one or multiple of host page size.  Just
1964          * assert; if something wrong we're mostly split brain anyway.
1965          */
1966         assert(len % page_size == 0);
1967         while (len) {
1968             if (ram_save_host_page_urgent(pss)) {
1969                 error_setg(errp, "ram_save_host_page_urgent() failed: "
1970                            "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
1971                            ramblock->idstr, start);
1972                 ret = -1;
1973                 break;
1974             }
1975             /*
1976              * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
1977              * will automatically be moved and point to the next host page
1978              * we're going to send, so no need to update here.
1979              *
1980              * Normally QEMU never sends >1 host page in requests, so
1981              * logically we don't even need that as the loop should only
1982              * run once, but just to be consistent.
1983              */
1984             len -= page_size;
1985         };
1986         qemu_mutex_unlock(&rs->bitmap_mutex);
1987 
1988         return ret;
1989     }
1990 
1991     struct RAMSrcPageRequest *new_entry =
1992         g_new0(struct RAMSrcPageRequest, 1);
1993     new_entry->rb = ramblock;
1994     new_entry->offset = start;
1995     new_entry->len = len;
1996 
1997     memory_region_ref(ramblock->mr);
1998     qemu_mutex_lock(&rs->src_page_req_mutex);
1999     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2000     migration_make_urgent_request();
2001     qemu_mutex_unlock(&rs->src_page_req_mutex);
2002 
2003     return 0;
2004 }
2005 
2006 /*
2007  * try to compress the page before posting it out, return true if the page
2008  * has been properly handled by compression, otherwise needs other
2009  * paths to handle it
2010  */
2011 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2012                                ram_addr_t offset)
2013 {
2014     if (!migrate_compress()) {
2015         return false;
2016     }
2017 
2018     /*
2019      * When starting the process of a new block, the first page of
2020      * the block should be sent out before other pages in the same
2021      * block, and all the pages in last block should have been sent
2022      * out, keeping this order is important, because the 'cont' flag
2023      * is used to avoid resending the block name.
2024      *
2025      * We post the fist page as normal page as compression will take
2026      * much CPU resource.
2027      */
2028     if (pss->block != pss->last_sent_block) {
2029         compress_flush_data();
2030         return false;
2031     }
2032 
2033     return compress_page_with_multi_thread(pss->block, offset,
2034                                            compress_send_queued_data);
2035 }
2036 
2037 /**
2038  * ram_save_target_page_legacy: save one target page
2039  *
2040  * Returns the number of pages written
2041  *
2042  * @rs: current RAM state
2043  * @pss: data about the page we want to send
2044  */
2045 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2046 {
2047     RAMBlock *block = pss->block;
2048     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2049     int res;
2050 
2051     if (control_save_page(pss, offset, &res)) {
2052         return res;
2053     }
2054 
2055     if (save_compress_page(rs, pss, offset)) {
2056         return 1;
2057     }
2058 
2059     if (save_zero_page(rs, pss, offset)) {
2060         return 1;
2061     }
2062 
2063     /*
2064      * Do not use multifd in postcopy as one whole host page should be
2065      * placed.  Meanwhile postcopy requires atomic update of pages, so even
2066      * if host page size == guest page size the dest guest during run may
2067      * still see partially copied pages which is data corruption.
2068      */
2069     if (migrate_multifd() && !migration_in_postcopy()) {
2070         return ram_save_multifd_page(pss->pss_channel, block, offset);
2071     }
2072 
2073     return ram_save_page(rs, pss);
2074 }
2075 
2076 /* Should be called before sending a host page */
2077 static void pss_host_page_prepare(PageSearchStatus *pss)
2078 {
2079     /* How many guest pages are there in one host page? */
2080     size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2081 
2082     pss->host_page_sending = true;
2083     if (guest_pfns <= 1) {
2084         /*
2085          * This covers both when guest psize == host psize, or when guest
2086          * has larger psize than the host (guest_pfns==0).
2087          *
2088          * For the latter, we always send one whole guest page per
2089          * iteration of the host page (example: an Alpha VM on x86 host
2090          * will have guest psize 8K while host psize 4K).
2091          */
2092         pss->host_page_start = pss->page;
2093         pss->host_page_end = pss->page + 1;
2094     } else {
2095         /*
2096          * The host page spans over multiple guest pages, we send them
2097          * within the same host page iteration.
2098          */
2099         pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2100         pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2101     }
2102 }
2103 
2104 /*
2105  * Whether the page pointed by PSS is within the host page being sent.
2106  * Must be called after a previous pss_host_page_prepare().
2107  */
2108 static bool pss_within_range(PageSearchStatus *pss)
2109 {
2110     ram_addr_t ram_addr;
2111 
2112     assert(pss->host_page_sending);
2113 
2114     /* Over host-page boundary? */
2115     if (pss->page >= pss->host_page_end) {
2116         return false;
2117     }
2118 
2119     ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2120 
2121     return offset_in_ramblock(pss->block, ram_addr);
2122 }
2123 
2124 static void pss_host_page_finish(PageSearchStatus *pss)
2125 {
2126     pss->host_page_sending = false;
2127     /* This is not needed, but just to reset it */
2128     pss->host_page_start = pss->host_page_end = 0;
2129 }
2130 
2131 /*
2132  * Send an urgent host page specified by `pss'.  Need to be called with
2133  * bitmap_mutex held.
2134  *
2135  * Returns 0 if save host page succeeded, false otherwise.
2136  */
2137 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2138 {
2139     bool page_dirty, sent = false;
2140     RAMState *rs = ram_state;
2141     int ret = 0;
2142 
2143     trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2144     pss_host_page_prepare(pss);
2145 
2146     /*
2147      * If precopy is sending the same page, let it be done in precopy, or
2148      * we could send the same page in two channels and none of them will
2149      * receive the whole page.
2150      */
2151     if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2152         trace_postcopy_preempt_hit(pss->block->idstr,
2153                                    pss->page << TARGET_PAGE_BITS);
2154         return 0;
2155     }
2156 
2157     do {
2158         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2159 
2160         if (page_dirty) {
2161             /* Be strict to return code; it must be 1, or what else? */
2162             if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2163                 error_report_once("%s: ram_save_target_page failed", __func__);
2164                 ret = -1;
2165                 goto out;
2166             }
2167             sent = true;
2168         }
2169         pss_find_next_dirty(pss);
2170     } while (pss_within_range(pss));
2171 out:
2172     pss_host_page_finish(pss);
2173     /* For urgent requests, flush immediately if sent */
2174     if (sent) {
2175         qemu_fflush(pss->pss_channel);
2176     }
2177     return ret;
2178 }
2179 
2180 /**
2181  * ram_save_host_page: save a whole host page
2182  *
2183  * Starting at *offset send pages up to the end of the current host
2184  * page. It's valid for the initial offset to point into the middle of
2185  * a host page in which case the remainder of the hostpage is sent.
2186  * Only dirty target pages are sent. Note that the host page size may
2187  * be a huge page for this block.
2188  *
2189  * The saving stops at the boundary of the used_length of the block
2190  * if the RAMBlock isn't a multiple of the host page size.
2191  *
2192  * The caller must be with ram_state.bitmap_mutex held to call this
2193  * function.  Note that this function can temporarily release the lock, but
2194  * when the function is returned it'll make sure the lock is still held.
2195  *
2196  * Returns the number of pages written or negative on error
2197  *
2198  * @rs: current RAM state
2199  * @pss: data about the page we want to send
2200  */
2201 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2202 {
2203     bool page_dirty, preempt_active = postcopy_preempt_active();
2204     int tmppages, pages = 0;
2205     size_t pagesize_bits =
2206         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2207     unsigned long start_page = pss->page;
2208     int res;
2209 
2210     if (migrate_ram_is_ignored(pss->block)) {
2211         error_report("block %s should not be migrated !", pss->block->idstr);
2212         return 0;
2213     }
2214 
2215     /* Update host page boundary information */
2216     pss_host_page_prepare(pss);
2217 
2218     do {
2219         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2220 
2221         /* Check the pages is dirty and if it is send it */
2222         if (page_dirty) {
2223             /*
2224              * Properly yield the lock only in postcopy preempt mode
2225              * because both migration thread and rp-return thread can
2226              * operate on the bitmaps.
2227              */
2228             if (preempt_active) {
2229                 qemu_mutex_unlock(&rs->bitmap_mutex);
2230             }
2231             tmppages = migration_ops->ram_save_target_page(rs, pss);
2232             if (tmppages >= 0) {
2233                 pages += tmppages;
2234                 /*
2235                  * Allow rate limiting to happen in the middle of huge pages if
2236                  * something is sent in the current iteration.
2237                  */
2238                 if (pagesize_bits > 1 && tmppages > 0) {
2239                     migration_rate_limit();
2240                 }
2241             }
2242             if (preempt_active) {
2243                 qemu_mutex_lock(&rs->bitmap_mutex);
2244             }
2245         } else {
2246             tmppages = 0;
2247         }
2248 
2249         if (tmppages < 0) {
2250             pss_host_page_finish(pss);
2251             return tmppages;
2252         }
2253 
2254         pss_find_next_dirty(pss);
2255     } while (pss_within_range(pss));
2256 
2257     pss_host_page_finish(pss);
2258 
2259     res = ram_save_release_protection(rs, pss, start_page);
2260     return (res < 0 ? res : pages);
2261 }
2262 
2263 /**
2264  * ram_find_and_save_block: finds a dirty page and sends it to f
2265  *
2266  * Called within an RCU critical section.
2267  *
2268  * Returns the number of pages written where zero means no dirty pages,
2269  * or negative on error
2270  *
2271  * @rs: current RAM state
2272  *
2273  * On systems where host-page-size > target-page-size it will send all the
2274  * pages in a host page that are dirty.
2275  */
2276 static int ram_find_and_save_block(RAMState *rs)
2277 {
2278     PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2279     int pages = 0;
2280 
2281     /* No dirty page as there is zero RAM */
2282     if (!rs->ram_bytes_total) {
2283         return pages;
2284     }
2285 
2286     /*
2287      * Always keep last_seen_block/last_page valid during this procedure,
2288      * because find_dirty_block() relies on these values (e.g., we compare
2289      * last_seen_block with pss.block to see whether we searched all the
2290      * ramblocks) to detect the completion of migration.  Having NULL value
2291      * of last_seen_block can conditionally cause below loop to run forever.
2292      */
2293     if (!rs->last_seen_block) {
2294         rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2295         rs->last_page = 0;
2296     }
2297 
2298     pss_init(pss, rs->last_seen_block, rs->last_page);
2299 
2300     while (true){
2301         if (!get_queued_page(rs, pss)) {
2302             /* priority queue empty, so just search for something dirty */
2303             int res = find_dirty_block(rs, pss);
2304             if (res != PAGE_DIRTY_FOUND) {
2305                 if (res == PAGE_ALL_CLEAN) {
2306                     break;
2307                 } else if (res == PAGE_TRY_AGAIN) {
2308                     continue;
2309                 } else if (res < 0) {
2310                     pages = res;
2311                     break;
2312                 }
2313             }
2314         }
2315         pages = ram_save_host_page(rs, pss);
2316         if (pages) {
2317             break;
2318         }
2319     }
2320 
2321     rs->last_seen_block = pss->block;
2322     rs->last_page = pss->page;
2323 
2324     return pages;
2325 }
2326 
2327 static uint64_t ram_bytes_total_with_ignored(void)
2328 {
2329     RAMBlock *block;
2330     uint64_t total = 0;
2331 
2332     RCU_READ_LOCK_GUARD();
2333 
2334     RAMBLOCK_FOREACH_MIGRATABLE(block) {
2335         total += block->used_length;
2336     }
2337     return total;
2338 }
2339 
2340 uint64_t ram_bytes_total(void)
2341 {
2342     RAMBlock *block;
2343     uint64_t total = 0;
2344 
2345     RCU_READ_LOCK_GUARD();
2346 
2347     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2348         total += block->used_length;
2349     }
2350     return total;
2351 }
2352 
2353 static void xbzrle_load_setup(void)
2354 {
2355     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2356 }
2357 
2358 static void xbzrle_load_cleanup(void)
2359 {
2360     g_free(XBZRLE.decoded_buf);
2361     XBZRLE.decoded_buf = NULL;
2362 }
2363 
2364 static void ram_state_cleanup(RAMState **rsp)
2365 {
2366     if (*rsp) {
2367         migration_page_queue_free(*rsp);
2368         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2369         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2370         g_free(*rsp);
2371         *rsp = NULL;
2372     }
2373 }
2374 
2375 static void xbzrle_cleanup(void)
2376 {
2377     XBZRLE_cache_lock();
2378     if (XBZRLE.cache) {
2379         cache_fini(XBZRLE.cache);
2380         g_free(XBZRLE.encoded_buf);
2381         g_free(XBZRLE.current_buf);
2382         g_free(XBZRLE.zero_target_page);
2383         XBZRLE.cache = NULL;
2384         XBZRLE.encoded_buf = NULL;
2385         XBZRLE.current_buf = NULL;
2386         XBZRLE.zero_target_page = NULL;
2387     }
2388     XBZRLE_cache_unlock();
2389 }
2390 
2391 static void ram_save_cleanup(void *opaque)
2392 {
2393     RAMState **rsp = opaque;
2394     RAMBlock *block;
2395 
2396     /* We don't use dirty log with background snapshots */
2397     if (!migrate_background_snapshot()) {
2398         /* caller have hold iothread lock or is in a bh, so there is
2399          * no writing race against the migration bitmap
2400          */
2401         if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2402             /*
2403              * do not stop dirty log without starting it, since
2404              * memory_global_dirty_log_stop will assert that
2405              * memory_global_dirty_log_start/stop used in pairs
2406              */
2407             memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2408         }
2409     }
2410 
2411     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2412         g_free(block->clear_bmap);
2413         block->clear_bmap = NULL;
2414         g_free(block->bmap);
2415         block->bmap = NULL;
2416     }
2417 
2418     xbzrle_cleanup();
2419     compress_threads_save_cleanup();
2420     ram_state_cleanup(rsp);
2421     g_free(migration_ops);
2422     migration_ops = NULL;
2423 }
2424 
2425 static void ram_state_reset(RAMState *rs)
2426 {
2427     int i;
2428 
2429     for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2430         rs->pss[i].last_sent_block = NULL;
2431     }
2432 
2433     rs->last_seen_block = NULL;
2434     rs->last_page = 0;
2435     rs->last_version = ram_list.version;
2436     rs->xbzrle_started = false;
2437 }
2438 
2439 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2440 
2441 /* **** functions for postcopy ***** */
2442 
2443 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2444 {
2445     struct RAMBlock *block;
2446 
2447     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2448         unsigned long *bitmap = block->bmap;
2449         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2450         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2451 
2452         while (run_start < range) {
2453             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2454             ram_discard_range(block->idstr,
2455                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2456                               ((ram_addr_t)(run_end - run_start))
2457                                 << TARGET_PAGE_BITS);
2458             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2459         }
2460     }
2461 }
2462 
2463 /**
2464  * postcopy_send_discard_bm_ram: discard a RAMBlock
2465  *
2466  * Callback from postcopy_each_ram_send_discard for each RAMBlock
2467  *
2468  * @ms: current migration state
2469  * @block: RAMBlock to discard
2470  */
2471 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2472 {
2473     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2474     unsigned long current;
2475     unsigned long *bitmap = block->bmap;
2476 
2477     for (current = 0; current < end; ) {
2478         unsigned long one = find_next_bit(bitmap, end, current);
2479         unsigned long zero, discard_length;
2480 
2481         if (one >= end) {
2482             break;
2483         }
2484 
2485         zero = find_next_zero_bit(bitmap, end, one + 1);
2486 
2487         if (zero >= end) {
2488             discard_length = end - one;
2489         } else {
2490             discard_length = zero - one;
2491         }
2492         postcopy_discard_send_range(ms, one, discard_length);
2493         current = one + discard_length;
2494     }
2495 }
2496 
2497 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2498 
2499 /**
2500  * postcopy_each_ram_send_discard: discard all RAMBlocks
2501  *
2502  * Utility for the outgoing postcopy code.
2503  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2504  *   passing it bitmap indexes and name.
2505  * (qemu_ram_foreach_block ends up passing unscaled lengths
2506  *  which would mean postcopy code would have to deal with target page)
2507  *
2508  * @ms: current migration state
2509  */
2510 static void postcopy_each_ram_send_discard(MigrationState *ms)
2511 {
2512     struct RAMBlock *block;
2513 
2514     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2515         postcopy_discard_send_init(ms, block->idstr);
2516 
2517         /*
2518          * Deal with TPS != HPS and huge pages.  It discard any partially sent
2519          * host-page size chunks, mark any partially dirty host-page size
2520          * chunks as all dirty.  In this case the host-page is the host-page
2521          * for the particular RAMBlock, i.e. it might be a huge page.
2522          */
2523         postcopy_chunk_hostpages_pass(ms, block);
2524 
2525         /*
2526          * Postcopy sends chunks of bitmap over the wire, but it
2527          * just needs indexes at this point, avoids it having
2528          * target page specific code.
2529          */
2530         postcopy_send_discard_bm_ram(ms, block);
2531         postcopy_discard_send_finish(ms);
2532     }
2533 }
2534 
2535 /**
2536  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2537  *
2538  * Helper for postcopy_chunk_hostpages; it's called twice to
2539  * canonicalize the two bitmaps, that are similar, but one is
2540  * inverted.
2541  *
2542  * Postcopy requires that all target pages in a hostpage are dirty or
2543  * clean, not a mix.  This function canonicalizes the bitmaps.
2544  *
2545  * @ms: current migration state
2546  * @block: block that contains the page we want to canonicalize
2547  */
2548 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2549 {
2550     RAMState *rs = ram_state;
2551     unsigned long *bitmap = block->bmap;
2552     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2553     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2554     unsigned long run_start;
2555 
2556     if (block->page_size == TARGET_PAGE_SIZE) {
2557         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2558         return;
2559     }
2560 
2561     /* Find a dirty page */
2562     run_start = find_next_bit(bitmap, pages, 0);
2563 
2564     while (run_start < pages) {
2565 
2566         /*
2567          * If the start of this run of pages is in the middle of a host
2568          * page, then we need to fixup this host page.
2569          */
2570         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2571             /* Find the end of this run */
2572             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2573             /*
2574              * If the end isn't at the start of a host page, then the
2575              * run doesn't finish at the end of a host page
2576              * and we need to discard.
2577              */
2578         }
2579 
2580         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2581             unsigned long page;
2582             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2583                                                              host_ratio);
2584             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2585 
2586             /* Clean up the bitmap */
2587             for (page = fixup_start_addr;
2588                  page < fixup_start_addr + host_ratio; page++) {
2589                 /*
2590                  * Remark them as dirty, updating the count for any pages
2591                  * that weren't previously dirty.
2592                  */
2593                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2594             }
2595         }
2596 
2597         /* Find the next dirty page for the next iteration */
2598         run_start = find_next_bit(bitmap, pages, run_start);
2599     }
2600 }
2601 
2602 /**
2603  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2604  *
2605  * Transmit the set of pages to be discarded after precopy to the target
2606  * these are pages that:
2607  *     a) Have been previously transmitted but are now dirty again
2608  *     b) Pages that have never been transmitted, this ensures that
2609  *        any pages on the destination that have been mapped by background
2610  *        tasks get discarded (transparent huge pages is the specific concern)
2611  * Hopefully this is pretty sparse
2612  *
2613  * @ms: current migration state
2614  */
2615 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2616 {
2617     RAMState *rs = ram_state;
2618 
2619     RCU_READ_LOCK_GUARD();
2620 
2621     /* This should be our last sync, the src is now paused */
2622     migration_bitmap_sync(rs, false);
2623 
2624     /* Easiest way to make sure we don't resume in the middle of a host-page */
2625     rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2626     rs->last_seen_block = NULL;
2627     rs->last_page = 0;
2628 
2629     postcopy_each_ram_send_discard(ms);
2630 
2631     trace_ram_postcopy_send_discard_bitmap();
2632 }
2633 
2634 /**
2635  * ram_discard_range: discard dirtied pages at the beginning of postcopy
2636  *
2637  * Returns zero on success
2638  *
2639  * @rbname: name of the RAMBlock of the request. NULL means the
2640  *          same that last one.
2641  * @start: RAMBlock starting page
2642  * @length: RAMBlock size
2643  */
2644 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2645 {
2646     trace_ram_discard_range(rbname, start, length);
2647 
2648     RCU_READ_LOCK_GUARD();
2649     RAMBlock *rb = qemu_ram_block_by_name(rbname);
2650 
2651     if (!rb) {
2652         error_report("ram_discard_range: Failed to find block '%s'", rbname);
2653         return -1;
2654     }
2655 
2656     /*
2657      * On source VM, we don't need to update the received bitmap since
2658      * we don't even have one.
2659      */
2660     if (rb->receivedmap) {
2661         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2662                      length >> qemu_target_page_bits());
2663     }
2664 
2665     return ram_block_discard_range(rb, start, length);
2666 }
2667 
2668 /*
2669  * For every allocation, we will try not to crash the VM if the
2670  * allocation failed.
2671  */
2672 static int xbzrle_init(void)
2673 {
2674     Error *local_err = NULL;
2675 
2676     if (!migrate_xbzrle()) {
2677         return 0;
2678     }
2679 
2680     XBZRLE_cache_lock();
2681 
2682     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2683     if (!XBZRLE.zero_target_page) {
2684         error_report("%s: Error allocating zero page", __func__);
2685         goto err_out;
2686     }
2687 
2688     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2689                               TARGET_PAGE_SIZE, &local_err);
2690     if (!XBZRLE.cache) {
2691         error_report_err(local_err);
2692         goto free_zero_page;
2693     }
2694 
2695     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2696     if (!XBZRLE.encoded_buf) {
2697         error_report("%s: Error allocating encoded_buf", __func__);
2698         goto free_cache;
2699     }
2700 
2701     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2702     if (!XBZRLE.current_buf) {
2703         error_report("%s: Error allocating current_buf", __func__);
2704         goto free_encoded_buf;
2705     }
2706 
2707     /* We are all good */
2708     XBZRLE_cache_unlock();
2709     return 0;
2710 
2711 free_encoded_buf:
2712     g_free(XBZRLE.encoded_buf);
2713     XBZRLE.encoded_buf = NULL;
2714 free_cache:
2715     cache_fini(XBZRLE.cache);
2716     XBZRLE.cache = NULL;
2717 free_zero_page:
2718     g_free(XBZRLE.zero_target_page);
2719     XBZRLE.zero_target_page = NULL;
2720 err_out:
2721     XBZRLE_cache_unlock();
2722     return -ENOMEM;
2723 }
2724 
2725 static int ram_state_init(RAMState **rsp)
2726 {
2727     *rsp = g_try_new0(RAMState, 1);
2728 
2729     if (!*rsp) {
2730         error_report("%s: Init ramstate fail", __func__);
2731         return -1;
2732     }
2733 
2734     qemu_mutex_init(&(*rsp)->bitmap_mutex);
2735     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2736     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2737     (*rsp)->ram_bytes_total = ram_bytes_total();
2738 
2739     /*
2740      * Count the total number of pages used by ram blocks not including any
2741      * gaps due to alignment or unplugs.
2742      * This must match with the initial values of dirty bitmap.
2743      */
2744     (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2745     ram_state_reset(*rsp);
2746 
2747     return 0;
2748 }
2749 
2750 static void ram_list_init_bitmaps(void)
2751 {
2752     MigrationState *ms = migrate_get_current();
2753     RAMBlock *block;
2754     unsigned long pages;
2755     uint8_t shift;
2756 
2757     /* Skip setting bitmap if there is no RAM */
2758     if (ram_bytes_total()) {
2759         shift = ms->clear_bitmap_shift;
2760         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2761             error_report("clear_bitmap_shift (%u) too big, using "
2762                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2763             shift = CLEAR_BITMAP_SHIFT_MAX;
2764         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2765             error_report("clear_bitmap_shift (%u) too small, using "
2766                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2767             shift = CLEAR_BITMAP_SHIFT_MIN;
2768         }
2769 
2770         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2771             pages = block->max_length >> TARGET_PAGE_BITS;
2772             /*
2773              * The initial dirty bitmap for migration must be set with all
2774              * ones to make sure we'll migrate every guest RAM page to
2775              * destination.
2776              * Here we set RAMBlock.bmap all to 1 because when rebegin a
2777              * new migration after a failed migration, ram_list.
2778              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2779              * guest memory.
2780              */
2781             block->bmap = bitmap_new(pages);
2782             bitmap_set(block->bmap, 0, pages);
2783             block->clear_bmap_shift = shift;
2784             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2785         }
2786     }
2787 }
2788 
2789 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2790 {
2791     unsigned long pages;
2792     RAMBlock *rb;
2793 
2794     RCU_READ_LOCK_GUARD();
2795 
2796     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2797             pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2798             rs->migration_dirty_pages -= pages;
2799     }
2800 }
2801 
2802 static void ram_init_bitmaps(RAMState *rs)
2803 {
2804     qemu_mutex_lock_ramlist();
2805 
2806     WITH_RCU_READ_LOCK_GUARD() {
2807         ram_list_init_bitmaps();
2808         /* We don't use dirty log with background snapshots */
2809         if (!migrate_background_snapshot()) {
2810             memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2811             migration_bitmap_sync_precopy(rs, false);
2812         }
2813     }
2814     qemu_mutex_unlock_ramlist();
2815 
2816     /*
2817      * After an eventual first bitmap sync, fixup the initial bitmap
2818      * containing all 1s to exclude any discarded pages from migration.
2819      */
2820     migration_bitmap_clear_discarded_pages(rs);
2821 }
2822 
2823 static int ram_init_all(RAMState **rsp)
2824 {
2825     if (ram_state_init(rsp)) {
2826         return -1;
2827     }
2828 
2829     if (xbzrle_init()) {
2830         ram_state_cleanup(rsp);
2831         return -1;
2832     }
2833 
2834     ram_init_bitmaps(*rsp);
2835 
2836     return 0;
2837 }
2838 
2839 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2840 {
2841     RAMBlock *block;
2842     uint64_t pages = 0;
2843 
2844     /*
2845      * Postcopy is not using xbzrle/compression, so no need for that.
2846      * Also, since source are already halted, we don't need to care
2847      * about dirty page logging as well.
2848      */
2849 
2850     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2851         pages += bitmap_count_one(block->bmap,
2852                                   block->used_length >> TARGET_PAGE_BITS);
2853     }
2854 
2855     /* This may not be aligned with current bitmaps. Recalculate. */
2856     rs->migration_dirty_pages = pages;
2857 
2858     ram_state_reset(rs);
2859 
2860     /* Update RAMState cache of output QEMUFile */
2861     rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2862 
2863     trace_ram_state_resume_prepare(pages);
2864 }
2865 
2866 /*
2867  * This function clears bits of the free pages reported by the caller from the
2868  * migration dirty bitmap. @addr is the host address corresponding to the
2869  * start of the continuous guest free pages, and @len is the total bytes of
2870  * those pages.
2871  */
2872 void qemu_guest_free_page_hint(void *addr, size_t len)
2873 {
2874     RAMBlock *block;
2875     ram_addr_t offset;
2876     size_t used_len, start, npages;
2877     MigrationState *s = migrate_get_current();
2878 
2879     /* This function is currently expected to be used during live migration */
2880     if (!migration_is_setup_or_active(s->state)) {
2881         return;
2882     }
2883 
2884     for (; len > 0; len -= used_len, addr += used_len) {
2885         block = qemu_ram_block_from_host(addr, false, &offset);
2886         if (unlikely(!block || offset >= block->used_length)) {
2887             /*
2888              * The implementation might not support RAMBlock resize during
2889              * live migration, but it could happen in theory with future
2890              * updates. So we add a check here to capture that case.
2891              */
2892             error_report_once("%s unexpected error", __func__);
2893             return;
2894         }
2895 
2896         if (len <= block->used_length - offset) {
2897             used_len = len;
2898         } else {
2899             used_len = block->used_length - offset;
2900         }
2901 
2902         start = offset >> TARGET_PAGE_BITS;
2903         npages = used_len >> TARGET_PAGE_BITS;
2904 
2905         qemu_mutex_lock(&ram_state->bitmap_mutex);
2906         /*
2907          * The skipped free pages are equavalent to be sent from clear_bmap's
2908          * perspective, so clear the bits from the memory region bitmap which
2909          * are initially set. Otherwise those skipped pages will be sent in
2910          * the next round after syncing from the memory region bitmap.
2911          */
2912         migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2913         ram_state->migration_dirty_pages -=
2914                       bitmap_count_one_with_offset(block->bmap, start, npages);
2915         bitmap_clear(block->bmap, start, npages);
2916         qemu_mutex_unlock(&ram_state->bitmap_mutex);
2917     }
2918 }
2919 
2920 /*
2921  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2922  * long-running RCU critical section.  When rcu-reclaims in the code
2923  * start to become numerous it will be necessary to reduce the
2924  * granularity of these critical sections.
2925  */
2926 
2927 /**
2928  * ram_save_setup: Setup RAM for migration
2929  *
2930  * Returns zero to indicate success and negative for error
2931  *
2932  * @f: QEMUFile where to send the data
2933  * @opaque: RAMState pointer
2934  */
2935 static int ram_save_setup(QEMUFile *f, void *opaque)
2936 {
2937     RAMState **rsp = opaque;
2938     RAMBlock *block;
2939     int ret;
2940 
2941     if (compress_threads_save_setup()) {
2942         return -1;
2943     }
2944 
2945     /* migration has already setup the bitmap, reuse it. */
2946     if (!migration_in_colo_state()) {
2947         if (ram_init_all(rsp) != 0) {
2948             compress_threads_save_cleanup();
2949             return -1;
2950         }
2951     }
2952     (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
2953 
2954     WITH_RCU_READ_LOCK_GUARD() {
2955         qemu_put_be64(f, ram_bytes_total_with_ignored()
2956                          | RAM_SAVE_FLAG_MEM_SIZE);
2957 
2958         RAMBLOCK_FOREACH_MIGRATABLE(block) {
2959             qemu_put_byte(f, strlen(block->idstr));
2960             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2961             qemu_put_be64(f, block->used_length);
2962             if (migrate_postcopy_ram() && block->page_size !=
2963                                           qemu_host_page_size) {
2964                 qemu_put_be64(f, block->page_size);
2965             }
2966             if (migrate_ignore_shared()) {
2967                 qemu_put_be64(f, block->mr->addr);
2968             }
2969         }
2970     }
2971 
2972     ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
2973     if (ret < 0) {
2974         qemu_file_set_error(f, ret);
2975         return ret;
2976     }
2977 
2978     ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
2979     if (ret < 0) {
2980         qemu_file_set_error(f, ret);
2981         return ret;
2982     }
2983 
2984     migration_ops = g_malloc0(sizeof(MigrationOps));
2985     migration_ops->ram_save_target_page = ram_save_target_page_legacy;
2986 
2987     qemu_mutex_unlock_iothread();
2988     ret = multifd_send_sync_main(f);
2989     qemu_mutex_lock_iothread();
2990     if (ret < 0) {
2991         return ret;
2992     }
2993 
2994     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
2995         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
2996     }
2997 
2998     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2999     return qemu_fflush(f);
3000 }
3001 
3002 /**
3003  * ram_save_iterate: iterative stage for migration
3004  *
3005  * Returns zero to indicate success and negative for error
3006  *
3007  * @f: QEMUFile where to send the data
3008  * @opaque: RAMState pointer
3009  */
3010 static int ram_save_iterate(QEMUFile *f, void *opaque)
3011 {
3012     RAMState **temp = opaque;
3013     RAMState *rs = *temp;
3014     int ret = 0;
3015     int i;
3016     int64_t t0;
3017     int done = 0;
3018 
3019     if (blk_mig_bulk_active()) {
3020         /* Avoid transferring ram during bulk phase of block migration as
3021          * the bulk phase will usually take a long time and transferring
3022          * ram updates during that time is pointless. */
3023         goto out;
3024     }
3025 
3026     /*
3027      * We'll take this lock a little bit long, but it's okay for two reasons.
3028      * Firstly, the only possible other thread to take it is who calls
3029      * qemu_guest_free_page_hint(), which should be rare; secondly, see
3030      * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3031      * guarantees that we'll at least released it in a regular basis.
3032      */
3033     WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3034         WITH_RCU_READ_LOCK_GUARD() {
3035             if (ram_list.version != rs->last_version) {
3036                 ram_state_reset(rs);
3037             }
3038 
3039             /* Read version before ram_list.blocks */
3040             smp_rmb();
3041 
3042             ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3043             if (ret < 0) {
3044                 qemu_file_set_error(f, ret);
3045                 goto out;
3046             }
3047 
3048             t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3049             i = 0;
3050             while ((ret = migration_rate_exceeded(f)) == 0 ||
3051                    postcopy_has_request(rs)) {
3052                 int pages;
3053 
3054                 if (qemu_file_get_error(f)) {
3055                     break;
3056                 }
3057 
3058                 pages = ram_find_and_save_block(rs);
3059                 /* no more pages to sent */
3060                 if (pages == 0) {
3061                     done = 1;
3062                     break;
3063                 }
3064 
3065                 if (pages < 0) {
3066                     qemu_file_set_error(f, pages);
3067                     break;
3068                 }
3069 
3070                 rs->target_page_count += pages;
3071 
3072                 /*
3073                  * During postcopy, it is necessary to make sure one whole host
3074                  * page is sent in one chunk.
3075                  */
3076                 if (migrate_postcopy_ram()) {
3077                     compress_flush_data();
3078                 }
3079 
3080                 /*
3081                  * we want to check in the 1st loop, just in case it was the 1st
3082                  * time and we had to sync the dirty bitmap.
3083                  * qemu_clock_get_ns() is a bit expensive, so we only check each
3084                  * some iterations
3085                  */
3086                 if ((i & 63) == 0) {
3087                     uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3088                         1000000;
3089                     if (t1 > MAX_WAIT) {
3090                         trace_ram_save_iterate_big_wait(t1, i);
3091                         break;
3092                     }
3093                 }
3094                 i++;
3095             }
3096         }
3097     }
3098 
3099     /*
3100      * Must occur before EOS (or any QEMUFile operation)
3101      * because of RDMA protocol.
3102      */
3103     ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3104     if (ret < 0) {
3105         qemu_file_set_error(f, ret);
3106     }
3107 
3108 out:
3109     if (ret >= 0
3110         && migration_is_setup_or_active(migrate_get_current()->state)) {
3111         if (migrate_multifd() && migrate_multifd_flush_after_each_section()) {
3112             ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3113             if (ret < 0) {
3114                 return ret;
3115             }
3116         }
3117 
3118         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3119         ram_transferred_add(8);
3120         ret = qemu_fflush(f);
3121     }
3122     if (ret < 0) {
3123         return ret;
3124     }
3125 
3126     return done;
3127 }
3128 
3129 /**
3130  * ram_save_complete: function called to send the remaining amount of ram
3131  *
3132  * Returns zero to indicate success or negative on error
3133  *
3134  * Called with iothread lock
3135  *
3136  * @f: QEMUFile where to send the data
3137  * @opaque: RAMState pointer
3138  */
3139 static int ram_save_complete(QEMUFile *f, void *opaque)
3140 {
3141     RAMState **temp = opaque;
3142     RAMState *rs = *temp;
3143     int ret = 0;
3144 
3145     rs->last_stage = !migration_in_colo_state();
3146 
3147     WITH_RCU_READ_LOCK_GUARD() {
3148         if (!migration_in_postcopy()) {
3149             migration_bitmap_sync_precopy(rs, true);
3150         }
3151 
3152         ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3153         if (ret < 0) {
3154             qemu_file_set_error(f, ret);
3155             return ret;
3156         }
3157 
3158         /* try transferring iterative blocks of memory */
3159 
3160         /* flush all remaining blocks regardless of rate limiting */
3161         qemu_mutex_lock(&rs->bitmap_mutex);
3162         while (true) {
3163             int pages;
3164 
3165             pages = ram_find_and_save_block(rs);
3166             /* no more blocks to sent */
3167             if (pages == 0) {
3168                 break;
3169             }
3170             if (pages < 0) {
3171                 qemu_mutex_unlock(&rs->bitmap_mutex);
3172                 return pages;
3173             }
3174         }
3175         qemu_mutex_unlock(&rs->bitmap_mutex);
3176 
3177         compress_flush_data();
3178 
3179         ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3180         if (ret < 0) {
3181             qemu_file_set_error(f, ret);
3182             return ret;
3183         }
3184     }
3185 
3186     ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3187     if (ret < 0) {
3188         return ret;
3189     }
3190 
3191     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
3192         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3193     }
3194     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3195     return qemu_fflush(f);
3196 }
3197 
3198 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3199                                        uint64_t *can_postcopy)
3200 {
3201     RAMState **temp = opaque;
3202     RAMState *rs = *temp;
3203 
3204     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3205 
3206     if (migrate_postcopy_ram()) {
3207         /* We can do postcopy, and all the data is postcopiable */
3208         *can_postcopy += remaining_size;
3209     } else {
3210         *must_precopy += remaining_size;
3211     }
3212 }
3213 
3214 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3215                                     uint64_t *can_postcopy)
3216 {
3217     MigrationState *s = migrate_get_current();
3218     RAMState **temp = opaque;
3219     RAMState *rs = *temp;
3220 
3221     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3222 
3223     if (!migration_in_postcopy() && remaining_size < s->threshold_size) {
3224         qemu_mutex_lock_iothread();
3225         WITH_RCU_READ_LOCK_GUARD() {
3226             migration_bitmap_sync_precopy(rs, false);
3227         }
3228         qemu_mutex_unlock_iothread();
3229         remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3230     }
3231 
3232     if (migrate_postcopy_ram()) {
3233         /* We can do postcopy, and all the data is postcopiable */
3234         *can_postcopy += remaining_size;
3235     } else {
3236         *must_precopy += remaining_size;
3237     }
3238 }
3239 
3240 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3241 {
3242     unsigned int xh_len;
3243     int xh_flags;
3244     uint8_t *loaded_data;
3245 
3246     /* extract RLE header */
3247     xh_flags = qemu_get_byte(f);
3248     xh_len = qemu_get_be16(f);
3249 
3250     if (xh_flags != ENCODING_FLAG_XBZRLE) {
3251         error_report("Failed to load XBZRLE page - wrong compression!");
3252         return -1;
3253     }
3254 
3255     if (xh_len > TARGET_PAGE_SIZE) {
3256         error_report("Failed to load XBZRLE page - len overflow!");
3257         return -1;
3258     }
3259     loaded_data = XBZRLE.decoded_buf;
3260     /* load data and decode */
3261     /* it can change loaded_data to point to an internal buffer */
3262     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3263 
3264     /* decode RLE */
3265     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3266                              TARGET_PAGE_SIZE) == -1) {
3267         error_report("Failed to load XBZRLE page - decode error!");
3268         return -1;
3269     }
3270 
3271     return 0;
3272 }
3273 
3274 /**
3275  * ram_block_from_stream: read a RAMBlock id from the migration stream
3276  *
3277  * Must be called from within a rcu critical section.
3278  *
3279  * Returns a pointer from within the RCU-protected ram_list.
3280  *
3281  * @mis: the migration incoming state pointer
3282  * @f: QEMUFile where to read the data from
3283  * @flags: Page flags (mostly to see if it's a continuation of previous block)
3284  * @channel: the channel we're using
3285  */
3286 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3287                                               QEMUFile *f, int flags,
3288                                               int channel)
3289 {
3290     RAMBlock *block = mis->last_recv_block[channel];
3291     char id[256];
3292     uint8_t len;
3293 
3294     if (flags & RAM_SAVE_FLAG_CONTINUE) {
3295         if (!block) {
3296             error_report("Ack, bad migration stream!");
3297             return NULL;
3298         }
3299         return block;
3300     }
3301 
3302     len = qemu_get_byte(f);
3303     qemu_get_buffer(f, (uint8_t *)id, len);
3304     id[len] = 0;
3305 
3306     block = qemu_ram_block_by_name(id);
3307     if (!block) {
3308         error_report("Can't find block %s", id);
3309         return NULL;
3310     }
3311 
3312     if (migrate_ram_is_ignored(block)) {
3313         error_report("block %s should not be migrated !", id);
3314         return NULL;
3315     }
3316 
3317     mis->last_recv_block[channel] = block;
3318 
3319     return block;
3320 }
3321 
3322 static inline void *host_from_ram_block_offset(RAMBlock *block,
3323                                                ram_addr_t offset)
3324 {
3325     if (!offset_in_ramblock(block, offset)) {
3326         return NULL;
3327     }
3328 
3329     return block->host + offset;
3330 }
3331 
3332 static void *host_page_from_ram_block_offset(RAMBlock *block,
3333                                              ram_addr_t offset)
3334 {
3335     /* Note: Explicitly no check against offset_in_ramblock(). */
3336     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3337                                    block->page_size);
3338 }
3339 
3340 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3341                                                          ram_addr_t offset)
3342 {
3343     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3344 }
3345 
3346 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3347 {
3348     qemu_mutex_lock(&ram_state->bitmap_mutex);
3349     for (int i = 0; i < pages; i++) {
3350         ram_addr_t offset = normal[i];
3351         ram_state->migration_dirty_pages += !test_and_set_bit(
3352                                                 offset >> TARGET_PAGE_BITS,
3353                                                 block->bmap);
3354     }
3355     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3356 }
3357 
3358 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3359                              ram_addr_t offset, bool record_bitmap)
3360 {
3361     if (!offset_in_ramblock(block, offset)) {
3362         return NULL;
3363     }
3364     if (!block->colo_cache) {
3365         error_report("%s: colo_cache is NULL in block :%s",
3366                      __func__, block->idstr);
3367         return NULL;
3368     }
3369 
3370     /*
3371     * During colo checkpoint, we need bitmap of these migrated pages.
3372     * It help us to decide which pages in ram cache should be flushed
3373     * into VM's RAM later.
3374     */
3375     if (record_bitmap) {
3376         colo_record_bitmap(block, &offset, 1);
3377     }
3378     return block->colo_cache + offset;
3379 }
3380 
3381 /**
3382  * ram_handle_zero: handle the zero page case
3383  *
3384  * If a page (or a whole RDMA chunk) has been
3385  * determined to be zero, then zap it.
3386  *
3387  * @host: host address for the zero page
3388  * @ch: what the page is filled from.  We only support zero
3389  * @size: size of the zero page
3390  */
3391 void ram_handle_zero(void *host, uint64_t size)
3392 {
3393     if (!buffer_is_zero(host, size)) {
3394         memset(host, 0, size);
3395     }
3396 }
3397 
3398 static void colo_init_ram_state(void)
3399 {
3400     ram_state_init(&ram_state);
3401 }
3402 
3403 /*
3404  * colo cache: this is for secondary VM, we cache the whole
3405  * memory of the secondary VM, it is need to hold the global lock
3406  * to call this helper.
3407  */
3408 int colo_init_ram_cache(void)
3409 {
3410     RAMBlock *block;
3411 
3412     WITH_RCU_READ_LOCK_GUARD() {
3413         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3414             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3415                                                     NULL, false, false);
3416             if (!block->colo_cache) {
3417                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3418                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3419                              block->used_length);
3420                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3421                     if (block->colo_cache) {
3422                         qemu_anon_ram_free(block->colo_cache, block->used_length);
3423                         block->colo_cache = NULL;
3424                     }
3425                 }
3426                 return -errno;
3427             }
3428             if (!machine_dump_guest_core(current_machine)) {
3429                 qemu_madvise(block->colo_cache, block->used_length,
3430                              QEMU_MADV_DONTDUMP);
3431             }
3432         }
3433     }
3434 
3435     /*
3436     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3437     * with to decide which page in cache should be flushed into SVM's RAM. Here
3438     * we use the same name 'ram_bitmap' as for migration.
3439     */
3440     if (ram_bytes_total()) {
3441         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3442             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3443             block->bmap = bitmap_new(pages);
3444         }
3445     }
3446 
3447     colo_init_ram_state();
3448     return 0;
3449 }
3450 
3451 /* TODO: duplicated with ram_init_bitmaps */
3452 void colo_incoming_start_dirty_log(void)
3453 {
3454     RAMBlock *block = NULL;
3455     /* For memory_global_dirty_log_start below. */
3456     qemu_mutex_lock_iothread();
3457     qemu_mutex_lock_ramlist();
3458 
3459     memory_global_dirty_log_sync(false);
3460     WITH_RCU_READ_LOCK_GUARD() {
3461         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3462             ramblock_sync_dirty_bitmap(ram_state, block);
3463             /* Discard this dirty bitmap record */
3464             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3465         }
3466         memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3467     }
3468     ram_state->migration_dirty_pages = 0;
3469     qemu_mutex_unlock_ramlist();
3470     qemu_mutex_unlock_iothread();
3471 }
3472 
3473 /* It is need to hold the global lock to call this helper */
3474 void colo_release_ram_cache(void)
3475 {
3476     RAMBlock *block;
3477 
3478     memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3479     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3480         g_free(block->bmap);
3481         block->bmap = NULL;
3482     }
3483 
3484     WITH_RCU_READ_LOCK_GUARD() {
3485         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3486             if (block->colo_cache) {
3487                 qemu_anon_ram_free(block->colo_cache, block->used_length);
3488                 block->colo_cache = NULL;
3489             }
3490         }
3491     }
3492     ram_state_cleanup(&ram_state);
3493 }
3494 
3495 /**
3496  * ram_load_setup: Setup RAM for migration incoming side
3497  *
3498  * Returns zero to indicate success and negative for error
3499  *
3500  * @f: QEMUFile where to receive the data
3501  * @opaque: RAMState pointer
3502  */
3503 static int ram_load_setup(QEMUFile *f, void *opaque)
3504 {
3505     xbzrle_load_setup();
3506     ramblock_recv_map_init();
3507 
3508     return 0;
3509 }
3510 
3511 static int ram_load_cleanup(void *opaque)
3512 {
3513     RAMBlock *rb;
3514 
3515     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3516         qemu_ram_block_writeback(rb);
3517     }
3518 
3519     xbzrle_load_cleanup();
3520 
3521     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3522         g_free(rb->receivedmap);
3523         rb->receivedmap = NULL;
3524     }
3525 
3526     return 0;
3527 }
3528 
3529 /**
3530  * ram_postcopy_incoming_init: allocate postcopy data structures
3531  *
3532  * Returns 0 for success and negative if there was one error
3533  *
3534  * @mis: current migration incoming state
3535  *
3536  * Allocate data structures etc needed by incoming migration with
3537  * postcopy-ram. postcopy-ram's similarly names
3538  * postcopy_ram_incoming_init does the work.
3539  */
3540 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3541 {
3542     return postcopy_ram_incoming_init(mis);
3543 }
3544 
3545 /**
3546  * ram_load_postcopy: load a page in postcopy case
3547  *
3548  * Returns 0 for success or -errno in case of error
3549  *
3550  * Called in postcopy mode by ram_load().
3551  * rcu_read_lock is taken prior to this being called.
3552  *
3553  * @f: QEMUFile where to send the data
3554  * @channel: the channel to use for loading
3555  */
3556 int ram_load_postcopy(QEMUFile *f, int channel)
3557 {
3558     int flags = 0, ret = 0;
3559     bool place_needed = false;
3560     bool matches_target_page_size = false;
3561     MigrationIncomingState *mis = migration_incoming_get_current();
3562     PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3563 
3564     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3565         ram_addr_t addr;
3566         void *page_buffer = NULL;
3567         void *place_source = NULL;
3568         RAMBlock *block = NULL;
3569         uint8_t ch;
3570         int len;
3571 
3572         addr = qemu_get_be64(f);
3573 
3574         /*
3575          * If qemu file error, we should stop here, and then "addr"
3576          * may be invalid
3577          */
3578         ret = qemu_file_get_error(f);
3579         if (ret) {
3580             break;
3581         }
3582 
3583         flags = addr & ~TARGET_PAGE_MASK;
3584         addr &= TARGET_PAGE_MASK;
3585 
3586         trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3587         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3588                      RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3589             block = ram_block_from_stream(mis, f, flags, channel);
3590             if (!block) {
3591                 ret = -EINVAL;
3592                 break;
3593             }
3594 
3595             /*
3596              * Relying on used_length is racy and can result in false positives.
3597              * We might place pages beyond used_length in case RAM was shrunk
3598              * while in postcopy, which is fine - trying to place via
3599              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3600              */
3601             if (!block->host || addr >= block->postcopy_length) {
3602                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3603                 ret = -EINVAL;
3604                 break;
3605             }
3606             tmp_page->target_pages++;
3607             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3608             /*
3609              * Postcopy requires that we place whole host pages atomically;
3610              * these may be huge pages for RAMBlocks that are backed by
3611              * hugetlbfs.
3612              * To make it atomic, the data is read into a temporary page
3613              * that's moved into place later.
3614              * The migration protocol uses,  possibly smaller, target-pages
3615              * however the source ensures it always sends all the components
3616              * of a host page in one chunk.
3617              */
3618             page_buffer = tmp_page->tmp_huge_page +
3619                           host_page_offset_from_ram_block_offset(block, addr);
3620             /* If all TP are zero then we can optimise the place */
3621             if (tmp_page->target_pages == 1) {
3622                 tmp_page->host_addr =
3623                     host_page_from_ram_block_offset(block, addr);
3624             } else if (tmp_page->host_addr !=
3625                        host_page_from_ram_block_offset(block, addr)) {
3626                 /* not the 1st TP within the HP */
3627                 error_report("Non-same host page detected on channel %d: "
3628                              "Target host page %p, received host page %p "
3629                              "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3630                              channel, tmp_page->host_addr,
3631                              host_page_from_ram_block_offset(block, addr),
3632                              block->idstr, addr, tmp_page->target_pages);
3633                 ret = -EINVAL;
3634                 break;
3635             }
3636 
3637             /*
3638              * If it's the last part of a host page then we place the host
3639              * page
3640              */
3641             if (tmp_page->target_pages ==
3642                 (block->page_size / TARGET_PAGE_SIZE)) {
3643                 place_needed = true;
3644             }
3645             place_source = tmp_page->tmp_huge_page;
3646         }
3647 
3648         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3649         case RAM_SAVE_FLAG_ZERO:
3650             ch = qemu_get_byte(f);
3651             if (ch != 0) {
3652                 error_report("Found a zero page with value %d", ch);
3653                 ret = -EINVAL;
3654                 break;
3655             }
3656             /*
3657              * Can skip to set page_buffer when
3658              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3659              */
3660             if (!matches_target_page_size) {
3661                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3662             }
3663             break;
3664 
3665         case RAM_SAVE_FLAG_PAGE:
3666             tmp_page->all_zero = false;
3667             if (!matches_target_page_size) {
3668                 /* For huge pages, we always use temporary buffer */
3669                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3670             } else {
3671                 /*
3672                  * For small pages that matches target page size, we
3673                  * avoid the qemu_file copy.  Instead we directly use
3674                  * the buffer of QEMUFile to place the page.  Note: we
3675                  * cannot do any QEMUFile operation before using that
3676                  * buffer to make sure the buffer is valid when
3677                  * placing the page.
3678                  */
3679                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3680                                          TARGET_PAGE_SIZE);
3681             }
3682             break;
3683         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3684             tmp_page->all_zero = false;
3685             len = qemu_get_be32(f);
3686             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3687                 error_report("Invalid compressed data length: %d", len);
3688                 ret = -EINVAL;
3689                 break;
3690             }
3691             decompress_data_with_multi_threads(f, page_buffer, len);
3692             break;
3693         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3694             multifd_recv_sync_main();
3695             break;
3696         case RAM_SAVE_FLAG_EOS:
3697             /* normal exit */
3698             if (migrate_multifd() &&
3699                 migrate_multifd_flush_after_each_section()) {
3700                 multifd_recv_sync_main();
3701             }
3702             break;
3703         default:
3704             error_report("Unknown combination of migration flags: 0x%x"
3705                          " (postcopy mode)", flags);
3706             ret = -EINVAL;
3707             break;
3708         }
3709 
3710         /* Got the whole host page, wait for decompress before placing. */
3711         if (place_needed) {
3712             ret |= wait_for_decompress_done();
3713         }
3714 
3715         /* Detect for any possible file errors */
3716         if (!ret && qemu_file_get_error(f)) {
3717             ret = qemu_file_get_error(f);
3718         }
3719 
3720         if (!ret && place_needed) {
3721             if (tmp_page->all_zero) {
3722                 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3723             } else {
3724                 ret = postcopy_place_page(mis, tmp_page->host_addr,
3725                                           place_source, block);
3726             }
3727             place_needed = false;
3728             postcopy_temp_page_reset(tmp_page);
3729         }
3730     }
3731 
3732     return ret;
3733 }
3734 
3735 static bool postcopy_is_running(void)
3736 {
3737     PostcopyState ps = postcopy_state_get();
3738     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3739 }
3740 
3741 /*
3742  * Flush content of RAM cache into SVM's memory.
3743  * Only flush the pages that be dirtied by PVM or SVM or both.
3744  */
3745 void colo_flush_ram_cache(void)
3746 {
3747     RAMBlock *block = NULL;
3748     void *dst_host;
3749     void *src_host;
3750     unsigned long offset = 0;
3751 
3752     memory_global_dirty_log_sync(false);
3753     qemu_mutex_lock(&ram_state->bitmap_mutex);
3754     WITH_RCU_READ_LOCK_GUARD() {
3755         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3756             ramblock_sync_dirty_bitmap(ram_state, block);
3757         }
3758     }
3759 
3760     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3761     WITH_RCU_READ_LOCK_GUARD() {
3762         block = QLIST_FIRST_RCU(&ram_list.blocks);
3763 
3764         while (block) {
3765             unsigned long num = 0;
3766 
3767             offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3768             if (!offset_in_ramblock(block,
3769                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3770                 offset = 0;
3771                 num = 0;
3772                 block = QLIST_NEXT_RCU(block, next);
3773             } else {
3774                 unsigned long i = 0;
3775 
3776                 for (i = 0; i < num; i++) {
3777                     migration_bitmap_clear_dirty(ram_state, block, offset + i);
3778                 }
3779                 dst_host = block->host
3780                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3781                 src_host = block->colo_cache
3782                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3783                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3784                 offset += num;
3785             }
3786         }
3787     }
3788     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3789     trace_colo_flush_ram_cache_end();
3790 }
3791 
3792 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
3793 {
3794     int ret = 0;
3795     /* ADVISE is earlier, it shows the source has the postcopy capability on */
3796     bool postcopy_advised = migration_incoming_postcopy_advised();
3797 
3798     assert(block);
3799 
3800     if (!qemu_ram_is_migratable(block)) {
3801         error_report("block %s should not be migrated !", block->idstr);
3802         return -EINVAL;
3803     }
3804 
3805     if (length != block->used_length) {
3806         Error *local_err = NULL;
3807 
3808         ret = qemu_ram_resize(block, length, &local_err);
3809         if (local_err) {
3810             error_report_err(local_err);
3811             return ret;
3812         }
3813     }
3814     /* For postcopy we need to check hugepage sizes match */
3815     if (postcopy_advised && migrate_postcopy_ram() &&
3816         block->page_size != qemu_host_page_size) {
3817         uint64_t remote_page_size = qemu_get_be64(f);
3818         if (remote_page_size != block->page_size) {
3819             error_report("Mismatched RAM page size %s "
3820                          "(local) %zd != %" PRId64, block->idstr,
3821                          block->page_size, remote_page_size);
3822             return -EINVAL;
3823         }
3824     }
3825     if (migrate_ignore_shared()) {
3826         hwaddr addr = qemu_get_be64(f);
3827         if (migrate_ram_is_ignored(block) &&
3828             block->mr->addr != addr) {
3829             error_report("Mismatched GPAs for block %s "
3830                          "%" PRId64 "!= %" PRId64, block->idstr,
3831                          (uint64_t)addr, (uint64_t)block->mr->addr);
3832             return -EINVAL;
3833         }
3834     }
3835     ret = rdma_block_notification_handle(f, block->idstr);
3836     if (ret < 0) {
3837         qemu_file_set_error(f, ret);
3838     }
3839 
3840     return ret;
3841 }
3842 
3843 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
3844 {
3845     int ret = 0;
3846 
3847     /* Synchronize RAM block list */
3848     while (!ret && total_ram_bytes) {
3849         RAMBlock *block;
3850         char id[256];
3851         ram_addr_t length;
3852         int len = qemu_get_byte(f);
3853 
3854         qemu_get_buffer(f, (uint8_t *)id, len);
3855         id[len] = 0;
3856         length = qemu_get_be64(f);
3857 
3858         block = qemu_ram_block_by_name(id);
3859         if (block) {
3860             ret = parse_ramblock(f, block, length);
3861         } else {
3862             error_report("Unknown ramblock \"%s\", cannot accept "
3863                          "migration", id);
3864             ret = -EINVAL;
3865         }
3866         total_ram_bytes -= length;
3867     }
3868 
3869     return ret;
3870 }
3871 
3872 /**
3873  * ram_load_precopy: load pages in precopy case
3874  *
3875  * Returns 0 for success or -errno in case of error
3876  *
3877  * Called in precopy mode by ram_load().
3878  * rcu_read_lock is taken prior to this being called.
3879  *
3880  * @f: QEMUFile where to send the data
3881  */
3882 static int ram_load_precopy(QEMUFile *f)
3883 {
3884     MigrationIncomingState *mis = migration_incoming_get_current();
3885     int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3886 
3887     if (!migrate_compress()) {
3888         invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3889     }
3890 
3891     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3892         ram_addr_t addr;
3893         void *host = NULL, *host_bak = NULL;
3894         uint8_t ch;
3895 
3896         /*
3897          * Yield periodically to let main loop run, but an iteration of
3898          * the main loop is expensive, so do it each some iterations
3899          */
3900         if ((i & 32767) == 0 && qemu_in_coroutine()) {
3901             aio_co_schedule(qemu_get_current_aio_context(),
3902                             qemu_coroutine_self());
3903             qemu_coroutine_yield();
3904         }
3905         i++;
3906 
3907         addr = qemu_get_be64(f);
3908         flags = addr & ~TARGET_PAGE_MASK;
3909         addr &= TARGET_PAGE_MASK;
3910 
3911         if (flags & invalid_flags) {
3912             if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3913                 error_report("Received an unexpected compressed page");
3914             }
3915 
3916             ret = -EINVAL;
3917             break;
3918         }
3919 
3920         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3921                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3922             RAMBlock *block = ram_block_from_stream(mis, f, flags,
3923                                                     RAM_CHANNEL_PRECOPY);
3924 
3925             host = host_from_ram_block_offset(block, addr);
3926             /*
3927              * After going into COLO stage, we should not load the page
3928              * into SVM's memory directly, we put them into colo_cache firstly.
3929              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3930              * Previously, we copied all these memory in preparing stage of COLO
3931              * while we need to stop VM, which is a time-consuming process.
3932              * Here we optimize it by a trick, back-up every page while in
3933              * migration process while COLO is enabled, though it affects the
3934              * speed of the migration, but it obviously reduce the downtime of
3935              * back-up all SVM'S memory in COLO preparing stage.
3936              */
3937             if (migration_incoming_colo_enabled()) {
3938                 if (migration_incoming_in_colo_state()) {
3939                     /* In COLO stage, put all pages into cache temporarily */
3940                     host = colo_cache_from_block_offset(block, addr, true);
3941                 } else {
3942                    /*
3943                     * In migration stage but before COLO stage,
3944                     * Put all pages into both cache and SVM's memory.
3945                     */
3946                     host_bak = colo_cache_from_block_offset(block, addr, false);
3947                 }
3948             }
3949             if (!host) {
3950                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3951                 ret = -EINVAL;
3952                 break;
3953             }
3954             if (!migration_incoming_in_colo_state()) {
3955                 ramblock_recv_bitmap_set(block, host);
3956             }
3957 
3958             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3959         }
3960 
3961         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3962         case RAM_SAVE_FLAG_MEM_SIZE:
3963             ret = parse_ramblocks(f, addr);
3964             break;
3965 
3966         case RAM_SAVE_FLAG_ZERO:
3967             ch = qemu_get_byte(f);
3968             if (ch != 0) {
3969                 error_report("Found a zero page with value %d", ch);
3970                 ret = -EINVAL;
3971                 break;
3972             }
3973             ram_handle_zero(host, TARGET_PAGE_SIZE);
3974             break;
3975 
3976         case RAM_SAVE_FLAG_PAGE:
3977             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3978             break;
3979 
3980         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3981             len = qemu_get_be32(f);
3982             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3983                 error_report("Invalid compressed data length: %d", len);
3984                 ret = -EINVAL;
3985                 break;
3986             }
3987             decompress_data_with_multi_threads(f, host, len);
3988             break;
3989 
3990         case RAM_SAVE_FLAG_XBZRLE:
3991             if (load_xbzrle(f, addr, host) < 0) {
3992                 error_report("Failed to decompress XBZRLE page at "
3993                              RAM_ADDR_FMT, addr);
3994                 ret = -EINVAL;
3995                 break;
3996             }
3997             break;
3998         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3999             multifd_recv_sync_main();
4000             break;
4001         case RAM_SAVE_FLAG_EOS:
4002             /* normal exit */
4003             if (migrate_multifd() &&
4004                 migrate_multifd_flush_after_each_section()) {
4005                 multifd_recv_sync_main();
4006             }
4007             break;
4008         case RAM_SAVE_FLAG_HOOK:
4009             ret = rdma_registration_handle(f);
4010             if (ret < 0) {
4011                 qemu_file_set_error(f, ret);
4012             }
4013             break;
4014         default:
4015             error_report("Unknown combination of migration flags: 0x%x", flags);
4016             ret = -EINVAL;
4017         }
4018         if (!ret) {
4019             ret = qemu_file_get_error(f);
4020         }
4021         if (!ret && host_bak) {
4022             memcpy(host_bak, host, TARGET_PAGE_SIZE);
4023         }
4024     }
4025 
4026     ret |= wait_for_decompress_done();
4027     return ret;
4028 }
4029 
4030 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4031 {
4032     int ret = 0;
4033     static uint64_t seq_iter;
4034     /*
4035      * If system is running in postcopy mode, page inserts to host memory must
4036      * be atomic
4037      */
4038     bool postcopy_running = postcopy_is_running();
4039 
4040     seq_iter++;
4041 
4042     if (version_id != 4) {
4043         return -EINVAL;
4044     }
4045 
4046     /*
4047      * This RCU critical section can be very long running.
4048      * When RCU reclaims in the code start to become numerous,
4049      * it will be necessary to reduce the granularity of this
4050      * critical section.
4051      */
4052     WITH_RCU_READ_LOCK_GUARD() {
4053         if (postcopy_running) {
4054             /*
4055              * Note!  Here RAM_CHANNEL_PRECOPY is the precopy channel of
4056              * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4057              * service fast page faults.
4058              */
4059             ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4060         } else {
4061             ret = ram_load_precopy(f);
4062         }
4063     }
4064     trace_ram_load_complete(ret, seq_iter);
4065 
4066     return ret;
4067 }
4068 
4069 static bool ram_has_postcopy(void *opaque)
4070 {
4071     RAMBlock *rb;
4072     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4073         if (ramblock_is_pmem(rb)) {
4074             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4075                          "is not supported now!", rb->idstr, rb->host);
4076             return false;
4077         }
4078     }
4079 
4080     return migrate_postcopy_ram();
4081 }
4082 
4083 /* Sync all the dirty bitmap with destination VM.  */
4084 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4085 {
4086     RAMBlock *block;
4087     QEMUFile *file = s->to_dst_file;
4088 
4089     trace_ram_dirty_bitmap_sync_start();
4090 
4091     qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4092     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4093         qemu_savevm_send_recv_bitmap(file, block->idstr);
4094         trace_ram_dirty_bitmap_request(block->idstr);
4095         qatomic_inc(&rs->postcopy_bmap_sync_requested);
4096     }
4097 
4098     trace_ram_dirty_bitmap_sync_wait();
4099 
4100     /* Wait until all the ramblocks' dirty bitmap synced */
4101     while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4102         if (migration_rp_wait(s)) {
4103             return -1;
4104         }
4105     }
4106 
4107     trace_ram_dirty_bitmap_sync_complete();
4108 
4109     return 0;
4110 }
4111 
4112 /*
4113  * Read the received bitmap, revert it as the initial dirty bitmap.
4114  * This is only used when the postcopy migration is paused but wants
4115  * to resume from a middle point.
4116  *
4117  * Returns true if succeeded, false for errors.
4118  */
4119 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4120 {
4121     /* from_dst_file is always valid because we're within rp_thread */
4122     QEMUFile *file = s->rp_state.from_dst_file;
4123     g_autofree unsigned long *le_bitmap = NULL;
4124     unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4125     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4126     uint64_t size, end_mark;
4127     RAMState *rs = ram_state;
4128 
4129     trace_ram_dirty_bitmap_reload_begin(block->idstr);
4130 
4131     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4132         error_setg(errp, "Reload bitmap in incorrect state %s",
4133                    MigrationStatus_str(s->state));
4134         return false;
4135     }
4136 
4137     /*
4138      * Note: see comments in ramblock_recv_bitmap_send() on why we
4139      * need the endianness conversion, and the paddings.
4140      */
4141     local_size = ROUND_UP(local_size, 8);
4142 
4143     /* Add paddings */
4144     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4145 
4146     size = qemu_get_be64(file);
4147 
4148     /* The size of the bitmap should match with our ramblock */
4149     if (size != local_size) {
4150         error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4151                    " != 0x%"PRIx64")", block->idstr, size, local_size);
4152         return false;
4153     }
4154 
4155     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4156     end_mark = qemu_get_be64(file);
4157 
4158     if (qemu_file_get_error(file) || size != local_size) {
4159         error_setg(errp, "read bitmap failed for ramblock '%s': "
4160                    "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4161                    block->idstr, local_size, size);
4162         return false;
4163     }
4164 
4165     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4166         error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4167                    block->idstr, end_mark);
4168         return false;
4169     }
4170 
4171     /*
4172      * Endianness conversion. We are during postcopy (though paused).
4173      * The dirty bitmap won't change. We can directly modify it.
4174      */
4175     bitmap_from_le(block->bmap, le_bitmap, nbits);
4176 
4177     /*
4178      * What we received is "received bitmap". Revert it as the initial
4179      * dirty bitmap for this ramblock.
4180      */
4181     bitmap_complement(block->bmap, block->bmap, nbits);
4182 
4183     /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4184     ramblock_dirty_bitmap_clear_discarded_pages(block);
4185 
4186     /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4187     trace_ram_dirty_bitmap_reload_complete(block->idstr);
4188 
4189     qatomic_dec(&rs->postcopy_bmap_sync_requested);
4190 
4191     /*
4192      * We succeeded to sync bitmap for current ramblock. Always kick the
4193      * migration thread to check whether all requested bitmaps are
4194      * reloaded.  NOTE: it's racy to only kick when requested==0, because
4195      * we don't know whether the migration thread may still be increasing
4196      * it.
4197      */
4198     migration_rp_kick(s);
4199 
4200     return true;
4201 }
4202 
4203 static int ram_resume_prepare(MigrationState *s, void *opaque)
4204 {
4205     RAMState *rs = *(RAMState **)opaque;
4206     int ret;
4207 
4208     ret = ram_dirty_bitmap_sync_all(s, rs);
4209     if (ret) {
4210         return ret;
4211     }
4212 
4213     ram_state_resume_prepare(rs, s->to_dst_file);
4214 
4215     return 0;
4216 }
4217 
4218 void postcopy_preempt_shutdown_file(MigrationState *s)
4219 {
4220     qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4221     qemu_fflush(s->postcopy_qemufile_src);
4222 }
4223 
4224 static SaveVMHandlers savevm_ram_handlers = {
4225     .save_setup = ram_save_setup,
4226     .save_live_iterate = ram_save_iterate,
4227     .save_live_complete_postcopy = ram_save_complete,
4228     .save_live_complete_precopy = ram_save_complete,
4229     .has_postcopy = ram_has_postcopy,
4230     .state_pending_exact = ram_state_pending_exact,
4231     .state_pending_estimate = ram_state_pending_estimate,
4232     .load_state = ram_load,
4233     .save_cleanup = ram_save_cleanup,
4234     .load_setup = ram_load_setup,
4235     .load_cleanup = ram_load_cleanup,
4236     .resume_prepare = ram_resume_prepare,
4237 };
4238 
4239 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4240                                       size_t old_size, size_t new_size)
4241 {
4242     PostcopyState ps = postcopy_state_get();
4243     ram_addr_t offset;
4244     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4245     Error *err = NULL;
4246 
4247     if (!rb) {
4248         error_report("RAM block not found");
4249         return;
4250     }
4251 
4252     if (migrate_ram_is_ignored(rb)) {
4253         return;
4254     }
4255 
4256     if (!migration_is_idle()) {
4257         /*
4258          * Precopy code on the source cannot deal with the size of RAM blocks
4259          * changing at random points in time - especially after sending the
4260          * RAM block sizes in the migration stream, they must no longer change.
4261          * Abort and indicate a proper reason.
4262          */
4263         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4264         migration_cancel(err);
4265         error_free(err);
4266     }
4267 
4268     switch (ps) {
4269     case POSTCOPY_INCOMING_ADVISE:
4270         /*
4271          * Update what ram_postcopy_incoming_init()->init_range() does at the
4272          * time postcopy was advised. Syncing RAM blocks with the source will
4273          * result in RAM resizes.
4274          */
4275         if (old_size < new_size) {
4276             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4277                 error_report("RAM block '%s' discard of resized RAM failed",
4278                              rb->idstr);
4279             }
4280         }
4281         rb->postcopy_length = new_size;
4282         break;
4283     case POSTCOPY_INCOMING_NONE:
4284     case POSTCOPY_INCOMING_RUNNING:
4285     case POSTCOPY_INCOMING_END:
4286         /*
4287          * Once our guest is running, postcopy does no longer care about
4288          * resizes. When growing, the new memory was not available on the
4289          * source, no handler needed.
4290          */
4291         break;
4292     default:
4293         error_report("RAM block '%s' resized during postcopy state: %d",
4294                      rb->idstr, ps);
4295         exit(-1);
4296     }
4297 }
4298 
4299 static RAMBlockNotifier ram_mig_ram_notifier = {
4300     .ram_block_resized = ram_mig_ram_block_resized,
4301 };
4302 
4303 void ram_mig_init(void)
4304 {
4305     qemu_mutex_init(&XBZRLE.lock);
4306     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4307     ram_block_notifier_add(&ram_mig_ram_notifier);
4308 }
4309